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1 Introduction

An intriguing aspect of proton-proton collisions at high energies is double parton scattering

(DPS), where two partons from each proton interact in two separate hard subprocesses.

While the description of single hard scattering has become an area of precision calculations,

our understanding of double hard scattering (and of its extension to three or more hard

subprocesses) remains fragmentary, both at the conceptual and at the quantitative level.

The initial state of double parton scattering is quantified by double parton distributions

(DPDs), which quantify the joint distribution of two partons in a proton, depending on

their quantum numbers, their longitudinal momentum fractions and their relative trans-

verse distance from each other. A better knowledge of these distributions is important

because DPS processes can contribute to many final states of interest at the LHC [1–3]
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and, furthermore, because they quantify characteristic aspects of proton structure beyond

the information contained in the familiar parton distribution functions (PDFs) for a single

parton.

DPDs depend on a scale, which in a physical process is given by the typical scale

of the hard scattering, just as for PDFs. The scale dependence of DPDs is described by

a generalization of the familiar DGLAP evolution equations. Two versions of this have

been discussed in the literature: a homogeneous equation describing the separate evolution

of each of the two partons and an inhomogeneous equation, which has an additional term

describing the perturbative splitting of one parent parton into the two partons that will un-

dergo a hard scattering [4–8]. Which version is adequate for the description of double hard

scattering processes remains controversial in the literature [9–16]. In this work we use the

homogeneous equation, having in mind that a systematic theory of double hard scattering

will treat the physics associated with the inhomogeneous splitting term separately.

The joint distribution of two partons in the proton can be subject to various correla-

tions. A number of arguments suggest a nontrivial interplay between the dependence of

DPDs on the longitudinal momentum fractions x1, x2 of the partons, as well as between

their momentum fractions and their relative transverse distance y [17]. Moreover, the po-

larizations of two partons can be correlated even in an unpolarized proton [12, 18, 19]. A

recent study in the MIT bag model [20] finds indeed large quark spin correlations in its

range of validity, i.e. at xi above, say 0.1, and at a low scale. Two-parton correlations in

color, quark flavor or fermion number have also been discussed in the literature [12, 19, 21],

but will not be considered in the present work.

Given the large range of energy scales relevant in LHC processes, it is important to

understand how correlations in the distribution of two partons evolve with the scale. One

might for instance expect that spin correlations that exist at a low scale become diluted by

the subsequent parton radiation that is described by DGLAP evolution to higher scales.

The purpose of the present paper is to study the evolution behavior of different correlations

in DPDs in a quantitative manner. First results of our study have been presented in [22].

This paper is organized as follows. In section 2 we recall some basics of DPDs and in

section 3 some details of their scale evolution. The behavior of correlations between x1, x2
and y under evolution is examined in section 4. A large part of our investigation, presented

in section 5, is the study of how spin correlations evolve. In section 6 we investigate

the stability under evolution of the ansatz that two unpolarized partons are distributed

independently of each other. Our conclusions are given in section 7. In appendix A we

motivate the choice of PDFs used in our studies, and in appendix B we collect some

analytical expressions needed in section 5.
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2 Double parton distributions

If one assumes factorization, then the cross section for a double parton scattering process

can be written as

dσ

dx1 dx2 dx3 dx4
=

1

C

∑

p1,p2,p3,p4

σ̂p1p3(x1x3) σ̂p2p4(x2x4)

∫

d2y Fp1p2(x1, x2,y)Fp3p4(x3, x4,y)

+ {color, flavor and fermion number interference terms} , (2.1)

where C is a combinatorial factor, σ̂pipj is the tree-level cross section for the hard scattering

initiated by partons pi and pj and Fpipj is a DPD for partons pi and pj in the proton.

The formula can be extended to include radiative corrections for σ̂pipj and then involves

convolution integrals over parton momentum fractions, just as for single hard scattering.

There is no complete proof that factorization as in (2.1) actually holds, but many important

ingredients to such a proof can be found in [12, 21]. We shall not be concerned with the

interference terms alluded to in (2.1), but note that the DPDs describing color or fermion

number interference are accompanied by Sudakov double logarithms and have a different

scale evolution than the one we are studying in this work. In the parlance of [12], the

distributions Fpipj in (2.1) are color singlet DPDs.

It is understood that the DPS cross section in (2.1) needs to be added to the one

for single hard scattering. (One also needs to add the interference between single and

double hard scattering, which has received only little attention in the literature so far

and will not be discussed here). Double parton scattering can compete with the single

scattering mechanism in parts of phase space and even in inclusive cross sections when the

single parton scattering contribution is suppressed by multiple small coupling constants. In

particular, DPS is enhanced for small momentum fractions xi, because the joint distribution

of two small-x partons increases faster with 1/x than the distribution of a single one. As

an immediate consequence, DPS tends to be more important at the LHC than at previous

hadron colliders.

We can include the effects of parton spin correlations in (2.1) by denoting with pi the

type of a parton and its polarization at the same time. Fpipj (σ̂pipj) are then sums or

differences of DPDs (subprocess cross sections) for different polarization states of the par-

tons. Following [12], we write q, q̄, g for unpolarized partons, ∆q,∆q̄,∆g for longitudinally

polarized ones, δq or δq̄ for transversely polarized quarks or antiquarks, and δg for linearly

polarized gluons. For each label δq or δq̄ the corresponding DPDs and hard-scattering cross

sections carry one Lorentz index in the transverse plane (corresponding to the transverse

polarization vector), whereas for each index δg we need two transverse indices. In DPDs for

two quarks, the polarization combinations allowed by parity and time reversal invariance

are [12]

Fqq(x1, x2,y) = fqq(x1, x2, y) ,

F∆q∆q(x1, x2,y) = f∆q∆q(x1, x2, y) ,

F j
qδq(x1, x2,y) = ỹjMfqδq(x1, x2, y) ,
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F j
δqq(x1, x2,y) = ỹjMfδqq(x1, x2, y) ,

F jj′

δqδq(x1, x2,y) = δjj
′

fδqδq(x1, x2, y) + 2τ jj
′,kk′ykyk′M2f tδqδq(x1, x2, y) , (2.2)

where we write y =
√

y2 and introduce the proton mass M so that all functions f have the

same mass dimension. Furthermore, we use ỹj = ǫjj
′

yj′ with the antisymmetric symbol

ǫjj
′

in two dimensions, and

τ jj
′,kk′ = 1

2

(

δjkδj
′k′ + δjk

′

δj
′k − δjj

′

δkk
′)

. (2.3)

As shown in [23], one can write

Fqg(x1, x2,y) = fqg(x1, x2, y) ,

F∆q∆g(x1, x2,y) = f∆q∆g(x1, x2, y) ,

F jj′

qδg(x1, x2,y) = τ jj
′,kk′ykyk′M2fqδg(x1, x2, y) ,

F j
δqg(x1, x2,y) = ỹjMfδqg(x1, x2, y) ,

F j,kk′

δqδg (x1, x2,y) =− τ jj
′,kk′ỹj′Mfδqδg(x1, x2, y)

− τkk
′,l l′

(

ỹjyl + yj ỹl
)

y l′M3f tδqδg(x1, x2, y) (2.4)

for DPDs of one quark and one gluon, and

Fgg(x1, x2,y) = fgg(x1, x2, y) ,

F∆g∆g(x1, x2,y) = f∆g∆g(x1, x2, y) ,

F jj′

gδg(x1, x2,y) = τ jj
′,kk′ykyk′M2fgδg(x1, x2, y) ,

F jj′

δgg(x1, x2,y) = τ jj
′,kk′ykyk′M2fδgg(x1, x2, y) ,

F jj′,kk′

δgδg (x1, x2,y) =
1
2
τ jj

′, kk′fδgδg(x1, x2, y) ,

+ τ jj
′,l l′τkk

′,mm′(

ỹ lỹm − ylym
)

yl′ym′

M4f tδgδg(x1, x2, y) (2.5)

for two gluons. Expressions analogous to (2.2) and (2.4) hold if one or two quarks are
replaced by antiquarks.

