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A No-Go Theorem for the Consistent Quantization of Spin 3/2 Fields onGeneral Curved SpaetimesThomas-Paul Haka,�, Mathias Makedonskib,�aII. Institut f�ur Theoretishe Physik, Universit�at Hamburg, Luruper Chaussee 149, D-22761 Hamburg, GermanybInstitut for Matematiske Fag, K�benhavns Universitet, Universitetsparken 5, 2100 Copenhagen, DenmarkAbstratIt is well-known that oupling a spin 32 -�eld to a gravitational or eletromagneti bakground leads topotential problems both in the lassial and in the quantum theory. Various solutions to these problemshave been proposed so far, whih are all restrited to a limited lass of bakgrounds. On the otherhand, negative results for general gravitational bakgrounds have been reported only for a limited set ofouplings to the bakground to date. Hene, to our knowledge, a omprehensive analysis of all possibleouplings to the gravitational �eld and general gravitational bakgrounds inluding o�-shell ones hasnot been performed so far. In this work we analyse whether it is possible to ouple a spin 32 -�eld to agravitational �eld in suh a way that the resulting quantum theory is onsistent on arbitrary gravitationalbakgrounds. We �nd that this is impossible as all ouplings require the bakground to be an Einsteinspaetime for onsisteny. This enfores the widespread belief that supergravity theories are the onlymeaningful models whih ontain spin 32 �elds as in these models suh restritions of the gravitationalbakground appear naturally as on-shell onditions.Keywords: quantum �eld theory in urved spaetimes, unitarity, ausality, higher spin �elds,Rarita-Shwinger equation, spin 322000 MSC: 81T201. Introdution { problems of spin 32 �eldsin non-trivial bakgroundsA free spin 32 -�eld  of massm � 0 in at four-dimensional Minkowski spaetime is desribed bythe Rarita-Shwinger equations [34℄(R0 )� := (�i 6� +m) � (1):= (�i��� +m) � = 0 ;6 := � � = 0 : (2)Here and in the following greek indies denote (o)-tangent spae indies, � are the usual -matries, is a Dira spinor-valued vetor �eld whose spinor�Corresponding authorEmail addresses: thomas-paul.hak�desy.de(Thomas-Paul Hak), mathias.makedonski�math.ku.dk(Mathias Makedonski)

indies we suppress throughout. Buhdahl realisedalready more than �fty years ago that a minimaloupling of the above equation to a bakgroundgravitational �eld leads to problems [5℄: the mini-mally oupled equations imply R��� � = 0, withR�� denoting the Rii urvature tensor, and thisequation an only be satis�ed by  � 0 unless thespaetime is an Einstein spaetime s.t. R�� is aonstant multiple of the metri g�� .Later Johnson and Sudharsan found that thequantum theory of a spin 32 -�eld minimally ou-pled to an eletromagneti bakground �eld failsto satisfy unitarity [27℄. This result has been om-plemented by Velo and Zwanziger who pointed outthat the oupling to an eletromagneti �eld is al-ready problemati at the lassial level as it leadsto superluminal propagation [37℄.This last �nding seemed to be the most shok-ing as it beame famous as the Velo-Zwanzigerproblem.Preprint submitted to Physis Letters B September 21, 2012
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All three problems have been analysed in greatdetail and various solutions have been proposed.As it is impossible to provide a omprehensive listof earlier works, we only mention a few seletedones. Speial, i.e. maximally symmetri or on-stant gravitational and eletromagneti bakgroundshave been studied e.g. in [14, 15, 16, 33℄ wherethe ausality and/or unitarity problems have beenproven to be absent for speial values of the massand/or the ouplings. In [29, 17℄ it was pointedout that all problems an be solved in Einstein-Maxwell bakgrounds at the ost of very small orvery large massesm. The most prominent solutionof the Buhdahl-problem is arguably supergravity[18, 19℄, where the Einstein ondition on the spae-time appears as a natural on-shell ondition. Theausal behaviour of supergravity was shown in [8℄,whereas unitarity had mostly been disussed onmaximally symmetri Einstein bakgrounds suhas Minkowski and Anti de Sitter spaetime [14, 15,16℄. Reently unitarity has also been proven forgeneral, asymptotially at and Rii at Einsteinbakgrounds1 [24℄. Other solutions to the Buh-dahl problem, whih avoid restritions on the bak-ground, have been proposed and analysed both inthe (1; 12 ) � ( 12 ; 1) representation, e.g. [20, 2, 32℄,and in the ( 32 ; 0)�( 12 ; 1) representation of SL(2; C )[6, 7, 39, 31, 30℄. While the former su�er eitherfrom the ausality or the unitarity problem, thelatter satisfy ausality, but a unitarity proof is lak-ing to date.All the above-mentioned analyses have in om-mon that they onsider restritions on the ou-plings, the mass, or the bakground �elds. Whereasin [13℄ general non-minimal ouplings to the ele-tromagneti �eld have been studied with a nega-tive result, it seems that a omprehensive studyof general non-minimal ouplings to the gravita-tional �eld and general gravitational bakgroundshas not been available to date. In this letter, wethus investigate whether it is possible to ouple aspin 32 -�eld to a gravitational �eld in a way, suhthat the resulting quantum theory is ausal, uni-tary, and propagates the orret degrees of free-dom on arbitrary spaetime bakgrounds { inlud-1In a previous preprint version of this work we had ar-gued that supergravity fails to satisfy unitarity on the basisof a spin 32 �eld equation derived from the original equationof motion in supergravity. In [36℄ it was pointed out thatour argument fails if one onsiders the original supergravityequations of motion instead.

