
*∣
∣0
8.
39
48
*

Revised Version  DESY 11-142
ar

X
iv

:1
10

8.
39

48
v2

  [
he

p-
ph

] 
 3

 N
ov

 2
01

1

DESY 11{142 ISSN 0418{9833August 2011 Timelike Single-logarithm-resummed Splitting FuntionsS. Albino, P. Bolzoni, B.A. KniehlII. Institut f�ur Theretishe Physik, Universit�at Hamburg,Luruper Chaussee 149, 22761 Hamburg, GermanyA.V. KotikovII. Institut f�ur Theoretishe Physik, Universit�at Hamburg,Luruper Chaussee 149, 22761 Hamburg, Germany andBogoliubov Laboratory of Theoretial Physis, Joint Institute for Nulear Researh, 141980 Dubna, Russia(Dated: November 4, 2011)We alulate the single logarithmi ontributions to the quark singlet and gluon matrix of timelikesplitting funtions at all orders in the modi�ed minimal-subtration (MS) sheme. We �x two ofthe degrees of freedom of this matrix from the analogous results in the massive-gluon regularizationsheme by using the relation between that sheme and the MS sheme. We determine this shemetransformation from the double logarithmi ontributions to the timelike splitting funtions andthe oeÆient funtions of inlusive partile prodution in e+e� annihilation now available in bothshemes. This approah �xes two of the four degrees of freedom, and a third degree of freedom is�xed by reasonable physial assumptions. The results agree with the �xed-order results at next-to-next-to-leading order in the literature.PACS numbers: 12.38.Cy,12.39.St,13.66.B,13.87.FhI. INTRODUCTIONAording to the fatorization theorem, the ross setion Fh(x;Q2) = Q2(d�h=dx)(x;Q2) for the inlusive produ-tion of a hadron h arrying a fration x of the available energy in a proess with an energy sale Q muh greater thanthe asymptoti sale parameter �QCD of QCD an be alulated by the onvolutionFh(x;Q2) =X� Z 1x dzz F� z; �2fQ2 ; as(�2f )!Dh� �xz ; �2f� ; (1)where F� �z; �2f=Q2; as(�2f )� = Q2(d��=dz)�z;Q2; �2f� is the equivalent proess-dependent fatorized ross setionfor the prodution of a parton � arrying away a fration z of the available energy, whih ontains all subproesseswith energy sale greater than the arbitrary fatorization sale �f , Dh� �z; �2f� is the fatorized fragmentation funtion(FF) for the fragmentation of a parton � to a hadron h arrying away a fration z of the energy of this parton, whihontains all subproesses with energy sale less than �f , and as = �s=(2�), with �s being the strong-oupling onstant.These partoni ross setions are perturbatively alulable. I.e. the seriesF� z; �2fQ2 ; as(�2f )! = 1Xn=n0 ans (�2f )F (n)�  z; �2fQ2! (2)approximates F� �z; �2f=Q2; as(�2f )� for suÆiently small values of as. We refer to this approah to alulations,namely expanding in as with oeÆients that are independent of as, as the �xed-order (FO) approah. The saleQ will be loosely de�ned to be the sale whih �f should be hosen to have the same order of magnitude as inorder that the perturbative series for F� �z; �2f=Q2; as(�2f )� be as onvergent as possible. To be expliit, this isbeause the oeÆients F (n)� �z; �2f=Q2� in Eq. (2) grow like lnn+p(�2f=Q2) as �2f=Q2 ! 1, where p is an integerthat is independent of n. The preditive power of this approah follows from the fats that the FFs are proessindependent and the dependene of the FFs on �f obeys the Dokshitzer-Gribov-Lipatov-Altarelly-Parisi (DGLAP)evolution equation [1{4℄, dd ln�2f Dh�(z; �2f ) =X� Z 1z dzz P�� �z; as(�2f )�Dh� �xz ; �2f� ; (3)
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2where P��(z; as) are the � ! � splitting funtions, whih are perturbatively alulable in the FO approah forsuÆiently small values of as, the perturbative series taking the formP�� (z; as) = 1Xn=1 ansP (n�1)�� (z): (4)However, the FO approah fails when x is too small, due to the presene of unresummed large soft-gluon logarithms(SGLs) in the timelike splitting funtions and in the hard partoni ross setions. This means that small-x measure-ments annot be used to provide onstraints on FFs at small values of z. They also annot be used to improve theFFs at higher values of z beause, aording to Eq. (1), the ross setion at x depends on the FFs Dh� �z; �2f� at allz values in the range x � z � 1.To improve the auray at small values of x, the SGLs of eah lass appearing in the FO expressions must bedetermined to all orders. The double logarithms (DLs), being the largest SGLs, are known to all orders in theMS sheme for the timelike splitting funtions [5℄ and the oeÆient funtions for inlusive hadron prodution ine+e� annihilation [6, 7℄. The single logarithms (SLs) in the splitting funtions to all orders are known only in themassive-gluon regularization (MG) sheme [8℄. Beause the FO approah and the resummed SGLs an be onsistentlyombined as disussed in Refs. [5, 9, 10℄ to give an approah whih an desribe data from the smallest to the largestvalues of x and beause FO alulations in the MS sheme are known to next-to-leading order (NLO) and beyond,while those in the MG sheme are usually not, it is neessary to determine the SLs in the MS splitting funtions.Furthermore, FFs are usually determined in the MS sheme.In this paper, we �rst partially onstrain the omplete SL ontributions to the MS splitting funtions using three keyingredients: �rstly, the DL ontributions to the splitting funtions in these two shemes; seondly, the SL ontributionsto the MG splitting funtions; and thirdly, the DL ontribution to the sheme hange between the MG and MS shemes.The third ingredient an be obtained beause the DL ontribution to the gluon oeÆient funtion of e+e� annihilationis known in the MG sheme and we reently alulated the same quantity in the MS sheme [6, 7℄. To ompletelyonstrain the SL ontributions to the MS splitting funtions, we then introdue some reasonable assumptions that �xthe next-to-lowest order of the sheme hange: We demand that our results are onsistent with the next-to-next-to-leading-order (NNLO) splitting funtions, and also that the matrix exhibits ertain non-singular properties at smallvalues of z.This paper is organised as follows. In setion II, we disuss the alulations of fatorized ross setions in general.In setion III, we introdue SGLs and present the DLs in the MG and MS shemes for the oeÆient funtions ine+e� annihilation and for the timelike splitting funtions. We formalize the relation between alulations in di�erentshemes in setion IV. In setion V, we use these results together with the SLs in the timelike splitting funtions inthe MG sheme determined in Ref. [8℄ to determine the SLs for ombinations of the splitting funtions in the MSsheme. Finally, we present our onlusions in setion VII.II. GENERAL FACTORIZED INCLUSIVE HADRON PRODUCTION CROSS SECTIONSIn this setion, we onsider the general struture of the alulations of fatorized ross setions that will be usefullater. We will �nd it onvenient to work in Mellin spae, de�ned by the (invertible) Mellin transformf(!) = Z 10 dx x!f(x); (5)beause x-spae onvolutions redue to simple produts. In partiular, removing the supersript h from now on, Eqs.(1), (3), and (4) respetively beome F(!;Q2) = X� F� !; �2fQ2 ; as(�2f )!D�(!; �2f ); (6)dd ln�2f D�(!; �2f ) = X� P�� �!; as(�2f )�D� �!; �2f� ; (7)P��(!; as) = 1Xn=1 ansP (n�1)�� (!): (8)Aording to Eq. (6), the ross setion is invariant under any hange of parton basis F� ! F� = P� F�(Y �1)��and D� ! D� = P� Y��D� , where Y is any invertible matrix whih is independent of !, �2f , and Q2. In matrix



