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ABSTRACT

Electron injection at high Mach-number nonrelativistic perpendicular shocks is studied here for

parameters that are applicable to young SNR shocks. Using high-resolution large-scale two-dimensional

fully kinetic particle-in-cell (PIC) simulations and tracing individual particles we in detail analyze the

shock surfing acceleration (SSA) of electrons at the leading edge of the shock foot. The central question

is to what degree the process can be captured in 2D3V simulations. We find that the energy gain in

SSA always arises from the electrostatic field of a Buneman wave. Electron energization is more

efficient in the out-of-plane orientation of the large-scale magnetic field because both the phase speed

and the amplitude of the waves are higher than for the in-plane scenario. Also, a larger number of

electrons is trapped by the waves compared to the in-plane configuration. We conclude that significant

modifications of the simulation parameters are needed to reach the same level of SSA efficiency as in

simulations with out-of-plane magnetic field or 3D simulations.

Keywords: acceleration of particles, instabilities, ISM – supernova remnants, methods – numerical,

plasmas, shock waves

1. INTRODUCTION

The current paradigm of cosmic-ray (CR) origin as-

sumes that the most part of galactic CR population

is produced at nonrelativistic forward shocks of super-

nova remnants (SNRs). The main acceleration mech-

anism considered at shocks is diffusive shock acceler-

ation (DSA), a first-order Fermi process (e.g., Axford

et al. 1977; Drury 1983; Blandford & Eichler 1987).

Astronomical observations give strong support to this

paradigm. In particular, detection of broadband non-

thermal emission from SNRs, extending in some objects

to TeV-range gamma rays, proves the presence of ultra-

relativistic particles in these sources, though for most

SNRs it is still unclear which parent particle populations
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(protons or electrons) generate dominant high-energy

emission (Aharonian 2013).

Acceleration of particles through DSA comes from

multiple interactions with the shock front, while they

bounce between the shock upstream and downstream

plasmas. Particle confinement to the shock vicinity is

provided by elastic scattering off magnetohydrodynamic

(MHD) turbulence that renders diffusive particle mo-

tions. The critical ingredient and the main unsolved

problem in the DSA theory is the particle injection. CRs

undergoing DSA have Larmor radii much larger than the

internal shock transition width, that is commensurate

with the gyroradius of the incoming protons (with shock

speed vsh). CRs thus see the shock as a sharp disconti-

nuity in the plasma flow. To be fed into the acceleration

process particles need therefore to be extracted from the

thermal pool and pre-accelerated. Since protons have a

larger initial momentum and can be easily scattered ei-

ther by MHD waves embedded in the ambient plasma
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or by self-generated turbulence, their injection is rela-

tively easy to account for. The problem is more severe

for electrons, because of their smaller mass and conse-

quently smaller gyroradii and inertial lengths, compared

to protons, and is known as the electron injection prob-

lem.

Here we study electron injection at young SNR shock

waves using particle-in-cell (PIC) numerical simulations

that provide a fully self-consistent treatment of the elec-

tron scales. Such shocks are characterized by high sonic,

Ms, and Alfvénic, MA, Mach numbers. Present obser-

vational data do not give clear constraints on the large-

scale magnetic-field configuration in portions of SNR

shocks from which strong nonthermal emission is de-

tected. Radio polarimetry are notoriously difficult to

interpret (e.g., Stroman & Pohl 2009). Different ap-

proaches of data modeling for the same source can sug-

gest the presence of quasi-perpendicular fields (Petruk

et al. 2009; Schneiter et al. 2010; West et al. 2016) or the

opposite, quasi-parallel configurations (Rothenflug et al.

2004; Bocchino et al. 2011; Schneiter et al. 2015). As in

our recent studies (Matsumoto et al. 2012, 2013, 2015;

Wieland et al. 2016; Bohdan et al. 2017), in this work we

examine perpendicular shocks as the most simple form of

a quasi-perpendicular magnetic-field configuration. The

physics of such shocks is governed by reflection of ions at

the shock caused by shock potential (Fig. 1), the interac-

tion of which with the incoming plasma excites a variety

of instabilities upstream of the shock. The most impor-

tant instabilities in the regime of high Mach numbers

are the electrostatic two-stream Buneman instability at

the leading edge of the foot, resulting from the interac-

tion between cold incoming electrons and reflected ions

(Buneman 1958), and the Weibel instability in the shock

foot driven by the interaction of the incoming and re-

flected ions (Kato & Takabe 2010; Niemiec et al. 2012;

Matsumoto et al. 2015; Wieland et al. 2016).

The Buneman instability can mediate the generation

of supra-thermal electrons via shock surfing acceleration

(SSA). In a 1D picture the Buneman instability pro-

duces strong, coherent electrostatic waves that capture

electrons and let them be accelerated by the convec-

tive electric field (Hoshino & Shimada 2002), thus pro-

viding for efficient electron injection. A number of 2D

simulations of perpendicular shocks (Amano & Hoshino

2009a; Matsumoto et al. 2012, 2013; Wieland et al. 2016)

demonstrated that the length of the potential wells is

limited to about the ion inertial length. Electrons can

thus escape from the trapping region and re-enter it

from the downstream or the upstream side to experience

multiple surfing-acceleration events (Amano & Hoshino

2009a; Matsumoto et al. 2012).

Figure 1. Perpendicular shock structure. Top panel is the
particle number density profile. The shock transition consists
of a foot, a ramp, an overshoot and the downstream region.
Ex is the shock potential. v0 and vsh are the upstream and
the shock velocities. Bottom panel is the x-component of ion
phase-space distribution.

The Weibel instability generates strong magnetic

fields with filamentary structure. It was also recently

shown with 2D simulations that spontaneous turbu-

lent magnetic reconnection in the Weibel instability

region canlead to electron acceleration (Matsumoto et

al. 2015). Thin current sheets (magnetic filaments) be-

come unstable and break up into chains of magnetic

islands and X-points. Particles can be accelerated while

interacting with these structures.

