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al Physi
s, Joint Institute for Nu
lear Resear
h, 141980 Dubna, Russia(Dated: November 4, 2011)We 
al
ulate the single logarithmi
 
ontributions to the quark singlet and gluon matrix of timelikesplitting fun
tions at all orders in the modi�ed minimal-subtra
tion (MS) s
heme. We �x two ofthe degrees of freedom of this matrix from the analogous results in the massive-gluon regularizations
heme by using the relation between that s
heme and the MS s
heme. We determine this s
hemetransformation from the double logarithmi
 
ontributions to the timelike splitting fun
tions andthe 
oeÆ
ient fun
tions of in
lusive parti
le produ
tion in e+e� annihilation now available in boths
hemes. This approa
h �xes two of the four degrees of freedom, and a third degree of freedom is�xed by reasonable physi
al assumptions. The results agree with the �xed-order results at next-to-next-to-leading order in the literature.PACS numbers: 12.38.Cy,12.39.St,13.66.B
,13.87.FhI. INTRODUCTIONA

ording to the fa
torization theorem, the 
ross se
tion Fh(x;Q2) = Q2(d�h=dx)(x;Q2) for the in
lusive produ
-tion of a hadron h 
arrying a fra
tion x of the available energy in a pro
ess with an energy s
ale Q mu
h greater thanthe asymptoti
 s
ale parameter �QCD of QCD 
an be 
al
ulated by the 
onvolutionFh(x;Q2) =X� Z 1x dzz F� z; �2fQ2 ; as(�2f )!Dh� �xz ; �2f� ; (1)where F� �z; �2f=Q2; as(�2f )� = Q2(d��=dz)�z;Q2; �2f� is the equivalent pro
ess-dependent fa
torized 
ross se
tionfor the produ
tion of a parton � 
arrying away a fra
tion z of the available energy, whi
h 
ontains all subpro
esseswith energy s
ale greater than the arbitrary fa
torization s
ale �f , Dh� �z; �2f� is the fa
torized fragmentation fun
tion(FF) for the fragmentation of a parton � to a hadron h 
arrying away a fra
tion z of the energy of this parton, whi
h
ontains all subpro
esses with energy s
ale less than �f , and as = �s=(2�), with �s being the strong-
oupling 
onstant.These partoni
 
ross se
tions are perturbatively 
al
ulable. I.e. the seriesF� z; �2fQ2 ; as(�2f )! = 1Xn=n0 ans (�2f )F (n)�  z; �2fQ2! (2)approximates F� �z; �2f=Q2; as(�2f )� for suÆ
iently small values of as. We refer to this approa
h to 
al
ulations,namely expanding in as with 
oeÆ
ients that are independent of as, as the �xed-order (FO) approa
h. The s
aleQ will be loosely de�ned to be the s
ale whi
h �f should be 
hosen to have the same order of magnitude as inorder that the perturbative series for F� �z; �2f=Q2; as(�2f )� be as 
onvergent as possible. To be expli
it, this isbe
ause the 
oeÆ
ients F (n)� �z; �2f=Q2� in Eq. (2) grow like lnn+p(�2f=Q2) as �2f=Q2 ! 1, where p is an integerthat is independent of n. The predi
tive power of this approa
h follows from the fa
ts that the FFs are pro
essindependent and the dependen
e of the FFs on �f obeys the Dokshitzer-Gribov-Lipatov-Altarelly-Parisi (DGLAP)evolution equation [1{4℄, dd ln�2f Dh�(z; �2f ) =X� Z 1z dzz P�� �z; as(�2f )�Dh� �xz ; �2f� ; (3)
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2where P��(z; as) are the � ! � splitting fun
tions, whi
h are perturbatively 
al
ulable in the FO approa
h forsuÆ
iently small values of as, the perturbative series taking the formP�� (z; as) = 1Xn=1 ansP (n�1)�� (z): (4)However, the FO approa
h fails when x is too small, due to the presen
e of unresummed large soft-gluon logarithms(SGLs) in the timelike splitting fun
tions and in the hard partoni
 
ross se
tions. This means that small-x measure-ments 
annot be used to provide 
onstraints on FFs at small values of z. They also 
annot be used to improve theFFs at higher values of z be
ause, a

ording to Eq. (1), the 
ross se
tion at x depends on the FFs Dh� �z; �2f� at allz values in the range x � z � 1.To improve the a