3notation, F = FY �1 and D = Y D. For example, the SU(nf ) symmetry of the DGLAP equation in the MS sheme fornf ative avours of quarks and the harge onjugation symmetry of QCD imply that P is redued to blok-diagonalform when the parton basis is hosen suh that the FFs onsist of the quark singlet omponent,D� = 1nf nfXJ=1 (DqJ +D�qJ ) ; (9)with qJ (�qJ ) being the (anti)quark of avour J , the quark non-singlet omponent,DqJ ;NS = DqJ +D�qJ �D�; (10)the valene-quark singlet and non-singlet omponents, and the gluon omponent, Dg . In this basis, forD = � D�Dg � (11)in Eq. (7), we have the 2�2 matrix P = � P�� P�gPg� Pgg � ; (12)while, for D = DqJ ;NS, we have the single avour-independent quantity P = PNS, and simlarly for the valene-quarksinglet and non-singlets.An alternative basis, whih is used in some appliations and will be needed later, is that in whih the LO splittingfuntion matrix is diagonal, i.e. D = � D+D� � (13)and P = � P++ P+�P�+ P�� � ; (14)where, de�ning the projetors �, �, and � by [11℄� = P (0)�� � P (0)++P (0)�� � P (0)++ ; � = P (0)g�P (0)�� � P (0)++ ; � = P (0)�gP (0)�� � P (0)++ ; (15)we have D+ = (1� �)D� � �Dg ;D� = �D� + �Dg; (16)and, for all k � 0, P (k)�� = �P (k)�� + �P (k)�g + �P (k)g� + (1� �)P (k)gg ;P (k)+� = P (k)�� ��P (k)�� + 1� �� P (k)�g � ;P (k)++ = P (k)�� + P (k)gg � P (k)��;P (k)�+ = P (k)++ � �P (k)�� � �� P (k)�g � = P (k)gg � �P (k)�� � �� P (k)�g � : (17)Note, of ourse, that P (0)�� = 0 by de�nition. In one important simpli�ation of QCD, namely N = 4 super Yang-Millstheory, this basis is atually more natural than the basis of quark singlet and gluon beause the diagonal splittingfuntions P (k)�� an be expressed in all orders of perturbation theory as one universal funtion with shifted arguments[12℄.In general, beause both the Mellin transform and the hange of parton basis are invertible, we will not speifywhether the x-spae onvolution of two x-spae funtions or the produt of their Mellin transforms is being alulated,