The spectrum of waves generated at the shock is usu-

ally at least two-dimensional. Which of the unstable

modes appear in a 2D simulation strongly depends on

the configuration of the mean magnetic field though, as

modes may be artificially suppressed if their wave vector

is not contained in the simulation plane. In Bohdan et

al. (2017) we showed that the Weibel instability is best

reproduced with the in-plane setup, whereas the Bune-

man modes are considerably stronger and more coher-

ent with a strictly out-of-plane orientation. Suprather-

mal tails in the electron spectra are found for all sim-

ulated shocks, and the initial acceleration of electrons

always occurs through the SSA process in the Buneman

wave region. However, the subsequent stages of injec-

tion strongly depend on the field configuration. For out-

of-plane field adiabatic heating dominates the spectral

evolution. For configurations with an in-plane magnetic-

field component particles are non-adiabatically acceler-

ated in interactions with turbulent magnetic structures

in the shock, resembling a second-order Fermi process,

and magnetic reconnection does also occur. The frac-
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tion of nonthermal electrons is an order of magnitude

larger for the out-of-plane configuration than for other

field orientations, mainly on account of a higher SSA

efficiency.

The first 3D PIC simulation of a high-MA shock

was recently presented by Matsumoto et al. (2017) for

an oblique subluminal configuration, c/ tan ΘBn > vsh,

where ΘBn is the angle of the large-scale magnetic field

with respect to the shock normal, vsh is the shock ve-

locity, and c is the speed of light. Buneman waves and

Weibel magnetic turbulence were found to coexist in the

shock structure. Energetic electrons that initially expe-

rienced SSA underwent pitch-angle diffusion by inter-

acting with magnetic turbulence in the shock foot and

ramp. This provides confinement in the shock transition

region during which particles gain energy by shock drift

acceleration (SDA). The computational cost of 3D ex-

periments is still too high to sample the range of plasma

conditions that one may find in SNR shocks. Never-

theless, the 3D results indicate which parts of 3D shock

physics can be reliably probed with 2D simulations.

In this work we report on new large-scale 2D fully

kinetic PIC simulations of nonrelativistic strictly per-

pendicular shocks in the regime of high Mach numbers,

MA & 20 and Ms & 30, as appropriate for forward

shocks of young SNRs. The simulations are conducted

in 2D3V configuration, i.e., we follow two spatial coor-

dinates and all three components of the velocity and the

electromagnetic fields. Numerical experiments are per-

formed for both in-plane and out-of-plane configurations

of the large-scale magnetic field. These simulations com-

plement our previous investigations of 2D perpendicular

shocks (e.g., Matsumoto et al. 2012, 2013, 2015; Wieland

et al. 2016; Bohdan et al. 2017). The aim of this work

is to analyze in detail the initial energization via SSA in

the Buneman-instability region. The successive acceler-

ation in the shock foot and ramp on account of, e.g.,

inelastic scattering off the Weibel-instability turbulence

is the subject of a separate publication.

Conditions for efficient electron energization via SSA

were first investigated by Matsumoto et al. (2012),

supported with PIC simulations with out-of-plane

magnetic-field configuration. The process occurs in low-

temperature (low beta) plasmas, in which the Buneman

instability can effectively grow. For efficient acceleration

the electrostatic waves should also be strong enough to

trap electrons and hold them during acceleration, which

defines a minimum Alfvénic Mach number for a shock to

be capable of producing relativistic electrons via SSA,

MA ≥ (1 + α)

(
mi

me

) 2
3

, (1)

where α is the flux ratio of reflected to incoming ions

and mi and me are the ion and the electron mass, re-

spectively. In the presence of an in-plane magnetic field

the motion of the reflected ions is not fully contained

in the simulation grid and thus the corresponding com-

ponent of the Buneman waves cannot be captured (Bo-

hdan et al. 2017). To account for this effect we proposed

a modified trapping condition:

MA ≥

√
2

1 + sin2 ϕ
(1 + α)

(
mi

me

) 2
3

, (2)

where ϕ is the orientation angle of the large-scale per-

pendicular magnetic field with respect to the simulation

plane, with ϕ = 0o representing the in-plane configu-

ration (see Fig. 2). The earlier 2D simulations of Bo-

hdan et al. (2017) all satisfied the trapping condition of

Equation 1 and were performed for a single value of the

reduced mass ratio, mi/me = 100, and a small (βe � 1)

or moderate (βe = 0.5) plasma beta. Our present work

augments this analysis with investigations of the trap-

ping conditions of Equations 1 and 2 and SSA efficiency

for different mass ratios in the range mi/me = 50− 400.

Matsumoto et al. (2017) demonstrated that the SSA

process is well reproduced with 2D out-of-plane simula-

tions, but processes in the shock ramp and overshoot are

suppressed. On the other hand, the stochastic Fermi-like

acceleration in the Weibel-instability-generated turbu-

lence works similar as in 2D in-plane experiments. If

the modified trapping condition would define the pa-

rameter range, for which we have the same efficiency of

electron pre-acceleration for an in-plane configuration as

that observed in 2D simulations with out-of-plane mag-

netic field, it would be possible to reproduce realistic 3D

physics with far cheaper 2D experiments with ϕ = 0o.

This is the main hypothesis under discussion here.

The paper is organized as follows. We present a de-

scription of the simulation setup in Section 2. The re-

sults are presented in Section 3. Section 4 contains the

summary and discussion.

2. SIMULATION SETUP

The simulation setup adopted in this work is the same

as that used in Bohdan et al. (2017) and illustrated in

Figure 2. As a result of the collision of two counter-

streaming electron-ion plasma beams, two shocks are

formed that propagate in opposite directions and are

separated by a contact discontinuity (CD). The plasma

flow is set along the x-direction in the xy plane. Plasma

particles are continuously injected at both sides of the

simulation box with velocities vL = vLx̂ and vR = vRx̂,

where the indices L and R refer, respectively, to the left

and right sides of the simulation box. As the two shocks
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Table 1. Simulation Parameters

Runs ϕ Ly(λsi) mi/me ωpe/Ωe MA Ms βe Eq. 1 Eq. 2
∗1 ∗2 ∗1 ∗2 α = 0.2 α = 0.2 (0.5)

A1, A2 0o 10.9 50 12 22.6 949 30 5 · 10−4 0.5 16 22.4 (28)