Polarization effects in double parton scattering

DPDs for polarized partons contribute to the cross section (2.1) if the cross section differ-

ences σ̂pipj for the relevant hard subprocesses are nonzero. A systematic discussion would

go beyond the scope of this work, but let us mention a few important examples. A detailed

discussion of the impact of parton spin correlations on the production of two electroweak

gauge bosons (γ∗, Z or W ) has been given in [21, 24]. One finds nonzero cross section

differences σ̂∆q∆q̄, and for Z and W production also σ̂∆q q̄ and σ̂q∆q̄ thanks to their par-

ity violating couplings. If the corresponding DPDs for longitudinal quark and antiquark

polarization are nonzero, this influences both the overall rate of DPS and the distribution

in transverse momentum and rapidity of the leptons into which the gauge bosons decay.

For γ∗ and Z production there is a nonzero cross section difference σ̂δqδq̄, which leads to
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an azimuthal correlation between the decay planes of the two bosons, provided that the

transverse polarizations of two quarks or antiquarks in the proton are correlated as well.

The cross section differences σ̂∆a∆b for longitudinal polarization in jet production are

nonzero for most combinations a, b of quarks, antiquarks and gluons, and the same holds

for prompt photon production (see e.g. table 4.1 in [25]). This will impact the overall

rate of DPS as well as the transverse-momentum and rapidity distributions of the jets if

there are longitudinal spin correlations between two partons in the proton. For transverse

(anti)quark polarization, there are nonzero cross section differences σ̂δqδq̄ and σ̂δqδq for jet

production and σ̂δqδq̄ for the prompt photon channel qq̄ → gγ [26], which together with

transverse polarization correlations in the proton induce azimuthal correlations between the

relevant jet planes. Azimuthal correlations in the final state can also be induced by linearly

polarized gluons, with a nonzero cross section difference σ̂δgδg for jet production [27]. The

cross section difference σ̂gδg is zero in that case, but it is nonzero for the production

gg → QQ̄ of heavy quarks [28] and the production gg → γγ of a photon pair [29]. We

thus see that a number of important DPD channels will be impacted by spin correlations

of partons in the proton.

3 Evolution of double parton distributions

As discussed in the introduction, we consider the homogeneous evolution equation of DPDs.

For two unpolarized quarks we then have

dfqq(x1, x2, y;Q)

d lnQ2
=
αs(Q)

2π

[

Pqq ⊗1 fqq + Pqg ⊗1 fgq + Pqq ⊗2 fqq + Pqg ⊗2 fqg

]

, (3.1)

where

Pab( . )⊗1 fbc( . , x2, y;Q) =

∫ 1−x2

x1

dz

z
Pab

(x1
z

)

fbc(z, x2, y;Q) ,

Pab( . )⊗2 fbc(x1, . , y;Q) =

∫ 1−x1

x2

dz

z
Pab

(x2
z

)

fbc(x1, z, y;Q) (3.2)

is a convolution in the first or second argument of the DPDs with the splitting functions Pab

known from the DGLAP evolution of single parton distributions. We use the leading-order

(LO) approximation of the splitting functions throughout this work. The explicit evolution

equations for all unpolarized and polarized DPDs, as well as a list of the associated splitting

functions, are collected in appendix A of [23]. We note that the splitting functions for

antiquarks are identical with those for quarks.

Let us briefly recapitulate the pattern of evolution for small xi, starting with gluon

distributions. For small argument x, we have

Pgg(x) → 2Nc/x , Pgq(x) → 2CF /x

P∆g∆g(x) → 4Nc , P∆g∆q(x) → 2CF , (3.3)

where Nc is the number of colors and CF = 2Nc /(N
2
c − 1). In each case the correction

to the asymptotic behavior is one power higher in x. For small x1 (and x2 not too large)
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the first convolution integral in (3.2) can receive a substantial contribution from the region

x1 ≪ z ≪ 1− x2 where the splitting functions take their asymptotic forms (3.3) while the

DPDs are far away from the kinematic limit z = 1 − x2, where they become small. An

analogous statement holds of course for the second integral in (3.2) at small x2 (and not

too large x1). This explains the steep rise of the unpolarized gluon distribution with Q2.

For longitudinal gluon polarization, this rise is weaker since P∆g∆g and P∆g∆q lack the 1/x

singularity of their unpolarized counterparts.

For linearly polarized gluons (which do not mix with quarks under evolution) the

situation is special. The small-x limit of the splitting function reads

Pδgδg(x) → 2Ncx+
αs

2π

N2
c + (Nc − 2CF )nF

6x
, (3.4)

where nF is the number of active quark flavors. Here we have included the small-x limit

of the NLO contribution computed in [30] because it has a 1/x enhancement while the LO

term vanishes like x for x→ 0. Unless this NLO effect is very large (i.e. unless one considers

scales where αs is large) one hence expects that distributions for linearly polarized gluons

have at most a moderate growth with Q2 at small momentum fractions.

For quark distributions the splitting functions Pqq(x), Pqg(x), P∆q∆q(x) and P∆q∆g(x)

all tend towards constant values at small x, whereas Pδqδq(x) → 2CF x. Compared with

unpolarized gluons, one thus expects a much milder growth with Q2 for quarks at small xi,

irrespective of their polarization. The strongest increase is to be expected for unpolarized

quarks since they mix with the large unpolarized gluon distribution.

3.1 Numerical implementation

To solve the evolution equations numerically, we use a modified version of the code de-

scribed in [7, 31]. The original code was written to solve the inhomogeneous evolution

equations of Refs. [4, 5] for unpolarized DPDs. We have modified the code by removing

the inhomogeneous term and by adding the splitting functions for polarized partons.

The code solves the double DGLAP equations in a variable flavor number scheme. It

works in x-space, on a grid in x1, x2 and t = lnQ2, performing the evolution stepwise

in t by a fourth-order Runge-Kutta method. The xi grid points are evenly spaced in

log
[

xi/(1− xi)
]

, with an equal number of points in both directions. They are bounded from

above by the kinematic limit x1+x2 ≤ 1 and from below by the choice of xmin = 10−6. The

grid points in t are evenly spaced, ranging from t0 to tmax for which we chose different values

in different parts of our investigation. We used 240 grid points in each of the xi directions

and 60 grid points in t. The code is supplemented with a routine that interpolates between

different grid points. We made some small changes to this routine, making in particular

sure that it can handle polarized distributions, which may have zero crossings and negative

values.

The accuracy of the original code was investigated in [7], with estimated errors below

1% for xi ≤ 0.3 and evolution from Q2 = 1GeV2 to Q2 = 104 GeV2. We have updated

these estimates after our modification of the code and with our grid settings. We find again

an accuracy better than 1% for the evolution of unpolarized DPDs, whereas for polarized
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distributions the relative error increases up to 4% in some regions at moderate xi. In the

vicinity of zero crossings, the relative error diverges and is of course no longer a useful

measure for numerical uncertainties.

For the solution of the evolution equations, the code transforms the DPDs to a straight-

forward generalization of the single parton “evolution basis”. This basis is defined by [32]

Σ =
∑

i

q+i , Vi = q−i ,

T3 = u+ − d+ , T8 = u+ + d+ − 2s+ (3.5)

and similar combinations including heavier quarks, where q±i = qi ± q̄i. Analogous linear

combinations are formed for polarized partons. In this basis single parton evolution is

particularly simple, since mixing only occurs between the singlet (Σ) and the gluon while

the other combinations evolve separately. For the up and down quarks, Vi corresponds to

the valence contributions uv and dv. The evolution code makes use of the basis (3.5) for

both partons.

4 Correlations between x1, x2 and y

Various studies of generalized parton distributions suggest a nontrivial interplay between

the distribution of partons in longitudinal momentum and in transverse space [17]. Specif-

ically, the impact parameter dependent single parton distribution fa(x, b), i.e. the proba-

bility density to find parton a with momentum fraction x at a transverse distance b from

the proton center, is not simply the product between a function of x and a function of b.

It is therefore natural to assume that there is also a correlation between the longitudinal

variables x1, x2 and the transverse distance y in DPDs. In this section we investigate how

such a correlation behaves under scale evolution. We consider only unpolarized partons

and focus on the region of small momentum fractions xi, which is relevant for a large range

of DPS processes at the LHC.