4nor whih parton basis is being used, nor whether only a subspae of the full parton spae (ahieved by settingombinations of FFs to zero) is being onsidered, but simply write Eqs. (1) and (6) asF = FD; (18)and Eqs. (3) and (7) as dd ln�2f D = PD: (19)Inlusive partile prodution in e+e� annihilation provides a simple example of this formalism. In this ase, Q isonveniently hosen to be the .m. energy, and the ross setion takes the formF = nfXJ=1FqJ ;NSDqJ ;NS + F�D� + FgDg; (20)where FqJ ;NS !; �2fQ2 ; as(�2f )! = Q2�0(Q2)NQqJ (Q2)CNS !; �2fQ2 ; as(�2f )! ;F� !; �2fQ2 ; as(�2f )! = Q2�0(Q2)Nnf hQ(Q2)iC� !; �2fQ2 ; as(�2f )! ;Fg  !; �2fQ2 ; as(�2f )! = Q2�0(Q2)Nnf hQ(Q2)iCg  !; �2fQ2 ; as(�2f )! ; (21)with �0(Q2) being the lowest-order (LO) ross setion for the proess e+e� ! �+��, N the number of quark oloursin QCD, QqJ (Q2) the e�etive eletroweak harge of quark qJ , and hQ(Q2)i =PnfJ=1QqJ (Q2)=nf . Note that Eq. (21)is, stritly speaking, dependent on Q throughM2Z=Q2 (in QqJ (Q2)) as well as through �2f=Q2, but these dependenesare not shown for brevity. The oeÆient funtions CX (X = NS;�; g) in the FO approah in Mellin spae may befound, e.g., in Ref. [13℄. It will be onvenient later to writeF = Q2�0(Q2)Nnf hQ(Q2)iCD: (22)For example, for the quark singlet and gluon ontribution in Eq. (20),F = F�D� + FgDg; (23)D is given by Eq. (11), and C = (C�; Cg): (24)We will set �f = Q for simpliity, in whih ase it is onvenient to de�neCX (!; as) = CX(!; 1; as) (X = NS;�; g): (25)III. SOFT-GLUON LOGARITHMSSine the non-singlet inlusive partoni prodution ross setions FqJ ;NS and the non-singlet splitting funtionsare free of SGLs, they do not onern us, and so we will not disuss them further. From now on, inlusive partileprodution ross setions will be assumed to take the form in Eq. (23). The inlusive partoni prodution rosssetions F alulated in the FO approah may exhibit a singular behaviour in Mellin spae as ! ! 0. This is ausedby SGLs, whih grow like 1=!p for p � 1. In x spae, these SGLs take the form of quantities that grow like lnp�1 xas x ! 0. Suh strong singularities are non-physial and beome weaker or even disappear after being resummed toall orders. The resummed SGLs in F take the form of the seriesF = 1Xm=0�as! �m F [m℄ � as!2� : (26)