ura
y at small values of x, the SGLs of ea
h 
lass appearing in the FO expressions must bedetermined to all orders. The double logarithms (DLs), being the largest SGLs, are known to all orders in theMS s
heme for the timelike splitting fun
tions [5℄ and the 
oeÆ
ient fun
tions for in
lusive hadron produ
tion ine+e� annihilation [6, 7℄. The single logarithms (SLs) in the splitting fun
tions to all orders are known only in themassive-gluon regularization (MG) s
heme [8℄. Be
ause the FO approa
h and the resummed SGLs 
an be 
onsistently
ombined as dis
ussed in Refs. [5, 9, 10℄ to give an approa
h whi
h 
an des
ribe data from the smallest to the largestvalues of x and be
ause FO 
al
ulations in the MS s
heme are known to next-to-leading order (NLO) and beyond,while those in the MG s
heme are usually not, it is ne
essary to determine the SLs in the MS splitting fun
tions.Furthermore, FFs are usually determined in the MS s
heme.In this paper, we �rst partially 
onstrain the 
omplete SL 
ontributions to the MS splitting fun
tions using three keyingredients: �rstly, the DL 
ontributions to the splitting fun
tions in these two s
hemes; se
ondly, the SL 
ontributionsto the MG splitting fun
tions; and thirdly, the DL 
ontribution to the s
heme 
hange between the MG and MS s
hemes.The third ingredient 
an be obtained be
ause the DL 
ontribution to the gluon 
oeÆ
ient fun
tion of e+e� annihilationis known in the MG s
heme and we re
ently 
al
ulated the same quantity in the MS s
heme [6, 7℄. To 
ompletely
onstrain the SL 
ontributions to the MS splitting fun
tions, we then introdu
e some reasonable assumptions that �xthe next-to-lowest order of the s
heme 
hange: We demand that our results are 
onsistent with the next-to-next-to-leading-order (NNLO) splitting fun
tions, and also that the matrix exhibits 
ertain non-singular properties at smallvalues of z.This paper is organised as follows. In se
tion II, we dis
uss the 
al
ulations of fa
torized 
ross se
tions in general.In se
tion III, we introdu
e SGLs and present the DLs in the MG and MS s
hemes for the 
oeÆ
ient fun
tions ine+e� annihilation and for the timelike splitting fun
tions. We formalize the relation between 
al
ulations in di�erents
hemes in se
tion IV. In se
tion V, we use these results together with the SLs in the timelike splitting fun
tions inthe MG s
heme determined in Ref. [8℄ to determine the SLs for 
ombinations of the splitting fun
tions in the MSs
heme. Finally, we present our 
on
lusions in se
tion VII.II. GENERAL FACTORIZED INCLUSIVE HADRON PRODUCTION CROSS SECTIONSIn this se
tion, we 
onsider the general stru
ture of the 
al
ulations of fa
torized 
ross se
tions that will be usefullater. We will �nd it 
onvenient to work in Mellin spa
e, de�ned by the (invertible) Mellin transformf(!) = Z 10 dx x!f(x); (5)be
ause x-spa
e 
onvolutions redu
e to simple produ
ts. In parti
ular, removing the supers
ript h from now on, Eqs.(1), (3), and (4) respe
tively be
ome F(!;Q2) = X� F� !; �2fQ2 ; as(�2f )!D�(!; �2f ); (6)dd ln�2f D�(!; �2f ) = X� P�� �!; as(�2f )�D� �!; �2f� ; (7)P��(!; as) = 1Xn=1 ansP (n�1)�� (!): (8)A

ording to Eq. (6), the 
ross se
tion is invariant under any 
hange of parton basis F� ! F� = P� F�(Y �1)��and D� ! D� = P� Y��D� , where Y is any invertible matrix whi
h is independent of !, �2f , and Q2. In matrix



