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The algebraic spin liquid is a long-sought-after phase of matter characterized by the absence of quasiparticle
excitations, a low-energy description in terms of emergent Dirac fermions and gauge fields interacting accord-
ing to (2+1)D quantum electrodynamics (QED3), and power-law correlations with universal exponents. The
prototypical algebraic spin liquid is the Affleck-Marston π-flux phase, originally proposed as a possible ground
state of the spin-1/2 Heisenberg model on the 2D square lattice. While the latter model is now known to order
antiferromagnetically at zero temperature, recent sign-problem-free quantum Monte Carlo simulations of spin-
1/2 fermions coupled to a compact U(1) gauge field on the square lattice have shown that quantum fluctuations
can destroy Néel order and drive a direct quantum phase transition to the π-flux phase. We show this transition
is in the universality class of the chiral Heisenberg QED3-Gross-Neveu-Yukawa model with a single SU(2)
doublet of four-component Dirac fermions (i.e., Nf = 1), pointing out important differences with the corre-
sponding putative transition on the kagomé lattice. Using an ε expansion below four spacetime dimensions to
four-loop order, and a large-Nf expansion up to second order, we show the transition is continuous and compute
various thermodynamic and susceptibility critical exponents at this transition, setting the stage for future numer-
ical determinations of these quantities. As a byproduct of our analysis, we also obtain charge-density-wave and
valence-bond-solid susceptibility exponents at the semimetal-antiferromagnetic insulator transition in graphene.

I. INTRODUCTION

The discovery of fractionalized phases of correlated quan-
tum matter which fall outside the standard broken-symmetry
classification pioneered by Landau is a prime goal of mod-
ern condensed matter physics. The inability to describe such
phases in terms of conventional local order parameters sug-
gests that continuous transitions among them, or between
them and conventional phases, are themselves exotic and may
fall outside the traditional Landau-Ginzburg-Wilson (LGW)
paradigm according to which critical properties are solely de-
termined by the long-wavelength, low-energy dynamics of
critical order parameter fluctuations.

The paradigmatic example of fractionalized phase of mat-
ter is the algebraic spin liquid (ASL) or Dirac spin liquid,
originally proposed by Affleck and Marston [1, 2] as a pos-
sible ground state of the spin-1/2 Heisenberg model on the
2D square lattice. This state can be envisioned as the result
of quantum disordering a magnetically ordered ground state,
e.g., the antiferromagnetic (AF) Néel state, in such a way that
the bosonic spin-1 magnons of the ordered state fractional-
ize into a pair of electrically neutral spin-1/2 fermions gov-
erned by a Dirac dispersion and interacting with an emergent
gauge field. However, it was shown early on [3–6] that due to
the bipartite nature of the square lattice, the nearest-neighbor
spin-1/2 Heisenberg model on this lattice develops Néel AF
order at zero temperature, and the search for quantum spin
liquid ground states rapidly switched its focus to frustrated

magnetism [7], with much emphasis on spin models defined
on non-bipartite lattices or with anisotropic interactions.

Surprisingly, a recent sign-problem-free quantum Monte
Carlo (QMC) study [8] demonstrated the realization of an
ASL-like phase on the 2D square lattice, analogous to the
Affleck-Marston π-flux phase. Strictly speaking, in the slave-
fermion description of spin models on the square lattice the
low-energy theory of the π-flux phase corresponds to Dirac
fermions coupled to an emergent SU(2) gauge field [9, 10],
while what is usually referred to as the ASL corresponds mi-
croscopically to the staggered flux phase [9, 11–13], where
the SU(2) gauge structure is broken to U(1) with a flux per
plaquette alternating between φ and −φ where φ 6= π. By
contrast, the model studied in Ref. [8] can be thought of as a
hybrid of the two: it is a model of fermions explicitly coupled
to a lattice U(1) gauge field (see Sec. II A), but where a flux of
π per plaquette is spontaneously generated at the mean-field
level. A parameter J in the model controls the strength of
gauge fluctuations such that for J below a finite critical value
there is no symmetry breaking and AF and valence-bond-solid
(VBS) correlations exhibit a power-law decay with distance,
as expected for the ASL [13–15]. The low-energy effective
theory of the model in this regime – (2+1)D quantum elec-
trodynamics (QED3) with Nf = 1 flavor of spinful Dirac
fermions, where Nf is defined precisely here as the number
of spin SU(2) doublets of four-component Dirac spinors – is
identical to that of the ASL as defined above, and for sim-
plicity we will refer to the phase observed numerically as the
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ASL. At low energies the ASL is believed to be described
by a strongly coupled (2+1)D conformal field theory whose
universal properties, notably the critical exponents controlling
the power-law correlations mentioned above, can be system-
atically computed using field-theoretic approaches such as the
ε-expansion [16–19] and the large-Nf expansion [13, 15, 20–
22].

Remarkably, Ref. [8] reported not only the first unbiased
numerical observation of the ASL, but also that of a direct
quantum phase transition from the ASL to the AF Néel state
at a critical value of the parameter J evoked above. Numerical
evidence further points to a continuous transition. On general
grounds one expects the low-energy theory of the transition to
be of the QED3-Gross-Neveu-Yukawa (GNY) type [8, 23, 24],
as for the recently studied transitions between the ASL and
a gapped chiral spin liquid [19, 25–27] or a gapped Z2 spin
liquid [28], but with the spontaneous breaking of an O(3)
symmetry as appropriate for Néel order [29], as opposed to
the Ising and XY symmetries appropriate for those two transi-
tions, respectively. In theories of this type gapless U(1) gauge
fluctuations as well as gapless Dirac fermions couple strongly
to bosonic order parameter fluctuations and can give rise to
novel universality classes of critical behavior distinct from the
standard (Wilson-Fisher) Ising, XY, and Heisenberg univer-
sality classes, provided bona fide critical fixed points of the
renormalization group (RG) exist in those theories. While a
stable critical point was found for the chiral Ising QED3-GNY
model both in the ε-expansion [19, 25, 26] for all Nf and in
the large-Nf expansion [27, 30–33], in the chiral XY QED3-
GNY model [28] a fixed point found at one-loop order in the
ε expansion was shown to disappear below a certain critical
value of Nf , in analogy to the phenomenon of fluctuation-
induced first-order transitions [34], while the large-Nf expan-
sion predicts a stable critical point. Whether the chiral Heisen-
berg QED3-GNY model supports a critical point that remains
stable at allNf , and if so, what its universal critical properties
are, are thus important open questions in light of the numer-
ical discoveries reported in Ref. [8]. In Ref. [29], the chiral
Heisenberg QED3-GNY model was proposed as the critical
theory for a transition between the algebraic spin liquid, in its
staggered flux phase realization on the square lattice, and a
Néel antiferromagnet. The authors studied this model in the
ε expansion below four dimensions at one-loop order, for the
specific case of Nf = 1, and found a critical fixed point de-
scribing a continuous phase transition. However, as we will
argue below, their renormalization group beta functions and
critical exponents disagree with ours.

In this work, we revisit the problem of the Néel-to-algebraic
spin liquid transition, motivated by the numerical results of
Ref. [8], and present a detailed study of the critical proper-
ties of the chiral Heisenberg QED3-GNY model for a generic
number Nf of flavors of four-component Dirac fermions car-
rying an additional SU(2) spin index. After deriving the spe-
cific form of the low-energy Lagrangian from microscopic
considerations (Sec. II), we employ two complementary ap-
proaches to study the critical regime: an ε expansion in d =
4− ε spacetime dimensions carried out to four-loop order for
arbitrary Nf (Sec. III), as well as a large-Nf expansion car-

ried out up to second order in fixed but arbitrary d dimen-
sions (Sec. IV). The use of arbitrary d in the latter approach
allows us to establish consistency between the two methods,
and gives us confidence in the correctness of our analysis. We
do, however, pay attention to contributions specific to d = 3
(Aslamazov-Larkin diagrams) which arise for certain quanti-
ties. Through the ε expansion we establish the existence of a
stable critical fixed point for all Nf , including the Nf = 1
case relevant for the Néel-ASL transition on the 2D square
lattice observed in the QMC study [8]. Gauge-invariant uni-
versal critical properties including the order parameter anoma-
lous dimension ηφ, the (inverse) correlation length exponent
1/ν, and the stability critical exponent ω, but also the uni-
versal exponents ∆CDW, ∆VBS, and ∆QAH characterizing the
power-law decay of charge-density-wave (CDW), VBS, and
quantum anomalous Hall (QAH) correlations at the transi-
tion, are computed to O(ε4) and up to O(1/N2

f ). While the
CDW, VBS, and QAH exponents have been computed in the
ASL phase before [13], the Néel-ASL critical point and its
arbitrary-Nf generalization correspond to a different (2+1)D
conformal field theory than that describing the ASL phase,
and is thus characterized by different – but equally universal
– values for these exponents. We then use Padé and Padé-
Borel resummation techniques to obtain numerical estimates
of the critical exponents (Sec. V). As a byproduct of our cal-
culations, we also obtain CDW and VBS exponents at the
semimetal-AF insulator quantum phase transition seen in the
Hubbard model on the honeycomb lattice (see Sec. III G and
IV D), with relevance to graphene [35–45]. These correspond
to the scaling dimensions of certain fermion bilinear operators
in the chiral Heisenberg GNY model, which to our knowledge
have not been computed before despite recent studies of this
model [46, 47].

II. THE NÉEL-TO-ALGEBRAIC SPIN LIQUID
TRANSITION

In this section we derive the continuum quantum field the-
ory describing the Néel-ASL transition on the square lattice
(Sec. II A) as observed in the QMC study of Ref. [8], and con-
trast it with the field theory description of similar magnetic
ordering transitions on the kagomé lattice (Sec. II B).

A. Square lattice

The starting point is the compact U(1) lattice gauge theory
model considered in Ref. [8], here restricted to two fermion
flavors:

H =
J

4

∑
r,µ

L2
r,r+µ̂ − t

∑
r,µ,σ

(
c†rσe

iθr,r+µ̂cr+µ̂,σ + H.c.
)

+K
∑
�

cos(∆× θ). (1)

Here c(†)rσ is the annihilation (creation) operator for a fermion
with spin σ =↑, ↓ on site r of a 2D square lattice, θr,r+µ̂ ∈
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[0, 2π) is an angular variable living on the nearest-neighbor
links of the square lattice, with µ = x, y denoting its two or-
thogonal directions, and Lr,r+µ̂ is the operator conjugate to
θr,r+µ̂, i.e., [θr,r+µ̂, Lr′,r′+ν̂ ] = iδrr′δµν . Both θr,r+µ̂ and
Lr,r+µ̂ can be interpreted as vector fields θr,µ and Lr,µ, and
∆×θ = ∆xθr,y−∆yθr,x denotes the lattice curl of θr,µ, cor-
responding to its circulation around an elementary plaquette
�, where ∆µθr,ν = θr+µ̂,ν−θr,ν is the lattice derivative. The
first term, proportional to J , is an electric-field term that con-
trols the strength of the gauge fluctuations, while the last term,
proportional toK > 0, is a magnetic-field term that favors the
maximal (i.e., π) amount of magnetic flux per plaquette. The
fermion chemical potential is set to zero, corresponding to half
filling.

When J = 0, θr,µ is a classical variable and the fermions
are noninteracting. The ground state at half-filling is guar-
anteed by Lieb’s theorem [48] to have π flux per plaquette.
When J is nonzero but small, the gauge field acquires dynam-
ics but the QMC results [8] indicate the π-flux phase remains
stable up to some critical value, given by Jc = 1.43(46) for
t = K = 1. In the presence of gauge fluctuations the π-
flux phase is an ASL described by the conformally invari-
ant, infrared-stable fixed point of QED3 with two flavors of
four-component fermions. For J > Jc the model develops
long-range (π, π) AF order, consistent with the known Néel
ground state of the SU(2)-symmetric Heisenberg model, to
which model (1) reduces in the J → ∞ limit. The smooth
behavior at J = Jc of both the AF correlation ratio and the
flux energy per plaquette observed in the numerical results [8]
suggests the Néel-ASL transition is continuous, and should
be described by a critical fixed point of a continuum quan-
tum field theory. To derive the precise form of this quantum
field theory, which is expected to be of the chiral Heisenberg
QED3-GNY type, we simply need to express the Néel order
parameter in terms of the low-energy Dirac fermions in the
π-flux phase. This in turn will dictate the correct form of the
Yukawa coupling between Dirac fermions and theO(3) vector
field describing order parameter fluctuations. As will be seen
in detail below and in Sec. II B, owing to the precise relation
between the low-energy Dirac fermion fields and the origi-
nal microscopic lattice fermions, which differs on the square
and kagomé lattices, the (2+1)D Néel-ASL transition on the
square lattice can be accessed by dimensional continuation
from the four-dimensional Lorentz-invariant chiral Heisen-
berg QED3-GNY model, while conceptually similar magnetic
ordering transitions on the kagomé lattice cannot. This has
important implications for ε-expansion studies of such transi-
tions as will be discussed below.