5For suh a series to onverge, at least asymptotially, it is neessary that as � 1 and ! = O(pas). The DLs, namelythose SGLs for whih m = 0 in Eq. (26), of the inlusive partoni prodution ross setions for e+e� annihilation inthe MS sheme, when D is given by Eq. (11), take the form [6, 7℄C = (1; CDLg ); (27)where CDLg (!; as) = 2CFCA �r !4(!; as) + ! � 1� ; (28)with (!; as) = 14(�! +p!2 + 16CAas); (29)and CNS = 1. They were also determined in Ref. [14℄ in the MG sheme, indiated in this paper by an overline, to beC = (1; CDLg ); (30)where CDLg (!; as) = CFCA � !4(!; as) + ! � 1� ; (31)and CNS = 1.The resummation of the SGLs in P take the form of the seriesP = 1Xm=1�as! �m P [m�1℄ � as!2� : (32)The full DL ontribution to P , namely the SGLs for whih m = 1 in Eq. (32), will be written as PDL =(as=!)P [0℄(as=!2). When D is given by Eq. (11), it is given in the MS sheme byPDL(!; as) = A(!; as); (33)where  is given in Eq. (29) and A = � 0 2CFCA0 1 � ; (34)whih obeys the projetion operator property A2 = A. For the quark non-singlets, PDL = 0. The DLs in P in theMG sheme are the same as those in the MS sheme, i.e., when D is given by Eq. (11),PDL(!; as) = A(!; as); (35)and PDL = 0 for the quark non-singlets.IV. GENERAL SCHEME CHANGESResults in one sheme, suh as the splitting funtions in the MS sheme, may be obtained from the analogous resultsin another sheme, suh as the MG sheme, one the relation between the two shemes is known to the appropriateauray. To obtain the form of this relation, let F (D) and F (D) be respetively the partoni ross setions (FFs) inany two di�erent shemes. Sine the ross setion is sheme independent, then as well as Eq. (18) we have F = FD.Comparing this last result with Eq. (18) and treating D�(z; �2f ) as arbitrary funtions, we �nd thatF = FZ; (36)D = Z�1D; (37)



