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Abstract

We investigate the sensitivity of Higgs(-like) inflation to higher dimensional opera-
tors in the nonminimal couplings and in the potential, both in the metric and Palatini
formalisms. We find that, while inflationary predictions are relatively stable against
the higher dimensional operators around the attractor point in the metric formalism,
they are extremely sensitive in the Palatini one: for the latter, inflationary predictions
are spoiled by |ξ4| & 10−6 in the nonminimal couplings

(
ξ2φ

2 + ξ4φ
4 + · · ·

)
R, or by

|λ6| & 10−16 in the Jordan-frame potential λ4φ
4 + λ6φ

6 + · · · (both in Planck units).
This extreme sensitivity results from the absence of attractor in the Palatini formal-
ism. Our study underscores the challenge of realizing inflationary models with the
nonminimal coupling in the Palatini formalism.
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1 Introduction

The inflationary paradigm [1–3] is one of the fundamental elements of modern cosmology,
providing an elegant solution to the horizon and flatness problems [3] and the dilution of
possible unwanted relics [2]. Furthermore, the slow-roll inflation [4–6] successfully produces
the primordial density perturbations by quantum fluctuations of the inflaton field [7,8]. The
inflation has become precision science, in which a few parameters of the model beautifully
fits hundreds of data points in the observational data [9]. We expect further experimen-
tal improvements in near future, with the tensor-to-scalar ratio r being explored by the
LiteBIRD [10], POLARBEAR-2 [11], and CORE [12] down to r ∼ 10−3.♦1

The Higgs field is the only elementary scalar field in the Standard Model (SM) of parti-
cle physics, and it is tempting to consider a possibility that it plays the role of the inflaton
field [15–18]. In these early studies, the possibility of induced gravity has been mainly
pursued where the Einstein-Hilbert action SEH is absent, and the nonminimal coupling ξ2
between the Higgs field and the Ricci scalar is required to be of order ξ2 ∼ 1034.♦2 The mod-
ern version of the Higgs inflation [21] allows SEH, which is not prohibited by any symmetry,
and the nonminimal coupling becomes of order ξ2 ∼ 105–6.♦3 This modern version is indeed
one of the best fit models of the current observational data [9].♦4 There are also variations
in addition to this vanilla model: the critical [24, 26–28], the hill-climbing [29, 30], and the
hill-top [31] Higgs inflations. Sharing the virtue of the vanilla model, these variations predict
different values of r along with other observables such as dns/d ln k, d2ns/d ln k2 as well as
nt, dnt/d ln k, which can possibly be used to distinguish between these models in near-future
experiments.

However, such various Higgs inflations have been studied mainly in the so-called metric
formalism for past decades. It is known that, even in the Einstein gravity, there are two
different ways to formulate gravity: metric and Palatini formalisms.♦5 The former assumes
the Levi-Civita connection from the beginning by imposing the metricity and torsion free

♦1 The observation of r is important as it will be an indirect evidence of the quantum graviton fluctuation
during the inflation, namely the first evidence of quantum gravity. Even direct observation of the cosmic
graviton background might be possible in the future space interferometers such as the (Ultimate) DECIGO
experiment [13,14].
♦2 See also Refs. [19, 20] for inflation with the nonminimal coupling.
♦3 This possibility has also been commented in the earlier Ref. [15] with essentially the same parameters:

ξ2 ∼ 104 and the Higgs quartic coupling (around the Planck scale) λ4 ∼
(
ξ2/105

)2 ∼ 10−2.
♦4 We note that the value of the running Higgs quartic coupling λ4 has to be positive near the Planck

scale for the successful Higgs inflation (see e.g. Refs. [22, 23] for an uncertainty due to the lack of our

knowledge of the ultraviolet completion), requiring the pole mass of the top quark to be mpole
t . 171.3 GeV

