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A No-Go Theorem for the Consistent Quantization of Spin 3/2 Fields onGeneral Curved Spa
etimesThomas-Paul Ha
ka,�, Mathias Makedonskib,�aII. Institut f�ur Theoretis
he Physik, Universit�at Hamburg, Luruper Chaussee 149, D-22761 Hamburg, GermanybInstitut for Matematiske Fag, K�benhavns Universitet, Universitetsparken 5, 2100 Copenhagen, DenmarkAbstra
tIt is well-known that 
oupling a spin 32 -�eld to a gravitational or ele
tromagneti
 ba
kground leads topotential problems both in the 
lassi
al and in the quantum theory. Various solutions to these problemshave been proposed so far, whi
h are all restri
ted to a limited 
lass of ba
kgrounds. On the otherhand, negative results for general gravitational ba
kgrounds have been reported only for a limited set of
ouplings to the ba
kground to date. Hen
e, to our knowledge, a 
omprehensive analysis of all possible
ouplings to the gravitational �eld and general gravitational ba
kgrounds in
luding o�-shell ones hasnot been performed so far. In this work we analyse whether it is possible to 
ouple a spin 32 -�eld to agravitational �eld in su
h a way that the resulting quantum theory is 
onsistent on arbitrary gravitationalba
kgrounds. We �nd that this is impossible as all 
ouplings require the ba
kground to be an Einsteinspa
etime for 
onsisten
y. This enfor
es the widespread belief that supergravity theories are the onlymeaningful models whi
h 
ontain spin 32 �elds as in these models su
h restri
tions of the gravitationalba
kground appear naturally as on-shell 
onditions.Keywords: quantum �eld theory in 
urved spa
etimes, unitarity, 
ausality, higher spin �elds,Rarita-S
hwinger equation, spin 322000 MSC: 81T201. Introdu
tion { problems of spin 32 �eldsin non-trivial ba
kgroundsA free spin 32 -�eld  of massm � 0 in 
at four-dimensional Minkowski spa
etime is des
ribed bythe Rarita-S
hwinger equations [34℄(R0 )� := (�i 6� +m) � (1):= (�i
��� +m) � = 0 ;6 := 
� � = 0 : (2)Here and in the following greek indi
es denote (
o)-tangent spa
e indi
es, 
� are the usual 
-matri
es, is a Dira
 spinor-valued ve
tor �eld whose spinor�Corresponding authorEmail addresses: thomas-paul.ha
k�desy.de(Thomas-Paul Ha
k), mathias.makedonski�math.ku.dk(Mathias Makedonski)

indi
es we suppress throughout. Bu
hdahl realisedalready more than �fty years ago that a minimal
oupling of the above equation to a ba
kgroundgravitational �eld leads to problems [5℄: the mini-mally 
oupled equations imply R��
� � = 0, withR�� denoting the Ri

i 
urvature tensor, and thisequation 
an only be satis�ed by  � 0 unless thespa
etime is an Einstein spa
etime s.t. R�� is a
onstant multiple of the metri
 g�� .Later Johnson and Sudharsan found that thequantum theory of a spin 32 -�eld minimally 
ou-pled to an ele
tromagneti
 ba
kground �eld failsto satisfy unitarity [27℄. This result has been 
om-plemented by Velo and Zwanziger who pointed outthat the 
oupling to an ele
tromagneti
 �eld is al-ready problemati
 at the 
lassi
al level as it leadsto superluminal propagation [37℄.This last �nding seemed to be the most sho
k-ing as it be
ame famous as the Velo-Zwanzigerproblem.Preprint submitted to Physi
s Letters B September 21, 2012
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All three problems have been analysed in greatdetail and various solutions have been proposed.As it is impossible to provide a 
omprehensive listof earlier works, we only mention a few sele
tedones. Spe
ial, i.e. maximally symmetri
 or 
on-stant gravitational and ele
tromagneti
 ba
kgroundshave been studied e.g. in [14, 15, 16, 33℄ wherethe 
ausality and/or unitarity problems have beenproven to be absent for spe
ial values of the massand/or the 
ouplings. In [29, 17℄ it was pointedout that all problems 
an be solved in Einstein-Maxwell ba
kgrounds at the 
ost of very small orvery large massesm. The most prominent solutionof the Bu
hdahl-problem is arguably supergravity[18, 19℄, where the Einstein 
ondition on the spa
e-time appears as a natural on-shell 
ondition. The
ausal behaviour of supergravity was shown in [8℄,whereas unitarity had mostly been dis
ussed onmaximally symmetri
 Einstein ba
kgrounds su
has Minkowski and Anti de Sitter spa
etime [14, 15,16℄. Re
ently unitarity has also been proven forgeneral, asymptoti
ally 
at and Ri