We begin by studying the π-flux phase in the absence of
gauge fluctuations, described by the fermionic part of the
J = 0 limit of the model (1). Choosing a gauge such that
the hopping amplitude on alternating links of the square lat-
tice acquires an additional phase factor of −1 (Fig. 1), the
Hamiltonian can be written as

H0 =
∑
σ

∫
1BZ

d2k

(2π)2
c†kσh(k)ckσ, (2)

where ckσ = (ck,A,σ, ck,B,σ) is a two-component spinor,

�

� �

�

� �

A

B

FIG. 1. The π-flux phase on the square lattice: the minus signs indi-
cate a particular choice of gauge to realize π flux per plaquette, and
A and B denote the two sites in the enlarged unit cell (dashed blue
line) in the absence of Néel order (red arrows).

A,B denote the two sublattices of the square lattice, and

h(k) = −t
(

0 f(k)
f∗(k) 0

)
, (3)

where

f(k) = 1− ei(kx−ky) + e−i(kx+ky) + e−2iky . (4)

The integral is over wavevectors k (measured in inverse units
of the lattice constant) in the first Brillouin zone, which is re-
duced due to the doubling of the unit cell stemming from the
choice of gauge and forms a square of side length π

√
2 rotated

by 45◦ with respect to the original Brillouin zone. The spec-

trum is given by E±(k) = ±2t
√

sin2 kx + cos2 ky and ex-

hibits two inequivalent Dirac points at ±Q with Q ≡
(
0, π2

)
.

At half filling the low-energy excitations are particle-hole
excitations of the Dirac fermions, and we can linearize the
Hamiltonian near the Dirac points,

h(±Q+ p) = vF (±µ1px + µ2py) +O(p2), (5)

where |p| is much less than the dimensions of the Brillouin
zone, we denote Pauli matrices acting on the Dirac compo-
nents by µ1, µ2, µ3, and vF ≡ 2t. The low-energy Hamilto-
nian is thus given by

H0 ≈ vF
∑
α,σ

∫
d2p

(2π)2
ψ†ασ(p) (µ1px + µ2py)ψασ(p), (6)

where we define the slow (Dirac) fields

ψ+σ(p) =

(
cQ+p,A,σ

cQ+p,B,σ

)
, ψ−σ(p) =

(
c−Q+p,B,σ

−c−Q+p,A,σ

)
.

(7)
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Note that defining ψ−σ(p) as iµ2 acting on the two-
component spinor c−Q+p,σ is necessary to absorb the ex-
tra minus sign in front of µ1 in the Hamiltonian matrix (5)
linearized near −Q. Introducing the two-component Dirac
adjoint ψασ ≡ ψ†ασγ0 with γ0 = µ3, and Fourier trans-
forming H0 back to (continuous) real space, we find that the
imaginary-time Lagrangian density L0 =

∑
α,σ ψ

†
ασ∂0ψασ +

H0 can be written as

L0 =
∑
α,σ

ψασγµ∂µψασ, (8)

where (γ0, γ1, γ2) = (µ3, µ2,−µ1) are 2 × 2 Euclidean
gamma matrices, and we have rescaled the spatial coordinates
to set the Dirac velocity vF to unity.

We now turn to Néel order. Referring to Fig. 1, the Néel
order parameter N is an SU(2) triplet of fermion bilinears
given by

N ≡ 1

N
∑
R

(
c†RAσcRA − c

†
RBσcRB

)
, (9)

whereN is the total number of sites, σ = (σ1, σ2, σ3) denotes
Pauli matrices acting on the (physical) spin components, and
R = n1a1 +n2a2 with n1, n2 ∈ Z denotes sites of the under-
lying Bravais lattice with primitive lattice vectors a1 ≡ x̂− ŷ
and a2 ≡ x̂ + ŷ, measured in units of the lattice constant.
Fourier transforming and keeping only the low-energy Dirac
degrees of freedom near ±Q, we find

N ∼
∑
σσ′

∫
d2p

(2π)2
Ψ†σ(p)

(
γ0 0
0 −γ0

)
σσσ′Ψσ′(p), (10)

where we have defined the four-component Dirac spinors

Ψσ =

(
ψ+σ

ψ−σ

)
, σ =↑, ↓ . (11)

This motivates the following choice of (reducible) four-
dimensional representation of the SO(3) Clifford algebra,

Γµ =

(
γµ 0
0 −γµ

)
, µ = 0, 1, 2, (12)

and the corresponding definition of four-component Dirac ad-
joint Ψσ ≡ Ψ†σΓ0, in terms of which the Néel order parameter
is written as

N ∼
∫
d2xΨσΨ, (13)

with trace over spin indices understood.
Having identified the form of the Néel order parameter bi-

linear in terms of the low-energy Dirac fields, we can write
down the LGW Lagrangian for the Néel-ASL transition in
physical 2+1 dimensions,

L2+1 =
∑
α,σ

ψασγµDµψασ +
1

4
F 2
µν + gφ ·Ψσ

2
Ψ + Lφ,

(14)

where φ is a Lorentz-scalar O(3) vector field that has the
interpretation of dynamical order parameter field, and Lφ is
the Lagrangian controlling its dynamics, i.e., the O(3) vec-
tor model. We have accounted for the general situation with
gauge fluctuations (J 6= 0) by replacing ∂µ in Eq. (8) by the
gauge-covariant derivativeDµ = ∂µ− ieAµ, with e the gauge
coupling andAµ the continuum limit of theU(1) lattice gauge
field θr,r+µ̂. We have also added a Maxwell term for the gauge
field with Fµν = ∂µAν − ∂νAµ the field-strength tensor,
which originates microscopically from the terms proportional
to J and K in the lattice Hamiltonian (1). The Lagrangian
(14) is equivalent to that studied in Ref. [29], although the
fermionic mean-field state considered in the latter reference is
the staggered flux state rather than the π-flux state, and thus
the projective symmetry group characterizing the correspond-
ing spin liquid state is different (see Appendix A).

As in previous work on related theories [16–19, 25, 26,
28], we will be interested in studying the critical proper-
ties of Eq. (14) in the standard ε expansion below four
(spacetime) dimensions, and thus require a four-dimensional
Lorentz-invariant Lagrangian which dimensionally continues
to Eq. (14). In d = 4 dimensions the reducible four-
dimensional representation of the SO(3) Clifford algebra be-
comes an irreducible representation of the SO(4) Clifford al-
gebra when supplemented with a fourth gamma matrix Γ3,
which for the choice of SO(3) gamma matrices in Eq. (12) is
given by

Γ3 =

(
0 −i
i 0

)
. (15)

One can then check explicitly that the four-dimensional La-
grangian

L3+1 =
∑
σ

ΨσΓµDµΨσ +
1

4
F 2
µν + gφ ·Ψσ

2
Ψ + Lφ,

(16)

is invariant under four-dimensional Lorentz transformations,
and reduces to the physical Lagrangian (14) when all terms
involving x3 and A3 are ignored. Thus the critical properties
of the Néel-ASL transition on the square lattice can be con-
sistently studied in an ε expansion of the chiral Heisenberg
QED-GNY theory (16) with a single SU(2) doublet (Ψ↑,Ψ↓)
of four-component Dirac fermions.

B. Kagomé lattice

We now briefly review the slave-fermion description of the
ASL on the kagomé lattice [49–51] and its possible mag-
netic ordering instabilities. Similar to the π-flux phase on
the square lattice, ignoring gauge fluctuations the ASL on
the kagomé lattice can be understood as the ground state of
noninteracting fermions with nearest-neighbor hopping on the
kagomé lattice and π flux through each hexagonal plaque-
tte, but zero flux through each triangular plaquette. The sim-
plest gauge choice doubles the unit cell in (say) the a1 di-
rection, where a1 = (2, 0) and a2 = (1,

√
3) are the primi-

tive vectors of the underlying triangular Bravais lattice, with
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lengths measured in units of the side length of a kagomé tri-
angle. Correspondingly the original (hexagonal) first Bril-
louin zone is halved (and becomes rectangular); at half filling
the Fermi energy intersects two inequivalent Dirac points at
±Q = π

2
√

3
(0,±1). Effective Hamiltonians similar to Eq. (5)

can be obtained in first-order degenerate perturbation theory,

h(±Q+ p) = vF (µ1px + µ2py) +O(p2), (17)

with vF =
√

2t. Slow Dirac fields can be defined in anal-
ogy to Eq. (7), albeit with a more complicated dependence
on the microscopic lattice fields (the doubled unit cell has
six sites), and the imaginary-time Lagrangian density is again
given by Eq. (8) with the same set of 2 × 2 gamma matrices,
(γ0, γ1, γ2) = (µ3, µ2,−µ1) [51]. As before gauge fluctua-
tions are incorporated by promoting ∂µ to the gauge-covariant
derivative Dµ in the Dirac Lagrangian and adding a Maxwell
term for the emergent continuum gauge field Aµ.

We now turn to magnetic ordering instabilities, i.e., in-
stabilities accompanied by spontaneous breaking of the spin
SU(2) symmetry (which excludes VBS states) of an under-
lying microscopic spin model on the kagomé lattice, such as
the spin-1/2 Heisenberg antiferromagnet [49–53]. We further
focus on patterns of ordering that can be achieved through the
condensation of Dirac fermion bilinears which gaps out the
Dirac fermions (once the fermions are gapped, monopole pro-
liferation typically ensues, which further gaps out the dynam-
ical photon and leads to confinement [24, 54]). This leaves
two possibilities [51]: a three-fold degenerate collinear stripe
AF state with ordering wavevectors corresponding to the three
symmetry-related M points of the physical (gauge-invariant)
hexagonal Brillouin zone, and a zero-wavevector noncollinear
state with nonzero vector spin chirality [23].

We first consider the stripe AF state, which corresponds to
the condensation of either of the three degenerate spin-triplet,
time-reversal-odd bilinears Ψ†µ3τiσΨ, i = 1, 2, 3, where
τ1, τ2, τ3 are Pauli matrices acting on the nodal/valley index
α = ± distinguishing the two Dirac nodes [51]. Introduc-
ing a corresponding set of Lorentz-scalar O(3) vector fields
φ1,φ2,φ3 describing the fluctuating order parameters, the
form of the LGW Lagrangian for the stripe AF-ASL transition
is dictated by the transformation properties of the stripe AF
fermion bilinears under space group operations, which have
been worked out in detail in Ref. [51]. One obtains

L2+1 =
∑
α,σ

ψασγµDµψασ +
1

4
F 2
µν + g

∑
i

φi ·Ψ†γ0τiσΨ

+ Lφi , (18)

where the order parameter Lagrangian Lφi is given by

Lφi =
∑
i

[
1

2
(∂µφi)

2 +
r

2
φ2
i + u(φ2

i )
2

]
+
∑
i<j

[
u′φ2

iφ
2
j + u′′(φi · φj)2

]
+O

(
(φ2

i )
3
)
, (19)

where r, u, u′, u′′, . . . are phenomenological coupling con-
stants. The Z3 anisotropy introduced by the quartic terms

in Eq. (19) is a consequence of the discrete C6 symmetry of
the kagomé lattice which rotates the three M points into each
other.