3notation, F = FY �1 and D = Y D. For example, the SU(nf ) symmetry of the DGLAP equation in the MS s
heme fornf a
tive 
avours of quarks and the 
harge 
onjugation symmetry of QCD imply that P is redu
ed to blo
k-diagonalform when the parton basis is 
hosen su
h that the FFs 
onsist of the quark singlet 
omponent,D� = 1nf nfXJ=1 (DqJ +D�qJ ) ; (9)with qJ (�qJ ) being the (anti)quark of 
avour J , the quark non-singlet 
omponent,DqJ ;NS = DqJ +D�qJ �D�; (10)the valen
e-quark singlet and non-singlet 
omponents, and the gluon 
omponent, Dg . In this basis, forD = � D�Dg � (11)in Eq. (7), we have the 2�2 matrix P = � P�� P�gPg� Pgg � ; (12)while, for D = DqJ ;NS, we have the single 
avour-independent quantity P = PNS, and simlarly for the valen
e-quarksinglet and non-singlets.An alternative basis, whi
h is used in some appli
ations and will be needed later, is that in whi
h the LO splittingfun
tion matrix is diagonal, i.e. D = � D+D� � (13)and P = � P++ P+�P�+ P�� � ; (14)where, de�ning the proje
tors �, �, and � by [11℄� = P (0)�� � P (0)++P (0)�� � P (0)++ ; � = P (0)g�P (0)�� � P (0)++ ; � = P (0)�gP (0)�� � P (0)++ ; (15)we have D+ = (1� �)D� � �Dg ;D� = �D� + �Dg; (16)and, for all k � 0, P (k)�� = �P (k)�� + �P (k)�g + �P (k)g� + (1� �)P (k)gg ;P (k)+� = P (k)�� ��P (k)�� + 1� �� P (k)�g � ;P (k)++ = P (k)�� + P (k)gg � P (k)��;P (k)�+ = P (k)++ � �P (k)�� � �� P (k)�g � = P (k)gg � �P (k)�� � �� P (k)�g � : (17)Note, of 
ourse, that P (0)�� = 0 by de�nition. In one important simpli�
ation of QCD, namely N = 4 super Yang-Millstheory, this basis is a
tually more natural than the basis of quark singlet and gluon be
ause the diagonal splittingfun
tions P (k)�� 
an be expressed in all orders of perturbation theory as one universal fun
tion with shifted arguments[12℄.In general, be
ause both the Mellin transform and the 
hange of parton basis are invertible, we will not spe
ifywhether the x-spa
e 
onvolution of two x-spa
e fun
tions or the produ
t of their Mellin transforms is being 
al
ulated,



4nor whi
h parton basis is being used, nor whether only a subspa
e of the full parton spa
e (a
hieved by setting
ombinations of FFs to zero) is being 
onsidered, but simply write Eqs. (1) and (6) asF = FD; (18)and Eqs. (3) and (7) as dd ln�2f D = PD: (19)In
lusive parti
le produ
tion in e+e� annihilation provides a simple example of this formalism. In this 
ase, Q is
onveniently 
hosen to be the 
.m. energy, and the 
ross se
tion takes the formF = nfXJ=1FqJ ;NSDqJ ;NS + F�D� + FgDg; (20)where FqJ ;NS !; �2fQ2 ; as(�2f )! = Q2�0(Q2)N
QqJ (Q2)CNS !; �2fQ2 ; as(�2f )! ;F� !; �2fQ2 ; as(�2f )! = Q2�0(Q2)N
nf hQ(Q2)iC� !; �2fQ2 ; as(�2f )! ;Fg  !; �2fQ2 ; as(�2f )! = Q2�0(Q2)N
nf hQ(Q2)iCg  !; �2fQ2 ; as(�2f )! ; (21)with �0(Q2) being the lowest-order (LO) 
ross se
tion for the pro
ess e+e� ! �+��, N
 the number of quark 
oloursin QCD, QqJ (Q2) the e�e
tive ele
troweak 
harge of quark qJ , and hQ(Q2)i =PnfJ=1QqJ (Q2)=nf . Note that Eq. (21)is, stri
tly speaking, dependent on Q throughM2Z=Q2 (in QqJ (Q2)) as well as through �2f=Q2, but these dependen
esare not shown for brevity. The 
oeÆ
ient fun
tions CX (X = NS;�; g) in the FO approa
h in Mellin spa
e may befound, e.g., in Ref. [13℄. It will be 
onvenient later to writeF = Q2�0(Q2)N
nf hQ(Q2)iCD: (22)For example, for the quark singlet and gluon 
ontribution in Eq. (20),F = F�D� + FgDg; (23)D is given by Eq. (11), and C = (C�; Cg): (24)We will set �f = Q for simpli
ity, in whi
h 
ase it is 
onvenient to de�neCX (!; as) = CX(!; 1; as) (X = NS;�; g): (25)III. SOFT-GLUON LOGARITHMSSin
e the non-singlet in
lusive partoni
 produ
tion 
ross se
tions FqJ ;NS and the non-singlet splitting fun
tionsare free of SGLs, they do not 
on
ern us, and so we will not dis
uss them further. From now on, in
lusive parti
leprodu
tion 
ross se
tions will be assumed to take the form in Eq. (23). The in
lusive partoni
 produ
tion 
rossse
tions F 
al
ulated in the FO approa
h may exhibit a singular behaviour in Mellin spa
e as ! ! 0. This is 
ausedby SGLs, whi
h grow like 1=!p for p � 1. In x spa
e, these SGLs take the form of quantities that grow like lnp�1 xas x ! 0. Su
h strong singularities are non-physi
al and be
ome weaker or even disappear after being resummed toall orders. The resummed SGLs in F take the form of the seriesF = 1Xm=0�as! �m F [m℄ � as!2� : (26)