6where, in Mellin spae, Z is an invertible matrix that depends on ! and �2f . Note, therefore, that Eqs. (36) and (37)are generalizations of the hange of parton basis onsidered just after Eq. (7). The (matrix of) splitting funtion(s)P is de�ned to be that whih appears in the DGLAP equation in the new sheme, whih emerges from Eq. (19) bysubstituting D and P with D and P , respetively. Then, it follows from Eqs. (19) and (37) that the relation betweenthe splitting funtions in two di�erent shemes is given byP = Z�1PZ � Z�1 dZd ln�2f : (38)Now, onsider a general expansion of perturbatively alulable quantities, suh as F� and P , in some variablex(!; as), with oeÆients that depend on y(!; as), i.e.F = 1Xn=0xnF fng(y);P = 1Xn=1xnP fn�1g(y): (39)For example, in the FO approah (Eqs. (2) and (8)), x = as and y = ! in Eq. (39), while in the SGL approah (Eqs.(26) and (32)), x = as=! and y = as=!2 in Eq. (39) (exluding terms that are non-singular as ! ! 0). We restritour shemes to be suh that, if the perturbative series for F begins at O(xn), the perturbative series for F also beginsat O(xn). Thus, Z(!; as) = 1Xn=0Zfng(y)xn: (40)Note that, in Eq. (38), the �rst term Z�1PZ = O(x) while the seond term Z�1dZ=d ln�2f = O(x2). ThusP f0g = Zf0g�1P f0gZf0g. The result P (0) = P (0) no longer holds in general, but rather if and only if Zf0g ommuteswith P f0g. This is trivially the ase in the FO approah beause the shemes used in the literature are (usually) suhthat Zf0g(y) = 1, i.e. Z(!; as) = 1 + 1Xn=1Z(n)(!)ans : (41)However, in the SGL approah, where Z(!; as) = 1Xm=0Z [m℄ � as!2��as! �m ; (42)we must allow for the possibility that Z [0℄(y) is any funtion of y. We will see later that Z [0℄ does in fat ommutewith P [0℄, at least for the MG and MS shemes.V. SINGLE LOGARITHMS IN THE SPLITTING FUNCTIONSThe SL ontributions to the timelike splitting funtions have already been alulated in the MG sheme [8, 14, 15℄and are given byP SL�� = 0; (43)P SL�g = 2CFCA ��P SLgg + 16(11CA + 4nfTR)as�+ !�16 + 13 nfTRCA � 23 CFnfTRC2A �� � 2asCA! ��� 3CF as; (44)P SLg� = 23TRnfas; (45)P SLgg = �16 !3(11CA + 4nfTR)(4 + !)3 as � 23 ![55C2A(2 + !) + 4CAnfTR(6 + 5!) + 8CFnfTR!℄(2 + !)(4 + !)3 a2s� 163 (11C3A + 12C2AnfTR + 16CACFnfTR)(2 + !)(4 + !)3 a3s; (46)



7where  = (!; as) is given by Eq. (29). In Eq. (44), we have taken the opportunity to orret some obvioustypographial errors in Eq. (38) of Ref. [8℄[35℄. It is the goal of this setion to perform the sheme hange given inEq. (38) on Eqs. (43){(46) in order to onstrain and then to attempt to determine the SL ontributions in the MSsheme.We �rst alulate Z [0℄ from the DLs in the oeÆient and splitting funtions: with the help of Eqs. (27) and (30),Eq. (36) beomes (1; CDLg ) = (1; CDLg ) Z [0℄�� Z [0℄�gZ [0℄g� Z [0℄gg ! : (47)Using this result to eliminate Z [0℄�� and Z [0℄�g givesZ [0℄ =  1� CDLg Z [0℄g� CDLg � CDLg Z [0℄ggZ [0℄g� Z [0℄gg ! : (48)Next, we note that, beause dZ=d ln�2f is free of DLs as disussed immediately after Eq. (40) [36℄, the DLs in Eq.(38) obey PDL = Z [0℄�1PDLZ [0℄: (49)Using Eqs. (33) and (35), we �nd that [Z [0℄; A℄ = 0; (50)i.e.  0 2CFCA (1� CDLg Z [0℄g�) + CDLg � CDLg Z [0℄gg0 2CFCA Z [0℄g� + Z [0℄gg ! =  2CFCA Z [0℄g� 2CFCA Z [0℄ggZ [0℄g� Z [0℄gg ! ; (51)from whih we �nd that Z [0℄g� = 0;Z [0℄gg = 2CFCA + CDLg2CFCA + CDLg : (52)Thus, �nally, Z [0℄ = 0BB� 1 CDLg �CDLg1+ CA2CF CDLg0 1+ CA2CF CDLg1+ CA2CF CDLg 1CCA : (53)We note that Z [0℄�1 = 0BB� 1 CDLg �CDLg1+ CA2CF CDLg0 1+ CA2CF CDLg1+ CA2CF CDLg 1CCA (54)is obtained from Z [0℄ by taking CDLg $ CDLg , as expeted.We are now in a position to onstrain the SLs in P . Using Eq. (50), the SLs (divided by (as=!)2 for onveniene)in the MS splitting funtions in Eq. (38) are given byP [1℄ = Z [0℄�1P [1℄Z [0℄ + �0!2Z [0℄�1 dZ [0℄das +R[1℄; (55)