In order to study the critical properties of the stripe AF-ASL
transition in the 4− ε expansion one must lift the (2+1)D the-
ory (18) to a four-dimensional Lorentz-invariant theory with
four-component Dirac spinors. The main issue, as compared
to the theory (14) for the Néel-ASL transition on the square
lattice, is that the Yukawa coupling involves the nodal matri-
ces τi. These matrices generate an SU(2)nodal subgroup of
the enlarged SU(4) flavor symmetry of the pure ASL state,
i.e., the internal symmetry of the first term in Eq. (18), but in
the four-dimensional theory elements of this subgroup act as
Lorentz group elements on four-component Dirac spinors. In
other words, the Yukawa coupling breaks the SU(2)nodal sym-
metry in the (2+1)D theory, which means it breaks Lorentz
symmetry in the four-dimensional theory. For instance, sup-
pose we choose the 4× 4 gamma matrix representation given
in Eq. (12) and Eq. (15): then the three bilinears Ψ†γ0τiσΨ,
i = 1, 2, 3 are proportional to iΨΓ3σΨ, −iΨΓ5σΨ, and
ΨσΨ, respectively, only the last two of which are invariant
under proper orthochronous Lorentz transformations (recall
that Γ5 ≡ Γ0Γ1Γ2Γ3 is a Lorentz pseudoscalar). Different
choices of 4×4 gamma matrices that preserve the equality be-
tween the first term in Eq. (18) and its four-component coun-
terpart (i.e., the first term of Eq. (16)) in the three-dimensional
limit simply permute the assignments of Ψ†γ0τiσΨ to those
same three bilinears.

We finally turn to the q = 0 noncollinear state with vector
spin chirality order, which corresponds to the condensation of
a unique spin-triplet bilinear Ψ†µ3σΨ even under time rever-
sal [51]. The LGW theory for the transition from the ASL to
this state was given in Ref. [23],

L2+1 =
∑
α,σ

ψασγµDµψασ +
1

4
F 2
µν + gφ ·Ψ†γ0σΨ + Lφ,

(20)

and involves a single O(3) vector φ. In four-component nota-
tion, the bilinear appearing in the Yukawa coupling is propor-
tional to iΨΓ3Γ5σΨ for all choices of 4× 4 gamma matrices
that preserve the form of the pure ASL Lagrangian; the the-
ory (20) thus breaks Lorentz invariance when lifted to four
dimensions.

III. ε-EXPANSION

We have shown above that the LGW theories for transi-
tions from the ASL to either the stripe AF or the q = 0 non-
collinear state on the kagomé lattice break Lorentz invariance
when lifted from three to four spacetime dimensions. This
creates difficulties when applying the standard ε expansion as
a variety of Lorentz-breaking terms not present in the original
Lagrangian will be generated under renormalization (for a re-
cent discussion of similar issues in the pure GNY model, see
Ref. [55]). By contrast, the LGW theory (14) for the Néel-
ASL transition on the square lattice can be extended to a four-
dimensional Lorentz-invariant theory, Eq. (16). This allows
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for an RG analysis in the usual ε expansion, to which we now
turn.

A. Renormalization group

The starting point is the Lagrangian of the four-dimensional
chiral Heisenberg QED-GNY model,

L =

Nf∑
i=1

Ψi /DΨi +
1

4
F 2
µν +

1

2ξ
(∂µAµ)2

+
1

2
(∂µφ)2 +

1

2
m2φ2 + λ2(φ2)2 + gφ ·

Nf∑
i=1

Ψi
σ

2
Ψi,

(21)

where /D ≡ Γµ(∂µ − ieAµ) is the gauge-covariant derivative
and Γµ are 4× 4 Euclidean gamma matrices representing the
SO(4) Clifford algebra {Γµ,Γν} = 2δµν . We denote by Nf
the number of flavors of SU(2) doublets of four-component
Dirac fermions, i.e.,

Ψi ≡
(

Ψi↑
Ψi↓

)
, (22)

where Ψiσ , σ =↑, ↓ are four-component Dirac fermions. With
this convention the Lagrangian (16) for the Néel-ASL transi-
tion on the square lattice corresponds to Nf = 1. The triplet
of real fields φ = (φ1, φ2, φ3) transforms in the vector repre-
sentation of SU(2), and ξ is a gauge-fixing parameter.

We study the critical (i.e., at m2 = 0) properties of the
model (21) in d = 4 − ε spacetime dimensions with field-
theoretic RG using the modified minimal subtraction (MS)
prescription. We consider a bare Lagrangian,

L0 =

Nf∑
i=1

Ψ
0

i /D
0
Ψ0
i +

1

4

(
F 0
µν

)2
+

1

2ξ0

(
∂µA

0
µ

)2
+

1

2
(∂µφ0)

2
+

1

2
m2

0φ
2
0 + λ2

0

(
φ2

0

)2
+ g0φ0 ·

Nf∑
i=1

Ψ
0

i

σ

2
Ψ0
i , (23)

in terms of bare fields Ψ0
i , φ0, A0

µ and coupling constants e0,

ξ0, m0, λ0, g0, with /D
0

= Γµ(∂µ − ie0A
0
µ), and a renormal-

ized Lagrangian

LR =

Nf∑
i=1

ZΨΨi /DΨi +
1

4
ZAF

2
µν +

1

2ξ
(∂µAµ)2

+
1

2
Zφ(∂µφ)2 +

1

2
Zφ2m2µ2φ2 + Zλ2λ2µε(φ2)2

+ Zggµ
ε/2φ ·

Nf∑
i=1

Ψi
σ

2
Ψi, (24)

where /D = Γµ(∂µ − ieµε/2Aµ). We define renormalized
fields Ψi = Z

−1/2
Ψ Ψ0

i , Aµ = Z
−1/2
A A0

µ, φ = Z
−1/2
φ φ0 and

dimensionless renormalized coupling constants,

e2 = e2
0µ
−εZA, (25)

g2 = g2
0µ
−εZ2

ΨZφZ
−2
g , (26)

λ2 = λ2
0µ
−εZ2

φZ
−1
λ2 , (27)

m2 = m2
0µ
−2ZφZ

−1
φ2 , (28)

ξ = ξ0Z
−1
A , (29)

where µ is an arbitrary renormalization scale. The renor-
malization constants ZX , X = Ψ, A, φ, φ2, λ2, g are calcu-
lated up to four-loop order using an automated setup, tech-
nical details of which can be found in previous publica-
tions [19, 46, 56, 57]. The number of diagrams that arise
during the perturbative calculation of the renormalization con-
stants is exactly the same as in the chiral-Ising GNY-QED3

case [19], because one needs only to “dress” the chiral-Ising
Lorentz amplitudes with SU(2) weight-factors.

B. Beta functions

The flow of the running couplings e2, g2, λ2 is governed by
the following RG equations,

βe2 = (−ε+ γA)e2, (30)

βg2 = (−ε+ 2γΨ + γφ − 2γg)g
2, (31)

βλ2 = (−ε+ 2γφ − γλ2)λ2, (32)

where the beta functions are defined as

βα2 = µ
dα2

dµ
, (33)

for α = e, g, λ, and we absorb a factor of 1/(4π)2 in the
definition of the couplings, α2/(4π)2 → α2. Likewise, the
anomalous dimensions γX are defined as

γX = µ
d lnZX
dµ

. (34)

Note that Eq. (30)-(32) have the same form as for the chi-
ral Ising QED-GNY model [19], but the explicit form of the
renormalization constants, and thus the anomalous dimen-
sions and beta functions, are different for the two theories.
As in Ref. [19] we express the beta functions as a sum over
contributions at fixed loop order,

βα2 = −εα2 + β(1L)
α2 + β(2L)

α2 + β(3L)
α2 + β(4L)

α2 , (35)

for α = e, g, λ. We give here the beta functions up to and
including three-loop order; contributions at four-loop order
are lengthy and made available in electronic format [58]. The
beta function for the gauge coupling e2 is given by

β(1L)
e2 =

16Nf
3

e4, (36)
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β(2L)
e2 = 16Nfe

6 − 6Nfe
4g2, (37)

β(3L)
e2 = −9Nfe

6g2 +
3Nf

2
(7Nf + 3)e4g4

− 8Nf
9

(44Nf + 9)e8. (38)

The beta function for the Yukawa coupling g2 is given by

β(1L)
g2 = −12e2g2 +

1

2
(4Nf + 1)g4, (39)

β(2L)
g2 = − 1

32
(96Nf − 47)g6 + 2(5Nf + 2)e2g4

+
2

3
(40Nf − 9)e4g2 − 40g4λ2 + 160g2λ4, (40)

β(3L)
g2 =

2

27
[8Nf (140Nf + 621− 648ζ3)− 3483]e6g2

+
1

512
[4Nf (608Nf + 139− 144ζ3)− 2731

+ 1008ζ3]g8 − 10(60Nf − 89)g4λ4

− 1

4
[Nf (29 + 48ζ3) + 61− 42ζ3]e2g6 + 40e2g4λ2

− 1

8
[4Nf (64Nf − 17 + 432ζ3)− 301− 432ζ3]e4g4

+ 75(2Nf + 1)g6λ2 − 3520g2λ6. (41)

Finally, the beta function for the four-scalar coupling λ2 is
given by

β(1L)
λ2 = 88λ4 + 4Nfg

2λ2 − Nf
4
g4, (42)

β(2L)
λ2 = −4416λ6 − 176Nfg

2λ4 − 3Nf
2
g4λ2 −Nfe2g4

+ 20Nfe
2g2λ2 +

Nf
2
g6, (43)

β(3L)
λ2 = −Nf

512
(1208Nf − 365 + 384ζ3)g8 + 8272Nfg

2λ6

+
Nf
64

(4720Nf − 6339− 912ζ3)g6λ2

− Nf
2

(528Nf − 3067− 1272ζ3)g4λ4

+
Nf
8

(232Nf + 131− 96ζ3)e4g4

−Nf (64Nf + 119− 144ζ3)e4g2λ2

− Nf
16

(17− 96ζ3)e2g6 +
Nf
4

(841− 1200ζ3)e2g4λ2

− 132Nf (17− 16ζ3)e2g2λ4 + 64(6023 + 3552ζ3)λ8.
(44)

In those expressions ζz denotes the Riemann zeta function.
The beta functions above can be checked against previ-

ous results in various limits. In the limit g2 = λ2 = 0
the model reduces to pure QED with 2Nf flavors of four-
component Dirac fermions, and Eq. (36)-(38) together with
the four-loop contribution [58] reproduce the four-loop QED
beta function [59]. For e2 = g2 = 0 the model reduces to the
bosonic O(3) vector model; Eq. (42)-(44) with the four-loop

contribution [58] agree with the known four-loop result [60].
Setting e2 = 0 only, one obtains the ungauged chiral Heisen-
berg GNY model; our result for βg2 and βλ2 agrees in that
limit with the four-loop beta functions recently computed for
this model [46].

One-loop beta functions for the specific case of Nf =
1, with all couplings e2, g2, λ2 nonzero, were obtained in
Ref. [29]. Modulo trivial rescalings of the coupling constants,
our result for βe2 agrees with theirs, but βg2 and βλ2 disagree.
In Sec. IV, we show that the critical exponents obtained from
our beta functions agree order by order up to O(ε4, 1/N2

f )
with continuous-d results obtained in the large-Nf expansion.
We are thus confident that our results for the beta functions
are correct.

C. Quantum critical point and stability exponent

To identify a possible quantum critical point (QCP) we look
for stable fixed points of the RG flow on the critical (m2 = 0)
hypersurface, i.e., common zeros of the set of beta functions
(30)-(32). We denote fixed-point couplings by (e2

∗, g
2
∗, λ

2
∗). At

one-loop order we find eight fixed points: the Gaussian fixed
point (0, 0, 0), the conformal QED fixed point ( 3ε

16Nf
, 0, 0),

the O(3) Wilson-Fisher fixed point (0, 0, ε88 ), a conformal
QED × O(3) Wilson-Fisher fixed point ( 3ε

16Nf
, 0, ε88 ), two

O(3) GNY fixed points with e2
∗ = 0 and g2

∗ 6= 0, λ2
∗ 6= 0,

and two O(3) QED-GNY fixed points with nonzero values
for all couplings. The only stable fixed point among all eight
is one of the latter two, with fixed-point couplings given by

e2
∗ =

3

16Nf
ε+O(ε2), (45)

g2
∗ =

4Nf + 9

2Nf (4Nf + 1)
ε+O(ε2), (46)

λ2
∗ =

Y − 4Nf − 17

176(4Nf + 1)
ε+O(ε2), (47)

where we define

Y ≡
√

16N2
f + 488Nf + 1873 +

1782

Nf
. (48)

These three coupling constants are positive for all values of
Nf , thus the fixed point is physical and describes a valid QCP.
This establishes that at one-loop order, the Néel-ASL transi-
tion is continuous and its critical properties can be systemati-
cally calculated in the ε expansion. From the four-loop order
results in Eq. (35), a power series expansion of the critical
exponents up to fourth order in ε can be obtained. The first
exponent one can calculate is the stability exponent ω, which
controls leading corrections to scaling and corresponds to the
smallest eigenvalue of the stability matrix, i.e., the Jacobian
matrix Jαα′ = ∂βα2/∂α′2, α, α′ = e, g, λ of derivatives of
the beta functions evaluated at the fixed point (45)-(47). We
find ω = ε+O(ε2) at one-loop order. The full four-loop result
for general Nf is given in Ref. [58]; here we only present it
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for Nf = 1, appropriate to the Néel-ASL transition:

ω ≈ ε− 0.9ε2 + 6.742ε3 − 32.22ε4 +O(ε5). (49)

In this and later O(ε4) expressions for the Nf = 1 critical
exponents, coefficients are given to four significant digits.