5For su
h a series to 
onverge, at least asymptoti
ally, it is ne
essary that as � 1 and ! = O(pas). The DLs, namelythose SGLs for whi
h m = 0 in Eq. (26), of the in
lusive partoni
 produ
tion 
ross se
tions for e+e� annihilation inthe MS s
heme, when D is given by Eq. (11), take the form [6, 7℄C = (1; CDLg ); (27)where CDLg (!; as) = 2CFCA �r !4
(!; as) + ! � 1� ; (28)with 
(!; as) = 14(�! +p!2 + 16CAas); (29)and CNS = 1. They were also determined in Ref. [14℄ in the MG s
heme, indi
ated in this paper by an overline, to beC = (1; CDLg ); (30)where CDLg (!; as) = CFCA � !4
(!; as) + ! � 1� ; (31)and CNS = 1.The resummation of the SGLs in P take the form of the seriesP = 1Xm=1�as! �m P [m�1℄ � as!2� : (32)The full DL 
ontribution to P , namely the SGLs for whi
h m = 1 in Eq. (32), will be written as PDL =(as=!)P [0℄(as=!2). When D is given by Eq. (11), it is given in the MS s
heme byPDL(!; as) = A
(!; as); (33)where 
 is given in Eq. (29) and A = � 0 2CFCA0 1 � ; (34)whi
h obeys the proje
tion operator property A2 = A. For the quark non-singlets, PDL = 0. The DLs in P in theMG s
heme are the same as those in the MS s
heme, i.e., when D is given by Eq. (11),PDL(!; as) = A
(!; as); (35)and PDL = 0 for the quark non-singlets.IV. GENERAL SCHEME CHANGESResults in one s
heme, su
h as the splitting fun
tions in the MS s
heme, may be obtained from the analogous resultsin another s
heme, su
h as the MG s
heme, on
e the relation between the two s
hemes is known to the appropriatea

ura
y. To obtain the form of this relation, let F (D) and F (D) be respe
tively the partoni
 
ross se
tions (FFs) inany two di�erent s
hemes. Sin
e the 
ross se
tion is s
heme independent, then as well as Eq. (18) we have F = FD.Comparing this last result with Eq. (18) and treating D�(z; �2f ) as arbitrary fun
tions, we �nd thatF = FZ; (36)D = Z�1D; (37)