8where �0 = (11=6)CA�(2=3)TRnf is �rst oeÆient in the series �(as) = �P1n=0 �nan+2s that determines the runningof the oupling via das(�2)=d ln�2 = �(as(�2)) and we have de�nedR[1℄ = Z [0℄�1[P [0℄; Z [1℄℄ = P [0℄gg 0B� 2CFCA 1Z[0℄gg Z [1℄g� 2CFCA (Z [1℄gg � Z [1℄��)� Z [1℄�g � � 2CFCA �2� 1Z[0℄gg � 1�Z [1℄g�1Z[0℄gg Z [1℄g� � 2CFCA 1Z[0℄gg Z [1℄g� 1CA : (56)From Eq. (32) and the de�nitions that follow it, we have P [0℄gg = (as=!)�1 (!; as). Expliitly at SL auray, Eqs.(55) and (56) readP SL�� = � CDLg � CDLg1 + CA2CF CDLg PSLg� +RSL��;P SL�g = 1 + CA2CF CDLg1 + CA2CF CDLg  PSL�g + �0a2s ddas CDLg � CDLg1 + CA2CF CDLg !� �CDLg � CDLg �2�1 + CA2CF CDLg ��1 + CA2CF CDLg �P SLg�+ CDLg � CDLg1 + CA2CF CDLg �P SL�� � P SLgg �+RSL�g ;P SLg� = 1 + CA2CF CDLg1 + CA2CF CDLg P SLg� +RSLg�;P SLgg = PSLgg + CDLg � CDLg1 + CA2CF CDLg P SLg� + �0a2s ddas ln 1 + CA2CF CDLg1 + CA2CF CDLg +RSLgg ; (57)with the de�nitions P SL = (as=!)2P [1℄(as=!2), whih are the omplete SL ontributions to the splitting funtions, andRSL = (as=!)2R[1℄(as=!2). Although our results for the SL ontributions to the splitting funtions in Eq. (57) dependon the unknown omponents of the matrix RSL, it is lear from its form in Eq. (56) that two of the four degrees offreedom of the matrix P SL are ompletely �xed. For example, these an be taken as any two of P SL��� (2CF =CA)P SLg� ,P SLgg + (2CF =CA)P SLg� , and the trae P SL�� + P SLgg .We note that, interestingly, RSLg� = O(a4s) beause, with this hoie,P SL�� = 32CACFTRnf3!4 a3s +O(a4s);P SLg� = 2TRnf3 as + 16C2ATRnf3!4 a3s +O(a4s);P SLgg = �11CA + 4TRnf6 as + 2(11C2A + 4CATRnf � 8CFTRnf )3!2 a2s� 8(33C3A + 12C2ATRnf � 20CACFTRnf )3!4 a3s +O(a4s); (58)whose O(a2s) terms are onsistent with the results of Ref. [16℄, and whose O(a3s) terms are onsistent with the resultsof Refs. [17, 18℄. Note also that Z [0℄g� = 0 (although we know from Appendix B of Ref. [19℄ that Z [2℄g� 6= 0). Wewill return to this point in the next setion, where we investigate the e�et of physial onstraints on the remainingundetermined degrees of freedom on our results.VI. PHYSICAL CONSTRAINTS ON THE SPLITTING FUNCTIONSIn this setion, we further onstrain the SL ontributions to the MS splitting funtions by exploiting some pysialproperties of sheme-dependent quantities in physial shemes suh as the MS sheme.Aording to Eq. (56), P SL�g is the only omponent of the splitting funtion that is so far ompletely unonstrained,even to O(a3s), sine R[1℄�g also depends on the remaining three omponents of Z [1℄, and Z [1℄�g and Z [1℄gg are unknown.Fortunately, this degree of freedom is �xed by assuming the absene of ! ! 0 singularities for all values of the