D. Order parameter anomalous dimension

Microscopically, the order parameter anomalous dimension
ηφ controls the long-distance behavior of AF correlations at
the QCP,

〈N(r) ·N(r′)〉 ∼ 1

|r − r′|d−2+ηφ
, (50)

where N(r) ∼ (−1)x+y
∑
σσ′ c

†
rσσσσ′crσ′ and |r − r′| is

much greater than the lattice constant. In the field theory it is
computed by evaluating γφ in Eq. (34) at theO(3) QED-GNY
fixed point (45)-(47),

ηφ ≡ γφ(e2
∗, g

2
∗, λ

2
∗). (51)

As for the beta functions, we express the anomalous dimen-
sions as sums of contributions at fixed loop order,

γX = γ(1L)
X + γ(2L)

X + γ(3L)
X + γ(4L)

X . (52)

We find

γ(1L)
φ = 2Nfg

2, (53)

γ(2L)
φ = 160λ4 − 7Nf

4
g4 + 10Nfe

2g2, (54)

γ(3L)
φ = −3520λ6 − 600Nfg

2λ4 +
Nf
8

(41− 144ζ3)e2g4

+
Nf
128

(624Nf − 131 + 240ζ3)g6 + 50Nfg
4λ2

− Nf
2

(119 + 64Nf − 144ζ3)e4g2, (55)

with the four-loop contribution γ(4L)
φ given electronically [58].

At one-loop order, we find

ηφ =
4Nf + 9

4Nf + 1
ε+O(ε2). (56)

Evaluating the full four-loop result [58] forNf = 1, we obtain

ηφ ≈ 2.6ε+ 1.993ε2 + 1.963ε3 − 4.169ε4 +O(ε5). (57)

E. Correlation length exponent

In addition to the anomalous dimension γφ of the order pa-
rameter field φ, we also compute γm2 ≡ γφ2 − γφ which
appears in the beta function for the scalar mass squared,

µ
dm2

dµ
= −(2 + γm2)m2. (58)

Evaluated at the QCP, the anomalous dimension γm2 is related
to the correlation length exponent ν,

1/ν = 2 + γm2(e2
∗, g

2
∗, λ

2
∗), (59)

which controls the divergence of the zero-temperature corre-
lation length upon approach to the QCP. The contributions to
γm2 up to three-loop order are given by

γ(1L)
m2 = −2Nfg

2 − 40λ2, (60)

γ(2L)
m2 = 800λ4 +

11Nf
4

g4 + 80Nfg
2λ2 − 10Nfe

2g2, (61)

γ(3L)
m2 = −99840λ6 +

Nf
128

(−2672Nf + 1923− 1392ζ3)g6

+
5Nf

2
(48Nf − 109− 72ζ3)g4λ2 − 1320Nfg

2λ4

+
Nf
2

(64Nf + 119− 144ζ3)e4g2

+
3Nf

8
(−131 + 208ζ3)e2g4

+
5Nf

2
(408− 384ζ3)e2g2λ2, (62)

and the four-loop contribution γ(4L)
m2 is given in electronic for-

mat [58]. At one-loop order, we find

1/ν = 2− 68Nf + 113 + 5Y

22(4Nf + 1)
ε+O(ε2), (63)

while the full four-loop result [58] for Nf = 1 is

1/ν ≈ 2− 4.577ε+ 5.089ε2 − 35.81ε3 + 298.7ε4 +O(ε5).
(64)

F. CDW and VBS susceptibility exponents

Besides the Néel order parameter field φ, which can be
identified with the bilinear ΨσΨ, other fermion bilinears will
develop universal power-law correlations at the QCP. In the
original d = 3 theory with two-component spinors ψασ , these
are Lorentz-invariant bilinears of the form ψτiσjψ where the
τi are Pauli matrices acting on the nodal/valley index α = ±
(as for the kagomé lattice, see Sec. II B). Besides the spin-
triplet Néel bilinear ΨσΨ = ψτ3σψ already considered, in
this section we consider the three spin-singlet bilinears of the
form ψτiψ, i = 1, 2, 3. The ψψ spin-singlet bilinear will be
discussed in Sec. IV C.

The physical meaning of these bilinears can be ascertained
from an analysis of their transformation properties under
space-group and time-reversal symmetries via the projective
symmetry group (PSG) [9] (see Appendix A). First, the trans-
formation properties of the spin-triplet bilinear ψτ3σψ agree
with those of the microscopic Néel order parameter and con-
firm the identification obtained in the naive continuum limit
(Sec. II A). The spin-singlet bilinear ψτ3ψ = ΨΨ transforms
in the same way as the Néel bilinear under space-group sym-
metries but oppositely under time reversal; it thus corresponds
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to a staggered density or CDW order parameter,

OCDW(r) = (−1)x+y
∑
σ

c†rσcrσ. (65)

The spin-singlet bilinears ψτ1ψ and ψτ2ψ transform into each
other under C4 rotations, are both even under time reversal,
and transform oppositely under reflections and unit transla-
tions. In four-component notation with the choice of 4 × 4
gamma matrices introduced in Sec. II A, these can be written
as ψτ1ψ = iΨΓ3Ψ and ψτ2ψ = −iΨΓ5Ψ. These two bi-
linears can thus be identified with the two components of the
VBS order parameter V ≡ (Vx, Vy), where Vx ∼ iΨΓ5Ψ and
Vy ∼ iΨΓ3Ψ correspond to columnar VBS order in the x and
y directions, respectively. In the microscopic theory (1), these
can be defined as [8]

Vx(r) = (−1)xSr · Sr+x̂, Vy(r) = (−1)ySr · Sr+ŷ,
(66)

where Sr = 1
2

∑
σσ′ c

†
rσσσσ′crσ′ is the microscopic spin op-

erator on site r. The microscopic CDW and VBS operators
are functions of on-site bilinears of the form c†rσcrσ′ and are
thus manifestly gauge invariant.

From the operator identifications above we therefore ex-
pect that at the QCP, the CDW and VBS order parameters
should develop universal power-law correlations at long dis-
tances |r− r′| � 1 (measured in units of the lattice constant),

〈OCDW(r)OCDW(r′)〉 ∼ 1

|r − r′|2∆CDW
, (67)

〈V (r) · V (r′)〉 ∼ 1

|r − r′|2∆VBS
, (68)

where

∆CDW = ∆ΨΨ, (69)
∆VBS = ∆iΨΓ5Ψ = ∆iΨΓ3Ψ. (70)

Note that these correlations are already power-law in the ASL
phase, as observed numerically for the Néel and VBS order
parameters in Ref. [8]. However, the exponents in Eq. (69)-
(70), as well as the exponent ∆AF = ∆φ for AF spin-spin
correlations (i.e., the scaling dimension of the order parame-
ter field φ), reflect the particular conformal field theory asso-
ciated with the Néel-ASL QCP and are thus predicted to be
different than those in the ASL phase, which corresponds to
the pure conformal QED3 fixed point.

We further observe that while iΨΓ5Ψ is a Lorentz
(pseudo)scalar in d = 4 dimensions, iΨΓ3Ψ is not, but rather
corresponds to one component of a Lorentz vector iΨΓµΨ.
However, both are Lorentz scalars in d = 3 dimensions.
Therefore, the ε expansion will predict different scaling di-
mensions for iΨΓ5Ψ and iΨΓ3Ψ, although they are expected
to have the same scaling dimension in the physical d = 3
theory since they transform into each other under the action
of microscopic symmetries. For the purposes of determin-
ing ∆VBS, in the ε expansion we will therefore only calcu-
late the dimension of the Lorentz pseudoscalar iΨΓ5Ψ, which

does not have the unphysical property of transforming as a
Lorentz vector in d = 4 dimensions. By contrast, in the 1/Nf
expansion in d = 3 the scaling dimensions of iΨΓ5Ψ and
iΨΓ3Ψ should agree order by order in 1/Nf . On the other
hand, ∆CDW can be meaningfully identified with ∆ΨΨ com-
puted in both the ε and 1/Nf expansions with four-component
spinors, since ΨΨ is a Lorentz scalar in both d = 4 and d = 3
dimensions.

To compute the scaling dimension ∆ΨMΨ of a fermion
bilinear ΨMΨ (here M is the identity matrix or iΓ5), we
follow the method discussed in Ref. [19], whereby the bi-
linear is added to the bare (renormalized) Lagrangian with
a coefficient M0 (M ), the two coefficients being related by
M = M0µ

−1Z−1
M ZΨ. The renormalized mass M obeys the

RG equation

µ
dM

dµ
= (−1− γM + γΨ)M, (71)

where γM = µ(d lnZM/dµ). Since M is the coefficient of
a gauge-invariant operator the combination γM − γΨ must be
gauge invariant even though γM and γΨ individually are not.
The scaling dimension of the bilinear is then given by

∆ΨMΨ = d− 1− γΨMΨ(e2
∗, g

2
∗, λ

2
∗), (72)

where γΨMΨ ≡ γM − γΨ. By contrast with the chiral Ising
QED-GNY model [19] in which a ΨΨ insertion breaks a Z2

chiral symmetry and radiatively induces a relevant φ3 interac-
tion in the renormalized Lagrangian, here the continuousO(3)
symmetry ensures that no additional operators which might
mix with ΨMΨ are radiatively induced by an insertion of this
operator.

The CDW susceptibility exponent is given in terms of the
normal mass operator anomalous dimension γΨΨ, given up to
three-loop order by

γ(1L)
ΨΨ

= 6e2 − 9

4
g2, (73)

γ(2L)
ΨΨ

= −18e2g2 − 1

3
(40Nf − 9)e4 +

3

64
(56Nf + 59)g4,

(74)

γ(3L)
ΨΨ

= − 1

27
[8Nf (140Nf + 621− 648ζ3)− 3483]e6

+
3

1024
[8Nf (88Nf − 397)− 847− 2256ζ3]g6

− 3

16
[Nf (−137 + 144ζ3)− 6(43 + 22ζ3)]e2g4

+
9

16
(160Nf − 109 + 336ζ3)e4g2 − 75g4λ2

+ 435g2λ4. (75)

The four-loop term γ(4L)
ΨΨ

is given electronically [58]. Contri-
butions are found to be independent of the gauge-fixing pa-
rameter ξ at each loop order, which constitutes a strong check
on the calculation. Evaluating Eq. (72) at the QCP (45)-(47),
we obtain at one-loop order

∆ΨΨ = 3 +
9−Nf (4Nf + 1)

Nf (4Nf + 1)
ε+O(ε2), (76)
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with the full four-loop expression given in Ref. [58]. For
Nf = 1, we obtain

∆ΨΨ ≈ 3 + 0.8ε− 2.984ε2 − 4.352ε3 − 10.49ε4 +O(ε5).
(77)

Similarly, the VBS susceptibility exponent is obtained from
the axial mass operator anomalous dimension γiΨΓ5Ψ. Up to
three-loop order we obtain

γ(1L)
iΨΓ5Ψ

= 6e2 +
3

4
g2, (78)

γ(2L)
iΨΓ5Ψ

= −
(

40Nf
3
− 3

)
e4 + 6e2g2 − 3

64
(8Nf − 11)g4,

(79)

γ(3L)
iΨΓ5Ψ

=

[
− 8

27
Nf (140Nf + 621− 648ζ3) + 129

]
e6

+
3

1024
[8Nf (−40Nf + 67) + 509− 528ζ3]g6

+
3

16
[Nf (−19 + 48ζ3) + 44− 108ζ3]e2g4

+
3

16
(64Nf + 13− 720ζ3)e4g2 + 15g4λ2

− 105g2λ4, (80)

with the four-loop contribution γ(4L)
iΨΓ5Ψ

given in electronic for-
mat [58]. At one-loop order for general Nf , we find

∆iΨΓ5Ψ = 3− 2Nf (4Nf + 7) + 9

2Nf (4Nf + 1)
ε+O(ε2), (81)

while for Nf = 1 at four-loop order, we obtain

∆iΨΓ5Ψ ≈ 3− 3.1ε− 3.145ε2 + 10.78ε3 − 85.32ε4 +O(ε5).