B1, B2 0o 24 100 12 31.8 1342 42.4 5 · 10−4 0.5 26 36 (46)

C1, C2 0o 12 100 17.3 46 1941 61.4 5 · 10−4 0.5 26 36 (46)

D1, D2 0o 11.9 200 8.5 32 1342 42 5 · 10−4 0.5 41 58 (72)

E1, E2 0o 11.9 200 12 44.9 1898 60 5 · 10−4 0.5 41 58 (72)

F1, F2 0o 8.2 400 12 68.7 2904 91.8 5 · 10−4 0.5 65 92 (115)

G1, G2 90o 12 100 12 35.5 1369 43.3 5 · 10−4 0.5 26 36 (46)

Note—Parameters of simulation runs described in this paper. Listed are: the orientation of the uniform perpendicular magnetic
field with respect to the 2D simulation plane, ϕ, the transverse size of the computational box, Ly, in units of the ion skin depth,
λsi, the ion-to-electron mass ratio mi/me, the plasma magnetization, ωpe/Ωe, and Alfvénic and sonic Mach numbers, MA and
Ms, the latter separately for the left (runs *1) and the right (runs *2) shock. We also list the electron plasma beta, βe, for each
simulated shock and the critical Alfvénic Mach number (Eq. 1) for α = 0.2, as well as the modified trapping condition (Eq. 2)
calculated for α = 0.2 and α = 0.5 (in brackets). All runs use the electron skin depth of λse = 20∆.

Figure 2. Illustration of the simulation setup.

move away from the CD in the left and the right plasma,

we refer to them as to the left and the right shocks,

respectively. The two plasma streams carry a homoge-

neous magnetic field, B0, that is perpendicular to the

shock normal and lies in the yz plane. The magnetic

field thus forms an angle ϕ with the y-axis. Initialized

with the flow is a motional electric field E0 = −v×B0,

with v = vL or v = vR, respectively, for the left and

the right beam. We assume that the beams move with

equal absolute velocities, vL = vR = 0.2c, and that

the magnetic field strength in both plasmas is equal,

B0L = B0R. The motional electric field thus has equal

strength and opposing signs in the two slabs. We use the

method of Wieland et al. (2016) to suppress the artifi-

cial electromagnetic transient that results from the ini-

tial strong electric-field gradient between the two plasma

slabs.

We collide plasma beams of equal density but differ-

ent temperatures, thus studying two different shocks in

one simulation. The temperature ratio between the two

beams is 1000, so that the sonic Mach numbers, Ms,

of the two shocks differ by a factor of
√

1000 ' 30. In

terms of the electron plasma beta (the ratio of the elec-

tron plasma pressure to the magnetic pressure) the left

beam has βe,L = 5 · 10−4 and the right beam βe,R = 0.5.

This choice of plasma beta facilitates a direct compari-

son with our earlier work (Bohdan et al. 2017) and also

with results of previous 2D simulations of perpendicular

shocks (Matsumoto et al. 2012, 2013) and a recent 3D

simulation of a quasi-perpendicular shock (Matsumoto

et al. 2017), in which βe,R = 0.5 is assumed. Note that

our system is approximately in ram-pressure balance,

and consequently the simulation frame is also the down-

stream rest frame of the two shocks.

The parameters of the simulation runs described in

this paper are listed in Table 1. We have performed

seven large-scale numerical experiments (runs A–G),

that feature in total fourteen simulated shocks. Here

we refer to each of these shock cases as to a separate

simulation run, and tag the shocks in the left plasma

(βe,L = 5 · 10−4) with *1, and the right shocks with *2

(βe,R = 0.5). Simulation runs A–F assume the in-plane

magnetic field configuration, ϕ = 0o, and run G uses

the out-of-plane magnetic field orientation, ϕ = 90o.

We do not consider simulations with ϕ = 45o, because

the shock structure and the acceleration mechanisms

observed in this case are almost identical to those in

runs with the in-plane field configuration (Bohdan et al.

2017). The runs with the in-plane magnetic field cover

a wide range of ion-to-electron mass ratios and Alfvénic

Mach numbers, as illustrated in Figure 3, which permits

an investigation of the influence of these parameters on

the electron acceleration efficiency and to scale our re-
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sults to the realistic ion-to-electron mass ratio. Note,

that some aspects of the shock physics in runs B and G

have been already discussed in our previous paper (cf.

runs A and C in Bohdan et al. 2017).

The derived shock properties are also listed in

Table 1. The Alfvén velocity is defined as vA =

B0/
√
µ0(Neme +Nimi), where µ0 is the vacuum per-

meability, Ni and Ne are the ion and the electron num-

ber densities, and B0 is the far-upstream magnetic-field

strength. The sound speed reads cs = (ΓkBTi/mi)
1/2,

where kB is the Boltzmann constant, Γ is a nonrela-

tivistic adiabatic index, and Ti is the ion temperature.

The Alfvénic, MA = vsh/vA, and sonic, Ms = vsh/cs,

Mach numbers of the shocks in Table 1 are given in the

conventional upstream reference frame. As the in-plane

and the out-of-plane magnetic field lead to a different

number of degrees of freedom, the adiabatic indices

are different with Γ = 5/3 and Γ = 2, respectively for

ϕ = 0o and ϕ = 90o. Thus the resulting expected

shock speeds take values vsh = 0.263c for runs A–F and

vsh = 0.294c for runs G. In the simulation frame the

speeds are smaller by the shock compression ratio.

To investigate the role of SSA in electron pre-

acceleration, we adjust the magnetic-field strength, B0,

to establish Alfvénic Mach numbers that test the trap-

ping conditions defined by Equations 1 and 2. A com-

parison of the Alfvénic Mach numbers and the mass

ratio of all runs with trapping limits is offered in Fig-

Figure 3. The Alfvénic Mach numbers and mass ratios
of the simulation runs. Runs A–F with in-plane magnetic
field configuration are depicted with red dots. Run G with
the out-of-plane field is marked with a green dot. The blue
solid line shows the scaling given by the trapping condition
of Eq. 1, calculated for α = 0.2. The blue dash-dotted and
dotted lines show the modified trapping condition (Eq. 2) for
α = 0.2 and α = 0.5, respectively.

ure 3. Nevertheless, we always consider weakly mag-

netized plasmas with the ratio of the electron plasma

frequency, ωpe =
√
e2Ne/ε0me, to the electron gyrofre-

quency, Ωe = eB0/me, in the range ωpe/Ωe = 8.5−17.3.