9fatorization sale in D� de�ned in Eq. (16). By inspetion of the DGLAP equation in this basis, it follws that thesplitting funtions P�� and P�+ are found to be free of ! ! 0 singularities, i.e., negleting all non-singular terms,P�� = P�+ = 0: (59)This assumption is expeted to be true to all orders. It is ertainly true for the DL ontributions to the timelikesplitting funtions, for the SL ontributions in the MG sheme given in Eqs. (43){(46), and through NNLO [17, 18℄,as we veri�ed in this paper. Moreover, it is true through NNLO in the spaelike ase [20, 21℄ and holds for the leadingand next-to-leading singularities to all orders in the framework of Balitski-Fadin-Kuraev-Lipatov (BFKL) dynamis[22{25℄, a fat that has been exploited in various approahes (see, for example, the reent papers [26, 27℄ and thereferenes ited therein). We note that the timelike splitting funtions share a number of simple properties with theirspaelike ounterparts, e.g. the LO splitting funtions are the same, and the diagonal splitting funtions to all ordersgrow like ln! as ! !1.Using the relations between the two bases in Eq. (17), Eq. (59) implies thatPg� = ��� P��;P�g = � ��Pgg : (60)where, through the SL level, whih is all we need,� �� = 2CFCA �1 + !�16 + 13 nfTRCA � 23 CFnfTRC2A �� ; (61)whih, at any order k, relates the two most singular terms in the o�-diagonal splitting funtions P (k)�g and P (k)g� withthose in the diagonal splitting funtions P (k)�� and P (k)gg . Using Eq. (60), the assumption in Eq. (59) implies thatRSLg� � CA2CF RSL�� = 0; (62)whih is already satis�ed by the form in Eq. (56), andRSL�g � 2CFCA RSLgg = 43asCF [C2A + 2nfTR(CA � 2CF )℄" CDLg (CACDLg + CF )(CACDLg + 2CF )(CACDLg + 2CF )#2 ; (63)whih turns out to �x the following ombination of Z [1℄ omponents:RSL�g � 2CFCA RSLgg = �P [0℄gg "2CFCA Z [1℄�� + Z [1℄�g ��2CFCA �2 Z [1℄g� � 2CFCA Z [1℄gg# �as! �2 : (64)We an now write Eq. (56) in the formR[1℄ = 0� 0 43asCF [C2A + 2nfTR(CA � 2CF )℄ � CDLg (CACDLg +CF )(CACDLg +2CF )(CACDLg +2CF )�20 0 1A+ Z [1℄g�0� 2CFCA ��2CFCA �21 � 2CFCA 1A P [0℄ggZ [0℄gg ; (65)whih shows that Z [1℄g� does not a�et the evolution of the ombination (2CF =CA)Dg �D�, reduing the dependeneof the evolution on the unknown quantity Z [1℄g�.Note that Eq. (59) (or, equivalently, Eq. (60)) implies that the determinant of P vanishes. Sine the results in Eq.(57) with R[1℄ given by Eq. (65) imply that the trae is non-zero, this means that one of the eigenvalues is zero andthat the other one oinides with the trae.In order to omplete the hek of Eq. (58) against the FO results in the literature, we need to onsider the remainingsplitting funtion, for whih we �ndP SL�g = �3CFas + 12CACF!2 a2s � 16(29C2ACF + 4CFTRnf (CA � CF ))3!4 a3s +O(a4s): (66)