(82)

The full four-loop expression for general Nf is given in
Ref. [58].

Finally, for Nf > 1, in addition to the flavor-singlet bilin-
ears ΨΨ and iΨΓ5Ψ one can define an SU(Nf ) flavor-adjoint
bilinear,

ΨTAΨ =

Nf∑
i,j=1

ΨiT
ij
A Ψj , A = 1, . . . , N2

f − 1, (83)

where TA are the Hermitian generators of SU(Nf ). This op-
erator does not exist for Nf = 1 and thus has no physical
meaning in the context of the Néel-ASL transition, but the
computation of its scaling dimension for Nf > 1 is an inter-
esting problem in quantum field theory. The corresponding
anomalous dimension γΨTAΨ is given up to four-loop order in
Ref. [58]. At one-loop order, ∆ΨTAΨ is equal to the flavor-
singlet, normal mass bilinear dimension (76). A difference in
scaling dimensions between singlet and adjoint bilinears only
begins appearing at four-loop order,

∆ΨΨ −∆ΨTAΨ =
9(1− 3ζ3)(4Nf + 9)3

32N3
f (4Nf + 1)3

ε4 +O(ε5).

(84)

As discussed in Ref. [19], the difference between singlet and
adjoint mass dimensions comes from bilinear insertions in
closed fermion loops appearing in the loop expansion of the
fermion two-point function; such closed loops vanish for ad-
joint insertions since the SU(Nf ) generators are traceless, but
are generally nonzero for singlet insertions. However, here the
tracelessness of the spin SU(2) generators appearing at each
Yukawa vertex implies that nonvanishing singlet insertions in
closed fermion loops occur at higher loop order than in the
chiral Ising QED-GNY model, since such closed loops must
contain an even number of Yukawa vertices to not vanish in
the chiral Heisenberg case.

G. Fermion bilinear dimensions in the chiral Heisenberg GNY
model

Turning off the gauge coupling e2 in the Lagrangian (21),
we obtain the pure chiral Heisenberg GNY model, which
for Nf = 1 describes the semimetal-AF insulator quantum
phase transition on the honeycomb and π-flux lattices at half-
filling [35–45]. Whereas the usual exponents (ν, ηφ, and
the fermion anomalous dimension ηΨ) for the chiral Heisen-
berg GNY model have been computed both in the ε- [46, 61]
and large-Nf [47] expansions, to our knowledge scaling di-
mensions of fermion bilinears have thus far not been com-
puted. In particular, the ΨΨ bilinear corresponds in the long-
wavelength limit to the CDW order parameter, i.e., Eq. (65)
on the π-flux square lattice, and the Semenoff mass [62]
on the honeycomb lattice. Correlations of this bilinear can
in principle be computed in sign-problem-free QMC simula-
tions of the half-filled repulsive Hubbard model on the afore-
mentioned lattices, and at the semimetal-AF QCP should de-
cay at long distances according to Eq. (67) with an exponent
∆CDW = ∆cH-GNY

ΨΨ
given by

∆cH-GNY
ΨΨ

≈ 3− 0.1ε− 0.4278ε2 + 0.2186ε3 − 1.063ε4

+O(ε5). (85)

For the chiral Heisenberg GNY model with general Nf , we
obtain at one-loop order

∆cH-GNY
ΨΨ

= 3 +
7− 8Nf

2(4Nf + 1)
ε+O(ε2). (86)

A four-loop expression for general Nf is given electronically
in Ref. [58].

Similarly, the Hermitian iΨΓ3Ψ and iΨΓ5Ψ bilinears can
be viewed as the two components of the columnar VBS or-
der parameter on the π-flux square lattice, or alternatively as
the real and imaginary parts of a Z3-symmetric complex order
parameter describing Kekulé VBS order on the graphene lat-
tice [63–65]. At the semimetal-AF QCP of the half-filled re-
pulsive Hubbard model on those lattices the correlation func-
tion of these operators should decay as in Eq. (68), with the
exponent ∆VBS = ∆cH-GNY

iΨΓ5Ψ
given by

∆cH-GNY
iΨΓ5Ψ

≈ 3− 1.3ε− 0.1674ε2 + 0.01146ε3 − 0.1148ε4
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+O(ε5). (87)

For general Nf , the one-loop result is

∆cH-GNY
iΨΓ5Ψ

= 3− 8Nf + 5

2(4Nf + 1)
ε+O(ε2), (88)

and the full four-loop result is given in electronic format [58].
Turning finally to the SU(Nf ) flavor-adjoint bilinear (83),

the four-loop diagrams responsible for the difference (72) in
scaling dimensions between the singlet and adjoint bilinears
are O(e2g6) and vanish for the pure chiral Heisenberg GNY
model with e2 = 0. Thus for the latter model this difference
in scaling dimensions can at most be O(ε5).

IV. LARGE-Nf EXPANSION

To complement the ε expansion studies just discussed we
now turn to the large-Nf expansion. The large-Nf formal-
ism we use has been detailed in Refs. [30–33] for the chi-
ral Ising QED-GN(Y) model. We refer the reader to those
articles for more details as well as to the original papers of
Vasil’ev et al. [66, 67], where the large-Nf critical point ap-
proach was developed for scalar theories with Nf flavors in
d dimensions. The elegance of the method is such that one
carries out all computations at the d-dimensional fixed point
where there is scaling behavior. The core Lagrangian for de-
termining large-Nf critical exponents is that which governs
the universality class of the O(3) QED-GNY fixed point of
the four-dimensional Lagrangian (21) used for the perturba-
tive computations. The essence of that Lagrangian is that it
involves the kinetic terms of the fields as well as the 3-point
interactions between the matter and force fields. By the latter
we include not only the photon but also the scalar field φa.
For our case there are only two such interactions and the Eu-
clidean Lagrangian of the universal theory used for the large-
Nf analysis is

L = Ψi∂/Ψi + φ̃aΨi
1
2
σaΨi − iÃµΨiΓµΨi + . . . , (89)

where sums over repeated indices i = 1, . . . , Nf and a =
1, 2, 3 are understood. We have not included any additional
terms since there would be an infinite number of operators
built from the three fields. Only a few of these operators
would be relevant in a fixed dimension; in particular, the ki-
netic terms for the scalar and gauge fields in Eq. (21) are ir-
relevant at criticality in the large-Nf limit. Also the coupling
constants have been rescaled out of the interactions to produce
the new fields φ̃a and Ãµ since the formalism applies at criti-
cality and there the couplings do not run [66, 67]. Excluding
one or the other of the two interactions in Eq. (89) would lead
to critical exponents of a different universality class. At crit-
icality the canonical dimensions of the fields are fixed by the
dimensionlessness of the action in d dimensions and this leads
to the asymptotic scaling forms of the propagators [30, 33],

〈Ψi(x)Ψj(y)〉 ∼ (x/− y/)Aδij
((x− y)2)α̂

,

〈φa(x)φb(y)〉 ∼ Bφδ
ab

((x− y)2)β̂φ
,

〈Aµ(x)Aν(y)〉 ∼ BA

((x− y)2)β̂A

×
[
δµν +

2β̂A

(2µ− 2β̂A − 1)

(x− y)µ(x− y)ν
(x− y)2

]
,

(90)

in the approach to the fixed point in coordinate space. Here
A,BA andBφ are coordinate-independent amplitudes and the
full dimension of each field is defined by

α̂ = µ+ 1
2
η, β̂A = 1− η − χA, β̂φ = 1− η − χφ, (91)

where χA and χφ are the anomalous dimensions of the re-
spective vertices of (89) and we retain the definition d = 2µ
of Refs. [33, 66] for consistency with other large-Nf work
using this formalism. Equally to avoid confusion with the no-
tation for the β-functions we use a hat for the full dimension
of the field exponents. The vertex dimensions as well as the
other exponents such as η are functions of d and Nf and each
exponent can be expanded in series of the form

η =

∞∑
n=1

ηn
Nn
f

. (92)

Moreover these critical exponents are related to the ε-
expansion of their respective RG functions at the O(3) QED-
GNY fixed point found in Sec. III C. As such this provides a
non-trivial check on the four-loop renormalization. Since the
large-Nf formalism of Refs. [66, 67] operates purely at the
critical point all our 1/Nf results will be exclusively in the
Landau gauge (ξ = 0). The gauge parameter, ξ, of our linear
gauge fixing can be regarded as a second coupling constant
and at criticality its associated renormalization group func-
tion, which is in effect a β-function, defines a critical cou-
pling. In this case it corresponds to the Landau gauge.

A. Critical exponents

Using this formalism we have extended theO(1/N2
f ) com-

putations of Ref. [33] to the case where the Pauli matrices
appear in the scalar-fermion vertex. Since Refs. [32, 33] al-
ready record the values for all the large Nf master integrals
contributing to the scaling forms of the various Green’s func-
tions needed to find the operator dimension at O(1/N2

f ), we
merely record the outcome of this straightforward exercise.
The key building block is the fermion anomalous dimension,
which at leading order is

η1 = − (4µ3 − 6µ2 − 3µ+ 4)

8µ(µ− 1)

Γ(2µ− 1)

Γ3(µ)Γ(1− µ)
, (93)

in Landau gauge, where Γ(z) is the gamma function. Having
established this the two leading-order vertex dimensions are
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required for the solution of the O(1/N2
f ) Schwinger-Dyson

equations. We find

χφ 1 = − µ(4µ2 − 2µ− 1)η1

(4µ3 − 6µ2 − 3µ+ 4)
, χA 1 = −η1. (94)

The simplicity of the latter equation is a reflection that in the
critical large-Nf setup the photon has a full dimension of unity
which correctly shows the consistency of the Ward-Takahashi
identity. In the RG approach this is equivalent to the all-orders

statement that γA = ε at any fixed point with e2
∗ 6= 0, which

follows from Eq. (30). In addition we have computed 1/ν to
O(1/Nf ) and found

1

ν
= 2µ− 2− 4(3µ2 − 4µ+ 2)(2µ− 1)η1

(4µ3 − 6µ2 − 3µ+ 4)Nf
+O

(
1/N2

f

)
.

(95)
With the leading order exponents for η, χA and χφ we have

evaluated several exponents to the next order finding

η2 =

[
3µ(2µ− 1)(µ− 1)(4µ3 − 6µ2 − 3µ+ 4) [ψ′(µ− 1)− ψ′(1)]− 12(µ− 1)2(2µ2 + µ− 2)Ψ̂(µ)

+
16µ6 − 96µ5 + 156µ4 − 18µ3 − 141µ2 + 114µ− 28

µ− 1

]
η2

1

(4µ3 − 6µ2 − 3µ+ 4)2
,

χφ 2 =

[
4µ(µ− 1)(2µ2 + µ− 2)Ψ̂(µ)− (48µ7 − 160µ6 + 104µ5 + 134µ4 − 188µ3 + 31µ2 + 28µ− 4)

µ− 1

−3(16µ3 − 4µ2 − 14µ+ 7)µ2(µ− 1) [ψ′(µ− 1)− ψ′(1)]

]
η2

1

(4µ3 − 6µ2 − 3µ+ 4)2
, (96)

where ψ(z) = Γ′(z)/Γ(z) is the Euler digamma function and
we define

Ψ̂(µ) = ψ(2µ− 1)− ψ(1) + ψ(1− µ)− ψ(µ− 1). (97)

As these expressions are valid in d dimensions also expand-
ing them in powers of εwith d = 4−ε and comparing with the
corresponding RG functions at criticality we find full agree-
ment which is a solid check on both the perturbative and large
Nf computations. For instance, the exponent β̂φ corresponds
to the full scaling dimension of the scalar field, which is given
by (d − 2 + ηφ)/2 in d dimensions where the anomalous di-
mension ηφ corresponds to the RG function γφ at criticality
[Eq. (51)]. In d = 3 dimensions we obtain

η|d=3 = − 1

3π2Nf
− (3π2 + 80)

9π4N2
f

+O
(
1/N3

f

)
,

ηφ|d=3 = 1 +
32

3π2Nf
+

95π2 − 368

3π4N2
f

+O
(
1/N3

f

)
,

1

ν

∣∣∣∣
d=3

= 1− 44

3π2Nf
+O

(
1/N2

f

)
, (98)

or, numerically

η|d=3 = −0.03377

Nf
− 0.1250

N2
f

+O
(
1/N3

f

)
,

ηφ|d=3 = 1 +
1.081

Nf
+

1.949

N2
f

+O
(
1/N3

f

)
,

1

ν

∣∣∣∣
d=3

= 1− 1.486

Nf
+O

(
1/N2

f

)
, (99)

using ηφ = 2 [2− µ− (η + χφ)].