4.1 Initial conditions

As a model for the DPD at the starting scale of evolution, we take the simple ansatz that

follows if one assumes the two partons to be independent. The DPD can then be written

as a convolution

Fab(x1, x2,y) =

∫

d2b fa(x1, b+ y) fb(x2, b) (4.1)

of impact parameter dependent single parton distributions fa(x, b), as shown for instance

in [12]. For these distributions, we assume a Gaussian b dependence with an x dependent

width, namely

fa(x, b) = fa(x)
1

4πha(x)
exp

[

−
b2

4ha(x)

]

(4.2)
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with

ha(x) = α′

a ln
1

x
+Ba . (4.3)

Here fa(x) denotes the usual parton densities, for which we take the LO set of the MSTW

2008 analysis [33]. We return to the choice of this PDF set below. For the starting scale

where the ansatz (4.2) is assumed we take Q2
0 = 2GeV2. We should note that the form

(4.3) is tailored for the region of x up to 10−1 and not meant to be realistic for larger x, see

e.g. the discussion in section 7.3 of [34]. We take different parameters in (4.3) for gluons

and for the sum q+ = q+ q̄ and difference q− = q− q̄ of quark and antiquark distributions,

α′

q− = 0.9GeV−2 , Bq− = 0.59GeV−2 ,

α′

q+ = 0.164GeV−2 , Bq+ = 2.4GeV−2 ,

α′

g = 0.164GeV−2 , Bg = 1.2GeV−2 . (4.4)

The parameter values for q− were obtained in a model dependent determination of gener-

alized parton distributions from electromagnetic form factor data [34]. For the remaining

parameters we use input from hard exclusive scattering processes. At leading order in αs,

the scattering amplitudes for exclusive J/Ψ photoproduction and for deeply virtual Comp-

ton scattering (DVCS) are described by generalized parton distributions for gluons and for

the sum q+ of quarks and antiquarks, respectively. Up to an uncertainty from the so-called

skewness effect, one can thus connect the measured t dependence in those processes with

the Fourier transform of the distribution (4.2) to transverse-momentum space. The values

of α′
g and Bg given in (4.4) have been determined in [35] to match the measurement of

elastic J/Ψ photoproduction in [36]. Experimental uncertainties do not allow us to extract

a value for α′
q+ from DVCS, and we take the same value as for gluons in this case. The

value of Bq+ in (4.4) has been chosen to correspond to a DVCS cross section dσ/dt ∝ ebt

with b ≈ 7GeV−2 at x ≈ 10−3 and Q2 ≈ 2GeV2, guided by a fit to the t dependence in

[37].

Let us emphasize that the functional form and numerical values in (4.2) to (4.4) are

not meant to be a precision extraction of impact parameter dependent parton densities,

but as a simple ansatz in rough agreement with phenomenology. The focus of our interest

is how correlations of this type are affected by scale evolution.

Inserting (4.2) into (4.1) we obtain our ansatz for the unpolarized DPDs,

Fab(x1, x2,y) = fa(x1)fb(x2)
1

4πhab(x1, x2)
exp

[

−
y2

4hab(x1, x2)

]

(4.5)

at the starting scale Q2
0 = 2GeV2, with

hab(x1, x2) = ha(x1) + hb(x2) = α′

a ln
1

x1
+ α′

b ln
1

x2
+Ba +Bb . (4.6)

Note that the y dependence in (4.5) does not factorize into separate contributions from

each of the two partons.
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To specify the mixing between gluon and quark singlet distributions, we take the

parameters α′
q+ and Bq+ in (4.4) for all light quark flavors, u, d, s at the starting scale Q0.

The charm distribution is negligibly small there, since for the MSTW 2008 distribution

we have mc ≈ Q0. In the following we will consider the combinations u− and u+ as

representatives of the quark sector for definiteness. We have checked for a few example

cases that no qualitatively new features arise for distributions where one or two u quarks

are replaced by d quarks. This is not surprising since the PDFs for these quarks are similar

in shape and the y dependence in our ansatz has a trivial flavor structure.

4.2 Change under evolution

According to (3.1) DPDs evolve independently at each value of the interparton distance y.

However, the nontrivial interplay between y and the momentum fractions x1 and x2 in the

starting conditions (4.5) has consequences for the scale evolution at different values of y.

The exponential factor in (4.5) leads to a suppression of the large xi region, which becomes

more important as y increases. Furthermore, the relative size of gluon and q+ distributions,

which mix under evolution, changes with y because our ansatz implies hg(x) < hq+(x) and

thus has a broader y profile for quarks than for gluons.

Let us first see to which extent the Gaussian y dependence of our starting condition

(4.5) is changed by evolution. To this end, figure 1(a) shows lnFu−u− as a function of y2

for different values of the scale. A Gaussian y dependence of the DPD translates into a

straight line in this plot. We see that the shape remains approximately Gaussian even up

to the high scale of Q2 = 104 GeV2, and that the slope in y2 becomes steeper with Q2,

corresponding to a narrowing of the Gaussian profile. This is seen more quantitatively in

figure 1(b), where we show the slope of the curves as a function of y2, multiplied with an

overall minus sign. The departure from a Gaussian y dependence after evolution is reflected

in a slow decrease of the slope with y, but overall the effect is rather mild.

The corresponding plots for the DPDs for two u+ or two gluons are shown in figure 1(c)

to (f). For two u+ we observe a similar trend as for two u−, with a slight departure from

a Gaussian behavior and an overall narrowing of the y profile at higher scales. For two

gluons, the y dependence also remains approximately Gaussian after evolution, but the

local y slope shown in figure 1(f) shows a different behavior than for quarks, with a tiny

increase at low y and a weak decrease at higher y. The overall size of the effect is, however,

quite small.

Let us now take a closer look at the evolution of the width of the y dependence. We

quantify this by taking the difference quotient

lnFaa(x, x, y)− lnFaa(x, x, 0)

y2

∣

∣

∣

∣

y=0.4 fm

= −
1

4heffaa(x, x)
(4.7)

between y = 0 and y = 0.4 fm, a region where according to figure 1 the approximation of a

linear y2 dependence of lnFaa(x, x, y) works very well. The function heffaa(x, x) thus defined

may be regarded as an effective Gaussian width.

Figure 2(a) shows the evolution of heffaa(x, x) at x = 0.01 for a = u−, u+ and g. The

width for the double u− distribution starts at a larger value than for the other partons,
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(a) (b)

(c) (d)

(e) (f)

Figure 1: y2 dependence of the DPD for two u− (top), two u+ (center) and two gluons

(bottom). The left panels show the natural logarithm of the DPD and the right panels the

corresponding slope in y2. Longitudinal momentum fractions are fixed at x1 = x2 = 0.01.
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(a) (b)

Figure 2: (a): Evolution of the effective Gaussian width heffaa(x, x) defined by (4.7) and

evaluated at x = 0.01 for a = u+, u− and g. (b): Evolution of the effective shrinkage

parameter α′ eff
a obtained by fitting heffaa(x, x) to (4.8) in the range 0.004 ≤ x ≤ 0.04 for

a = u− and g.

while the starting value of heffgg is the smallest and heff
u+u+ is found almost half way in

between. As we already saw in figure 1, the effective Gaussian width decreases under

evolution for both u− and u+, whereas it barely changes for the gluon. Note that heff
u−u−

strongly decreases with x for our choice of parameters in (4.4). As the valence combination

u− evolves to higher scales, partons migrate from higher to lower x values by radiating

gluons. For partons at given x and Q, the width of the y distribution is thus influenced by

the smaller values of this width for partons with higher x at lower Q. This explains the

decrease of heff
u−u−

with Q in figure 2(a), which can also be derived analytically by adapting

the argument for the transverse distribution of a single quark given in section 2 of [34].

Turning to the double u+ distribution, which mixes with gluons, we observe that heff
u+u+

approaches heffgg with increasing scale, although it does so rather slowly. The difference

between the transverse distribution of gluons and quarks, which we have assumed at Q0,

thus persists over a wide range of scales.

The dependence of heffaa(x, x) on x is shown in figure 3(a), (b) and (c) for the different

parton types. We see that evolution is faster at small momentum fractions x than at large

ones. At low x, there is a rapid decrease of heffaa(x, x) with Q
2 for all parton types. For u+

this results in a region of intermediate x where heff
u+u+(x, x) increases with x at high Q2.