Here, e is the electron charge, and ε0 is the vacuum per-

mittivity. To keep the plasma beta constant we adjust

the plasma temperatures and hence the sound speeds

and resulting sonic Mach numbers (see Table 1).

In this work we want to verify several hypotheses. The

first is the scaling of the SSA efficiency with the ion-to-

electron mass ratio for shocks that fulfill the trapping

condition of Equation 1, here applied to the in-plane

magnetic field configurations. Runs A, B, E, and F

define the set of simulations conducted for mi/me =

50, 100, 200, and 400, respectively.

The second objective is the modified trapping con-

dition of Equation 2. We test this condition by con-

ducting simulation runs C, which satisfy Equation 2 for

α ≤ 0.5. The question to be addressed is whether 2D

simulations with in-plane magnetic field configuration

can reproduce the SSA efficiency observed in 2D runs

with the same mi/me and the out-of-plane fields, here

marked as runs G.

The third set of simulations consists of runs D and

E, performed for the same mass ratio mi/me = 200.

The Alfvénic Mach number in run D clearly violates

Equation 1, and so we expect a very low intensity of

Buneman waves. Nevertheless, particle acceleration can

still occur in the shock foot and ramp, whose structure is

defined by the magnetic filaments, and we are interested

in the nonthermal electron population that forms in the

absence of SSA. Note, that cross-comparison of runs B

and D, and C and E can yield the mass-ratio dependence

for shocks having the same Alfvénic Mach numbers.

The electron skin depth in the upstream plasma is

common for all runs and equals λse = 20∆, where ∆

is the size of grid cells. The ion skin depth, λsi =√
mi/meλse, is used here as the unit of length. The

time scale and all temporal dependencies are given in

terms of the upstream ion Larmor frequency, Ωi, where

Ωi = eB0/mi. The simulation time is typically t =

(6−8)Ω−1
i , which is enough to cover at least a few shock

self-reformation cycles (see Bohdan et al. 2017). The

time-step we use is δt = 1/40ω−1
pe .

The two plasma beams injected at sides of the simu-

lation box are composed of an equal number of ions and

electrons, Nppc = 20. Electron and ion plasma pairs

are initialized at the same locations to ensure the initial

charge-neutrality of the system. There is no escape of

particles from the computational box, and we use injec-

tion layers receding from the CD as in Bohdan et al.

(2017), which helps alleviating numerical grid-Cerenkov
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effects and saves computational resources. The simu-

lation box expands in x-direction during the run. The

final size of a simulation box can reach Lx ≈ 280λsi. The

transverse size of the simulation box, Ly = (8.2−24)λsi,

is large enough to cover several of the magnetic fila-

ments, that are typically separated by ∼ λsi, and at the

same time limits the computational expense that grows

quadratically with mi/me. The largest simulation box

of size Lx×Ly = (3264×96000)∆ is used in run F with

mi/me = 400. Open boundary conditions are imposed

in the x-direction and periodic boundaries are applied

in the y-direction.

The numerical code we use is a 2D3V-adapted and

modified version of the relativistic electromagnetic PIC

code TRISTAN (Buneman 1993) with MPI-based paral-

lelization (Niemiec et al. 2008; Wieland et al. 2016) and

the option to trace individual particles.

3. RESULTS

In Section 3.1 we describe the structure of the Bune-

man wave modes in all simulations and also summarize

the findings of Bohdan et al. (2017). Then we discuss

the electron acceleration efficiency through SSA in Sec-

tion 3.2.

3.1. The Buneman Instability

Figure 4 presents the maps of the electrostatic field

amplitude in the foot of the right shocks (runs A2-G2,

see Table 1), that propagate in moderate-temperature

plasmas with βe = 0.5. Only portions of the simulation

boxes are shown to facilitate one-to-one comparison be-

tween the runs. Run G2* is run G2 at a different phase

of shock reformation. The electrostatic fields are calcu-

lated as |EES| = | − ∇φ|, where φ is the electric poten-

tial, that is derived directly from the charge distribution.
The maps are plotted for simulation times, at which the

cyclic shock self-reformation allows the strongest Bune-

man modes. Note, that the maps for runs B2 and G2

can be compared with Figures 6a3 and 6c3, respectively,

in Bohdan et al. (2017), in which results for runs B1 and

G1 are presented (marked as runs A1 and C1, respec-

tively).

The properties of the Buneman instability discussed in

Bohdan et al. (2017) can be readily observed in Figure 4.

The wave vectors are approximately parallel to the shock

normal for the in-plane configurations (runs A2-F2) and

oblique for out-of-plane magnetic field (run G2). This

reflects the motion of shock-reflected ions: for ϕ = 0o

the ions are confined to the xz-plane whereas for ϕ =

90o they stream in the simulation plane. The Buneman

wave region shows a patchy structure for the in-plane

field configurations, that can be linked to clumps in the

overshoot produced by merging magnetic filaments. In

total, the Buneman waves occupy a much smaller region

than for the out-of-plane configuration, for which the

waves are coherent and more intense.

The phase velocity of the Buneman modes matches

the relative speed between shock-reflected ions and in-

coming electrons of the upstream plasma. Since for

ϕ = 0o part of the ion motion is outside of the sim-

ulation grid, the wavelengths of the Buneman waves

are smaller (λ ≈ 1.9λse) than for out-of-plane field, for

which λ ≈ 3.3λse. Note, that Figure 4 shows |E| and

hence the wavelength is twice the separation of wave

fronts, here provided in units of the ion skin depth. The

surface area of the Buneman wave region for shocks in

moderate-temperature plasma is 20%-30% larger than

at the corresponding low-β shocks, but the intensity of

the waves is 20%-50% smaller (compare Fig. 6 in Bo-

hdan et al. 2017).