ing o�-shell ones. This generality is motivated bythe modern approah to quantum �eld theory onurved spaetimes [4℄ (see also [23℄ for an exten-sive review) where one tries to quantize a modelwithout using any knowledge on the bakgroundspaetime other than its de�ning properties suhas e.g. the Lorentzian metri signature. As thisturns out to be possible for spins � 1, see e.g.[25, 4, 26, 35, 11, 12, 21℄, the question, whether thisis the ase for higher spins as well, naturally arises.However, we �nd that a bakground-independentonsistent quantization seems to be impossible forspin 32 -�elds in gravitational bakgrounds.We work solely in the (1; 12 ) � ( 12 ; 1) represen-tation of SL(2; C ) and do not onsider the ( 32 ; 0)�( 12 ; 1) representation, whih is equivalent to the for-mer on at spaetimes, but not on urved ones.This is motivated by the results of [30℄ where ithas been found that unitarity of a quantum �eldin this representation is unlikely to hold due to itsvery struture in urved spaetimes.Our letter is organised as follows. In setion2 we ompile four onditions whih a onsistentquantum theory of a spin 32 -�eld on an arbitraryurved spaetime should satisfy. While the ausal-ity ondition and the ondition on the degrees offreedom are well-known, the very \bakground in-dependene" ondition has apparently not beendisussed so far in this ontext. Our fourth on-dition, a ertain symmetry ondition of the �eldequations, is shown to be virtually equivalent tounitarity and thus replaes the unitarity ondi-tion. Furthermore we point out that, in ontrastto statements in the literature, ausality and uni-tarity are not equivalent for spin 32 �elds. In se-tion 3 we �nally prove our no-go theorem and showthat no non-minimally oupled spin 32 -�eld equa-tion satis�es all four onditions. The letter endswith a disussion of our �ndings in setion 4.2. Conditions for a onsistent spin 32 -quantumtheory in urved spaetimesWe onsider a spin 32 -�eld  on a general urvedspaetime (M; g��), i.e. M is a four-dimensionalmanifold, g�� a metri with signature (+;�;�;�)and  is a four-spinor-valued vetor �eld whosevetor index we shall write only if neessary. Weshall often denote (M; g��) by M for simpliity.2



The �eld equations for  areR = 0 ; (3)6 := � � = A� � ; (4)where R is an arbitrary �rst order di�erential op-erator onstruted out of the metri, the urved-spaetime -matries �, and the mass m, and A�is an arbitrary zeroth order operator of that kind.Thus, with tuples (R; A�) we parametrise all non-minimal ouplings of  to the bakground grav-itation �eld. By S(R;M) we denote the set ofall (in�nitely often di�erentiable) solutions of (3)on the spaetime M , whereas by S(R; A�;M) wedenote the subset of S(R;M) whih satis�es in ad-dition (4). We now list four onditions on (R; A�)and argue why they suÆient for a spin 32 -quantumtheory indued by (R; A�) to be onsistent in ar-bitrary urved spaetimes.2.1. Condition 1: IrreduibilityOn Minkowski spaetime M , A� � 0 and S(R; 0;M ) =S(R0; 0;M).This ondition requires that (R; A�) de�ne a the-ory whih propagates the orret number of de-grees of freedom for a spin 32 -�eld of mass m. Thisis here ahieved by omparison with the standardtheory in Minkowski spaetime, whih after all isthe very spaetime in whih the onepts of \spin"and \mass" are de�ned via irreduible represen-tations of the Poinar�e group. We don't requireR � R0 on M beause di�erent R an be equiva-lent on-shell.2.2. Condition 2: CausalityR is hyperboli and the onstraint 6 = A� � isompatible with time evolution.Hyperboli �eld equations suh as the Klein-Gordonor the Dira equation guarantee ausal propaga-tion of the degrees of freedom, see e.g. [9, 10, 29, 1℄,as they limit the dependene of a solution  (x) ata point x to the past lightone of x. Hyperboliityis a ondition on the oeÆient matrix �� of thehighest derivative term ��r� in R, the so-alledprinipal symbol: for a spaelike/timelike vetork�, k��� must be invertible, while for a lightlikek�, it must have vanishing determinant. Addition-ally, the above ompatibility ondition is required