For u− and g the curves for heffaa(x, x) are approximately linear in ln(x) as long as we stay

away from the large-x region. This allows us to extract an effective shrinkage parameter

α′ eff
a by fitting the effective Gaussian width to

heffaa(x, x) = 2α′ eff
a ln

1

x
+ 2Beff

a (4.8)

in an appropriate region of x, which we choose as 0.004 ≤ x ≤ 0.04. At the starting scale of

evolution, we recover of course the value of α′
a in our original ansatz (4.6) for haa(x1, x2) at
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(a) (b)

(c) (d)

Figure 3: (a), (b), (c): Dependence of heffaa(x, x) on x. The solid sections of the curves

in panels (a) and (b) represent fits to (4.8) in the range 0.004 ≤ x ≤ 0.04. (d): Evolution

of the effective Gaussian width heff
u+(x) of the impact-parameter dependent single parton

distribution fu+(x, b), determined in analogy to heffaa(x, x) as explained in the text.

x1 = x2. The scale dependence of α
′ eff
a is shown in figure 2(b). We find that α′ eff

a decreases

quite rapidly for a = g and more gently for a = u−.

Turning our attention to the double u+ distribution, we see in figure 3 that at large

Q2 a local fit of heff
u+u+(x, x) to the form (4.8) would result in a negative α′ eff

u− whose value

would strongly depend on the chosen range of x. To see whether this is a particular feature

of DPDs, we have investigated the evolution of the impact-parameter dependent single

parton distributions fa(x, b), which proceeds according to the usual DGLAP equations at

each value of b. Using the program QCDNUM [38] to perform the evolution, we find that

the initial Gaussian b dependence in our ansatz (4.2) approximately persists at higher scales,

so that we can extract an effective Gaussian width heffa (x) from the difference quotient of

ln fa(x, b) between b = 0 and b = 0.4 fm in full analogy to (4.7). The scale dependence
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of heff
u+(x) determined in this way is shown in figure 3(d) and shows the same qualitative

behavior as heff
u+u+(x, x). We conclude that an increase with x of the effective Gaussian

width is not special to the evolution of DPDs.

A natural explanation of this increase is that, as x decreases, the evolution of quark

distributions is more and more driven by their mixing with gluons. We recall that with the

parameters (4.4) for the initial conditions, gluons have a more narrow spatial distribution

than the sum q+ of quarks and antiquarks. Under evolution, the effective Gaussian width

for q+ tends towards the one for gluons, and this tendency is stronger at smaller x, where

the gluon distribution is larger. To corroborate this explanation, we have repeated our

study of the DPDs for two alternative choices for the parameters in (4.4), taking either

equal values Bg = Bq+ = 1.2GeV−2 or Bg = 2.4GeV−2 and Bq+ = 1.2GeV−2. In line with

our expectation, no increase of heff
u+u+(x, x) with x is seen after evolution in these cases.

Our studies described so far have been done with the MSTW 2008 parton distribution

in the initial conditions, and it is natural to ask how much our findings depend on this

choice. In appendix A we show a selection of recent LO PDF sets at the scale Q2
0 = 1GeV2

and find that among the sets suitable for our purposes (namely those that are positive at

that scale) the parameterizations of MSTW 2008 and GJR 08 [39] represent two extreme

choices, with a very slow or a very fast increase of the gluon at small x, respectively. We

have therefore repeated the studies reported in this section by replacing MSTW 2008 with

GJR 08 in our ansatz (4.2) at the scale Q2
0 = 2GeV2. We obtain similar results, regarding

both the qualitative effects of evolution (including the behavior in figure 3(c) and (d)) and

the rate of change of the parameters describing the y dependence of the DPDs.

5 Evolution of polarized double parton distributions

We now investigate the evolution of spin correlations between two partons inside a proton.

For simplicity we assume in this section a multiplicative y dependence of the DPDs,

fp1p2(x1, x2,y;Q) = f̃p1p2(x1, x2;Q)G(y) , (5.1)

which is stable under scale evolution. Since our focus is on the degree of parton polarization

rather than on the absolute size of the DPDs, we set the y dependent factor G(y) = 1 in

all plots and omit the tilde in f̃p1p2(x1, x2;Q) from now on.

For the unpolarized DPDs we content ourselves with a simple factorizing ansatz at the

starting scale,

fab(x1, x2;Q0) = fa(x1;Q0) fb(x2;Q0) , (5.2)

which we take as Q2
0 = 1GeV2 unless specified otherwise. For the single parton densities

in (5.2) we consider the two LO sets MSTW 2008 and GJR 08, hereafter referred to as

MSTW and GJR for brevity. This ansatz is clearly unsatisfactory close to the kinematic

limit x1+x2 = 1, where the DPDs are expected to vanish, but since we are not particularly

interested in that region we have refrained from taking a more sophisticated form. As

discussed in section 6.1, evolution to higher scales approximately conserves the factorized

form (5.2) for sufficiently low x1 and x2.
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(a) MSTW (b) GJR

Figure 4: Unpolarized double parton distributions, constructed from the ansatz (5.1)

and (5.2) with the LO PDFs of MSTW (a) or GJR (b). The factor G(y) in (5.1) has been

set to 1 for simplicity. The vertical scales have been chosen to facilitate comparison with

polarized distributions in subsequent plots.

(a) MSTW (b) GJR

Figure 5: The same distributions as in figure 4, plotted against ln(x1/x2) at fixed x1x2.

In figures 4 and 5 we show our unpolarized model DPDs for a uū pair and for two

gluons, either as functions of x1 at x2 = x1 or as functions of ln(x1/x2) at fixed x1x2 = 104.

Notice that ln(x1/x2) is related to the rapidity difference between the systems of particles

produced in the two hard-scattering subprocesses. Denoting the total four-momenta of the

final states in the two subprocesses by q1 and q2, we have

∆Y = Y1 − Y2 =
1

2

[

ln
q+1
q−1

− ln
q+2
q−2

]

= ln
x1
x2

+
1

2
ln
q22
q21
. (5.3)

For equal c.m. energies of the two subprocesses we simply have ∆Y = ln(x1/x2). In that

case, rapidity differences in the range −4 ≤ ∆Y ≤ 4 correspond to longitudinal momentum
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fractions 0.0014 ≤ xi ≤ 0.074 for x1x2 = 10−4. In figure 4 we see that at low scales the

double gluon distributions constructed from MSTW and GJR PDFs strongly differ in size

and shape. Only for larger scales do the two sets approach each other, which is plausible

since at high scales the single parton densities are more directly constrained by data than

at low scales.

To model the polarized DPDs is much more difficult. There is no reason to believe

that the single parton distributions for a polarized parton in a polarized proton should

be suitable even as a starting point to describe the DPDs for two polarized partons in

an unpolarized proton. In other words, it is far from obvious how to connect the spin

correlations between one parton and the proton with the spin correlations between two

partons, and we will not try to do so.

Instead, we pursue two scenarios. In the first one, which we call the “max scenario”,

we make use of the positivity bounds for DPDs derived in [23]. At the starting scale Q0

of evolution, we maximize each polarized DPD individually with respect to its unpolarized

counterpart. For the combinations we will investigate, this gives

|f∆a∆b| ≤ fab , |fδaδb| ≤ fab , (5.4)

and

(yM)2 |faδg| ≤ fag (5.5)

for a, b = q, q̄, g at equal values of x1, x2 and y on the left- and right-hand sides. As follows

from equation (4.6) in [23], the bounds in (5.4) can be satisfied simultaneously, as well as

the bounds in (5.5), but not the two sets together. The distribution f tδaδb is subject to the

same bound as fδaδb in (5.4). Since it also follows the same evolution equation and does

not mix with any other distribution, we will not discuss it further.

As shown in [23], leading-order evolution to higher scales preserves the above bounds.

By contrast, if the bounds are saturated at some scale, they will in general be violated at

lower scales. For this reason, we take a rather low value of Q0 in this study. Evolved to

high scales, results in the max scenario show how large polarization effects can possibly

be if one assumes that the density interpretation of DPDs and thus their positivity holds

down to the scale Q0.