6where, in Mellin spa
e, Z is an invertible matrix that depends on ! and �2f . Note, therefore, that Eqs. (36) and (37)are generalizations of the 
hange of parton basis 
onsidered just after Eq. (7). The (matrix of) splitting fun
tion(s)P is de�ned to be that whi
h appears in the DGLAP equation in the new s
heme, whi
h emerges from Eq. (19) bysubstituting D and P with D and P , respe
tively. Then, it follows from Eqs. (19) and (37) that the relation betweenthe splitting fun
tions in two di�erent s
hemes is given byP = Z�1PZ � Z�1 dZd ln�2f : (38)Now, 
onsider a general expansion of perturbatively 
al
ulable quantities, su
h as F� and P , in some variablex(!; as), with 
oeÆ
ients that depend on y(!; as), i.e.F = 1Xn=0xnF fng(y);P = 1Xn=1xnP fn�1g(y): (39)For example, in the FO approa
h (Eqs. (2) and (8)), x = as and y = ! in Eq. (39), while in the SGL approa
h (Eqs.(26) and (32)), x = as=! and y = as=!2 in Eq. (39) (ex
luding terms that are non-singular as ! ! 0). We restri
tour s
hemes to be su
h that, if the perturbative series for F begins at O(xn), the perturbative series for F also beginsat O(xn). Thus, Z(!; as) = 1Xn=0Zfng(y)xn: (40)Note that, in Eq. (38), the �rst term Z�1PZ = O(x) while the se
ond term Z�1dZ=d ln�2f = O(x2). ThusP f0g = Zf0g�1P f0gZf0g. The result P (0) = P (0) no longer holds in general, but rather if and only if Zf0g 
ommuteswith P f0g. This is trivially the 
ase in the FO approa
h be
ause the s
hemes used in the literature are (usually) su
hthat Zf0g(y) = 1, i.e. Z(!; as) = 1 + 1Xn=1Z(n)(!)ans : (41)However, in the SGL approa
h, where Z(!; as) = 1Xm=0Z [m℄ � as!2��as! �m ; (42)we must allow for the possibility that Z [0℄(y) is any fun
tion of y. We will see later that Z [0℄ does in fa
t 
ommutewith P [0℄, at least for the MG and MS s
hemes.V. SINGLE LOGARITHMS IN THE SPLITTING FUNCTIONSThe SL 
ontributions to the timelike splitting fun
tions have already been 
al
ulated in the MG s
heme [8, 14, 15℄and are given byP SL�� = 0; (43)P SL�g = 2CFCA ��P SLgg + 16(11CA + 4nfTR)as�+ !�16 + 13 nfTRCA � 23 CFnfTRC2A ��
 � 2asCA! ��� 3CF as; (44)P SLg� = 23TRnfas; (45)P SLgg = �16 !3(11CA + 4nfTR)(4
 + !)3 as � 23 ![55C2A(2
 + !) + 4CAnfTR(6
 + 5!) + 8CFnfTR!℄(2
 + !)(4
 + !)3 a2s� 163 (11C3A + 12C2AnfTR + 16CACFnfTR)(2
 + !)(4
 + !)3 a3s; (46)



7where 
 = 
(!; as) is given by Eq. (29). In Eq. (44), we have taken the opportunity to 
orre
t some obvioustypographi
al errors in Eq. (38) of Ref. [8℄[35℄. It is the goal of this se
tion to perform the s
heme 
hange given inEq. (38) on Eqs. (43){(46) in order to 
onstrain and then to attempt to determine the SL 
ontributions in the MSs
heme.We �rst 
al
ulate Z [0℄ from the DLs in the 
oeÆ
ient and splitting fun
tions: with the help of Eqs. (27) and (30),Eq. (36) be
omes (1; CDLg ) = (1; CDLg ) Z [0℄�� Z [0℄�gZ [0℄g� Z [0℄gg ! : (47)Using this result to eliminate Z [0℄�� and Z [0℄�g givesZ [0℄ =  1� CDLg Z [0℄g� CDLg � CDLg Z [0℄ggZ [0℄g� Z [0℄gg ! : (48)Next, we note that, be
ause dZ=d ln�2f is free of DLs as dis
ussed immediately after Eq. (40) [36℄, the DLs in Eq.(38) obey PDL = Z [0℄�1PDLZ [0℄: (49)Using Eqs. (33) and (35), we �nd that [Z [0℄; A℄ = 0; (50)i.e.  0 2CFCA (1� CDLg Z [0℄g�) + CDLg � CDLg Z [0℄gg0 2CFCA Z [0℄g� + Z [0℄gg ! =  2CFCA Z [0℄g� 2CFCA Z [0℄ggZ [0℄g� Z [0℄gg ! ; (51)from whi
h we �nd that Z [0℄g� = 0;Z [0℄gg = 2CFCA + CDLg2CFCA + CDLg : (52)Thus, �nally, Z [0℄ = 0BB� 1 CDLg �CDLg1+ CA2CF CDLg0 1+ CA2CF CDLg1+ CA2CF CDLg 1CCA : (53)We note that Z [0℄�1 = 0BB� 1 CDLg �CDLg1+ CA2CF CDLg0 1+ CA2CF CDLg1+ CA2CF CDLg 1CCA (54)is obtained from Z [0℄ by taking CDLg $ CDLg , as expe
ted.We are now in a position to 
onstrain the SLs in P . Using Eq. (50), the SLs (divided by (as=!)2 for 
onvenien
e)in the MS splitting fun
tions in Eq. (38) are given byP [1℄ = Z [0℄�1P [1℄Z [0℄ + �0!2Z [0℄�1 dZ [0℄das +R[1℄; (55)