i 
at Einsteinba
kgrounds1 [24℄. Other solutions to the Bu
h-dahl problem, whi
h avoid restri
tions on the ba
k-ground, have been proposed and analysed both inthe (1; 12 ) � ( 12 ; 1) representation, e.g. [20, 2, 32℄,and in the ( 32 ; 0)�( 12 ; 1) representation of SL(2; C )[6, 7, 39, 31, 30℄. While the former su�er eitherfrom the 
ausality or the unitarity problem, thelatter satisfy 
ausality, but a unitarity proof is la
k-ing to date.All the above-mentioned analyses have in 
om-mon that they 
onsider restri
tions on the 
ou-plings, the mass, or the ba
kground �elds. Whereasin [13℄ general non-minimal 
ouplings to the ele
-tromagneti
 �eld have been studied with a nega-tive result, it seems that a 
omprehensive studyof general non-minimal 
ouplings to the gravita-tional �eld and general gravitational ba
kgroundshas not been available to date. In this letter, wethus investigate whether it is possible to 
ouple aspin 32 -�eld to a gravitational �eld in a way, su
hthat the resulting quantum theory is 
ausal, uni-tary, and propagates the 
orre
t degrees of free-dom on arbitrary spa
etime ba
kgrounds { in
lud-1In a previous preprint version of this work we had ar-gued that supergravity fails to satisfy unitarity on the basisof a spin 32 �eld equation derived from the original equationof motion in supergravity. In [36℄ it was pointed out thatour argument fails if one 
onsiders the original supergravityequations of motion instead.

ing o�-shell ones. This generality is motivated bythe modern approa
h to quantum �eld theory on
urved spa
etimes [4℄ (see also [23℄ for an exten-sive review) where one tries to quantize a modelwithout using any knowledge on the ba
kgroundspa
etime other than its de�ning properties su
has e.g. the Lorentzian metri
 signature. As thisturns out to be possible for spins � 1, see e.g.[25, 4, 26, 35, 11, 12, 21℄, the question, whether thisis the 
ase for higher spins as well, naturally arises.However, we �nd that a ba
kground-independent
onsistent quantization seems to be impossible forspin 32 -�elds in gravitational ba
kgrounds.We work solely in the (1; 12 ) � ( 12 ; 1) represen-tation of SL(2; C ) and do not 
onsider the ( 32 ; 0)�( 12 ; 1) representation, whi
h is equivalent to the for-mer on 
at spa
etimes, but not on 
urved ones.This is motivated by the results of [30℄ where ithas been found that unitarity of a quantum �eldin this representation is unlikely to hold due to itsvery stru
ture in 
urved spa
etimes.Our letter is organised as follows. In se
tion2 we 
ompile four 
onditions whi
h a 
onsistentquantum theory of a spin 32 -�eld on an arbitrary
urved spa
etime should satisfy. While the 
ausal-ity 
ondition and the 
ondition on the degrees offreedom are well-known, the very \ba
kground in-dependen
e" 
ondition has apparently not beendis
ussed so far in this 
ontext. Our fourth 
on-dition, a 
ertain symmetry 
ondition of the �eldequations, is shown to be virtually equivalent tounitarity and thus repla
es the unitarity 
ondi-tion. Furthermore we point out that, in 
ontrastto statements in the literature, 
ausality and uni-tarity are not equivalent for spin 32 �elds. In se
-tion 3 we �nally prove our no-go theorem and showthat no non-minimally 
oupled spin 32 -�eld equa-tion satis�es all four 
onditions. The letter endswith a dis
ussion of our �ndings in se
tion 4.2. Conditions for a 
onsistent spin 32 -quantumtheory in 
urved spa
etimesWe 
onsider a spin 32 -�eld  on a general 
urvedspa
etime (M; g��), i.e. M is a four-dimensionalmanifold, g�� a metri
 with signature (+;�;�;�)and  is a four-spinor-valued ve
tor �eld whoseve
tor index we shall write only if ne
essary. Weshall often denote (M; g��) by M for simpli
ity.2