The sign of the distributions on the l.h.s. of (5.4) and (5.5) can be either positive

or negative. For DPDs involving only transverse or linear polarization, such as fδqδq or

fδgδg , this is of no consequence for the evolution behavior and we take the positive sign

for definiteness. For polarized DPDs that mix with others under evolution, relative signs

are important. In the following, we will always assume the positive sign for all polarized

distributions in the max scenario. Other choices typically yield lower polarization after

evolution. Exploring several combinations for the signs of f∆q∆q̄, f∆g∆g, f∆q∆g and f∆g∆q̄,

we find that after evolution f∆u∆ū is suppressed by a factor between 0.5 and 1 relative to the

values shown in the figures of section 5.1. For distributions with one or two longitudinally

polarized gluons, the corresponding suppression is stronger in parts of phase space.

Our second scenario, called the “splitting scenario”, contains more detailed dynamical

input. At small distances y, DPDs can be calculated perturbatively in terms of single
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parton distributions as discussed in [12]. We then have

fqq̄(x1, x2, y) =
αs

2π2
1

y2
fg(x1 + x2)

x1 + x2
Tg→qq̄

( x1
x1 + x2

)

(5.6)

and analogous relations for the other DPDs, which are collected in appendix B. At large

y these relations will no longer hold. In the splitting scenario, we assume that at scale Q0

the ratio of polarized and unpolarized DPDs computed in the perturbative regime is valid

up to large values of y, even if the form (5.6) is not. We thus continue to use the factorized

form (5.1) and (5.2) for the unpolarized DPDs, while the polarized ones at scale Q0 are

given by

f∆q∆q̄ = −fqq̄ , fδqδq̄ = −
2zz̄

z2 + z̄2
fqq̄ ,

f∆g∆g =
zz̄ (2− zz̄)

z2 + z̄2 + z2z̄2
fgg , fδgδg =

z2z̄2

z2 + z̄2 + z2z̄2
fgg ,

f∆q∆g =
1− z2

1 + z2
fqg (5.7)

and

(yM)2fqδg =
2z

1 + z2
fqg , (yM)2fgδg =

z2

z2 + z̄2 + z2z̄2
fgg , (5.8)

where z = x1/(x1 + x2) and z̄ = 1 − z. Further non-zero distributions are obtained

by interchanging parton labels and momentum fractions or by interchanging quarks with

antiquarks; other combinations such as fqq or fq̄ δq vanish at Q0 in this scenario. The

resulting set of distributions saturates several of the positivity bounds discussed in [23].

Specifically, one obtains two vanishing eigenvalues in each of the spin-density matrices ρ

for quark-antiquark, quark-gluon and gluon-gluon DPDs, given in eq. (3.2) to (3.6) of [23].

We note that the appearance of the factors (yM)2 in (5.5) and (5.8) is a consequence

of the factors ykyk′M2 in the DPD definitions (2.4) and (2.5). In cross sections, the

distributions fqδg and fgδg always appear multiplied with (yM)2. For convenience we will

set this factor equal to 1 in our plots.

5.1 Quark and antiquark distributions

We start our examination of spin correlations with the DPDs for longitudinally or trans-

versely polarized quarks and antiquarks.

We will show a series of figures which are all using the MSTW parton distributions in

the initial conditions, with curves for the three scales Q2 = 1, 16 and 104 GeV2. In each

figure, the upper row shows the polarized DPDs and the lower row shows the ratio between

polarized and unpolarized DPDs for the same parton type. The latter ratio is restricted to

the range from −1 to 1 according to (5.4) and will be called the “degree of polarization”.

It is the size of this ratio that indicates how important spin correlations are in the cross

sections of DPS processes. As we did for unpolarized DPDs in figures 4 and 5, we show the

polarized distributions both as functions of x1 at x1 = x2 and as functions of ln(x1/x2) for
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x1x2 = 10−4. Results will be given both for the max scenario and for the splitting scenario

in the initial conditions.

The distribution for longitudinally polarized up quarks and antiquarks in the max

scenario is shown in figure 6. The polarized distribution f∆u∆ū evolves very slowly and

hardly changes with Q2. However, the degree of polarization decreases with the evolution

scale. This is due to the increase of the unpolarized DPDs, which can be seen in figure 4.

At low xi the degree of longitudinal polarization decreases rapidly with Q2, whereas at

intermediate and larger xi values it does so rather slowly. We find a degree of polarization

around 50% at Q2 = 16GeV2 and above 20% at Q2 = 104 GeV2 for x1x2 = 10−4 and a

wide range of ln(x1/x2).

In the splitting scenario we have f∆q∆q = −fqq for all x1 and x2 at the starting scale. In

order to facilitate comparison with the max scenario, we multiply the polarized distribution

with −1 in figure 7. The mixing of f∆q∆q with distributions involving gluons and the zero

starting value of all distributions where the quark and antiquark have different flavors

induce some differences in evolution compared to the max scenario. We observe a small

decrease of f∆u∆ū with the evolution scale and a somewhat lower degree of polarization. At

large momentum fractions, the distribution does not quite reach 100% polarization in the

xi range shown in the figure. The dependence of the degree of polarization on ln(x1/x2) is

slightly tilted towards larger polarization when the quark has a bigger momentum fraction

than the antiquark.

We now turn to transverse quark and antiquark polarization, which leads to character-

istic azimuthal correlations in the final state of DPD processes [24]. Transversely polarized

quarks or antiquarks do not mix with gluons under evolution, nor with quarks or anti-

quarks of different flavors. Figure 8 shows the DPD for transversely polarized up quarks

and antiquarks in the max scenario. There is a slight decrease of the DPD with Q2 over

the entire xi range, but the suppression of the degree of polarization is mainly due to the

increase in the unpolarized distributions. The evolution of the degree of polarization is

similar to the case of longitudinal polarization in the max scenario, with a somewhat faster

decrease. At intermediate and large xi values, the degree of polarization decreases slowly.

For x1x2 = 10−4 it amounts to 40% at Q2 = 16GeV2 and to 10% at Q2 = 104 GeV2 over

a wide rapidity range.

In the splitting scenario we have maximal negative polarization fδqδq̄ = −fqq̄ at the

starting scale for x1 = x2, but the degree of polarization decreases when the two partons

have different momentum fractions and tends to zero for both x1 ≪ x2 and x1 ≫ x2.

Figure 9 shows that the dependence of the polarized DPD on ln(x1/x2) slightly flattens

under evolution and that its overall size at x1 = x2 evolves in a similar way as in the max

scenario. The same holds for the degree of polarization.

The polarization for other combinations of light quarks and antiquarks is of simi-

lar size and shows a similar evolution behavior as for the case of a uū pair just presented.

Generically, the evolved distributions have a slightly larger degree of polarization for quarks

compared with antiquarks, and for up quarks compared with down quarks. Obvious excep-

tions in the splitting scenario are distributions that do not have a quark and an antiquark

of equal flavor. These distributions start at zero. For transverse polarization they hence
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(a) (b)

Figure 6: Longitudinally polarized up quarks and antiquarks in the max scenario, with

initial conditions using the MSTW PDFs. Here and in the following figures the upper row

shows the polarized DPDs and the lower row the ratio between polarized and unpolarized

DPDs. In the max scenario, this ratio is 1 at the starting scale by construction and will

not be shown. Color (line style) coding as in figure 4.

(a) (b)

Figure 7: As figure 6 but in the splitting scenario. Note the minus sign on the vertical

axes.

remain zero at all scales, while for longitudinal polarization they become nonzero due to

the mixing with other distributions. The ratio f∆u∆u/fuu for example can reach a few

percent in the intermediate xi region for equal momentum fractions after evolution.

In summary, we find that both longitudinal and transverse polarization remains size-

able up to large scales for intermediate and large xi values, provided it is large at low scales.

In particular the distributions for longitudinally polarized quarks, which enter linearly in

– 18 –



(a) (b)

Figure 8: Transversely polarized up quarks and antiquarks in the max scenario, with

initial conditions using the MSTW PDFs. Color (line style) coding as in figure 4.

(a) (b)

Figure 9: As figure 8 but in the splitting scenario. Note the minus sign on the vertical

axes.

electroweak cross sections, can thus play a significant role. In the small xi region, however,

both longitudinal and transverse polarization are strongly suppressed at high scales.

