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Abstract: We derive a sufficient condition for realizing meta-stable de Sitter vacua

with small positive cosmological constant within type IIB string theory flux compact-

ifications with spontaneously broken supersymmetry. There are a number of ‘lamp

post’ constructions of de Sitter vacua in type IIB string theory and supergravity.

We show that one of them – the method of ‘Kähler uplifting’ by F-terms from an

interplay between non-perturbative effects and the leading α′-correction – allows for

a more general parametric understanding of the existence of de Sitter vacua. The

result is a condition on the values of the flux induced superpotential and the topo-

logical data of the Calabi-Yau compactification, which guarantees the existence of

a meta-stable de Sitter vacuum if met. Our analysis explicitly includes the stabi-

lization of all moduli, i.e. the Kähler, dilaton and complex structure moduli, by the

interplay of the leading perturbative and non-perturbative effects at parametrically

large volume.
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1 Introduction & Motivation

String theory is a candidate for a fundamental theory of nature, providing at the

same time a UV-finite quantum theory of gravity and unification of all forces and

fermionic matter. Mathematical consistency requires string theory to live in a ten

dimensional space-time, and a description of our large four-dimensional physics thus

necessitates compactification of the additional six dimensions of space.

The need for compactification confronts us with two formidable consequences:

Firstly, even given the known internal consistency constraints of string theory, there

are unimaginably large numbers of 6d manifolds available for compactification. Sec-

ondly, many compact manifolds allow for continuous deformations of their size and

shape while preserving their defining properties (such as topology, vanishing curva-

ture, etc) – these are the moduli, massless scalar fields in 4d. This moduli problem

is exacerbated if we wish to arrange for low-energy supersymmetry in string theory,

as compactifications particularly suitable for this job – Calabi-Yau manifolds – tend

to come with hundreds of complex structure and Kähler moduli.

Therefore, a very basic requirement for string theory to make contact with low-

energy physics is moduli stabilization – the process of rendering the moduli fields very

massive. Moreover, as supersymmetry is very obviously broken – and so far has not

been detected – ideally, moduli stabilization should tolerate or even generate super-

symmetry breaking. And finally, the process should produce a so-called meta-stable

de Sitter (dS) vacuum with tiny positive cosmological constant, so as to accommo-

date the observational evidence for the accelerated expansion of our universe by dark

energy [1–3].

The task of moduli stabilization and supersymmetry breaking has recently met

with considerable progress, which is connected to the discovery of an enormous num-

ber [4–8] of stable and meta-stable 4d vacua in string theory. The advent of this

landscape [7] of isolated, moduli stabilizing minima marks considerable progress in

the formidable task of constructing realistic 4d string vacua.

There are several methods of moduli stabilization. The first one uses supersym-

metric compactifications of string theory on a Calabi-Yau manifold, and the strong

gauge dynamics of gaugino condensation in the ‘racetrack’ mechanism to stabilize

the dilaton and several of the bulk volume and complex structure moduli [9–11].

Recently, this method has been applied to supersymmetric compactifications of M-

theory on G2-manifolds, where the structure of the manifolds allows for the racetrack

superpotential to generically depend on all the moduli of the compactification [12].

The second, more recent, method relies on the use of quantized closed string

background fluxes in a given string compactification. These flux compactifications

can stabilize the dilaton and the complex structure moduli of type IIB string theory
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compactified on a Calabi-Yau orientifold supersymmetrically [5]. The remaining

volume moduli are then fixed supersymmetrically by non-perturbative effects, e.g.

gaugino condensation on stacks of D7-branes [6]. The full effective action of such

fluxed type IIB compactifications on Calabi-Yau orientifolds was derived in [13].

In type IIA string theory on a Calabi-Yau manifold all geometric moduli can be

stabilized supersymmetrically by perturbative means using the larger set of fluxes

available [14].