The �eld equations for  areR = 0 ; (3)6 := 
� � = A� � ; (4)where R is an arbitrary �rst order di�erential op-erator 
onstru
ted out of the metri
, the 
urved-spa
etime 
-matri
es 
�, and the mass m, and A�is an arbitrary zeroth order operator of that kind.Thus, with tuples (R; A�) we parametrise all non-minimal 
ouplings of  to the ba
kground grav-itation �eld. By S(R;M) we denote the set ofall (in�nitely often di�erentiable) solutions of (3)on the spa
etime M , whereas by S(R; A�;M) wedenote the subset of S(R;M) whi
h satis�es in ad-dition (4). We now list four 
onditions on (R; A�)and argue why they suÆ
ient for a spin 32 -quantumtheory indu
ed by (R; A�) to be 
onsistent in ar-bitrary 
urved spa
etimes.2.1. Condition 1: Irredu
ibilityOn Minkowski spa
etime M , A� � 0 and S(R; 0;M ) =S(R0; 0;M).This 
ondition requires that (R; A�) de�ne a the-ory whi
h propagates the 
orre
t number of de-grees of freedom for a spin 32 -�eld of mass m. Thisis here a
hieved by 
omparison with the standardtheory in Minkowski spa
etime, whi
h after all isthe very spa
etime in whi
h the 
on
epts of \spin"and \mass" are de�ned via irredu
ible represen-tations of the Poin
ar�e group. We don't requireR � R0 on M be
ause di�erent R 
an be equiva-lent on-shell.2.2. Condition 2: CausalityR is hyperboli
 and the 
onstraint 6 = A� � is
ompatible with time evolution.Hyperboli
 �eld equations su
h as the Klein-Gordonor the Dira
 equation guarantee 
ausal propaga-tion of the degrees of freedom, see e.g. [9, 10, 29, 1℄,as they limit the dependen
e of a solution  (x) ata point x to the past light
one of x. Hyperboli
ityis a 
ondition on the 
oeÆ
ient matrix �� of thehighest derivative term ��r� in R, the so-
alledprin
ipal symbol: for a spa
elike/timelike ve
tork�, k��� must be invertible, while for a lightlikek�, it must have vanishing determinant. Addition-ally, the above 
ompatibility 
ondition is required