We have repeated our study with the MSTW distributions replaced by those of GJR

in the initial conditions. Naturally, this has some effect on the quark distributions, but

the differences on the degree of polarization are comparably small and do not change the

conclusions we have just drawn.
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5.2 Gluon distributions

Gluons can be polarized longitudinally or linearly. As discussed in section 3 the unpolar-

ized (single or double) gluon density increases rapidly at small momentum fractions due to

the 1/x behavior of the gluon splitting kernel. The absence of this low-x enhancement in

the polarized gluon splitting kernels lead us to expect that the degree of gluon polarization

will vanish rapidly in the small x region. As can be seen in figure 10 for longitudinally po-

larized gluons, this is indeed the case. The distribution f∆g∆g does increase with evolution

scale, but at a much lower rate than fgg. Evolution thus quickly suppresses the degree of

longitudinal gluon polarization in the small xi region. In figure 10 we see that in the max

scenario with MSTW starting distributions this suppression stays rather constant between

Q2 = 4GeV2 and Q2 = 104 GeV2. For this range of scales, the degree of longitudinal

polarization is between 10% and 15% at x1x2 = 10−4, with a very weak dependence on

ln(x1/x2).

Our knowledge of the single gluon distribution at the low scale remains, however, quite

poor as is documented in appendix A. As an alternative to the MSTW distributions used

in figure 10, we show in figure 11 the corresponding results obtained with the GJR parton

densities. The degree of polarization at Q2 = 104 GeV2 is nearly twice as large as for

MSTW and amounts to almost 20% at x1x2 = 10−4. At Q2 = 16GeV2 the difference is

even more striking, with a degree of polarization equal to 30%, a factor of three larger than

for MSTW. To understand this difference, we recall from figures 4 and 5 that at high scales

the unpolarized gluon DPDs obtained with the two PDF sets are relatively similar. The

difference in the degree of longitudinal polarization between the two cases is hence mainly

due to the polarized DPDs. At the starting scale, these are much larger if we use the GJR

set instead of MSTW, and this large difference persists after evolution.

In the splitting scenario the differences between the results obtained with the two

(a) (b)

Figure 10: Longitudinally polarized gluons in the max scenario, with initial conditions

using the PDFs of MSTW.
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(a) (b)

Figure 11: As figure 10 but with initial conditions using the PDFs of GJR. Notice the

different range of the vertical axes in the upper row compared with figure 10.

(a) (b)

Figure 12: Longitudinally polarized gluons in the splitting scenario, with initial conditions

using the PDFs of GJR. Color (line style) coding as in figure 10.

PDF sets are similar to the differences we just described for the max scenario. We show

in figure 12 the results obtained with the GJR set and note that the degree of polarization

obtained with MSTW distributions is significantly smaller. At the starting scale, the degree

of longitudinal polarization has a maximum of 78% for x1 = x2 in the splitting scenario

and quickly decreases when the two gluons have different momentum fractions. Evolution

decreases the degree of polarization in a similar manner as in the max scenario, leaving us

with polarization around 10% for central rapidities and Q2 between 16 and 104 GeV2.

Linearly polarized gluons give rise to azimuthal asymmetries in DPS cross sections, in

a similar way as transversely polarized quarks and antiquarks. The effect of evolution on
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(a) (b)

Figure 13: Distribution for two linearly polarized gluons in the max scenario, using the

GJR PDFs in the initial conditions. Color (line style) coding as in figure 10. Here and in

the following, the LO expression of the evolution kernel Pδgδg is used, except in figure 16.

the distribution of two linearly polarized gluons in the max scenario is shown in figure 13.

We see that even the polarized distribution fδgδg itself decreases with the scale. Together

with the rapid increase of the unpolarized two-gluon DPD this results in a rapid decrease

of the degree of linear polarization, especially at small xi. As in the case of longitudinal

gluon polarization, using the MSTW distributions at the starting scale (not shown here)

results in an even faster suppression. In that case the degree of polarization is tiny already

at Q2 = 16GeV2. In the splitting scenario, the ratio fδgδg/fgg is at most 11% at the

starting scale, which leads of course to even lower polarization after evolution. We must

hence conclude that even in the most optimistic scenario shown in figure 13, the correlation

between two linearly polarized gluons is quickly washed out by evolution and can only be

appreciable at rather large xi or rather low scales.

So far we have only considered the case when both partons have the same type of

polarization. There is however the possibility to have an unpolarized gluon and a linearly

polarized one, whose polarization direction is correlated with the interparton distance y.

In the max scenario, the corresponding DPD at x = x1 = x2 is well approximated by

(yM)2fgδg(x, x;Q) ≈
√

fgg(x, x;Q) fδgδg(x, x;Q) , (5.9)

for not too large x. At the starting scale, this is trivial, and at higher scales it reflects

the fact that double DGLAP evolution proceeds approximately independently for the two

partons, as long as x1 + x2 is not close to 1. In the splitting scenario, (5.9) does not hold

even at the starting scale.

Figure 14 shows fgδg in the max scenario. The presence of one unpolarized gluon

increases the distribution for small xi values and results in a significantly larger degree of

polarization. However, for very large Q2 linear polarization is still strongly suppressed at
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(a) (b)

Figure 14: Two-gluon distribution with one linearly polarized gluon in the max scenario,

with GJR PDFs used at the starting scale. The factor (yM)2 in the starting conditions

(5.5) has been set to 1 for simplicity. Color (line style) coding as in figure 10.

(a) (b)

Figure 15: As figure 14 but in the splitting scenario. The factor (yM)2 in the starting

conditions (5.8) has been set to 1 for simplicity.

small xi. For unequal xi we observe that the degree of polarization is enhanced when the

unpolarized gluon has the smaller momentum fraction, reaching 30% for ln(x1/x2) = −4

even at the high scale Q2 = 104 GeV2. A significant degree of polarization for one linearly

polarized gluon is also found in the splitting scenario, as shown in figure 15. The main

difference to the max scenario appears for unequal xi. According to (5.8) the splitting

g → gg is such that for very asymmetric kinematics x1 ≫ x2 the slow gluon carries

maximal linear polarization. As is seen in the figure, evolution weakens this trend, and

at very high scales we find again a higher degree of polarization if x1 < x2 rather than

x1 > x2.
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Linear polarization: effect of NLO corrections

As we noted in section 3, the evolution kernel for linearly polarized gluons has a qualita-

tively different small-x behavior at leading and next-to-leading order in αs. To examine

how this impacts the fraction of linearly polarized gluons in DPDs at low xi, we have

incorporated the leading low-x term in the NLO kernel as given in (3.4).

(a) MSTW (b) GJR

Figure 16: Comparison of the DPD for two linearly polarized gluons evolved at LO (fδgδg)

or including the leading low-x part of the NLO kernel (fnloδgδg) given in equation (3.4). For

the initial conditions we use the max scenario with the PDFs of MSTW (a) or of GJR (b).

Color (line style) coding as in figure 4.

The results in the splitting scenario with either MSTW or GJR input distributions

are shown in figure 16. Although the NLO corrections increase the polarization as one

may expect, they do not significantly change the overall picture. The NLO enhancement

is largest for the case of MSTW distributions around x1 = x2 = 10−3, where the polarized

DPD has a dip and hence the increased migration of partons from larger to smaller xi is

most important.

5.3 Quark-gluon distributions

In the two previous subsections we have seen that in general gluon polarization is washed

out under evolution at a faster pace than the polarization of quarks. In this section we

will see that the corresponding decrease of polarization for quark-gluon distributions is in

between the pure quark and gluon cases. For the unpolarized DPDs, our factorized ansatz

(5.2) results in the approximate relation

fqg(x, x;Q) ≈
√

fqq(x, x;Q) fgg(x, x;Q) (5.10)

as long as x is not too large.

The mixed quark-gluon distribution for longitudinal polarization is shown in figure

17 for the max scenario using GJR distributions as input. There degree of polarization
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(a) (b)

Figure 17: Longitudinally polarized distribution for an up quark and a gluon in the

max scenario, with initial conditions using the GJR PDFs. Color (line style) coding as in

figure 4.