If the moduli are stabilized supersymmetrically, parametrically small and con-

trolled supersymmetry breaking can happen, e.g, by means of inserting an anti-D3-

brane into a warped throat of the Calabi-Yau [6], by D-terms originating in magnetic

flux on a D7-brane [15], or dynamically generated F-terms of a matter sector [16].

This process is known as ‘uplifting’ and allows for dS vacua with extremely small

vacuum energy by means of fine-tuning the O(100) independent background fluxes

available in a typical Calabi-Yau compactification [4, 6]. The reliability of this last

step of uplifting supersymmetric AdS vacua without unstabilized moduli into a dS

vacuum is still under discussion. Some of the points in question e.g. concern the

fact that the existence of D7-brane D-terms as well as F-terms from hidden mat-

ter sectors are very model dependent, rendering statistical sweeps over large sets of

compactifications difficult. Supersymmetry breaking and uplifting by a warped-down

anti-D3-brane also remains under ongoing discussion on whether its presence can be

completely described in a probe approximation or causes dangerous non-normalizable

perturbations to the compact geometry [17–22]. Very recently, the use of internal F2

gauge flux on a CY threefold in heterotic string theory has been used to stabilize all

geometric moduli except the dilaton and one Kähler modulus in a supersymmetric

Minkowski vacuum [23, 24].

Alternatively, in non-Calabi-Yau flux compactifications of type IIB or IIA string

theory, all geometric moduli can be stabilized perturbatively in a non-supersymmetric

way using a combination of background fluxes, D-branes, orientifold planes, and neg-

ative curvature. Examples here are flux compactifications of type IIB with 3-form

fluxes on a product of Riemann surfaces [25] and almost Calabi-Yau 4-folds in F-

theory [26], type II compactifications with generalized fluxes on manifolds of SU(3)

(see, e.g., the reviews [27, 28]), as well as of type IIA with fluxes on a product of two

3d nil manifolds [29]. The ingredients used typically lead to scalar potential domi-

nated by three perturbative terms with alternating signs, which depend as varying

power laws on the dilaton and the geometric moduli. Such a ‘3-term structure’ struc-

ture generically allows for tunable dS vacua [25, 29]. Supersymmetry is generically

broken in these perturbative mechanisms of moduli stabilization at a high scale,

which typically is the Kaluza-Klein (KK)-scale. The geometric and flux part of these

type IIA compactifications were studied in more detail in [22, 30–37]. The conclu-

sion there so far seems to be that in absence of the KK5-branes used in [29] (which
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play a similar role as ’explicit’ supersymmetry breaking objects as the anti-D3-brane

in [6]) there are no stable dS vacua. A complete analysis including the effects of the

KK5-branes in the language of [22, 30–37] still remains open.

Finally, in type IIB flux compactifications on Calabi-Yau manifolds there are

constructions of a ‘hybrid’ type, where fluxes fix the complex structure moduli and

the dilaton supersymmetrically, but the volume moduli are stabilized non-super-

symmetrically by an interplay of non-perturbative effects on D7-brane stacks and

the leading perturbative correction at O(α′3) in type IIB [38], or by perturbative

corrections to the Kähler potential alone. Examples for the latter consist of the

Large-Volume-Scenario (LVS) [39], stabilization by perturbative corrections to the

Kähler potential of the volume moduli alone [40–43] which are uplifted by D7-brane

D-terms [44], and the method of ‘Kähler uplifting’ [45, 46].

For ‘Kähler uplifted’ dS vacua, an interplay between the leading perturbative cor-

rection at O(α′3) and a non-perturbative effect in the superpotential serves to gener-

ate a dS vacuum with supersymmetry spontaneously broken by an F-term generated

in the volume moduli sector. For some recent reviews on flux compactifications and

the associated questions of the landscape of string vacua and string cosmology en-

suing from the meta-stable dS vacua, with a much more complete list of references,

please see [28, 47, 48].