For the high-β systems presented in Figure 4, Table 2

lists peak amplitude of Buneman waves and the frac-

tion of pre-accelerated electrons. The runs A2, B2, E2

and F2 satisfy the trapping condition of Equation 1 (see

Fig. 3), and both the peak and average strength of the

electrostatic field are similar. Small differences between

them arise from shock reformation. We conclude that

irrespective of the mass ratio, the physical conditions at

shocks with MA satisfying Equation 1 are similar. How-

ever, the electrostatic force is weaker in average than the

Lorentz force on a γ & 2 electron (|EES|/(cB0) < 1).

Table 2. Dimensionless peak amplitude of Buneman waves
and fraction of pre-accelerated electrons

Run max(|EES|/(cB0)) Ne,BI/Ne,tot(%)

A2 1.1 0.43

B2 1.3 0.46

C2 2.3 0.6

D2 0.4 0.34

E2 1.3 0.49

F2 1.1 0.44

G2 2.7 6.8

G2* 2.3 2.7

Note—For βe = 0.5 shocks we list the normalized peak
amplitude, max(|EES|/(cB0)), of the electrostatic waves,

calculated as mean |EES|/(cB0) for the 100 simulation cells
with the highest |EES|/(cB0), and the fraction of electrons

pre-accelerated to (γ − 1) > 0.1.

Considerably larger electrostatic field amplitudes,

reaching |EES|/(cB0) ∼2.3, can be observed for run C2.

Here, the Alfvén Mach number of the shock, MA = 46,
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Figure 4. Dimensionless electrostatic field amplitudes in selected regions of the shock foot with the most intense Buneman
waves for runs 2. The map marked as run G2* is chosen at time moment when the average field strength is the same as in run
C2.

is much larger than the minimum MA defined by Equa-

tion 1 and also satisfies the modified trapping condition

of Equation 2, that for the measured α ' 0.32 gives the

minimum MA ' 40.2. The field intensity in run C2 is

about a factor of 2 larger than in both run B2 with the

same mass ratio, mi/me = 100, and run E2 with mass

ratio mi/me = 200 but similar Alfvén Mach number,

MA ' 45. This shows that the strength of the electro-

static modes is driven by the value of the Alfvénic Mach

number in relation to the trapping condition (Eq. 1).

The absolute value of MA is not important, as in run

D2 we see Buneman waves with amplitudes a factor of

3 lower than those in run B2 with the same Alfvénic

Mach number. Essentially all observed wave intensities

are slightly weaker than the saturation level estimated

by Ishihara et al. (1980).

The modified trapping condition (Eq. 2) was expected

to compensate for the effect of the field configuration.

Shocks with sufficiently large MA should then repro-

duce similar Buneman wave intensities in 2D in-plane

magnetic field configurations than in simulations with

the out-of-plane fields. However, the electrostatic field

in run C2 is weaker by 20% than that in run G2 with

ϕ = 90o. At a different phase of shock reformation run

G2, now called G2*, has the same electric-field ampli-

tude as C2, but four times the number of pre-accelerated

electrons. This discrepancy might arise from Equation 2

only compensating for the neglect of the z-motion of

ions. In out-of-plane simulation we observe that the
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relative speed between electrons and reflected ions can

reach ∼ 0.6c, because of acceleration in upstream elec-

tric field, which is a factor of ∼ 1.5 larger then the value

assumed in the derivation of the trapping condition (see

Matsumoto et al. 2012), while in in-plane case the ac-

celeration is in z-direction. It may be that we need to

also account for this effect by adding a factor of 1.5 to

the modified trapping condition,

MA ≥ 1.5

√
2

1 + sin2 ϕ
(1 + α)

(
mi

me

) 2
3

. (3)

This equation gives MA ' 60.3 for the minimum Alfvén

Mach number, with which the amplitudes of the Bune-

man waves observed at shocks with MA = 35.5 in 2D

simulations with out-of-plane magnetic fields could be

reproduced in runs applying ϕ = 0o field configuration.

This value is much larger than any of the Mach num-

bers studied here for mi/me = 100, and thus requires

attention in the future.

3.2. Electron Acceleration in the Buneman Zone

Table 2 lists the fraction of electrons that have been

pre-accelerated in the Buneman wave zone to (γ − 1) >

0.1, Ne,BI/Ne,tot. This fraction is much larger in run G2

than it is in runs A2-F2. Bohdan et al. (2017) argued

that at least part of this difference is due to differences

in the amplitude of the electrostatic waves and their

coverage area.

Figure 5. Simulation-frame kinetic-energy spectra of elec-
trons in the regions of the shock foot selected for Fig. 4 color-
coded for run A2 (blue), run B2 (green), run E2 (red) and for
run F2 (orange). The dotted green line indicates the spec-
trum of upstream cold plasma electrons (extracted from run
B2).

Figures 5 and 6 show kinetic-energy spectra of elec-

trons occupying the Buneman wave regions highlighted

in Figure 4. Figure 5 shows energy spectra for runs

A2, B2, E2 and F2, for which the Alfvénic Mach num-

bers exceed by the similar margin the trapping condition

(Eq. 1). The spectra are statistically indistinguishable,

and the fraction of pre-accelerated electrons is ∼ 0.45%

for all runs. This is again in line with the ion-to-electron

mass ratio dependence of the trapping condition.

Electron spectra for runs B2, C2, and D2, that probe

different physical conditions at shocks with in-plane

magnetic-field configuration, are compared to the spec-

trum for the out-of-plane case G2 in Figure 6. The frac-

tions of pre-accelerated electrons differ between the in-

plane runs (see Table 2), reflecting the different inten-

sities of the Buneman waves. In run C2, the spectrum

extends to higher energies and contains more energetic

electrons than that for run B2, which arises from the dif-

ference in Mach number. The Alfvénic Mach number of

the shock in run D2 instead violates the trapping condi-

tion, and only ∼ 0.34% of electrons are pre-accelerated.