to avoid that S(R; A�;M) ontains only the trivialsolution  � 0.2.3. Condition 3: Bakground independeneThe number of degrees of freedom propagated by(R; A�) is independent of the bakground spae-time M . Moreover, either A� � 0 on all spae-times, or (4) is automatially satis�ed for all so-lutions of (3).This ondition is required to avoid the Buhdahl-problem mentioned in setion 1, where it happensthat the minimally oupled Rarita-Shwinger equa-tions (1) and (2) propagate the orret number ofdegrees of freedom on Einstein spaetimes, but nodegrees of freedom at all otherwise.Stated in more tehnial terms this onditionrequires that S(R; A�;M) is loally ontravariantin the sense of [4℄: if we onsider two spaetimesM1 � M2 where one is a (suitable) subset of theother, then S(R; A�;M1) should be equal to therestrition of S(R; A�;M2) to M1.We impose the additional ondition on A� be-ause we have not been able to prove that the on-straint (4) satis�es our bakground-independeneondition exept in these two speial ases.2.4. Condition 4: SelfadjointnessAlthough this ondition appears to be the mosttehnial one, it is equivalent to demanding thatthe �eld equation (3) an be obtained from a quadratiation. We state the ondition �rst and ommenton its relation to unitarity afterwards. To thisavail, we introdue the notion �0(M) for the setof (in�nitely often di�erentiable) vetor-spinor val-ued funtions whih vanish outside of a ompatsubset of M , so-alled test funtions. For two testfuntions f1, f2, we de�ne a produt hf1; f2i byhf1; f2i := ZM d4xp� det g�� g��f�1 (x)f�2 (x) ;where the bar denotes the usual Dira onjugationof a four-spinor. We an de�ne the adjoint Ry ofR with respet to h�; �i by hRyf1; f2i := hf1;Rf2iand �nally state the fourth and last ondition.R is formally selfadjoint: Ry = R, i.e. hRf1; f2i =hf1;Rf2i.3



To disuss the relation of this ondition to uni-tarity, we briey reall the unitarity ondition fora spin 32 -�eld, see e.g. [27, 16, 24℄ for details. Towit, the ovariant antiommutator of the quantized�eld  and its adjoint  is after anonial quanti-zation given byf (x);  (y)g = iG(x; y) (5)whereG(x; y) is the so-alled antiommutator fun-tion, a generalisation of the Pauli-Jordan-funtionfor salar �elds. G(x; y) is equal to the di�erene ofthe advaned and retarded Green's funtion2 of thedi�erential operator R and thus G(x; y) dependson the spei� form of R and satis�esRxG(x; y) =RyyG(x; y) = 0 for a general hyperboliR. The op-erator G de�ned by[Gf ℄(x) := ZM d4y p� det g�� G(x; y)f(y) ;maps test funtions to solutions whih have �nitespatial extent at eah time, i.e. \wave pakets".Aordingly, the quantized �eld  (x) integratedwith the Dira adjoint of a test setion f { hene-forth denoted by  (f) { an be interpreted as thequantum operator orresponding to the lassialwave paket Gf . Physial wave pakets shouldsatisfy the onstraint �(Gf)� = A�(Gf)� in addi-tion to the equation R(Gf) = 0 and we denote theorresponding \physial subspae" of the test se-tions �0(M) by �0(R; A�;M). If one now onsid-ers the antiommutation relations (2.4) integratedwith a test setion f 2 �0(R; A�;M) and its Diraadjointf (f);  (f)g = iG(f; f) = ihf;Gfi ;then the right hand side must be a positive numberbeause the left hand side is of the formByB+BBywith B =  (f) and thus has positive expetationvalue in any quantum state j
i. Hene, the non-trivial unitarity ondition for the tuple (R; A�) isthat the antiommutator funtion G(x; y) deter-mined by R must satisfyihf;Gfi � 02For a hyperboli R, these Green's funtions exist andare unique on any spaetime whih ful�ls the so-alled globalhyperboliity ondition, see [1, 2℄ for details; this quite nat-ural ondition on M shall be taitly assumed throughoutthis letter.