‘Kähler uplifting’ has the benefit of generating meta-stable dS vacua in terms

of just background 3-form fluxes, D7-branes and the leading perturbative O(α′3)-

correction, data which are completely encoded in terms of the underlying F-theory

compactification on a fluxed Calabi-Yau fourfold. In addition, supersymmetry is

spontaneously broken at a scale of order of the inverse Calabi-Yau volume, measured

in string units this is typically ∼ MGUT here, and still below the KK-scale), by an

F-term generated in the volume moduli sector. No extra anti-branes, D-terms or

F-term generating matter fields are needed or involved. The existing analysis of

these models consists of including manifestly the dilaton and one complex structure

modulus [45].

Therefore, in this paper we develop a method towards a rigorous analytical under-

standing of ‘Kähler uplifting’ driven by the leading O(α′3) correction to the Kähler

potential of the volume moduli. Our derivation will be carried out in the presence

of an arbitrary number h2,1 of complex structure moduli. A large value of 3-cycles

h2,1 = O(100) is a prerequisite to use the associated 3-form fluxes for the required

fine-tuning of the cosmological constant.

Note the relationship between the supersymmetric KKLT-type AdS vacua [6]

(prior to uplifting) with the flux superpotential tuned small, the SUSY-breaking

LVS-type AdS vacua [39] (again, prior to uplifting), and the SUSY-breaking ‘Kähler

uplifted’ AdS/dS vacua [45, 46] (inherently liftable to dS by the pure moduli sec-
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tor itself) discussed here. These three classes of moduli stabilizing vacua are three

branches of solutions in the same low-energy 4d N = 1 supergravity arising from

type IIB compactified on a Calabi-Yau orientifold with D7-branes.

In section 2, we will review the method of ‘Kähler uplifting’ and analytically

derive the existence of the meta-stable dS vacuum for the volume modulus of a

one-parameter Calabi-Yau compactification with h1,1 = 1 Kähler modulus, and then

extend this to the case of several Kähler moduli h1,1 > 1 explicitly. The interplay of

perturbative and non-perturbative effects implies for h1,1 = 1 that here a structure

of two terms with alternating signs is sufficient to approximate the volume modulus

scalar potential and its tunable dS vacuum. This contrasts with the ‘3-term structure’

generically necessary in purely perturbatively stabilized situations [25, 29]. For h1,1 >

1 a ‘3-term structure’ reappears for the additional h1,1− 1 blow-up Kähler moduli of

a ‘swiss cheese’ Calabi-Yau.

Finally, we will show that we can express the existence of the meta-stable dS

vacuum for the volume modulus in terms of a sufficient condition on the microscopic

parameters. These are consisting of the fluxes, the D7-brane configuration, and

the Euler number of the Calabi-Yau governing the perturbative O(α′3)-correction,

which are all in turn determined by the underlying F-theory compactification on

an elliptically fibred Calabi-Yau fourfold. Thus, the result amounts to a sufficient

condition for the existence of meta-stable dS vacua in terms of purely F-theory

geometric and topological data which can be satisfied for a sizable subclass of all 4d

N = 1 F-theory compactifications, instead of just single ‘lamp post’ models. We also

check that our sufficient condition satisfies the necessary condition for meta-stable

dS vacua in 4d N = 1 supergravity given in [49] and the longevity of the metastable

vacuum under tunneling.

Section 3 includes the dilaton into a full analytical treatment of the combined dS

minimum. We show that supersymmetry breaking happens predominantly in the

volume modulus direction, and explicitly determine the shift of the dilaton away

from its flux-stabilized supersymmetric locus as suppressed by inverse powers of the

volume of the Calabi-Yau.

Section 4 extends the analysis by including an arbitrary number of complex struc-

ture moduli with unspecified dependence in the Kähler and superpotential. We then

show that the shift of the complex structure moduli and the dilaton in general is

suppressed by inverse powers of the volume, and that the dilaton and all complex

structure moduli generically are fixed at positive-definite masses. Finally, we esti-

mate the backreaction of the shifted dilaton and complex structure moduli onto the

volume modulus. The ensuing shift of the stabilized volume is generically found to

be small and suppressed by inverse powers of the volume. This crucially extends the

sufficient condition for the existence of dS vacua in type IIB F-theory compactifica-
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tions to a large class of ‘swiss cheese’ style fluxed Calabi-Yau compactifications with

arbitrary h1,1 < h2,1.