Although run C2 satisfies the modified trapping

condition of Equation 2, the acceleration efficiency,

Ne,BI/Ne,tot ' 0.6, is much less than for run G2. In

Figure 6 the spectrum for run C2 is also compared with

the spectrum calculated for run G2 at a different phase

of the shock-reformation (denoted as run G2*), at which

the strength of the Buneman waves matches that for run

C2. Still, the fraction of pre-accelerated electrons in run

G2* is four times that in run C2, but the maximum en-

Figure 6. Spectra of electrons as in Fig. 5 for run B2 (black),
run C2 (blue), run D2 (green), run G2 (red) and run G2*
(orange). The dotted black line indicates the spectrum of
upstream cold plasma electrons (extracted from run B2).
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Figure 7. Interaction of electrons with Buneman waves for in-plane runs (panels (a1)-(e1), case E2) and out-of-plane runs
(panels (a2)-(e2), case G2). Panels (a*): map of Ex at the time indicated by the vertical black lines in the lower panels. Overlaid
are the position of an electron (black dot) at the same time moment as Ex maps, its trajectory history for the past 60ω−1

ce and
past positions of the electron for every ωpet = 10 intervals, designated with red dots. Panels (b*): evolution of electron energy.
Panels (c*): evolution of electron momentum. Panels (d*): dimensionless components of electric field at electron position in the
simulation frame. Panels (e*): components of electric field at electron position in the electron rest frame.

ergies of the electrons are comparable, max(γ) ≈ 3− 4.

It is clear that the Buneman wave strength is not the

only parameter that determines the efficiency of SSA in

the shock foot.

SSA consists of two individual processes: (1) interac-

tion with electrostatic waves and (2) magnetic gyration.

In the appendix we present a detailed analytical treat-

ment of the equation of motion of electrons in the wave

field, demonstrating that the electrostatic field of the

waves does the physical work. Here we summarize the

conclusions.
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Figure 7 illustrates the first stage of the SSA pro-

cess for the in-plane (left panels a1-e1) and the out-

of-plane case (right panels a2-e2). For specific electrons

extracted from runs E2 and G2, we see the time evolu-

tion of the energy (Fig. 7b) and the momentum (Fig. 7c),

as well as the electric field at the location of the particle

in the simulation frame and in the instantaneous parti-

cle rest frame (Fig. 7d and e, respectively). The latter

is particularly interesting, because in the electron rest

frame the electric field is the sole provider of accelera-

tion. We refer to the selected electron in the in-plane

case (left panels) as the first electron and the other one

as the second electron. Initially both electrons move

with the plasma bulk. To be trapped by electrostatic

waves, the electrons must travel with the waves against

the upstream plasma flow, and hence be picked-up from

the thermal pool. Before doing so, the electrons move

in the negative x-direction undisturbed through several

electrostatic wavefronts. Significant energy gain com-

mences at time tωpe = 6270 for the first electron and at

tωpe = 3745 for the second electron. The particles then

remain trapped by the waves and undergo the first stage

of acceleration at time intervals tωpe = (6275−6300) for

the first electron and tωpe = (3745−3753) for the second

electron. During this stage both electrons move in the

direction of shock propagation, and their py momentum

remains small. The end of the first-stage acceleration

is marked by the black vertical line in Figure 7, beyond

which the electrons resume gyrating.

The acceleration of the first electron occurs in the

same way as in 1D geometry (Hoshino & Shimada 2002):

the electron is pushed toward the upstream region by the

electrostatic field of a Buneman wave, which for some

time compensates the x-component of the Larmor ac-

celeration and thus keeps the electron roughly in phase

with the wave. Consequently the average values of Ex

and Ey electric field components are close to zero in

the particle reference frame (Fig. 7e1). The continuous

gradient in pz at tωpe = (6275−6300) reflects the trans-

verse Larmor acceleration, which can be described as

the effect of the motional electric field in the frame of

the electrostatic wave. It is important to note that for

the in-plane magnetic field the wave fronts are infinitely

extended in z-direction, and the energy gain terminates

when the electron loses phase coherence with the Bune-

man wave. In reality the energization will terminate

earlier. In the upstream flow frame all the energy gain

comes from the field of the Buneman wave though.

The second electron displays a similar behaviour, but

in the frame of the obliquely propagating waves. At

tωpe ' 3745 it starts moving in the x-direction, but

the electrostatic field of the waves roughly compensates

the Larmor acceleration in y-direction, as EPRF,y ≈
0 (Fig. 7e2). Instead, the electron is accelerated in

x-direction by the electrostatic field of the Buneman

waves. We conclude that in all cases the energy gain

arises from the electrostatic field of the waves, while the

formal acceleration reflects the competition of Larmor

acceleration and that imposed by the waves. The in-

plane configuration captures only part of the Buneman

waves, as only wave vectors in the simulation plane are

allowed, and so there is a lower rate of energy gain com-

pared to the out-of-plane case. In addition, the restric-

tion of the wave phase velocity to the simulation plane

changes the direction of sliding along a wave front from

effectively the x-direction to the z-direction.

Let us estimate the energy gain arising from trapping

at an electrostatic wavefront. Equations A5 and A8

give the rate of energy gain for the out-of-plane and the

in-plane configuration, respectively. The phase speed

that the electrons need to match is vph,0 = 0.1c and

vph,90 = 0.4c for in-plane and out-of-plane configura-

tion, respectively, and so ∆v and hence the energization

rate is twice larger in the out-of-plane case than it is

for in-plane magnetic field. The total energy gain is the

product of the rate of gain and the time of interaction.

The time of interaction is limited by three factors: the

intermittency of waves, escape by acceleration perpen-

dicular to the wave front, and escape to the side of the

wave front.

In the in-plane case the wave front is infinitely ex-

tended in z direction, and no escape to that side is pos-

sible. For an out-of-plane magnetic field and an average

speed along the wave front of ∼ (0.1 − 0.2) c, the elec-

trons would escape trapping on tesc ≈ (25 − 50)ω−1
pe ,

as the wave fronts in Figure 7 have a lateral extent of

about 5λse.

The escape time perpendicular to the wave front can

be estimated as tesc ≈ πω−1
pe (vΦ + v0)/ve,WRF, where

ve,WRF is the velocity of electrons in the wave frame.

For the out-of-plane case this gives tesc,90 & 18ω−1
pe , as

the average electron speed ve,WRF . 0.1 c.

The trapping time coming from the wave time inter-

mittency can be estimated directly from simulations.