B. CDW and VBS susceptibility exponents

The final exercise is to determine the scaling dimension of
fermion bilinears in the large-Nf expansion. We begin with
the flavor-singlet bilinear ΨΨ, which determines the CDW
susceptibility exponent [see Eqs. (67) and (69)], as well as the
adjoint bilinear ΨTAΨ. We shall compute those at O(1/N2

f )
which requires the expression for η2. In this case there is a
subtle difference between the setup for (89) and that of the
theory where the Pauli matrix of the scalar-fermion vertex is
absent. The latter was considered in Ref. [33] and in that case
the O(1/N2

f ) expressions for the adjoint and singlet operator
dimensions were different. This was because of the graphs of
Figure 7 of Ref. [33]. These correspond to the insertion of the
operator in a closed fermion loop. For the adjoint case these
graphs are absent due to the trace over the matrix of the opera-
tor. The operator of the singlet case in Ref. [33] is the fermion
mass operator and the corresponding graphs contribute lead-
ing to different O(1/N2

f ) exponents. However in the case of
(89) the presence of the Pauli matrix in the scalar-fermion ver-
tex means that there is no contribution from the parallel graphs
of Figure 7 of [33]. This does not mean that the singlet and
adjoint operator dimensions are equivalent in the perturbative
case. In that instance they are different with the discrepancy
apparent at O(1/N3

f ), as can be seen explicitly by expanding
Eq. (84) in inverse powers of Nf . Computations at O(1/N3

f )
are however beyond the reach of the current large-Nf formal-
ism. The outcome is that we have the leading-order exponent

ηO 1 = − µ(4µ2 − 10µ+ 7)η1

(4µ3 − 6µ2 − 3µ+ 4)
, (100)

and



13

ηO 2 = −
[
3µ2(2µ− 1)(µ− 1)(4µ2 − 10µ+ 7) [ψ′(µ− 1)− ψ′(1)] + 12µ(µ− 1)(2µ2 + µ− 2)Ψ̂(µ)

+
16µ6 − 128µ5 + 236µ4 − 186µ3 + 67µ2 − 4µ− 4

µ− 1

]
η2

1

(4µ3 − 6µ2 − 3µ+ 4)2
, (101)

at next-to-leading order, for both singlet and adjoint bilinears.
We have checked that the ε-expansion of both are in full agree-
ment with the four-loop order results. The next stage is to
deduce the three-dimensional values

∆ΨΨ|d=3
= 2− 4

3π2Nf
+

4(12− π2)

3π4N2
f

+O
(
1/N3

f

)
, (102)

or

∆ΨΨ|d=3
= 2− 0.1351

Nf
+

0.02916

N2
f

+O
(
1/N3

f

)
, (103)

where

∆ΨΨ = 2µ− 1 + η + ηO. (104)

In contrast to the corresponding expression in Ref. [33] the
coefficient of the O(1/N2

f ) term is significantly smaller than
that at O(1/Nf ). This may mean that exponent estimates for
relatively low values of Nf could be reasonably reliable.

We next turn to the axial mass operator iΨΓ5Ψ, which con-
trols the decay of VBS correlations [see Eqs. (68) and (70)]
at the QCP. Expressing its scaling dimension as ∆iΨΓ5Ψ =

2µ− 1 + η + ηO5 , we obtain the O(1/Nf ) correction as

ηO5 1 = − µ(4µ2 + 2µ− 5)η1

(4µ3 − 6µ2 − 3µ+ 4)
. (105)

In d = 3 dimensions, this evaluates to

∆iΨΓ5Ψ = 2− 22

3π2Nf
+O(1/N2

f ). (106)

If the result for arbitrary d is expanded in powers of ε, where
d = 4−ε, then the series that ensues agrees with the large-Nf
expansion of the four-loop order result.

C. QAH susceptibility exponent and Aslamazov-Larkin
diagrams

We now turn to the spin-singlet bilinear ψψ = iΨΓ3Γ5Ψ,
which is odd under time reversal T and reflection Rx (i.e.,
parity in 2+1 dimensions) as shown in Appendix A. Because
of the presence of the Γ3 matrix, this bilinear is not Lorentz
invariant in d = 4 − ε dimensions but is Lorentz invariant
in strict d = 3 dimensions, where the spacetime index µ =
0, 1, 2 only. As a result, we do not calculate its dimension in
the ε expansion, but can compute it in the large-Nf expansion
in fixed d = 3, using the relation Γ5 = Γ0Γ1Γ2Γ3. Physically,
this operator corresponds to the continuum limit of a QAH
or Haldane mass term [68], first discussed in the context of

the π-flux phase on the square lattice by Wen, Wilczek, and
Zee [69]:

OQAH(r) ∼ i(−1)x+y
∑
σ

(
c†rσWr,r+a1

cr+a1,σ

− c†rσWr,r+a2
cr+a2,σ

)
+ h.c.

(107)

The pure imaginary, diagonal next-nearest-neighbor hopping
terms break time-reversal symmetry and give a mass to the
Dirac fermions. We define two Wilson line operators as

Wr,r+a1 = eiθr,r+x̂eiθr+x̂,r+x̂−ŷ + eiθr,r−ŷeiθr−ŷ,r+x̂−ŷ ,

Wr,r+a2
= eiθr,r+x̂eiθr+x̂,r+x̂+ŷ + eiθr,r+ŷeiθr+ŷ,r+x̂+ŷ ,

(108)

which obey W †r,r+a1
= Wr+a1,r and W †r,r+a2

= Wr+a2,r.
Such Wilson line insertions [13] are required to ensure that
OQAH(r) is invariant under latticeU(1) gauge transformations
crσ → eiϕrcrσ , θr,r+µ̂ → θr,r+µ̂ + ϕr − ϕr+µ̂, and their
particular form has been chosen to preserve all lattice symme-
tries: one can check that Eq. (108) transforms precisely as the
continuum ψψ bilinear under the microscopic PSG transfor-
mations in Eq. (A.11). As result we expect that at the Néel-
ASL QCP, correlations of the QAH operator (108) as com-
puted in QMC would decay in power-law fashion at long dis-
tances,

〈OQAH(r)OQAH(r′)〉 ∼ 1

|r − r′|2∆QAH
, (109)

with

∆QAH = ∆iΨΓ3Γ5Ψ, (110)

where ∆iΨΓ3Γ5Ψ is the dimension of the continuum bilinear.
In the preceding subsections critical exponents have been

computed in arbitrary d-dimensional spacetime utilizing the
fact that the trace of the product Γµ1 · · ·Γµ2n+1 of an odd
number of 4 × 4 gamma matrices is zero. In fixed d = 3
dimensions with two-component spinors, this assumption is
invalid since tr γµγνγρ ∝ εµνλ, which was shown to give ad-
ditional contributions to the large-Nf critical exponents of the
chiral Ising QED3-GNY model from Aslamazov-Larkin dia-
grams [27, 70]. In the four-component formulation with d =
3, we expect Aslamazov-Larkin diagrams to again contribute
in the presence of a Γ3Γ5 insertion, since tr Γ3Γ5ΓµΓνΓλ ∝
εµνλ. The calculation of the Aslamazov-Larkin diagrams for
the chiral-Ising case was performed in Ref. [27], and so those
results can be adapted to the present case by incorporating the
additional SU(2) spin structure present in the Feynman rules.
As a result of the modified Feynman rules, the large-Nf scalar
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propagator is twice the value of that appearing in Ref. [27],
while the photon propagator is now one half of its value in
the chiral-Ising case. In reference to the Feynman diagrams in
Ref. [27], we note that since there are two spin components,
the diagram in Fig. 4 is multiplied by two, whereas the spin
factor and the modified photon propagator factor cancel one
another to render Figs. 5(a-e) equal to their original value. For
the diagrams in Figs. 6(a-c), the Pauli matrices in the Yukawa
vertex now lead to an additional factor of 1

4 trσaσbδab = 3/2,
and thus the diagrams as a whole are 2× 3/2 larger than their
original values. The diagrams in Figs. 7(a,d) still give zero to-
tal contribution. As a result, the QAH susceptibility exponent
in Eq. (110) is given to O(1/Nf ) by

∆iΨΓ3Γ5Ψ = 2 +
44

3π2Nf
+O

(
1/N2

f

)
.

D. Fermion bilinear dimensions in the chiral Heisenberg
GN(Y) model

While the fermion (η) and boson (ηφ) anomalous dimen-
sions as well as the inverse correlation length exponent 1/ν
have been computed in the large-Nf expansion for the pure
chiral Heisenberg GN(Y) model [47], the scaling dimensions
of fermion bilinears have thus far not been computed using
this method. Using the same formalism as in previous subsec-
tions we have computed the dimension of the flavor-singlet
ΨΨ and flavor-adjoint ΨTAΨ bilinears at O(1/N2

f ), which
are the same at this order, as well as the dimension of the
axial bilinear iΨΓ5Ψ at O(1/Nf ). The general expressions
are again Eq. (104) and its axial counterpart, together with
Eq. (92), but where the exponents η, ηO, and ηO5

must be
computed at the critical fixed point of the pure chiral Heisen-
berg GN(Y) theory. The fermion exponents η1 and η2 were
computed previously [47], but are reproduced here for conve-
nience and accounting for the change in convention regarding
the definition of flavor number (N vs Nf ). We obtain

ηcH-GNY
1 = − 3Γ(2µ− 1)

4µΓ(1− µ)Γ(µ− 1)Γ2(µ)
,

ηcH-GNY
O 1 = −ηcH-GNY

O5 1 =
µ

µ− 1
ηcH-GNY

1 , (111)

at O(1/Nf ), and

ηcH-GNY
2 =

[
2µ− 3

3(µ− 1)
Ψ(µ) +

4µ2 − 6µ+ 1

2µ(µ− 1)2

] (
ηcH-GNY

1

)2
,

ηcH-GNY
O 2 =

[
µ(2µ− 3)

3(µ− 1)2
Ψ̂(µ)− µ(4µ− 3)

3(µ− 1)3

] (
ηcH-GNY

1

)2
,

(112)

at O(1/N2
f ), defining

Ψ(µ) = ψ(2µ− 1)− ψ(1) + ψ(2− µ)− ψ(µ). (113)

In d = 4− ε dimensions the results for ∆cH-GNY
ΨΨ

and ∆cH-GNY
iΨΓ5Ψ

thus found agree with the corresponding four-loop results in
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FIG. 2. Colored lines: Padé approximants for ηφ in d = 3 as a func-
tion of Nf at two (blue), three (green), and four-loop (red) orders;
black line: large-Nf result from Eq. (98).
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FIG. 3. Colored lines: Padé approximants for 1/ν in d = 3 as a
function of Nf at two (blue), three (green), and four-loop (red) or-
ders; black line: large-Nf result from Eq. (98).

Sec. III G. For d = 3, we find

∆cH-GNY
ΨΨ

= 2 +
4

π2Nf
− 32

3π4N2
f

+O(1/N3
f ), (114)

∆cH-GNY
iΨΓ5Ψ

= 2− 2

π2Nf
+O(1/N2

f ). (115)

As discussed in Sec. III G, for Nf = 1 those exponents con-
trol the decay of CDW and VBS correlations at the semimetal-
AF QCP in the repulsive Hubbard model on the honeycomb
and π-flux lattices, and are in principle accessible to sign-
problem-free QMC simulations.