8where �0 = (11=6)CA�(2=3)TRnf is �rst 
oeÆ
ient in the series �(as) = �P1n=0 �nan+2s that determines the runningof the 
oupling via das(�2)=d ln�2 = �(as(�2)) and we have de�nedR[1℄ = Z [0℄�1[P [0℄; Z [1℄℄ = P [0℄gg 0B� 2CFCA 1Z[0℄gg Z [1℄g� 2CFCA (Z [1℄gg � Z [1℄��)� Z [1℄�g � � 2CFCA �2� 1Z[0℄gg � 1�Z [1℄g�1Z[0℄gg Z [1℄g� � 2CFCA 1Z[0℄gg Z [1℄g� 1CA : (56)From Eq. (32) and the de�nitions that follow it, we have P [0℄gg = (as=!)�1 
(!; as). Expli
itly at SL a

ura
y, Eqs.(55) and (56) readP SL�� = � CDLg � CDLg1 + CA2CF CDLg PSLg� +RSL��;P SL�g = 1 + CA2CF CDLg1 + CA2CF CDLg  PSL�g + �0a2s ddas CDLg � CDLg1 + CA2CF CDLg !� �CDLg � CDLg �2�1 + CA2CF CDLg ��1 + CA2CF CDLg �P SLg�+ CDLg � CDLg1 + CA2CF CDLg �P SL�� � P SLgg �+RSL�g ;P SLg� = 1 + CA2CF CDLg1 + CA2CF CDLg P SLg� +RSLg�;P SLgg = PSLgg + CDLg � CDLg1 + CA2CF CDLg P SLg� + �0a2s ddas ln 1 + CA2CF CDLg1 + CA2CF CDLg +RSLgg ; (57)with the de�nitions P SL = (as=!)2P [1℄(as=!2), whi
h are the 
omplete SL 
ontributions to the splitting fun
tions, andRSL = (as=!)2R[1℄(as=!2). Although our results for the SL 
ontributions to the splitting fun
tions in Eq. (57) dependon the unknown 
omponents of the matrix RSL, it is 
lear from its form in Eq. (56) that two of the four degrees offreedom of the matrix P SL are 
ompletely �xed. For example, these 
an be taken as any two of P SL��� (2CF =CA)P SLg� ,P SLgg + (2CF =CA)P SLg� , and the tra
e P SL�� + P SLgg .We note that, interestingly, RSLg� = O(a4s) be
ause, with this 
hoi
e,P SL�� = 32CACFTRnf3!4 a3s +O(a4s);P SLg� = 2TRnf3 as + 16C2ATRnf3!4 a3s +O(a4s);P SLgg = �11CA + 4TRnf6 as + 2(11C2A + 4CATRnf � 8CFTRnf )3!2 a2s� 8(33C3A + 12C2ATRnf � 20CACFTRnf )3!4 a3s +O(a4s); (58)whose O(a2s) terms are 
onsistent with the results of Ref. [16℄, and whose O(a3s) terms are 
onsistent with the resultsof Refs. [17, 18℄. Note also that Z [0℄g� = 0 (although we know from Appendix B of Ref. [19℄ that Z [2℄g� 6= 0). Wewill return to this point in the next se
tion, where we investigate the e�e
t of physi
al 
onstraints on the remainingundetermined degrees of freedom on our results.VI. PHYSICAL CONSTRAINTS ON THE SPLITTING FUNCTIONSIn this se
tion, we further 
onstrain the SL 
ontributions to the MS splitting fun
tions by exploiting some pysi
alproperties of s
heme-dependent quantities in physi
al s
hemes su
h as the MS s
heme.A

ording to Eq. (56), P SL�g is the only 
omponent of the splitting fun
tion that is so far 
ompletely un
onstrained,even to O(a3s), sin
e R[1℄�g also depends on the remaining three 
omponents of Z [1℄, and Z [1℄�g and Z [1℄gg are unknown.Fortunately, this degree of freedom is �xed by assuming the absen
e of ! ! 0 singularities for all values of the