for any physial test funtion f 2 �0(R; A�;M).Note that, for a formally selfadjoint R the pre-viously disussed ovariant antiommutation rela-tions are equivalent to equal-time antiommutationrelations, see e.g. [23, 2, 24℄ for details. Basiallythis follows from the identityhf1; Gf2i = Z� d3xp� dethijGf1n���Gf2 : (6)where � is an arbitrary equal-time surfae of Mwith normal vetor n� and hij is the spatial metrion � indued by g�� .We shall now demonstrate the lose relation be-tween the selfadjointness ondition Ry = R andthe unitarity ondition ihf;Gfi � 0 whih lead usto replae the latter, whih is diÆult to hek di-retly on all spaetimes, with the former, whihan be heked more easily.To start with, we shall argue why the selfad-jointness ondition implies unitarity on any topo-logially trivial spaetime M if unitarity is knownin Minkowski spaetime M . To see this, we on-sider any topologially trivial spaetimeM and de-form it in suh a way that it beomes Minkowskiin the past, see [22℄ for details. Loosely speaking,we onsider a �duial spaetime M 0 suh that themetri on M 0 equals the metri on M for largepositive times, whereas for large negative times itequals the Minkowski metri. Given suh a defor-mation and a formally selfadjoint R, the identity(6) allows us to ompute hf;Gfi on any equal-timesurfae of M 0, in partiular also in the Minkowskiregion where we know that it is positive by as-sumption. Moreover, for the equations (1) and (2),unitarity an be easily heked by an expliit om-putation in Fourier spae, thus our �rst onditiontogether with selfadjointness is suÆient to guar-antee unitarity on any topologially trivialM .We now prove that ihf;Gfi � 0 for f 2 �0(R; A�;M)implies hf1;Rf2i = hRf1; f2i for fi 2 �0(R; A�;M)on arbitrary spaetimes. De�ning a produt onphysial test funtions by (f1; f2) := ihf1; Gf2i,our assumption (f; f) � 0 implies by polarisa-tion that the omplex onjugate of (f1; f2) equals(f2; f1) from whih we an dedue that iG is for-mally selfadjoint on �0(R; A�;M). As Gy is theoperator orresponding to the antiommutator fun-tion of Ry, we �nd that Gy = G on physial testfuntions and the same is true for the advanedG(y)+ and retarded G(y)� piees of G and Gy re-4



spetively beause these are unique. Using this,RG� = G�R = 1 and the fat that R maps�0(R; A�;M) to itself we an omputeRyf = RyG�Rf = RyGy�Rf = Rf :In order for the general selfadjointness ondi-tion to be equivalent to the unitarity ondition forthe purposes of a no-go theorem, it would be ne-essary to prove that unitarity implies selfadjoint-ness of R on all test funtions and not only onthe physial ones. Alternatively, we ould also re-quire the latter, weaker selfadjointness ondition.However, one ould just as well argue that thestronger, general selfadjointness ondition is im-portant in its own right irrespetive of unitaritybeause it is equivalent to demand that R omesfrom a quadrati ation. Thus, we proeed withthis stronger ondition, beause it is easier to ver-ify.3. A no-go theorem for the onsistent quan-tization of non-minimally oupled spin 32-�elds on general urved spaetimesWe shall prove in the following that a large lassof non-minimally oupled �eld equations (R; A�)does not satisfy the four onditions ompiled inthe previous setion. In the ourse of proving thisno-go theorem, it will beome lear that the proofan be extended to any larger lass of operatorswithout muh e�ort, suh that the lass we shallonsider an be safely regarded as e�etively ex-hausting all possible ovariant �eld equations inthe (1; 12 )� ( 12 ; 1) representation of SL(2; C ).To wit, we onsider R of the form(R )� := (�i 6r+m) � + a0m� 6 + a1ir� 6 + a2i�r� � + a3i� 6r6 + e �e � := m�B +mC� + iD� + i�EB := b1R��� � + b2R 6 C� := 1R�� � + 2R��� 6 + 3R �+ 4R�� �

D� := d1R�� 6 � + d2 (6rR��) � + d3R��� 6r6 + d4 (6rR��) � 6 + d5R 6r � + d6 (6rR) �+ d7R��r� 6 + d8 (r�R) 6 + d9Rr� 6 + d10R��r� 6 + d11 (r�
R
��) 6 + d12R��r�� � + d13 (r�R��) � �+ d14 �r�R��� � � + d15R���r� �E := e1R��� 6r � + e2 (6rR��) � � + e3R 6r6 + e4 (6rR) 6 + e5 (r�R) � + e6Rr� �+ e7 (r�

R��) � + e8R��r� � + e9R��r� � :where r� is the spin ovariant derivative, ai 2 Care arbitrary onstants whereasR�� = 14R������denotes the spin urvature tensor3. Moreover, deriva-tives in parenthesis are meant to at only on thejointly enlosed urvature tensors, and bi, i, di,ei are arbitrary omplex-valued funtions of ur-vature invariants and m of mass dimension �2.We start our proof by heking selfadjointness,sine this turns out to be the strongest ondition.Indeed, as one an hek by diret omputation,it is ful�lled on arbitrary urved spaetimes if andonly if the following equations are true.a�0 = a0 a2 = a�1 a�3 = a3 b1 = �2b�2 = b2 �1 = 1 �3 = 3 �4 = 4d1 = d3 = d5 = d7 = d9 = d10 = d12 = d15 = 0e1 = e3 = e6 = e8 = e9 = 0d�2 = d2 d�4 = e2 d�6 = d6 d8 = e�5d11 = e�7 d�13 = d14 e�4 = e4Here, � denotes omplex onjugation. In essene,requiring Ry = R rules out terms where a urva-ture tensor multiplies a derivative of  �, beausesuh terms generate derivatives of urvature ten-sors by the partial integration involved in the def-inition of the formal adjoint of Ry. These urva-ture tensor derivatives an not be ured by expli-itly adding ouplings of  � to urvature deriva-tives, as suh terms must be present both in Rand in Ry. Hene, selfadjointness rules out ar-bitrary terms where a urvature tensor multiplies3Note that all ouplings ontaining the Riemann tensorR���� an be expressed via the spin urvature tensor R�� .Furthermore, we have omitted all ouplings whih wouldbe linearly dependent by means of Bianhi identities. Wefollow [38℄ regarding onventions in the de�nition of theurvature tensors.5



a derivative of  �, extending the validity of thisproof to a larger lass of R ontaining all possiblesuh terms.We proeed by heking the hyperboliity bitof of our ausality ondition. Let k� be timelike orspaelike and let  � ful�lik��� � = 6k ��a1k� 6 �a2�k� ��a3� 6k 6 = 0 ;where we have already taken into aount that theallowed prinipal symbols are redued by selfad-jointness. We have to hek for whih ai the aboveequation implies � � 0. By multiplying the aboveequation with 6k and k�, we an obtain the follow-ing derived equations(1� a2)6kk� � = (a1 + a3)k2 6 (1� 3a2)6kk� � = (1 + 3a3)k2 6 ;whih an be rewritten as� (1� a2)1� �(a1 + a3)1�(1� 3a2)1� �(1 + 3a3)1� �� 6kk� �k2 6 � = 0 ;where 1� is the 4 � 4 identity matrix. As k� istimelike or spaelike, this equation together withik��� � = 0 implies  � � 0 if and only if thedeterminant of the appearing 8� 8 matrix is non-zero; this in turn is the ase i�� 3a1a2 + a1 + a2 � 2a3 � 1 6= 0 : (7)We do not disuss lightlike k�, as (7) will be suÆ-ient to prove the theorem.Finally, we verify the bakground-independeneand irreduibility onditions. To this avail, we on-trat (R )� = 0 with both � and r� and om-bine the results to obtain the following equationfor 6 .��(a2 � 1)(1 + a2 + 4a3)2� 4a2 + a1 + a3�r�r� 6 +�(a2 � 1)(1 + 4a0)2� 4a2 + 1 + a1 + 4a32� 4a2 + a0� im6r6 +� (a2 � 1)(1 + a2 + 4a3)2� 4a2 + a3� R4 6 +1+ 4a02� 4a2m2 6 � 12R��� �+ a2 � 12� 4a2 i 6r6 e + ir� e � + m2� 4a2 6 e = 0 :(8)