(a) (b)

Figure 18: As figure 17 but in the splitting scenario.

remains large up to high scales except for very small xi, and in figure 17(b) we find more

than 20% polarization for Q2 = 104 GeV2 and x1x2 = 10−4. The corresponding results

for the splitting scenario are shown in figure 18. For x1 = x2 the degree of polarization

is 60% at the starting scale and decreases moderately fast as long as xi is not too small.

In asymmetric kinematics, the polarization remains sizeable up to high scales if x1 ≪ x2,

while it is small at all scales for x1 ≫ x2.

Let us finally discuss the distributions for an unpolarized quark and a linearly polarized

gluon. Figure 19 shows that in the max scenario we have a moderate degree of polarization

after evolution, in particular when x2 > x1. In the splitting scenario, shown in figure 20,
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(a) (b)

Figure 19: Distribution for an unpolarized up quark and a linearly polarized gluon in the

max scenario, with GJR PDFs used at the starting scale. The factor (yM)2 in the starting

conditions (5.5) has been set to 1 for simplicity. Color (line style) coding as in figure 10.

(a) (b)

Figure 20: As figure 19 but in the splitting scenario. The factor (yM)2 in the starting

conditions (5.8) has been set to 1 for simplicity.

the starting conditions provide maximal linear polarization in the limit where the gluon

momentum is soft (x2 ≪ x1), in analogy to what we observed earlier for fgδg. This trend

is preserved by evolution up to moderately high scales.

5.4 Very low starting scale

The studies presented so far in this section have taken an initial scale of Q2
0 = 1GeV2

for evolution. One may ask how our findings change if we assume the starting conditions

of the max or the splitting scenario to hold at a much lower scale. This question can be
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(a) (b)

Figure 21: Distribution of two longitudinally polarized up quarks in the max scenario,

with initial conditions using the GJR PDFs at Q2
0 = 1GeV2 (a) or at Q2

0 = 0.3GeV2 (b).

addressed if we construct the initial conditions from the GJR PDFs, which are available

down to Q2 = 0.3GeV2. A very low scale is also typically associated with quark models,

which may be used to calculate unpolarized and polarized DPDs for two quarks [20, 40, 41].

We note that very large spin correlations were found in the bag model study [20].

In figure 21 we compare the DPDs for two longitudinally polarized up quarks obtained

in the max scenario with the two different starting scales just mentioned. Worth noting

is that the peak in the valence-like distribution f∆u∆u(x, x) at Q2 = 0.3GeV2 migrates

only slowly to smaller x under evolution. In the case of two transversely polarized quarks

(not shown here) the position of that peak stays at x ≥ 0.1 for all scales, and the de-

gree of transverse polarization is smaller than the degree of longitudinal polarization after

evolution. At Q2 = 104 GeV2 and x1 = x2 = 10−2 the degree of polarization for trans-

versely polarized up quarks is 15%, compared with 35% for longitudinal quark polarization.

Comparing figures 21(a) and (b) we note that with the higher starting scale, f∆u∆u(x, x)

shows a moderate growth with Q2 at small x, whereas with the low starting scale it barely

evolves at all for x below 10−2. The degree of polarization shows little difference between

the two cases for Q2 ≥ 16GeV2 and is largely controlled by the rise of the unpolarized

DPD with Q2.

Figure 22 shows the distribution for two longitudinally polarized gluons obtained by

starting evolution in the max scenario with the lower or the higher starting scale. With

Q2
0 = 0.3GeV2 the degree of polarization becomes suppressed already at Q2 = 1GeV2 and

then remains rather stable. At low xi it becomes altogether negligible, in contrast to the

case where we start evolution at Q2
0 = 1GeV2. While fgg increases dramatically at low xi

when evolved from Q2
0 = 0.3GeV2, its polarized analog f∆g∆g rises only slowly and never

even reaches the size it has in the max scenario at Q2
0 = 1GeV2. Only for xi well above

10−2 do we find a significant degree of gluon polarization in the scenario with a low starting
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(a) (b)

Figure 22: As figure 21 but for two longitudinally polarized gluons.

scale. Comparing the evolution of fδgδg from Q2
0 = 0.3GeV2 (not shown here) with the

one of f∆g∆g in figure 22(b), we find that fδgδg does not increase with Q2 at small xi. The

resulting degree of linear polarization is hence even smaller than the degree of longitudinal

polarization.

Taking the initial conditions of the splitting scenario at Q2
0 = 0.3GeV2 we find the

same general pattern as in the max scenario: little change in the degree of polarization for

quarks at Q2 ≥ 16GeV2 and a very small degree of polarization for gluons at low xi.

6 Approximation of independent partons

6.1 Effect of the kinematic limit

Perhaps the most immediate difference between single and double DGLAP evolution is

the maximal momentum fraction that can be carried by a parton. While the evolution

equation for a single PDF involves an integral of fb(z;Q) over momentum fractions z all

the way up to 1, the corresponding integration in the double DGLAP equation (3.1) is

limited by momentum conservation to
∫ 1−x2

x1

dz

z
Pab

(x1
z

)

fbc(z, x2, y;Q) (6.1)

for the evolution of the parton with momentum fraction x1. It is obvious that the reduced

integration limit has an impact for very large xi values, but through evolution the effect

can propagate down towards smaller xi. We investigate this effect by evolving a product

of MSTW distributions, fab(x1, x2;Q0) = fa(x1;Q0)fb(x2;Q0), with the DPD evolution

equations and comparing the result with the product of evolved single parton distributions.

The ratio

Rab(x1, x2;Q) =
fab(x1, x2;Q)

fa(x1;Q)fb(x2;Q)
(6.2)
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(a) (b)

Figure 23: The ratio R defined in (6.2), which quantifies the effect of the kinematic

limit on parton radiation in the double DGLAP equation. The starting distribution at

Q2 = 1GeV2 is the product of two PDFs from the MSTW set.

would be equal to 1 at all scales if the phase space effect just described was absent. Fig-

ure 23(a) shows Ruū and Rgg at x2 = x1 for three different values of Q2. We can see

how the effect of the integration limit propagates down towards lower xi, especially for the

gluon distribution.

In figure 23(b) we show R as a function of x1 for three different x2 values at high Q2.

Overall, the effect of the integration limit is not large, except at large xi. Indeed, at

the kinematic limit x1 + x2 = 1 the DPD should vanish, which is ensured by evolution

even though it is not satisfied for our oversimplified starting conditions. Our exercise

illustrates that even if one assumes that a DPD factorizes into the product of single parton

distributions at some scale, this factorization cannot strictly hold at higher scales.

6.2 Independent partons and y dependence

The ansatz (4.1) presented in section 4.1 assumes that the two partons are distributed

independently of each other, even if for each of them we have correlations between longi-

tudinal momentum and transverse position. It is natural to ask whether this form persists

under evolution, provided that one is sufficiently far from the kinematic limit x1 + x2 = 1

just discussed.

To answer this question is easy if one transforms both single and double parton distri-

butions from transverse position to the Fourier conjugate transverse momentum. As was

pointed out in [42], the convolution in (4.1) then turns into a simple product

Fab(x1, x2, r) = fa(x1, r) fb(x2,−r) . (6.3)

The distributions in r space do not have a probability interpretation since r is a momentum

difference between partons on the left- and right-hand sides of the final-state cut. This is

discussed for instance in section 2.1 of [12] (where also the normalization factors in the
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Fourier transforms are specified). The ansatz (4.2) in impact parameter space turns into a

Gaussian

fa(x, r) = fa(x) exp
[

−ha(x) r
2
]

(6.4)

in momentum space with an x dependent width. We can now use the results of the

previous subsection to conclude that for each r the factorized form (6.3) will be preserved

by evolution to higher scales to good accuracy as long as x1 + x2 is not too close to 1.

The convolution form (4.1) in transverse position space remains of course valid to the same

extent.

7 Conclusions

Correlations between partons can have a large impact in double parton scattering processes,

both on the overall cross section and on the distribution of particles in the final state. We

have shown that the effect of double DGLAP evolution, where each of the two partons

develops its own parton cascade, generally suppresses such correlations at higher scales.