9fa
torization s
ale in D� de�ned in Eq. (16). By inspe
tion of the DGLAP equation in this basis, it follws that thesplitting fun
tions P�� and P�+ are found to be free of ! ! 0 singularities, i.e., negle
ting all non-singular terms,P�� = P�+ = 0: (59)This assumption is expe
ted to be true to all orders. It is 
ertainly true for the DL 
ontributions to the timelikesplitting fun
tions, for the SL 
ontributions in the MG s
heme given in Eqs. (43){(46), and through NNLO [17, 18℄,as we veri�ed in this paper. Moreover, it is true through NNLO in the spa
elike 
ase [20, 21℄ and holds for the leadingand next-to-leading singularities to all orders in the framework of Balitski-Fadin-Kuraev-Lipatov (BFKL) dynami
s[22{25℄, a fa
t that has been exploited in various approa
hes (see, for example, the re
ent papers [26, 27℄ and thereferen
es 
ited therein). We note that the timelike splitting fun
tions share a number of simple properties with theirspa
elike 
ounterparts, e.g. the LO splitting fun
tions are the same, and the diagonal splitting fun
tions to all ordersgrow like ln! as ! !1.Using the relations between the two bases in Eq. (17), Eq. (59) implies thatPg� = ��� P��;P�g = � ��Pgg : (60)where, through the SL level, whi
h is all we need,� �� = 2CFCA �1 + !�16 + 13 nfTRCA � 23 CFnfTRC2A �� ; (61)whi
h, at any order k, relates the two most singular terms in the o�-diagonal splitting fun
tions P (k)�g and P (k)g� withthose in the diagonal splitting fun
tions P (k)�� and P (k)gg . Using Eq. (60), the assumption in Eq. (59) implies thatRSLg� � CA2CF RSL�� = 0; (62)whi
h is already satis�ed by the form in Eq. (56), andRSL�g � 2CFCA RSLgg = 43asCF [C2A + 2nfTR(CA � 2CF )℄" CDLg (CACDLg + CF )(CACDLg + 2CF )(CACDLg + 2CF )#2 ; (63)whi
h turns out to �x the following 
ombination of Z [1℄ 
omponents:RSL�g � 2CFCA RSLgg = �P [0℄gg "2CFCA Z [1℄�� + Z [1℄�g ��2CFCA �2 Z [1℄g� � 2CFCA Z [1℄gg# �as! �2 : (64)We 
an now write Eq. (56) in the formR[1℄ = 0� 0 43asCF [C2A + 2nfTR(CA � 2CF )℄ � CDLg (CACDLg +CF )(CACDLg +2CF )(CACDLg +2CF )�20 0 1A+ Z [1℄g�0� 2CFCA ��2CFCA �21 � 2CFCA 1A P [0℄ggZ [0℄gg ; (65)whi
h shows that Z [1℄g� does not a�e
t the evolution of the 
ombination (2CF =CA)Dg �D�, redu
ing the dependen
eof the evolution on the unknown quantity Z [1℄g�.Note that Eq. (59) (or, equivalently, Eq. (60)) implies that the determinant of P vanishes. Sin
e the results in Eq.(57) with R[1℄ given by Eq. (65) imply that the tra
e is non-zero, this means that one of the eigenvalues is zero andthat the other one 
oin
ides with the tra
e.In order to 
omplete the 
he
k of Eq. (58) against the FO results in the literature, we need to 
onsider the remainingsplitting fun
tion, for whi
h we �ndP SL�g = �3CFas + 12CACF!2 a2s � 16(29C2ACF + 4CFTRnf (CA � CF ))3!4 a3s +O(a4s): (66)