to avoid that S(R; A�;M) 
ontains only the trivialsolution  � 0.2.3. Condition 3: Ba
kground independen
eThe number of degrees of freedom propagated by(R; A�) is independent of the ba
kground spa
e-time M . Moreover, either A� � 0 on all spa
e-times, or (4) is automati
ally satis�ed for all so-lutions of (3).This 
ondition is required to avoid the Bu
hdahl-problem mentioned in se
tion 1, where it happensthat the minimally 
oupled Rarita-S
hwinger equa-tions (1) and (2) propagate the 
orre
t number ofdegrees of freedom on Einstein spa
etimes, but nodegrees of freedom at all otherwise.Stated in more te
hni
al terms this 
onditionrequires that S(R; A�;M) is lo
ally 
ontravariantin the sense of [4℄: if we 
onsider two spa
etimesM1 � M2 where one is a (suitable) subset of theother, then S(R; A�;M1) should be equal to therestri
tion of S(R; A�;M2) to M1.We impose the additional 
ondition on A� be-
ause we have not been able to prove that the 
on-straint (4) satis�es our ba
kground-independen
e
ondition ex
ept in these two spe
ial 
ases.2.4. Condition 4: SelfadjointnessAlthough this 
ondition appears to be the mostte
hni
al one, it is equivalent to demanding thatthe �eld equation (3) 
an be obtained from a quadrati
a
tion. We state the 
ondition �rst and 
ommenton its relation to unitarity afterwards. To thisavail, we introdu
e the notion �0(M) for the setof (in�nitely often di�erentiable) ve
tor-spinor val-ued fun
tions whi
h vanish outside of a 
ompa
tsubset of M , so-
alled test fun
tions. For two testfun
tions f1, f2, we de�ne a produ
t hf1; f2i byhf1; f2i := ZM d4xp� det g�� g��f�1 (x)f�2 (x) ;where the bar denotes the usual Dira
 
onjugationof a four-spinor. We 
an de�ne the adjoint Ry ofR with respe
t to h�; �i by hRyf1; f2i := hf1;Rf2iand �nally state the fourth and last 
ondition.R is formally selfadjoint: Ry = R, i.e. hRf1; f2i =hf1;Rf2i.3



To dis
uss the relation of this 
ondition to uni-tarity, we brie
y re
all the unitarity 
ondition fora spin 32 -�eld, see e.g. [27, 16, 24℄ for details. Towit, the 
ovariant anti
ommutator of the quantized�eld  and its adjoint  is after 
anoni
al quanti-zation given byf (x);  (y)g = iG(x; y) (5)whereG(x; y) is the so-
alled anti
ommutator fun
-tion, a generalisation of the Pauli-Jordan-fun
tionfor s
alar �elds. G(x; y) is equal to the di�eren
e ofthe advan
ed and retarded Green's fun
tion2 of thedi�erential operator R and thus G(x; y) dependson the spe
i�
 form of R and satis�esRxG(x; y) =RyyG(x; y) = 0 for a general hyperboli
R. The op-erator G de�ned by[Gf ℄(x) := ZM d4y p� det g�� G(x; y)f(y) ;maps test fun
tions to solutions whi
h have �nitespatial extent at ea
h time, i.e. \wave pa
kets".A

ordingly, the quantized �eld  (x) integratedwith the Dira
 adjoint of a test se
tion f { hen
e-forth denoted by  (f) { 
an be interpreted as thequantum operator 
orresponding to the 
lassi
alwave pa
ket Gf . Physi
al wave pa
kets shouldsatisfy the 
onstraint 
�(Gf)� = A�(Gf)� in addi-tion to the equation R(Gf) = 0 and we denote the
orresponding \physi
al subspa
e" of the test se
-tions �0(M) by �0(R; A�;M). If one now 
onsid-ers the anti
ommutation relations (2.4) integratedwith a test se
tion f 2 �0(R; A�;M) and its Dira
adjointf (f);  (f)g = iG(f; f) = ihf;Gfi ;then the right hand side must be a positive numberbe
ause the left hand side is of the formByB+BBywith B =  (f) and thus has positive expe
tationvalue in any quantum state j
i. Hen
e, the non-trivial unitarity 
ondition for the tuple (R; A�) isthat the anti
ommutator fun
tion G(x; y) deter-mined by R must satisfyihf;Gfi � 02For a hyperboli
 R, these Green's fun
tions exist andare unique on any spa
etime whi
h ful�ls the so-
alled globalhyperboli
ity 
ondition, see [1, 2℄ for details; this quite nat-ural 
ondition on M shall be ta
itly assumed throughoutthis letter.