V. RESUMMED CRITICAL EXPONENTS

We now apply approximate resummation methods to ob-
tain estimates of critical exponents in fixed d = 3 for gen-
eral Nf ≥ 1. A standard method to extrapolate finite-order
ε-expansion results to the physical dimension d = 3 is the
use of Padé approximants [71]. For a given loop order L, the
(one-sided) Padé approximants are defined by

[m/n](ε) =

∑m
i=0 aiε

i

1 +
∑n
j=1 bjε

j
, (116)
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FIG. 4. Padé approximants for ω in d = 3 as a function of Nf at two
(blue), three (green), and four-loop (red) orders.

where m and n are two positive integers obeying m + n =
L. The coefficients ai and bj are determined such that ex-
panding the above function in powers of ε to O(εL) repro-
duces the ε-expansion results. We also use the Padé-Borel
method [71], which provides an alternative method to resum-
mation of the ε-expansion results. For an expansion given by
∆(ε) =

∑∞
k=0 ∆kε

k, the Borel sum is defined as B∆(ε) =∑∞
k=0

1
k!∆kε

k. The Borel transform is the following exact
result:

∆(ε) =

∫ ∞
0

dt e−tB∆(εt). (117)

Since the ε-expansion coefficients are known only to fourth
order, in the above expression B∆ is replaced by a Padé ap-
proximant at a given order. In the following we present the re-
sults of Padé extrapolation of the ε-expansion for general Nf ,
as well as the corresponding Padé-Borel results for Nf = 1
only. We also apply those two methods to the resummation of
the 1/Nf -expansion series, as done for instance in Ref. [33],
for the case of Nf = 1 only.

A. Chiral Heisenberg QED3-GNY model

The Padé approximants for ηφ, 1/ν, and ω at two-loop
(blue), three-loop (green), and four-loop (red) orders are
shown in Figs. 2, 3, and 4 respectively. Only those Padé
approximants that are nonsingular in the extrapolation region
0 < ε < 1 are shown in the figures. With increasing Nf the
various approximants generally converge towards each other
as well as towards the d = 3 large-Nf result (black line).
Furthermore, in Fig. 3 the spread of values predicted by the
approximants decreases with increasing loop order for a fixed
Nf . However, at smaller values of Nf there is a discernible
deviation amongst the various Padé approximants. A similar
phenomenon was apparent for the chiral Ising QED-GNY the-
ory [19, 26] as well as for pure QED [17], whereas Padé ap-
proximants for pure GNY models are comparatively better be-
haved [46, 57, 72]. Physically this can be understood from the
fact that the disordered phase of pure GNY models (a Dirac
semimetal) is adiabatically connected to a system of noninter-
acting Dirac fermions regardless of the value of Nf , whereas
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FIG. 5. Padé approximants for ηφ as a function of ε for Nf = 1 at
two (blue), three (green), and four-loop (red) orders.
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FIG. 6. Padé approximants for 1/ν as a function of ε for Nf = 1 at
two (blue), three (green), and four-loop (red) orders.

in QED-GNY models the disordered phase (the ASL) con-
sists of a system of mutually interacting Dirac fermions and
gauge fields which becomes increasingly strongly coupled in
the infrared for small Nf (at least in the sense of the 1/Nf
expansion). In particular, the large variation of the [1/3] Padé
approximant for both ηφ and ω in relation to the other approx-
imants was a feature also noticed for the chiral Ising QED-
GNY model [19]; if this approximant is ignored for those
exponents a better overall consistency is achieved. Unitarity
bounds [73, 74] in conformal field theory require the scaling
dimension ∆ of a Lorentz scalar to obey ∆ ≥ d/2− 1. Since
∆φ = (d − 2 + ηφ)/2 and ∆φ2 = d − 1/ν, this condition
imposes ηφ ≥ 0, which is satisfied by all Padé approximants,
and 1/ν ≤ d/2 + 1. While all the approximants for 1/ν sat-
isfy the latter criterion in d = 3, some of them give unphysical
negative extrapolation values for small values of Nf .

For fixed fermion flavor number Nf = 1, the behavior of
the Padé approximants as functions of ε is shown in Figs. 5-7.
In Fig. 5 there is significant variation—as much as two orders
of magnitude—among the various approximants at ε = 1 for
ηφ, although the [1/1] and [2/2] approximants produce similar
estimates. (The [2/2] approximant was not plotted in Fig. 2 as
it contained singularities in the extrapolation region 0 < ε < 1
for certain values of Nf in the range considered.) In contrast
to the present results, for the case of the pure chiral Heisen-
berg GNY model, where the gauge field is absent, the Padé
approximants for ηφ shown in Ref. [46] for small Nf were
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FIG. 7. Padé approximants for ω as a function of ε for Nf = 1 at
two (blue), three (green), and four-loop (red) orders.

in good agreement with each other as well as with QMC and
functional RG results. This suggests that gauge fluctuations
are a decisive feature in the critical behavior of the scalar
field. The stability exponent ω exhibits less variability than
ηφ, as seen in Fig. 7, but better conformity between approxi-
mants was again exhibited in the pure chiral Heisenberg GNY
case [46]. This reiterates the point that for small Nf gauge
fluctuations tend to destabilize the system. The distinctive be-
havior of the [1/3] approximant at small Nf for ηφ and ω,
already evoked above, is again illustrated by its unique non-
monotonic dependence on ε atNf = 1 in Figs. 5 and 7, which
was also observed in the chiral Ising QED-GNY case (see
Ref. [19], as well as unpublished results for ω vs ε). Drop-
ping this approximant reduces the range of extrapolated val-
ues for those exponents, but not sufficiently so as to allow us
to produce a meaningful quantitative estimate. By contrast,
the three approximants [0/2], [0/3], [1/3], while at different
loop orders, produce a reasonably consistent estimate of 1/ν
for Nf = 1 in the range ∼ 0.1 - 0.3 (Fig. 6). Interestingly,
in the chiral Ising QED-GNY model the same set of three ap-
proximants also produced positive values of 1/ν at Nf = 1,
and in the same order ((1/ν)[0/2] > (1/ν)[1/3] > (1/ν)[0/3]),
but spread over a wider range (∼ 0.05 - 0.7). Similarly, the
[2/1], [2/2], and [3/1] approximants produce unphysical neg-
ative values of 1/ν at ε = 1 in both models.

Turning now to the scaling dimensions ∆ΨΨ and ∆iΨΓ5Ψ
of fermion bilinears, corresponding for Nf = 1 to CDW and
VBS susceptibility critical exponents, respectively, the Padé
approximants are shown for fixed d = 3 and arbitrary Nf
in Figs. 8-9, and for Nf = 1 and arbitrary ε in Figs. 10-11.
In the large-Nf limit both scaling dimensions asymptote to 2,
however, for small values of Nf there is a discernible varia-
tion in the approximants as for the exponents considered pre-
viously. As we only consider scalar or pseudoscalar bilinears,
unitarity bounds require ∆ΨMΨ ≥ 1/2, which is satisfied by
all approximants for Nf ≥ 2, but violated for Nf = 1 by
the [1/2] and [0/4] approximants in Fig. 8 (see also Fig. 10
for the [0/4] approximant) and all four-loop approximants in
Fig. 9. However, some of those approximants do satisfy the
unitarity requirement for Nf = 1 after Borel resummation
(see Table I). There is a higher degree of convergence be-
tween approximants at a given loop order for the axial mass
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FIG. 8. Colored lines: Padé approximants for ∆ΨΨ in d = 3 as
a function of Nf at two (blue), three (green), and four-loop (red)
orders; black line: large-Nf result from Eq. (102).
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FIG. 9. Colored lines: Padé approximants for ∆iΨΓ5Ψ in d = 3
as a function of Nf at two (blue), three (green), and four-loop (red)
orders; black line: large-Nf result from Eq. (106).

bilinear as compared to the normal mass bilinear, as can be
seen by comparing Fig. 8 and Fig. 9. Furthermore, the [0/2]
(two-loop), [0/3] and [1/2] (three-loop), and [1/3] (four-loop)
approximants all give very similar values for the axial mass
bilinear dimension at Nf = 1 (Fig. 11), in the range ∼ 0.7 -
0.8. (The [1/3] approximant was excluded from Fig. 9 for the
same reason as that mentioned for ηφ.)

In Table I we collect the numerical extrapolated values for
the critical exponents ηφ, 1/ν, and ω, and for the fermion bi-
linear dimensions ∆ΨΨ and ∆iΨΓ5Ψ, as obtained from the ε-
expansion results using both Padé and Padé-Borel resumma-
tion, for the particular case Nf = 1. A high variability in the
extrapolation values for ηφ is manifest, as already discussed,
whereas the variability is significantly less for the other ex-
ponents. Supplementing the nonnegative Padé estimates for
1/ν with Padé-Borel resummation extends the range of ob-
tained values somewhat, predicting 1/ν in the range ∼ 0.1 -
0.6. Similarly, the Padé-Borel values for the fermion bilin-
ear dimensions are systematically higher than the correspond-
ing Padé estimates. Overall, the range of extrapolated val-
ues for the exponents, apart from ηφ, is comparable to that
found in the chiral-Ising QED-GNY case. The use of more
sophisticated resummation methods [57] may potentially im-
prove those estimates, but typically requires the introduction
of a number of free parameters which effectively adds to the
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FIG. 10. Padé approximants for ∆ΨΨ as a function of ε for Nf = 1
at two (blue), three (green), and four-loop (red) orders.
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FIG. 11. Padé approximants for ∆iΨΓ5Ψ as a function of ε forNf =
1 at two (blue), three (green), and four-loop (red) orders.

uncertainty. Another potentially beneficial approach to im-
prove exponent estimates in three dimensions is the use of
two- and four-dimensional perturbation theory [72]; however,
at present there is a lack of two-dimensional studies on the
chiral-Heisenberg QED3 model.

In Table II we present extrapolated values of critical expo-
nents as obtained from the large-Nf -expansion results, again
for the particular case Nf = 1. In addition to the critical
exponents ηφ and 1/ν and the fermion bilinear dimensions
considered in Table I, we also present extrapolated results
for the scaling dimension ∆iΨΓ3Γ5Ψ which corresponds to
the QAH susceptibility exponent. The leading-order approx-
imants for 1/ν fall within the range predicted by resumma-
tion of the ε-expansion result. The fermion bilinear results
are in good agreement with one another and their uniformity
is slightly better than that observed in the chiral-Ising QED3-
GNY case [33]. The extrapolated values for ∆ΨΨ are highly
uniform and fall within the broad range of values predicted
by resummation of the ε expansion; by contrast, those for
∆iΨΓ5Ψ are systematically higher, making a large-Nf eval-
uation of this quantity at O(1/N2

f ) desirable. None of the
possible approximants for ηφ at this order exist, and thus no
quantitative statements about this exponent can be made.

Nf = 1 ηφ 1/ν ω ∆ΨΨ ∆iΨΓ5Ψ

[0/2] × 0.334 × 1.67 0.723
[0/2]PB × 0.636 × 2.34 1.34
[1/1] 11.1 × 0.526 3.17 ×
[1/1]PB × × 0.578 3.23 ×
[0/3] × 0.0826 × 1.11 0.784
[0/3]PB × 0.534 × × 1.20
[1/2] 39.4 × × 0.393 0.776
[1/2]PB × × × 2.39 0.787
[2/1] 135 × 0.894 × ×
[2/1]PB × × 0.862 × ×
[0/4] × × × 0.452 0.0986
[0/4]PB × 0.492 × 2.05 1.10
[1/3] 1.09 0.208 0.0596 × 0.724
[1/3]PB 2.26 0.236 0.664 2.34 ×
[2/2] 11.7 × 1.71 × ×
[2/2]PB × × × × ×
[3/1] 5.22 × 1.27 × ×
[3/1]PB 5.29 × 1.48 × ×

TABLE I. Padé and Padé-Borel resummations of the ε-expansion ex-
pressions for d = 3 and Nf = 1. Approximants which are either
singular in the domain 0 < ε < 1, undefined, or negative, are de-
noted by ×.

Nf = 1 ηφ 1/ν ∆ΨΨ ∆iΨΓ5Ψ ∆iΨΓ3Γ5Ψ

[0/1] × 0.4022 1.873 1.458 7.783
[0/1]PB × 0.5192 1.880 1.540 ×
[0/2] × – 1.891 – –
[0/2]PB × – 1.888 – –
[1/1] × – 1.889 – –
[1/1]PB × – 1.887 – –

TABLE II. Padé and Padé-Borel resummations of the large-Nf ex-
pressions for d = 3 and Nf = 1. Approximants which are either
singular in the domain Nf ≥ 1, undefined, or negative, are denoted
by ×. The exponents that are unknown beyond O(1/Nf ) are de-
noted by −, for these quantities only one approximant can be used.