In section 5, we apply our methods to a simple toy model where the Kähler and

superpotential of complex structure moduli are approximated by the structure found

in a torus compactification. We verify the general results of the previous sections, and

show that the shifts of the moduli and the backreaction effects are either independent

of the number of complex structure moduli h2,1, or decreasing as an inverse power of

h2,1. We conclude in section 6.

While this paper was being finished, we became aware of [50], whose section 2

contains overlapping results with our section 2. The main results of section 2 and 3

here have first been presented in talk by one of the authors in [51]. Additionally, we

find numerical disagreement concerning the values of x in section 2 permissible for a

meta-stable dS vacuum of T compared to the results for the same quantity given in

section 2 of [50] due to an approximation used between eq.s (16) and (17) ibid.

2 ‘Kähler uplifting’ – a meta-stable dS vacuum for the Kähler

modulus

We will start with reviewing the structure of ’Kähler uplifted’ dS vacua in type

IIB flux compactifications on an orientifolded CY threefold [45]. We will at first

restrict ourselves to one-parameter models with h1,1 = 1 and h2,1 > 1 so that the

Euler number χ = 2(h1,1 − h2,1) < 0 (which will be shown to be part of the the

sufficient condition for the existence dS vacua). Later, we will extend the analysis

given here to all so-called swiss-cheese Calabi-Yau threefolds with arbitrary h1,1 > 1

and h2,1 > h1,1, giving a strong indication that the mechanism discussed here works

for all threefolds with χ < 0.

For type IIB compactifications on Calabi-Yau orientifolds with 3-form fluxes and

D7-branes the effective 4d N = 1 supergravity of the moduli sector is determined

by [5, 13, 38, 52]

K = −2 ln

(

V̂ + α′3 ξ̂

2

)

− ln(S + S̄)− ln

(

−i

∫

CY3

Ω̄ ∧ Ω

)

, (2.1)

W = W0 +
∑

i

Aie
−aiTi , with W0 =

1

2π

∫

CY3

G(3) ∧ Ω . (2.2)

Note, that this 4d N = 1 supergravity has three branches of vacua. Firstly, we

may look for vacua where |W0| ≪ 1 is tuned small. Then supersymmetric solutions

DIW = 0 (with I running over all h1,1 Kähler moduli, h2,1 complex structure moduli,

– 6 –



and the dilaton S) stabilizing all moduli, with 4-cycle volumes Re Ti >> 1, are possi-

ble including the α′-correction discussed above [6]. On swiss-cheese style Calabi-Yau

manifolds, a second branch of solutions are the SUSY-breaking AdS vacua of the

Large-Volume-Scenario which work for arbitrary W0 [39], and the third branch con-

sists of the ‘Kähler uplifted’ solutions studied below, where typically |W0|−O(1 . . . 10)

to get dS vacua.

For one-parameter models we have V̂ = γ(T + T̄ )3/2 and we set α′ := 1. Here

γ =
√
3/(2

√
κ) , (2.3)

ξ̂ = − ζ(3)

4
√
2 (2π)3

χ (S + S̄)3/2 , (2.4)

and κ denotes the self-intersection number of the single Kähler modulus T in terms

of the Poincare-dual 2-cycle volume modulus v of the underlying N = 2 theory prior

to orientifolding. The volume of 1-parameter CY threefolds is then given by [13]

V̂ =
κ

6
v3 ≡ γ (T + T̄ )3/2 , ReT =

1

3
∂vV̂ . (2.5)

The flux-superpotential W0 is determined by the integral over the holomorphic 3-

form Ω of the Calabi-Yau and the 3-form flux G(3) [52]. The Kähler potential K and

superpotential W determine the F -term scalar potential to be

V = eK
(

Kab̄DaWDbW − 3|W |2
)

(2.6)

with DaW = Wa+KaW , and a runs over the dilaton S, the single Kähler modulus T

and the h2,1 complex structure moduli Ui. We will now stabilize the Kähler modulus

T = t+ iτ , (2.7)

(τ denotes its axion) using the interplay between the leading perturbative α′ correc-

tion ξ̂ to the Kähler potential [38] and non-perturbative corrections to the superpo-

tential. For now, we assume the dilaton S and the complex structure moduli Ui to be

stabilized already. Thus, we have to find local stable minima of the scalar potential

descending from eq.s (2.1) assuming DSW = DUi
W = 0.