for any physi
al test fun
tion f 2 �0(R; A�;M).Note that, for a formally selfadjoint R the pre-viously dis
ussed 
ovariant anti
ommutation rela-tions are equivalent to equal-time anti
ommutationrelations, see e.g. [23, 2, 24℄ for details. Basi
allythis follows from the identityhf1; Gf2i = Z� d3xp� dethijGf1n���Gf2 : (6)where � is an arbitrary equal-time surfa
e of Mwith normal ve
tor n� and hij is the spatial metri
on � indu
ed by g�� .We shall now demonstrate the 
lose relation be-tween the selfadjointness 
ondition Ry = R andthe unitarity 
ondition ihf;Gfi � 0 whi
h lead usto repla
e the latter, whi
h is diÆ
ult to 
he
k di-re
tly on all spa
etimes, with the former, whi
h
an be 
he
ked more easily.To start with, we shall argue why the selfad-jointness 
ondition implies unitarity on any topo-logi
ally trivial spa
etime M if unitarity is knownin Minkowski spa
etime M . To see this, we 
on-sider any topologi
ally trivial spa
etimeM and de-form it in su
h a way that it be
omes Minkowskiin the past, see [22℄ for details. Loosely speaking,we 
onsider a �du
ial spa
etime M 0 su
h that themetri
 on M 0 equals the metri
 on M for largepositive times, whereas for large negative times itequals the Minkowski metri
. Given su
h a defor-mation and a formally selfadjoint R, the identity(6) allows us to 
ompute hf;Gfi on any equal-timesurfa
e of M 0, in parti
ular also in the Minkowskiregion where we know that it is positive by as-sumption. Moreover, for the equations (1) and (2),unitarity 
an be easily 
he
ked by an expli
it 
om-putation in Fourier spa
e, thus our �rst 
onditiontogether with selfadjointness is suÆ
ient to guar-antee unitarity on any topologi
ally trivialM .We now prove that ihf;Gfi � 0 for f 2 �0(R; A�;M)implies hf1;Rf2i = hRf1; f2i for fi 2 �0(R; A�;M)on arbitrary spa
etimes. De�ning a produ
t onphysi
al test fun
tions by (f1; f2) := ihf1; Gf2i,our assumption (f; f) � 0 implies by polarisa-tion that the 
omplex 
onjugate of (f1; f2) equals(f2; f1) from whi
h we 
an dedu
e that iG is for-mally selfadjoint on �0(R; A�;M). As Gy is theoperator 
orresponding to the anti
ommutator fun
-tion of Ry, we �nd that Gy = G on physi
al testfun
tions and the same is true for the advan
edG(y)+ and retarded G(y)� pie
es of G and Gy re-4



spe
tively be
ause these are unique. Using this,RG� = G�R = 1 and the fa
t that R maps�0(R; A�;M) to itself we 
an 
omputeRyf = RyG�Rf = RyGy�Rf = Rf :In order for the general selfadjointness 
ondi-tion to be equivalent to the unitarity 
ondition forthe purposes of a no-go theorem, it would be ne
-essary to prove that unitarity implies selfadjoint-ness of R on all test fun
tions and not only onthe physi
al ones. Alternatively, we 
ould also re-quire the latter, weaker selfadjointness 
ondition.However, one 
ould just as well argue that thestronger, general selfadjointness 
ondition is im-portant in its own right irrespe
tive of unitaritybe
ause it is equivalent to demand that R 
omesfrom a quadrati
 a
tion. Thus, we pro
eed withthis stronger 
ondition, be
ause it is easier to ver-ify.3. A no-go theorem for the 
onsistent quan-tization of non-minimally 
oupled spin 32-�elds on general 
urved spa
etimesWe shall prove in the following that a large 
lassof non-minimally 
oupled �eld equations (R; A�)does not satisfy the four 
onditions 
ompiled inthe previous se
tion. In the 
ourse of proving thisno-go theorem, it will be
ome 
lear that the proof
an be extended to any larger 
lass of operatorswithout mu
h e�ort, su
h that the 
lass we shall
onsider 
an be safely regarded as e�e
tively ex-hausting all possible 
ovariant �eld equations inthe (1; 12 )� ( 12 ; 1) representation of SL(2; C ).To wit, we 
onsider R of the form(R )� := (�i 6r+m) � + a0m
� 6 + a1ir� 6 + a2i
�r� � + a3i
� 6r6 + e �e � := m
�B +mC� + iD� + i
�EB := b1R��
� � + b2R 6 C� := 
1R�� � + 
2R��
� 6 + 
3R �+ 
4R�� �

D� := d1R�� 6 � + d2 (6rR��) � + d3R��
� 6r6 + d4 (6rR��) 
� 6 + d5R 6r � + d6 (6rR) �+ d7R��r� 6 + d8 (r�R) 6 + d9Rr� 6 + d10R��r� 6 + d11 (r�
R
��) 6 + d12R��r�
� � + d13 (r�R��) 
� �+ d14 �r�R��� 
� � + d15R��
�r� �E := e1R��
� 6r � + e2 (6rR��) 
� � + e3R 6r6 + e4 (6rR) 6 + e5 (r�R) � + e6Rr� �+ e7 (r�

R��) � + e8R��r� � + e9R��r� � :where r� is the spin 
ovariant derivative, ai 2 Care arbitrary 
onstants whereasR�� = 14R����
�
�denotes the spin 
urvature tensor3. Moreover, deriva-tives in parenthesis are meant to a
t only on thejointly en
losed 
urvature tensors, and bi, 
i, di,ei are arbitrary 
omplex-valued fun
tions of 
ur-vature invariants and m of mass dimension �2.We start our proof by 
he
king selfadjointness,sin
e this turns out to be the strongest 
ondition.Indeed, as one 
an 
he
k by dire
t 
omputation,it is ful�lled on arbitrary 
urved spa
etimes if andonly if the following equations are true.a�0 = a0 a2 = a�1 a�3 = a3 b1 = 
�2b�2 = b2 
�1 = 
1 
�3 = 
3 
�4 = 
4d1 = d3 = d5 = d7 = d9 = d10 = d12 = d15 = 0e1 = e3 = e6 = e8 = e9 = 0d�2 = d2 d�4 = e2 d�6 = d6 d8 = e�5d11 = e�7 d�13 = d14 e�4 = e4Here, � denotes 
omplex 
onjugation. In essen
e,requiring Ry = R rules out terms where a 
urva-ture tensor multiplies a derivative of  �, be
ausesu
h terms generate derivatives of 
urvature ten-sors by the partial integration involved in the def-inition of the formal adjoint of Ry. These 
urva-ture tensor derivatives 
an not be 
ured by expli
-itly adding 
ouplings of  � to 
urvature deriva-tives, as su
h terms must be present both in Rand in Ry. Hen
e, selfadjointness rules out ar-bitrary terms where a 
urvature tensor multiplies3Note that all 
ouplings 
ontaining the Riemann tensorR���� 
an be expressed via the spin 
urvature tensor R�� .Furthermore, we have omitted all 
ouplings whi
h wouldbe linearly dependent by means of Bian
hi identities. Wefollow [38℄ regarding 
onventions in the de�nition of the
urvature tensors.5



a derivative of  �, extending the validity of thisproof to a larger 
lass of R 
ontaining all possiblesu
h terms.We pro
eed by 
he
king the hyperboli
ity bitof of our 
ausality 
ondition. Let k� be timelike orspa
elike and let  � ful�lik��� � = 6k ��a1k� 6 �a2
�k� ��a3
� 6k 6 = 0 ;where we have already taken into a