Here, our �rst ondition assures that 2� 4a2 6= 0.To see this, note that ontrating R � = 0 with� yields an equation whih an be rewritten as(2� 4a2)ir� �= (1 + a1 + 4a3)i 6r6 + (1 + 4a0)m 6 + 6 e : (9)If 2 � 4a2 = 0, then r� � = 0 would not followfromR � = 0 and 6 = 0 on Minkowski spaetime,hene 6S(R; 0;M ) = 6S(R0; 0;M ) would not holdbeause all elements of 6S(R0; 0;M ) satisfyr� � =0. To assure that our bakground independeneondition holds, we have to either guarantee that6 � = A� � holds automatially for solutions ofR = 0 or that A� � 0 on all spaetimes. Let ushek if the �rst of these onditions an be ful�lled.Without speifying A� expliitly, we know that, inMinkowski spaetime, A� � 0 must hold on a-ount of the irreduibility ondition. However, inat spaetime, (8) is a hyperboli partial di�eren-tial equation for 6 , as the oeÆient of r�r� 6 isnon-zero if we apply the ondition (7) derived fromausality and selfadjointness. Suh a di�erentialequation has ertainly more possible solutions thanjust 6 � 0, hene, by ombining ausality, selfad-jointness, and irreduibility, we �nd that only theoptional bakground independene ondition thatA� be identially vanishing on all spaetimes anbe ful�lled. Inserting this into (8), we are left with�12R��� � � a2 � 12� 4a2 i 6r6 e +ir� e � + m2� 4a2 6 e = 0 : (10)In Minkowski spaetime, this equation is identi-ally ful�lled and, hene, poses no additional on-straints on solutions of R = 0 and 6 = 0. Tohek if our bakground independene holds, wehave to make sure that (10) is identially ful�lledon all spaetimes one R � = 0 and 6 = 0 hold.To this avail, we insert 6 = 0 into (9), and both6 = 0 and (9) into R � = 0 to obtainir� � = 12� 4a2 6 e ;(�i 6r+m) � + a22� 4a2 � 6 e + e � = 0 :These two equations are the only information on�rst derivatives of  � one an obtain from R = 06



and 6 = 0. However, the summand r� e � in (10)ontains �rst derivatives of  � also in terms likee.g. R��r� � , on whih R = 0 and 6 = 0give no information in general urved spaetimes.Hene, these terms must identially vanish inr� e �,whih implies that the oeÆients of all terms ine � surviving the insertion of 6 = 0 and whose freeindex � does not belong to � or  � must vanish.Moreover the oeÆients of all terms where � ap-pears followed by other -matries must vanish aswell, as these terms also give rise to terms like e.g.R��r� � if one onsiders them in r� e � and om-mutes the ontrated ovariant derivative 6r withthe additional -matries in order to use the avail-able information on 6r �. Analogously, the termsin e � where the free index � belongs to  � but  �is multiplied by -matries are problemati in 6r6 e and have to vanish identially. Altogether, avoid-ing the appearane of in general undetermined  �-derivatives in (10) enforesb1 = 1 = 4 = d2 = d6 = d13 = d14 = e2 = e7 = 0 ;hene, the remaining terms in e � not yet ruled outby bakground-independene aree � = m3R � + e5� (r�R) � :We an now expliitly ompute the left hand sideof (10) by inserting this expression for e � andthe knowledge on r� � and 6r � obtained fromR = 0 and 6 = 0. The result does not on-tain any derivatives of  �, but is a sum of vari-ous urvature tensors multiplying  �. In generalspaetimes, some of these terms are linearly inde-pendent and, hene, have to vanish individually inorder for (10) to be identially ful�lled on all spae-times. Partiularly, sine the only term in the lefthand side of (10) ontaining the Rii tensor turnsout to be the one expliitly visible in (10), we ob-tain R��� � = 0as a neessary ondition for (10) to hold on gen-eral spaetimes. However, this is in onit withbakground-independene, whih loses the proof.One an imagine that the steps taken in thelast paragraph of this proof an be generalised toarbitrary ouplings of the urvature to  �, andwe have argued in the disussion of selfadjointnessthat the same holds for arbitrary ouplings of theurvature to derivatives of  �, hene, we presume
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