The ability to accelerate an electron up to a certain en-

ergy depends not only on the instantaneous local elec-

trostatic field strength but also on the previous strength

history and the ability to trap an electron during the

whole acceleration period. In Figure 8 the time evo-

lution of electrostatic field strength (EES, black dash-

dotted line) at a chosen location is presented. This field

is able to trap electrons with energies shown with black

solid line, which is calculated assuming the equality be-

tween electrostatic and Lorentz forces at the chosen lo-
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Figure 8. Schematic time evolution of the electrostatic field
strength (black dash-dotted line) at a chosen location in the
Buneman wave rest frame. The black solid line is the max-
imal energy of electron can be trapped by the electrostatic
field. Red lines represent energy histories of electrons, for
which trapping is possible (red solid line) and impossible
(red dashed line).

cation. At a time t′ the electrostatic field is capable to

trap an electron with energy ε1. However, taking into

account the evolution of EES and the energy of electrons

(red dashed line) this electron cannot be trapped dur-

ing the whole acceleration period. Therefore electrons

with a final energy ε2 and the energy history shown with

the red solid line can be present in the simulation. Ac-

cording to these considerations the trapping time reads

ttr,0 ≈ 13ω−1
pe and ttr,90 ≈ 11ω−1

pe , (4)

which is approximately the time that we analytically es-

timated based on the acceleration in the direction of the

wave motion (see the Appendix). Thus one of the main

limiting factors for electron acceleration is the intermit-

tency of the Buneman waves.

Calculated average energy gains are

∆γ0 ≈ 0.18 and ∆γ90 ≈ 0.42, (5)

which are similar to those for electrons in Figure 7 and

average energies of accelerated electrons in Figures 5

and 6. The analytically expected energy increase can be

written as

∆ε ≈ eEES|F |∆v ttr =

= ∆v2 ttrωpeme(me/mi)
(1/6),

(6)

where eEES = me∆vωpe(me/mi)
(1/6) (Ishihara et al.

1980; Amano & Hoshino 2009b; Matsumoto et al. 2012)

and |F | is assumed to be about 1. Therefore the main

difference in the acceleration rate comes from velocity

difference, ∆v = (vΦ + v0), and the energy gain of elec-

trons is still stronger in the out-of-plane case due to a

larger phase speed of the Buneman waves.

We note that the modified trapping conditions (Eq. 2

or 3) refer to reaching a certain strength of the electro-

static field that is needed for trapping, while the energy

gain of electrons is related to the velocity difference be-

tween reflected ions and upcoming electrons. This ve-

locity difference imposes the main restriction for the in-

plane simulations in their applicability to mimic realistic

SSA efficiency. Using a higher Mach number can not sig-

nificantly change the SSA efficiency in case of the same

velocity difference defined by the magnetic field config-

uration. For the same mass ratio the number of pre-

accelerated electrons is larger by about (30-40)% in the

runs with a higher Alfvénic Mach number (see Table 2,

runs B2-C2 and D2-E2), which is not the factor of 10

required to reach the SSA efficiency seen in out-of-plain

runs. Therefore significant modifications of the parame-

ters of the simulation (not just a change of the Alfvénic

Mach number) are needed to reproduce the out-of-plain

SSA efficiency by means of in-plane simulations.

The energy difference associated with climbing or slid-

ing down the potential well of a Buneman wave can

be estimated as ∆γmc2 = eEBI λBI/2π. The wave-

length of Buneman waves, λBI = 2π∆v/ωpe, then im-

plies an energy change ∆γ ≈ 0.05 in the in-plane case

and ∆γ ≈ 0.17 in the out-of-plane run. This is insuf-

ficient to redirect an incoming electron to stationarity

in the wave frame. Fluctuations in the Buneman wave

field are clearly needed to trap particles and keep them

in phase with the waves.

We observe that for ϕ = 90o a larger number of elec-

trons are picked up from the bulk plasma for further

acceleration than is seen with the in-plane configura-

tion, which can be explained by a twice stronger eEES

force in the out-of-plane case.

4. SUMMARY AND DISCUSSION

We analyse electron injection processes at nonrel-

ativistic perpendicular collisionless shocks with high

Alfvénic Mach numbers with 2D3V numerical PIC sim-

ulations. Earlier studies indicated that SSA operates at

the leading edge of the foot as first-stage electron pre-

acceleration mechanism, provided the Alfvénic Mach

number satisfies a condition of efficient driving of the

electrostatic Buneman waves (the trapping condition,

Matsumoto et al. 2012). In Matsumoto et al. (2015) and

Bohdan et al. (2017) we showed that in 2D simulations

that use a field component which lies in the simulation
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plane, the downstream nonthermal-electron fraction is

much lower than with out-of-plane mean field. Noting

that much of this difference results from an incomplete

account of the Buneman instability in the in-plane ge-

ometry, and motivated by results of recent 3D studies

which demonstrate that the injection physics past the

SSA stage can adequately be studied with 2D in-plane

simulations (Matsumoto et al. 2017), here we further

investigate electron acceleration by SSA at perpendic-

ular high-MA shocks with in-plane magnetic field con-

figurations. The aim is to infer the SSA efficiency, in

particular the validity of the trapping condition in its

original form and the variant proposed in Bohdan et al.

(2017), and the relation to the SSA efficiency observed

in simulations with the out-of-plane fields.

Our results can be summarized as follows:

• The energy gain in SSA always arises from the

electrostatic field of a Buneman wave with which

the electron travels for some time. The appar-

ent acceleration, v̇, reflects the superposition of

electrostatic acceleration and Larmor acceleration

that might be described as effect of the motional

electric field in the wave frame. This process

is more efficient in the out-of-plane case because

both the phase speed and the amplitude of the

waves are higher than for ϕ = 0o.

• As in high-MA shock simulations with out-of-

plane magnetic fields, for in-plane magnetic field

the strength of the electrostatic wave modes in the

shock foot is determined by the Alfvénic Mach

number in relation to the trapping condition.

The more MA exceeds the trapping condition,

the stronger the intensity of the Buneman waves.

Shocks with Alfvénic Mach numbers satisfying

the trapping condition by the similar margin show

comparable wave strengths in simulations for dif-

ferent ion-to-electron mass ratios.