Following [38, 45, 46] we can write the resulting scalar potential in the following

form

V (T ) = eK
(

KT T̄DTWDTW − 3|W |2
)

(2.8)

= eK

(

KT T̄
[

WTWT + (WT ·WKT + c.c)
]

+ 3ξ̂
ξ̂2 + 7ξ̂V̂ + V̂2

(V̂ − ξ̂)(ξ̂ + 2V̂)2
|W |2

)

.
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Here KT T̄ denotes the T T̄ -component of the inverse of the Kähler metric (KIJ̄)
−1

where I, J run over all fields involved.

The non-trivial task is to find stationary points of V (T ) with respect to t. It is

straightforward to show that the axionic direction has an actual minimum at τ = 0.

The Kähler potential does not depend on τ and the exponential in eq. (2.1) introduces

trigonometric functions sin(aτ) and cos(aτ) into V (T ). Then it can be shown that

Vτ = 0 for τ = nπ/a for n ∈ Z. We restrict to the case τ = 0 so that after insertion

of WT we obtain

V (t) = eK

(

KT T̄
[

a2A2e−2at + (−aAe−atWKT + c.c)
]

+ 3ξ̂
ξ̂2 + 7ξ̂V̂ + V̂2

(V̂ − ξ̂)(ξ̂ + 2V̂)2
|W |2

)

.

(2.9)

2.1 Approximating the scalar potential V (T ) in the large volume limit

In [45], it was shown that one can get de Sitter minima for T at parametrically large

volume V̂ ≃ O(100 . . . 1000) and weak string coupling gS ≃ 0.1. The stable minimum

is realized at ξ̂/(2V̂) ≃ 0.01 so small that neglecting higher orders in the α′ expansion

is well justified and string loop effects are double-suppressed due to the smallness

of gS and the extended no-scale structure [42]. This minimum can be constructed

under the following conditions

• Put a stack ofN ≃ O(30 . . . 100) D7-branes on the single 4-cycle that undergoes

gaugino condensation.1 The parameter A is assumed to be O(1).

• Choose the flux induced superpotential W0 ≃ O(−30) and the parameter

ξ̂ ≃ O(10). Note that a W0 of this rather large magnitude does not induce

problematic back reactions, as in type IIB the fluxes are imaginary self-dual

(ISD) and of (1,2) or (0,3) type which limitates the back reaction to the warp

factor.

In this setup, one typically obtains a minimum at T ≃ O(40) so that the non-

perturbative contribution to the superpotential Ae−aT is small enough to also trust

the Ansatz for the non-perturbative superpotential.

1For example, the 2-parameter model P4

11169
was shown in [53] to have an F-theory lift contain-

ing an E8 ADE-singularity for the condensing gauge group, giving a rank of 30. In general, the

achievable rank of the gauge groups is limited for compact CY fourfolds, due to the compactness

interfering with enforcing an ADE-singularity of arbitrarily high rank along a given divisor. Still,

on compact F-theory fourfolds very large gauge groups with very large ranks can be generated, e.g.

in [54] F-theory was compactified to 4d on a compact fourfold to yield a gauge group with 251

simple factors, the largest of which was SO(7232).
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We now want to give a parametric understanding of this scenario by approximat-

ing the scalar potential eq. (2.9) under the constraint of the typical values of the

parameters a,A,W0, ξ̂, γ. We use the condition ξ̂/(2V̂) ≃ 0.01 and the validity of the

non-perturbative superpotential:

V̂ ≫ ξ̂, |W0| ≫ Ae−at . (2.10)

Under these approximations, the Kähler Potential and its derivatives simplify in

the following way:

K = −2 ln

(

V̂ +
ξ̂

2

)

≃ −2 ln
(

V̂
)

,

KT =
−3γ2/3 3

√

V̂
V̂ + ξ̂

2

≃ −3γ2/3

V̂2/3
,

(KT T̄ )
−1 = γ−4/3

3

√

V̂(4V̂2 + ξ̂V̂ + 4ξ̂2)

12(V̂ − ξ̂)
≃ V̂4/3

3γ4/3
. (2.11)

Also the last term of eq. (2.9) simplifies under the approximation eq. (2.10). Imple-

menting eq. (2.10), the scalar potential eq. (2.9) becomes

V (t) ≃ e−2at(3aA2 + a2A2t)

6γ2t2
+

aAe−atW0

2γ2t2
+

3W 2
0 ξ̂

64
√
2γ3t9/2

. (2.12)

We also neglect the term ∝ e−2at since it is suppressed by one more power of e−at

compared to the second term in eq. (2.12) and obtain a ‘2-term structure’ for the

scalar potential

V (t) ≃ aAe−atW0

2γ2t2
+

3W 2
0 ξ̂

64
√
2γ3t9/2

. (2.13)

Note that the flux-superpotential is negative, W0 < 0, so that the two terms have

opposite sign and a minimum is in principle allowed. Eq. (2.13) is a drastic simpli-

fication of the rather complicated scalar potential eq. (2.9) that allows us to extract

an analytic condition on the parameters to obtain a meta-stable de Sitter vacuum.

Factorizing eq. (2.13), we can write it in terms of two characteristic variables x = a · t
and C

V (x) ≃ −W0a
3A

2γ2

(

2C

9x9/2
− e−x

x2

)

, C =
−27W0ξ̂a

3/2

64
√
2γA

. (2.14)
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The overall constant in eq. (2.14) does not influence the extrema of this potential.

For completeness, we mention that the stationary point in the axionic direction τ = 0

is always a minimum since the mass

Vττ = −a3Ae−atW0

2γ2t2
> 0 if W0 < 0 . (2.15)

The mass matrix Vij for i, j ∈ {t, τ} is diagonal since the mixed derivative Vtτ vanishes

at τ = 0.

Note, that it is the presence of the exponential factor in the negative term with

the slower inverse power-law dependence on x, which renders this term as a ‘negative

middle term’ in terms of the analysis of [29]. Here, however, this term shuts down

exponentially fast for large enough x. This combined behavior of being a power-law

at small x and an exponential at larger x is responsible for the fact, that a ‘2-term’

combination with a single positive inverse power-law term is enough to obtain a

tunable dS vacuum.

2.2 A sufficient condition for meta-stable de Sitter vacua

To calculate extrema of eq. (2.14) we need to calculate the first and second derivative

with respect to x (V ′ = ∂V
∂x
)

V ′(x) =
−W0a

3A

2γ2

1

x11/2

(

C − x5/2(x+ 2)e−x
)

, (2.16)

V ′′(x) =
−W0a

3A

2γ2

1

x13/2

(

11

2
C − x5/2(x2 + 4x+ 6)e−x

)

. (2.17)

Solving for an extremum V ′(x) = 0 yields

x5/2(x+ 2)e−x = C (2.18)

which cannot be solved explicitly in an analytic way. Plotting the approximate

expression eq. (2.14) of V (x) for different values of the constant C in figure 1 we

observe the following behavior:

We see that with growing C we first obtain an AdS minimum. This minimum

breaks supersymmetry since

FT ≃ −3W0

2tV̂
6= 0 . (2.19)

Then at some point the minimum transits to dS, and for even larger C the potential

eventually develops a runaway in the x direction. We can analytically calculate the

window for C where we obtain a meta-stable de Sitter vacuum by identifying:
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