ount that theallowed prin
ipal symbols are redu
ed by selfad-jointness. We have to 
he
k for whi
h ai the aboveequation implies � � 0. By multiplying the aboveequation with 6k and k�, we 
an obtain the follow-ing derived equations(1� a2)6kk� � = (a1 + a3)k2 6 (1� 3a2)6kk� � = (1 + 3a3)k2 6 ;whi
h 
an be rewritten as� (1� a2)1� �(a1 + a3)1�(1� 3a2)1� �(1 + 3a3)1� �� 6kk� �k2 6 � = 0 ;where 1� is the 4 � 4 identity matrix. As k� istimelike or spa
elike, this equation together withik��� � = 0 implies  � � 0 if and only if thedeterminant of the appearing 8� 8 matrix is non-zero; this in turn is the 
ase i�� 3a1a2 + a1 + a2 � 2a3 � 1 6= 0 : (7)We do not dis
uss lightlike k�, as (7) will be suÆ-
ient to prove the theorem.Finally, we verify the ba
kground-independen
eand irredu
ibility 
onditions. To this avail, we 
on-tra
t (R )� = 0 with both 
� and r� and 
om-bine the results to obtain the following equationfor 6 .��(a2 � 1)(1 + a2 + 4a3)2� 4a2 + a1 + a3�r�r� 6 +�(a2 � 1)(1 + 4a0)2� 4a2 + 1 + a1 + 4a32� 4a2 + a0� im6r6 +� (a2 � 1)(1 + a2 + 4a3)2� 4a2 + a3� R4 6 +1+ 4a02� 4a2m2 6 � 12R��
� �+ a2 � 12� 4a2 i 6r6 e + ir� e � + m2� 4a2 6 e = 0 :(8)

Here, our �rst 
ondition assures that 2� 4a2 6= 0.To see this, note that 
ontra
ting R � = 0 with
� yields an equation whi
h 
an be rewritten as(2� 4a2)ir� �= (1 + a1 + 4a3)i 6r6 + (1 + 4a0)m 6 + 6 e : (9)If 2 � 4a2 = 0, then r� � = 0 would not followfromR � = 0 and 6 = 0 on Minkowski spa
etime,hen
e 6S(R; 0;M ) = 6S(R0; 0;M ) would not holdbe
ause all elements of 6S(R0; 0;M ) satisfyr� � =0. To assure that our ba
kground independen
e
ondition holds, we have to either guarantee that6 � = A� � holds automati
ally for solutions ofR = 0 or that A� � 0 on all spa
etimes. Let us
he
k if the �rst of these 
onditions 
an be ful�lled.Without spe
ifying A� expli
itly, we know that, inMinkowski spa
etime, A� � 0 must hold on a
-
ount of the irredu
ibility 
ondition. However, in
at spa
etime, (8) is a hyperboli
 partial di�eren-tial equation for 6 , as the 
oeÆ
ient of r�r� 6 isnon-zero if we apply the 
ondition (7) derived from
ausality and selfadjointness. Su
h a di�erentialequation has 
ertainly more possible solutions thanjust 6 � 0, hen
e, by 
ombining 
ausality, selfad-jointness, and irredu
ibility, we �nd that only theoptional ba
kground independen
e 
ondition thatA� be identi
ally vanishing on all spa
etimes 
anbe ful�lled. Inserting this into (8), we are left with�12R��
� � � a2 � 12� 4a2 i 6r6 e +ir� e � + m2� 4a2 6 e = 0 : (10)In Minkowski spa
etime, this equation is identi-
ally ful�lled and, hen
e, poses no additional 
on-straints on solutions of R = 0 and 6 = 0. To
he
k if our ba
kground independen
e holds, wehave to make sure that (10) is identi
ally ful�lledon all spa
etimes on
e R � = 0 and 6 = 0 hold.To this avail, we insert 6 = 0 into (9), and both6 = 0 and (9) into R � = 0 to obtainir� � = 12� 4a2 6 e ;(�i 6r+m) � + a22� 4a2 
� 6 e + e � = 0 :These two equations are the only information on�rst derivatives of  � one 
an obtain from R = 06