• Shocks in simulations with in-plane magnetic field

demonstrate electrostatic wave intensities lower

than those observed in the out-of-plane case, even

if the modified trapping condition is satisfied.

• The trapping time is mostly defined by intermit-

tency of, and limited phase-coherence of electrons

with, the Buneman waves. This limits the dura-

tion of the velocity match between electrons and

the waves.

• The number of electrons pre-accelerated via SSA

in the shock foot strongly correlates with the

strength of the electrostatic waves. Shocks with

the same physical conditions defined through the

trapping condition show similar SSA efficiency.

The latter is proportional to MA for a given mass

ratio. However, SSA always produces larger frac-

tions of pre-accelerated electrons in simulations

with the out-of-plane configurations, even if the

intensities of the Buneman waves are similar as

in the in-plane case. One reason for that is the

larger number of electrons being picked up from

the bulk plasma for SSA compared to the in-plane

configuration.

We conclude that with an in-plane magnetic-field con-

figuration we can not achieve the same level of SSA effi-

ciency as in simulations with out-of-plane magnetic field

or 3D simulations (Matsumoto et al. 2017), unless the

parameters and settings of the simulation setup are sig-

nificantly modified.

This paper is conceived as the first of a series inves-

tigating different aspects of electron acceleration pro-

cesses at non-relativistic perpendicular shocks using PIC

simulations. Interaction with Weibel filaments and mag-

netic reconnection in the shock transition, plasma heat-

ing, and the generation of turbulent magnetic field will

be covered in forthcoming publications.
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APPENDIX

A. ANALYTICAL MODEL OF ELECTRON SSA

A.1. Out-of-plane configuration, ϕ = 90o

In the simulation frame, the large-scale magnetic field of the right plasma slab, B = B0 ẑ, induces a motional electric

field, E = −v0B0 ŷ, where v0 is the speed of the upstream plasma flowing in −x direction. The entire Larmor orbit

of all particles with low temperature is leveled in the simulation plane, as are the acceleration imposed by the waves.

Suppose an electrostatic wave propagates at an angle Θ to the x-axis. The electric field carried by the wave is

Ex = EES F cos Θ Ey = EES F sin Θ, (A1)

where the wave factor is

F = sin

(
ωpe

vΦ + v0
[x cos Θ + y sin Θ− vΦt] + Φ

)
. (A2)

Here we allow for an arbitrary phase, Φ. The phase speed of the wave, vΦ, is measured in the simulation frame.

The wave number is related to the velocity of reflected ions through the resonance condition of the Buneman modes,

ωpe = k(vΦ + v0).

Now consider an electron with velocity components vx and vy. Using non-relativistic kinematics we find the accel-

eration of the electron as

v̇x =− Ωe
EES

B0
F cos Θ− Ωevy

v̇y =Ωev0 + Ωevx − Ωe
EES

B0
F sin Θ. (A3)

Let us rotate the coordinate system by an angle Θ, so that x′ is oriented in the direction of motion of the waves and

y′ is perpendicular to it. The corresponding accelerations then read

v̇x′ =Ωe

(
v0 sin Θ− EES

B0
F − vy′

)
v̇y′ =Ωe (v0 cos Θ + vx′) . (A4)

The wave factor, F , is explicitly time-dependent and may induce rapidly oscillating acceleration. The other terms

only describe Larmor gyration in the flow frame and hence no real energy gain. The wave factor must be approximately

constant, if continuous energy gain is to be achieved for about 10 plasma times, ω−1
pe , as observed. This requires that

on average vx′ − vΦ . 0.2 c or roughly acceleration from vx′ = 0.2 c to vx′ = 0.6 c, after which the electron is out of

phase with the wave and commences Larmor motion.

The Larmor motion of the reflected ions mandates a wave direction for which sin Θ is negative. Likewise, the wave

factor, F , must be negative to effect energy gain. Equation A4 then indicates that acceleration in y′ direction follows

that in x′ direction, and for a fair range of initial conditions v̇y′ is slightly less than v̇x′ and increases with the same rate,

at least for up to 1 Ω−1
e ' 12ω−1

pe . Correspondingly, the momentum component px increases approximately linearly,

and the increase in speed is approximately EES/(2B0), whereas py remains approximately constant.

The effective acceleration toward the upstream region arises from the superposition of acceleration in the electrostatic

field of the Buneman waves and the Larmor acceleration, that are oppositely directed in y direction, but both have

positive components in x direction. Acknowledging that both F and sin Θ must be negative, the rate of energy gain

in the upstream flow frame is

m
d

dt

(vx + v0)2 + v2
y

2
= eEES|F | [(vx + v0) cos Θ− vy| sin Θ|] (A5)

and hence completely independent of the motional electric field. In the simulation frame the velocity component

v0 cos Θ disappears from Equation A5 and a new component of energy-gain rate appears, Ωev0vy, which captures the

apparent energy by Larmor motion in this frame.
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A.2. In-plane configuration, ϕ = 0o

The main impact of the in-plane configuration is that the part of the Larmor motion is perpendicular to the simulation

plane, and so the orientation and properties of the Buneman waves are modified, as only wave vectors in the simulation

plane can be captured. The wave factor changes to

F = sin

(
ωpe

vΦ + v0
[x− vΦt] + Φ

)
. (A6)

The acceleration then follows by appropriate rotation of that given in Equation A3,

v̇x =− Ωe
EES

B0
F + Ωevz

v̇z =− Ωev0 − Ωevx. (A7)

Obviously, there is linear acceleration in −z direction, if the particle can be held at approximately constant phase

(F < 0; vx ≈ vΦ) in the wave. As vΦ & v0 it is the Larmor acceleration that is responsible for the particle’s sliding

along the wavefront, and the electrostatic field of the waves provides slow energy gain at a rate

m
d

dt

(vx + v0)2 + v2
z

2
= eEES|F |(vx + v0), (A8)

which also only involves the electrostatic field of the Buneman waves. The energy gain will be less than that for

out-of-plane configuration, because only part of the motion of the back-streaming ions can drive waves that hence have

lower amplitude, EES, and additionally the velocity term in Equation A8 is reduced.
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