10Here again, the O(a2s) terms are in agreement with the results of Ref. [16℄, while the O(a3s) terms are in agreementwith the results of Ref. [18℄.We �nd that our resummed results exhibit the following ! ! 0 behaviour:P SL�� = 4CFTRnf3C3=4A a5=4sp! � 4CFnfTR3CA as + Z [1℄g�P [0℄ggZ [0℄gg 2CFCA �as! �2 +O(p!);P SL�g = �8C2FTRnf3C7=4A a5=4sp! � CF (11C2A + 4CAnfTR � 24CFnfTR)6C2A as � Z [1℄g�P [0℄ggZ [0℄gg �2CFCA �2 �as! �2 +O(p!);P SLg� = 2TRnfC1=4A3 a5=4sp! + Z [1℄g�P [0℄ggZ [0℄gg �as! �2 +O(p!);P SLgg = �4CFTRnf3C3=4A a5=4sp! � 11C2A + 4CAnfTR � 8CFnfTR12CA as � Z [1℄g�P [0℄ggZ [0℄gg 2CFCA �as! �2 +O(p!): (67)These limits imply the following nontrivial relation among the SL 
ontributions to the MS splitting fun
tions:"2CFCA P SL�� + P SL�g ��2CFCA �2 P SLg� � 2CFCA P SLgg #!=0 = 0: (68)Equation (68) is also obeyed by the SL 
ontributions in the MG s
heme [8℄, whi
h 
an be 
he
ked using Eqs. (43) and(46), and by the DL 
ontributions, whi
h are the same in both s
hemes.It is interesting to observe that Eq. (68) is also true for all values of ! when the 
hoi
e CA = CF = nf is made,whi
h 
orresponds to an N = 1 supersymmetri
 theory. Supersymmetry relations like the one in Eq. (68) were �rstintrodu
ed in Refs. [4, 28℄ at one loop, then dis
ussed at two loops in Refs. [29, 30℄ and, very re
ently, at three loopsin Ref. [18℄. A

identally, as shown in Ref. [8℄ in the timelike 
ase, Eq. (68) also re
e
ts the fa
t that an observablelike the multipli
ity ratio in quark and gluon jets is s
heme independent.As we have seen, the only undetermined quantity appearing in our formulae, RSLg�, is not 
onstrained by any physi
al
onditions. In addition we noted that RSLg� = O(a4s). This suggests that RSLg� is an artefa
t of the MS s
heme.VII. CONCLUSIONSIn this paper, we presented the SL 
ontributions to the MS splitting fun
tions. Two of the degrees of freedomin the 
avour-singlet matrix were determined from the SL 
ontributions to the MG splitting fun
tions and the DL
ontributions to the e+e� 
oeÆ
ient fun
tions in both the MS and MG s
hemes. One of the remaining two degreesof freedom was 
onstrained by using 
ertain non-singular properties of the 
avour singlet matrix at small values of!, whi
h have been investigated only in the spa
elike 
ase so far (see, e.g., Ref. [11℄). Nevertheless, both eigenvaluesare determined analyti
ally in 
losed form. Our results are in agreement with very re
ent 
al
ulations of the splittingfun
tions in the MS s
heme at NNLO [17, 18℄ in the FO approa
h, and also with general physi
al requirements su
has supersymmetry.Knowledge of the 
omplete SL 
ontributions to the splitting fun
tions formally improves the theoreti
al des
riptionof the evolution of FFs at small values of ! and thus fa
ilitates the extra
tion of FFs from experimental data at smallvalues of x in global �ts. To date, su
h global �ts have been performed to NLO in the FO approa
h [31{33℄. Our
al
ulation of the SL 
ontributions 
an be in
orporated into su
h �ts using the 
onsistent approa
h of Ref. [5℄, whi
h,together with the DL 
ontribution to the e+e� 
oeÆ
ient fun
tion determined in Ref. [6℄, allows for a des
ription ofthe experimental data from the largest to the smallest x values. We re
all that the NLO splitting fun
tions 
ontainalso sub-SLs (sSLs), namely the SGLs for whi
h m = 3 in Eq. (32), proportional to a2s=!, but the 
omplete sSL
ontributions to the splitting fun
tions are unknown. In the SGL+FO(+FOÆ) s
heme de�ned in Ref. [5℄, these sSLsare, therefore, simply subtra
ted at this logarithmi
 order of a

ura
y. Alternatively, these unresummed sSLs 
an berepla
ed by a simple matrix of sSL fun
tions, whi
h are non-singular as ! ! 0, but whose FO expansions start withthe NLO sSLs. An example of su
h a matrix of fun
tions is as
A=(2CA).Note added. After the 
ompletion of this work, there appeared a preprint [34℄ 
ontaining an alternative 
al
ulationof the SL 
ontribution to the MS splitting fun
tions, with whi
h we found agreement, 
on�rming both our approa
hand the approa
h of that arti
le. We stress that our approa
h highlights the relation between the splitting fun
tionsin the MS s
heme and those in the MG s
heme, the latter s
heme being important in the s
heme independent ratioof gluon to quark jet rates [8℄. We also showed expli
itly that our results are 
onsistent with physi
al 
onstraints.



11Finally, we obtained 
losed forms for the splitting fun
tions (up to RSLg�) whi
h we expli
itly used to verify the physi
alresult in Eq. (68). A
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