and 6 = 0. However, the summand r� e � in (10)
ontains �rst derivatives of  � also in terms likee.g. R��r� � , on whi
h R = 0 and 6 = 0give no information in general 
urved spa
etimes.Hen
e, these terms must identi
ally vanish inr� e �,whi
h implies that the 
oeÆ
ients of all terms ine � surviving the insertion of 6 = 0 and whose freeindex � does not belong to 
� or  � must vanish.Moreover the 
oeÆ
ients of all terms where 
� ap-pears followed by other 
-matri
es must vanish aswell, as these terms also give rise to terms like e.g.R��r� � if one 
onsiders them in r� e � and 
om-mutes the 
ontra
ted 
ovariant derivative 6r withthe additional 
-matri
es in order to use the avail-able information on 6r �. Analogously, the termsin e � where the free index � belongs to  � but  �is multiplied by 
-matri
es are problemati
 in 6r6 e and have to vanish identi
ally. Altogether, avoid-ing the appearan
e of in general undetermined  �-derivatives in (10) enfor
esb1 = 
1 = 
4 = d2 = d6 = d13 = d14 = e2 = e7 = 0 ;hen
e, the remaining terms in e � not yet ruled outby ba
kground-independen
e aree � = m
3R � + e5
� (r�R) � :We 
an now expli
itly 
ompute the left hand sideof (10) by inserting this expression for e � andthe knowledge on r� � and 6r � obtained fromR = 0 and 6 = 0. The result does not 
on-tain any derivatives of  �, but is a sum of vari-ous 
urvature tensors multiplying  �. In generalspa
etimes, some of these terms are linearly inde-pendent and, hen
e, have to vanish individually inorder for (10) to be identi
ally ful�lled on all spa
e-times. Parti
ularly, sin
e the only term in the lefthand side of (10) 
ontaining the Ri

i tensor turnsout to be the one expli
itly visible in (10), we ob-tain R��
� � = 0as a ne
essary 
ondition for (10) to hold on gen-eral spa
etimes. However, this is in 
on
i
t withba
kground-independen
e, whi
h 
loses the proof.One 
an imagine that the steps taken in thelast paragraph of this proof 
an be generalised toarbitrary 
ouplings of the 
urvature to  �, andwe have argued in the dis
ussion of selfadjointnessthat the same holds for arbitrary 
ouplings of the
urvature to derivatives of  �, hen
e, we presume

that our proof e�e
tively exhausts all possible 
o-variant �rst order di�erential operatorsR. Finally,we would like to emphasise that our proof 
oversboth m > 0 and m = 0.4. Dis
ussionThe proof of our no-go theorem shows that,even if one allows for a spin 32 -�eld in a gravita-tional ba
kground to be 
oupled to the gravita-tional �eld in an arbitrary non-minimal way, oneis lead to the same Bu
hdahl-problem present forthe minimally 
oupled equations of motion if onerequires in addition that 
ausality and unitarityhold: the model is, at best, only 
onsistent on Ein-stein spa
etimes. Whereas this seems to be a veryrestri
tive 
ondition for the 
onsistent quantiza-tion of spin 32 -�elds on 
urved ba
kgrounds, it �tsni
ely into the widespread pi
ture that supergrav-ity theories are the only 
onsistent models whi
h
ontain elementary spin 32 -�elds, see e.g. [3℄, as inthese models su
h 
onditions on the ba
kgroundappear naturally as on-shell 
onditions [18, 19℄.One 
an expe
t that a generalisation of our no-go theorem to the 
ase where s
alar and ve
torba
kground �elds are present in addition to themetri
 �eld yields 
onditions on the ba
kgroundwhi
h are 
ompatible with on-shell 
onditions inextended supergravity models, see e.g. [28℄.A
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