The strength of this suppression varies widely, with a rapid decrease of correlations in some

cases and a slow decrease in others.

At a certain degree of accuracy, the dependence of DPDs on the transverse distance

y between the two partons is expected to depend on the type of the partons and on their

momentum fractions. We have studied the evolution of a y dependence motivated by

the phenomenology of generalized parton distributions at the initial scale. We find that a

Gaussian y dependence at the initial scale is approximately preserved under evolution, with

a noticeable but relatively slow change of the effective Gaussian width. Despite the mixing

between gluons and quarks in the singlet sector, the differences between their distributions

persist up to high scales.

Spin correlations between two partons in the proton are described by polarized DPDs.

Positivity constrains these to be at most as large as the unpolarized DPDs for the same

parton types, a property that is preserved under evolution to higher scales. For the initial

conditions of evolution, we have either assumed maximum polarization or a degree of

polarization as it is obtained when the two partons originate from the perturbative splitting

of a single, unpolarized one. In the latter scenario, the degree of polarization strongly

depends on the ratio x2/x1 of momentum fractions for certain parton combinations. We

find that the DPDs for two longitudinally or two transversely polarized quarks decrease

slowly with the evolution scale Q2 or even remain approximately constant. Given the

rise of the corresponding unpolarized DPD, the degree of longitudinal or transverse quark

polarization shows a rather pronounced decrease with Q2. The DPD for two longitudinally

polarized gluons rises slowly with the scale, as does the DPD for a longitudinally polarized

gluon and a longitudinally polarized quark. However, due to the very rapid increase of

unpolarized gluon distributions with Q2, the degree of longitudinal polarization decreases

with the scale both for gg and qg distributions, in particular at small x. The distribution

for two linearly polarized gluons decreases under evolution, and the associated degree

of polarization quickly becomes negligible for x below 10−2. In certain processes like
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double charm production, the DPD for one unpolarized and one linearly polarized gluon is

relevant. Except at high x, it increases withQ2 and the corresponding degree of polarization

decreases rather gently. Our quantitative results in the gluon sector depend strongly on

the initial scale of evolution and on the gluon densities used in the initial conditions, which

entails a much stronger model dependence than for quarks. Broadly speaking, we find that

almost all polarization effects become small for x ≤ 10−2 and Q2 ≥ 104 GeV2, whereas for

x above a few 10−2 many polarization correlations remain sizeable even at high scales.

The phase space available for parton radiation in DPDs is reduced compared with the

case of single parton densities. As a result, evolution does not conserve the factorization

of DPDs into separate functions of the momentum fractions x1 and x2 if one assumes this

property at a certain scale. Quantitatively, we find that this effect is important only if

at least one of the momentum fractions is of order 0.3 or larger, otherwise one retains a

factorized form to a good approximation. This result generalizes to the convolution ansatz

specified in (4.1) because this ansatz corresponds to a product in the momentum space

representation (6.3).

In summary, we find that the effect of scale evolution on parton correlations is im-

portant and should be included in quantitative estimates. The assumption that parton

radiation will quickly wash out correlations is true in a few cases but cannot serve as a gen-

eral guideline. How this affects double parton scattering processes remains to be studied

in future work.
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A Choice of single parton densities

The models we use for the initial conditions of unpolarized DPDs in sections 4, 5 and 6

are constructed from products of ordinary single parton distributions. For this we use LO

PDFs, so as to match the leading-order evolution we perform for the DPDs. We need these

PDFs at low scales, down to Q0 = 1GeV, where different PDF sets significantly deviate

from each other.

This is clearly seen in figure 24, where we show LO PDFs from Alekhin (a02m lo)

[43], CTEQ6 (cteq6ll) [44], GJR (GJR08lo) [39] and MSTW (MSTW2008lo) [33]. We

also show the dedicated Monte Carlo PDF set MRSTMCal [45]; the other set of that

study (MRST2007lomod) looks similar. All PDF values are generated using the LHAPDF

interface [46]. Not included in the figure are the LO PDFs of NNPDF2.1 [47] since they are

not available at Q = 1GeV via LHAPDF. The CTEQ6 gluon distribution turns negative

at low x and is hence not suited for our purpose (one of our two models for polarized
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(a) (b)

Figure 24: Comparison of recent LO PDF sets at scale Q = 1GeV for gluons (a) and for

u quarks (b). Note the different y ranges in the two panels.

DPDs in section 5 builds on the positivity of parton distributions). For the same reason

we discard the dedicated Monte Carlo PDFs of CT09 [48] (not shown here), although they

are set to zero below some value of x instead of going negative. The LO gluon distribution

of HERAPDF1.5 [49] is very close to the one of CTEQ6 at Q = 1GeV (and hence not

shown in the figure). It also turns negative at low x.

Among the positive gluon PDFs shown in the figure, the sets of GJR08 and MSTW2008

represent extremes in the sense of having a very steep or a very flat behavior over a wide

x range. We chose these two sets for our investigations of DPDs, expecting that results

obtained with different PDFs should approximately lie within the range covered by the two

representatives we have selected. In the right panel of the figure we see that the spread

of u quark distributions in the different PDF sets is notable, but not as large as for the

gluons.

For the evolution of DPDs, we adjusted the values of αs and of the quark masses to

those used by the two PDF sets we have selected. This is

mc = 1.30GeV , mb = 4.2GeV , αs(Q = 1GeV) = 0.4482 (A.1)

for GJR and

mc = 1.40GeV , mb = 4.75GeV , αs(Q = 1GeV) = 0.6818 (A.2)

for MSTW.

B Double parton distributions from perturbative splitting

For small interparton distances y, or more precisely in the limit yΛ ≪ 1, where Λ is a

typical hadronic scale, the dominant contribution to DPDs is given by the short-distance
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splitting of a single parton into two [12]. To leading order in αs, one can then express the

DPD as the product of a usual PDF with an expression for the perturbative splitting; at

higher orders the product turns into a convolution. From the results of section 5.2 in [12]

we can readily extract the corresponding expressions for the collinear color-singlet DPDs

we are studying in the present work.

For unpolarized or doubly polarized DPDs, we have at leading order in αs

fp1p2(x1, x2, y) =
αs

2π2
1

y2
fp0(x1 + x2)

x1 + x2
Tp0→p1p2

( x1
x1 + x2

)

(B.1)

from the splitting process p0 → p1p2, with kernels

Tg→qq̄(z) =
1

2

(

z2 + z̄2
)

, Tg→∆q∆q̄(z) = −Tg→qq̄(z) , Tg→δqδq̄(z) = −zz̄ ,

Tg→gg(z) = 2Nc

[

z̄

z
+
z

z̄
+ zz̄

]

, Tg→∆g∆g(z) = 2Nc (2− zz̄) , Tg→δgδg(z) = 2Nczz̄ ,

Tq→qg(z) = CF
1 + z2

z̄
, Tq→∆q∆g(z) = CF (1 + z) ,

Tq̄→q̄g(z) = Tq→qg(z) , Tq̄→∆q̄∆g(z) = Tq→∆q∆g(z) , (B.2)

where z̄ = 1− z. Corrections to (B.1) are suppressed by further powers of αs or by powers

of yΛ. In Tg→qq̄, Tg→gg and Tq→qg we recognize the familiar DGLAP splitting functions

for z < 1. Further DPDs are obtained by permuting the parton labels and momentum

fractions. All other unpolarized or doubly polarized distributions, including f tp1p2(x1, x2, y),

do not receive any contribution from perturbative splitting at this accuracy.

DPDs with one polarized and one unpolarized parton arise by perturbative splitting

only for linearly polarized gluons,

faδg(x1, x2, y) =
αs

2π2
1

y4M2

fa(x1 + x2)

x1 + x2
Ta→aδg

( x1
x1 + x2

)

(B.3)

with

Tg→gδg(z) = 2Nc
z

z̄
, Tq→qδg(z) = 2CF

z

z̄
. (B.4)

Because fgδg and fqδg are multiplied by two vectors y in their definitions, the associated

distributions F jj′

gδg and F jj′

qδg diverge like 1/y2 for y → 0, just as the distributions in (B.1).

The distributions fgδq and fq̄ δq do not receive contributions from perturbative splitting

due to the chiral invariance of massless QCD.
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