10Here again, the O(a2s) terms are in agreement with the results of Ref. [16℄, while the O(a3s) terms are in agreementwith the results of Ref. [18℄.We �nd that our resummed results exhibit the following ! ! 0 behaviour:P SL�� = 4CFTRnf3C3=4A a5=4sp! � 4CFnfTR3CA as + Z [1℄g�P [0℄ggZ [0℄gg 2CFCA �as! �2 +O(p!);P SL�g = �8C2FTRnf3C7=4A a5=4sp! � CF (11C2A + 4CAnfTR � 24CFnfTR)6C2A as � Z [1℄g�P [0℄ggZ [0℄gg �2CFCA �2 �as! �2 +O(p!);P SLg� = 2TRnfC1=4A3 a5=4sp! + Z [1℄g�P [0℄ggZ [0℄gg �as! �2 +O(p!);P SLgg = �4CFTRnf3C3=4A a5=4sp! � 11C2A + 4CAnfTR � 8CFnfTR12CA as � Z [1℄g�P [0℄ggZ [0℄gg 2CFCA �as! �2 +O(p!): (67)These limits imply the following nontrivial relation among the SL ontributions to the MS splitting funtions:"2CFCA P SL�� + P SL�g ��2CFCA �2 P SLg� � 2CFCA P SLgg #!=0 = 0: (68)Equation (68) is also obeyed by the SL ontributions in the MG sheme [8℄, whih an be heked using Eqs. (43) and(46), and by the DL ontributions, whih are the same in both shemes.It is interesting to observe that Eq. (68) is also true for all values of ! when the hoie CA = CF = nf is made,whih orresponds to an N = 1 supersymmetri theory. Supersymmetry relations like the one in Eq. (68) were �rstintrodued in Refs. [4, 28℄ at one loop, then disussed at two loops in Refs. [29, 30℄ and, very reently, at three loopsin Ref. [18℄. Aidentally, as shown in Ref. [8℄ in the timelike ase, Eq. (68) also reets the fat that an observablelike the multipliity ratio in quark and gluon jets is sheme independent.As we have seen, the only undetermined quantity appearing in our formulae, RSLg�, is not onstrained by any physialonditions. In addition we noted that RSLg� = O(a4s). This suggests that RSLg� is an artefat of the MS sheme.VII. CONCLUSIONSIn this paper, we presented the SL ontributions to the MS splitting funtions. Two of the degrees of freedomin the avour-singlet matrix were determined from the SL ontributions to the MG splitting funtions and the DLontributions to the e+e� oeÆient funtions in both the MS and MG shemes. One of the remaining two degreesof freedom was onstrained by using ertain non-singular properties of the avour singlet matrix at small values of!, whih have been investigated only in the spaelike ase so far (see, e.g., Ref. [11℄). Nevertheless, both eigenvaluesare determined analytially in losed form. Our results are in agreement with very reent alulations of the splittingfuntions in the MS sheme at NNLO [17, 18℄ in the FO approah, and also with general physial requirements suhas supersymmetry.Knowledge of the omplete SL ontributions to the splitting funtions formally improves the theoretial desriptionof the evolution of FFs at small values of ! and thus failitates the extration of FFs from experimental data at smallvalues of x in global �ts. To date, suh global �ts have been performed to NLO in the FO approah [31{33℄. Ouralulation of the SL ontributions an be inorporated into suh �ts using the onsistent approah of Ref. [5℄, whih,together with the DL ontribution to the e+e� oeÆient funtion determined in Ref. [6℄, allows for a desription ofthe experimental data from the largest to the smallest x values. We reall that the NLO splitting funtions ontainalso sub-SLs (sSLs), namely the SGLs for whih m = 3 in Eq. (32), proportional to a2s=!, but the omplete sSLontributions to the splitting funtions are unknown. In the SGL+FO(+FOÆ) sheme de�ned in Ref. [5℄, these sSLsare, therefore, simply subtrated at this logarithmi order of auray. Alternatively, these unresummed sSLs an bereplaed by a simple matrix of sSL funtions, whih are non-singular as ! ! 0, but whose FO expansions start withthe NLO sSLs. An example of suh a matrix of funtions is asA=(2CA).Note added. After the ompletion of this work, there appeared a preprint [34℄ ontaining an alternative alulationof the SL ontribution to the MS splitting funtions, with whih we found agreement, on�rming both our approahand the approah of that artile. We stress that our approah highlights the relation between the splitting funtionsin the MS sheme and those in the MG sheme, the latter sheme being important in the sheme independent ratioof gluon to quark jet rates [8℄. We also showed expliitly that our results are onsistent with physial onstraints.
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