B. Pure chiral Heisenberg GNY model

We finally turn to the resummation of ε-expansion and
large-Nf expressions for the fermion bilinear scaling di-
mensions in the pure chiral Heisenberg GNY model. Fig-
ures 12 and 13 show the results of Padé extrapolation of the
ε-expansion expressions for the normal and axial mass oper-
ator dimensions, respectively, as a function of Nf . The cor-
responding large-Nf expressions, Eqs. (114) and (115), are
plotted on the same graphs for comparison purposes. The
spread of values for ∆ΨΨ is appreciable, but comparatively
less than for the same quantity in the presence of the gauge
field (Fig. 8). This state of affairs was also observed in the
chiral Ising QED-GNY model [19]. Remarkably, the large-
Nf result and the [0/4] Padé approximant give very similar
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from Eq. (114).
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FIG. 13. Colored lines: Padé approximants for ∆iΨΓ5Ψ in d = 3 as
a function of Nf in the chiral Heisenberg GNY model at two (blue),
three (green), and four-loop (red) orders; black line: large-Nf result
from Eq. (115).

results for Nf ≥ 2. The spread of values is even smaller,
and the convergence of the approximants with increasing loop
order better, for ∆iΨΓ5Ψ.

In Figs. 14 and 15 we plot the Padé approximants for Nf =
1 as a function of ε, and in Table III we present numerical
results for the Nf = 1 Padé and Padé-Borel approximants in
d = 3. With the exception of the [0/4] approximant without
Borel resummation, the results give a reasonably consistent
estimate for ∆ΨΨ in the range ∼ 2.5 - 2.7, and for ∆iΨΓ5Ψ
in the range ∼ 1.4 - 2.0. For comparison, in Table IV we
display the Padé and Padé-Borel approximants obtained from
the large-Nf expansion results. While the approximants for
the axial mass dimension fall within the range predicted by
the ε-expansion results, those for the normal mass dimension
fall either within the same range (the [0/1] approximant) or
give somewhat lower values (∼ 2.1 - 2.3).

VI. CONCLUSION

In this paper we provided a comprehensive analysis of
the critical properties of the chiral Heisenberg QED3-GNY
model, motivated by a recent QMC study [8] of a U(1) lattice
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FIG. 14. Padé approximants for ∆ΨΨ as a function of ε for Nf = 1
in the chiral Heisenberg GNY model at two (blue), three (green), and
four-loop (red) orders.
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FIG. 15. Padé approximants for ∆iΨΓ5Ψ as a function of ε forNf =
1 in the chiral Heisenberg GNY model at two (blue), three (green),
and four-loop (red) orders.

gauge theory with spinful fermions on the 2D square lattice
that observed a direct transition between a U(1) deconfined
phase, adiabatically connected to the ASL, and an antifer-
romagnetic Néel-ordered phase. Using the ε expansion be-
low four spacetime dimensions to four-loop order, we showed
the existence of a bona fide critical fixed point in the chiral
Heisenberg QED3-GNY model for an arbitrary numberNf of
SU(2) doublets of four-component Dirac fermions. The exis-
tence of a critical fixed point for Nf = 1 establishes that the
Néel-ASL transition should be continuous, in agreement with
the numerical results in Ref. [8]. This fixed point was also
shown to exist in the large-Nf expansion in fixed 2 < d < 4
spacetime dimensions. The ε-expansion was used to com-
pute several critical exponents to O(ε4), including the order
parameter anomalous dimension ηφ, the inverse correlation
length exponent 1/ν, and the stability critical exponent ω. We
additionally computed the scaling dimensions of two Dirac
fermion bilinears, the normal mass operator ΨΨ and the axial
mass operator iΨΓ5Ψ, which for Nf = 1 had the interpreta-
tion of CDW and VBS susceptibility exponents at the Néel-
ASL transition. These ε-expansion results were supplemented
by computations in the large-Nf expansion. The exponents
ηφ and ∆ΨΨ were computed to O(1/N2

f ), while 1/ν and
∆iΨΓ5Ψ were computed to O(1/Nf ). Additionally, the QAH
susceptibility exponent, controlled by the scaling dimension
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Nf = 1 ∆ΨΨ ∆iΨΓ5Ψ

[0/2] 2.55 1.79
[0/2]PB 2.66 2.01
[1/1] × 1.51
[1/1]PB × ×
[0/3] 2.69 1.66
[0/3]PB × 1.92
[1/2] 2.65 1.55
[1/2]PB 2.69 1.56
[2/1] 2.62 1.54
[2/1]PB 2.61 1.54
[0/4] 2.02 1.57
[0/4]PB 2.54 1.87
[1/3] 2.57 1.24
[1/3]PB 2.67 ×
[2/2] × 1.52
[2/2]PB × ×
[3/1] 2.51 1.53
[3/1]PB 2.52 1.53

TABLE III. Padé and Padé-Borel resummations of the ε-expansion
expressions for d = 3 and Nf = 1 in the chiral Heisenberg GNY
model. Approximants which are either singular in the domain 0 <
ε < 1, undefined, or negative, are denoted by ×.

Nf = 1 ∆ΨΨ ∆iΨΓ5Ψ

[0/1] 2.508 1.816
[0/1]PB × 1.829
[0/2] 2.239 –
[0/2]PB 2.168 –
[1/1] 2.319 –
[1/1]PB 2.325 –

TABLE IV. Padé and Padé-Borel resummations of the large-Nf ex-
pressions for d = 3 and Nf = 1 in the chiral Heisenberg GNY
model. Approximants which are either singular in the domain Nf ≥
1, undefined, or negative, are denoted by ×. The exponents that are
unknown beyond O(1/Nf ) are denoted by −; for these quantities
only one approximant can be used.

of the time-reversal- and parity-odd bilinear iΨΓ3Γ5Ψ, was
computed to O(1/Nf ). The CDW and VBS exponents were
also computed at the critical point of the pure chiral Heisen-
berg GNY model, which forNf = 1 describes the semimetal-
AF insulator transition in graphene and the π-flux square lat-
tice. Padé and Padé-Borel resummation techniques were sub-
sequently applied to obtain numerical estimates of all critical
exponents in d = 3 for generalNf , with a special emphasis on
Nf = 1. The critical exponents computed here are in princi-
ple accessible to sign-problem-free QMC simulations [8], and
we hope to compare the estimates obtained here to numerical
studies of critical properties at the Néel-ASL QCP in the near
future.

Besides its applications to condensed matter physics, the

critical fixed point of the chiral Heisenberg QED3-GNY
model is of interest as an example of (2+1)D conformal field
theory. Recent years have witnessed a resurgence of interest
in such theories, due in large part to highly successful numeri-
cal implementations of the conformal bootstrap program (for a
recent review, see, e.g., Ref. [75]). These have led to the deter-
mination of d = 3 critical exponents with unprecedented ac-
curacy in various models of interest to both statistical mechan-
ics/condensed matter physics and high-energy physics, such
as the 3D Ising [76] and O(N) vector [77] models, the chiral
Ising GNY model [78], and QED3 [79, 80]. We hope that this
work will stimulate the study of chiral Ising/XY/Heisenberg
QED3-GNY models with the conformal bootstrap technique,
which may lead to precise determinations of critical exponents
that could be compared with ε- and large-Nf expansion results
presented in this and previous work.

ACKNOWLEDGMENTS

We gratefully acknowledge I. Affleck, É. Dupuis, S.
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Appendix A: Symmetry transformation properties of fermion
bilinears

In this Appendix we determine how Dirac fermion bilinears
of the form ψτiσjψ, that are invariant under d = 3 Lorentz
transformations in the continuum theory, transform under the
symmetries of the microscopic Hamiltonian (1). (The τi ma-
trices act in nodal (±) space, while the σj matrices act in spin
space.) This in turn allows us to associate to each bilinear
a microscopic operator with the same symmetry properties,
but defined in terms of the original lattice fermions crσ, c†rσ ,
whose long-distance correlations at the Néel-ASL QCP will
be governed by the scaling dimension of the bilinear at the
chiral Heisenberg QED3-GNY fixed point.

The microscopic symmetries of interest are the symmetries
of the p4m space group of the square lattice, generated by the
four-fold rotation C4 about a site and the reflection Rx about
the yz plane and through a site, the unit lattice translations Tx
and Ty , and time-reversal symmetry T . The model also has a
particle-hole symmetry at half filling, but we will not discuss
it further. Choosing the two Bravais lattice vectors for the π-
flux phase in Fig. 1 as a1 = x̂ − ŷ and a2 = x̂ + ŷ, and
denoting the annihilation operator cRAσ (cRBσ) for a fermion
of spin σ on Bravais lattice siteR = n1a1+n2a2, n1, n2 ∈ Z
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ψσψ ψτ1σψ ψτ2σψ ψτ3σψ

C4 + −ψτ2σψ ψτ1σψ +

Rx − + − +

Tx + + − −
Ty + − + −
T + − − −

TABLE V. PSG transformation properties of spin-triplet Dirac
fermion bilinears.

ψψ ψτ1ψ ψτ2ψ ψτ3ψ

C4 + −ψτ2ψ ψτ1ψ +

Rx − + − +

Tx + + − −
Ty + − + −
T − + + +

TABLE VI. PSG transformation properties of spin-singlet Dirac
fermion bilinears.

and sublattice A (sublattice B) by c(n1,n2)Aσ (c(n1,n2)Bσ), the
fermion annihilation operator transforms as

C4 : c(n1,n2)Aσ → c(−n2,n1)Aσ, (A.1)

c(n1,n2)Bσ → c(−n2,n1−1)Bσ, (A.2)

Rx : c(n1,n2)Aσ → c(−n2,−n1)Aσ, (A.3)

c(n1,n2)Bσ → c(−n2,−n1)Bσ, (A.4)

Tx : c(n1,n2)Aσ → c(n1+1,n2)Bσ, (A.5)

c(n1,n2)Bσ → c(n1,n2+1)Aσ, (A.6)

Ty : c(n1,n2)Aσ → c(n1,n2)Bσ, (A.7)

c(n1,n2)Bσ → c(n1−1,n2+1)Aσ, (A.8)

as well as c(n1,n2)Aσ → (iσ2)σσ′c(n1,n2)Aσ′ and i → −i
under T , and likewise on the B sublattice.

To determine how the Dirac fermion bilinears ψτiσjψ
transform under the microscopic symmetries, one must first
determine the PSG [9] associated with the Hamiltonian (2),
i.e., the combinations of transformations (A.1)-(A.8) and
U(1) gauge transformations

c(n1,n2)Aσ → eiθ(n1,n2)Ac(n1,n2)Aσ, (A.9)

c(n1,n2)Bσ → eiθ(n1,n2)Bc(n1,n2)Bσ, (A.10)

that leave the π-flux Hamiltonian (2) invariant. Writing
any of the previously listed symmetry transformations as
ScrσS−1 = Sσσ′cS(r)σ′ , where S(r) denotes the transformed
coordinate, the associated PSG transformation is

S̃crσS̃−1 = GSr Sσσ′cS(r)σ′ , (A.11)

where GSr ∈ U(1). By explicit calculation one finds that the
gauge transformations in the PSG can be chosen as

GC4

(n1,n2)A = GC4

(n1,n2)B = (−1)n1 , (A.12)
GRx(n1,n2)A = GRx(n1,n2)B = (−1)n1+n2 , (A.13)

GTx(n1,n2)A = GTx(n1,n2)B = (−1)n1+n2 , (A.14)

G
Ty
(n1,n2)A = G

Ty
(n1,n2)B = (−1)n1+n2 , (A.15)

GT(n1,n2)A = GT(n1,n2)B = 1. (A.16)

Next one can determine how the PSG acts on the Dirac
fermions by following the procedure detailed in Ref. [51],
i.e., by expanding the Dirac fermion fields in the q → 0
limit in terms of the microscopic fermion operators, and us-
ing Eq. (A.11). We find

C4 : ψ → eiπµ3/4e−iπτ3/4ψ, (A.17)
Rx : ψ → µ2τ2ψ, (A.18)
Tx : ψ → iτ1ψ, (A.19)
Ty : ψ → iτ2ψ, (A.20)
T : ψ → µ2τ2iσ2ψK, (A.21)

where the µi act on the two-component spinor (Dirac) in-
dices and K denotes complex conjugation. One can check
that these are indeed symmetries of the Dirac Hamiltonian (6),
provided the momentum p is appropriately transformed. From
Eq. (A.17)-(A.21) we can in turn determine the PSG trans-
formation properties of spin-triplet (Table V) and spin-singlet
(Table VI) Dirac fermion bilinears.
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