(see e.g. Ref. [24]). The frequently quoted constraint mMC
t = 173.0 ± 0.4 GeV [25] is on the Monte Carlo

mass, a parameter in the Monte Carlo code, whose relation to the pole mass is unknown. Currently the pole
mass is best deduced from the cross-section measurements, and a simple combination of experiments gives
mpole
t = 173.1± 0.9 GeV [25], which is 2σ-consistent with the Higgs inflation. Note that this bound may be

too stringent since it assumes totally uncorrelated systematic errors among experiments. We also note that
the inclusion of the Higgs-portal dark matter greatly relaxes the constraint even under the existence of the
right-handed neutrinos [26].
♦5 It has been noted [32] that the original Palatini’s paper [33] ‘was rather far from what is usually meant

by “Palatini’s method,” which was instead formulated ... by Einstein’ [34]. Here we follow the convention
and call it Palatini anyway.
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conditions, while the latter regards the metric and connection as independent variables,
with respect to which we take the variation of the action.♦6 Though these two formalisms
give the same dynamics within the Einstein gravity, their predictions differ once we introduce
nontrivial couplings with matter and gravity. This indeed happens in the Higgs inflation, and
their difference in various setups has been attracting considerable interest recently [31,35–52].

In this paper, we study the (vanilla) Higgs inflation both in metric and Palatini for-
malisms. From the viewpoint of effective theory, the nonminimal coupling in the Higgs infla-
tion ξ2φ

2R should be regarded as a truncation in the infinite series (1 + ξ2φ
2 + ξ4φ

4 + · · · )R.
The potential term λ4φ

4 should also be regarded as a truncation in λ4φ
4 + λ6φ

6 + · · · .
While there are extensive discussion on the scale at which these higher-order couplings ap-
pear [53–57],♦7 we at least expect that new physics effects appear at the Planck scale MP.
Therefore, if the inflationary predictions significantly depend on the higher-order terms sup-
pressed by the Planck scale, it means that the model construction is challenging in such
setups. This is indeed what we find for the Higgs inflation with the Palatini formalism.

The organization of the paper is as follows. In Sec. 2 we first introduce basic ingredients
and review the inflationary predictions in the standard setup. In Sec. 3, we investigate the
sensitivity of the Higgs-like inflation to the higher-order corrections in the Weyl rescaling
factor. In Sec. 4, we investigate the sensitivity to the potential. Finally, we give summary
and discussion in Sec. 5. In Appendix A, we show the full expressions for the relevant
formulae.

2 Setup

In this section, we summarize two independent formalisms of Higgs-like inflation, namely the
metric and Palatini formalisms, and review the standard predictions without higher order
corrections for each case.

2.1 Basic ingredients: metric and Palatini formalisms

We start from the action in the Jordan frame:

S =

∫
d4x
√
−gJ

[
1

2
Ω2(φ) gµνJ RJµν −

1

2
gµνJ ∂µφ ∂νφ− VJ(φ)

]
, (2.1)

where φ is the (Jordan-frame) inflaton and

Ω2(φ) = 1 + ξ2φ
2 + ξ4φ

4 + · · · , VJ(φ) = λ4φ
4 + λ6φ

6 + · · · , (2.2)

♦6 Throughout this paper we assume vanishing torsion. In stringy context, this corresponds to assuming the
trivial background for any higher-rank gauge fields. We note that while a three-form gauge-field background
can be treated as a torsion, five- and higher-form gauge-field background cannot.
♦7 Note that the cutoff-scale issue has turned out to be more severe at the preheating regime in the

metric formalism [58] compared with earlier estimations [59–61]. This is due to explosive production of the
longitudinal gauge bosons (see also Ref. [62]). On the other hand, such an effect is reported to be absent in
the Palatini formalism [63].
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are the Weyl-rescaling factor and the Jordan-frame potential, respectively; here we have
assumed the Z2 symmetry: φ → −φ.♦8 The Ricci tensor is RJµν = RJµν(gJ) in the metric
formalism while RJµν = RJµν(ΓJ) in the Palatini formalism, with the arguments gJ and ΓJ

symbolically denoting the metric and connection in the Jordan frame, respectively. The
subscript J refers to the Jordan frame. We use the Planck unit MP = 1 throughout the
paper, with MP ≡ 1/

√
8πG = 2.4× 1018 GeV being the reduced Planck mass.

A metric redefinition by a Weyl transformation gµν = Ω2gJµν gives the transformation of
the Ricci scalar as

RJ =

Ω2

[
R + 3� ln Ω2 − 3

2
(∂ ln Ω2)2

]
(metric),

Ω2R(Γ) (Palatini),

(2.3)

where the result for the Palatini formalism is trivially obtained as the Ricci tensor is inde-
pendent of the metric transformation. After this, we obtain the Einstein-frame action

S =

∫
d4x
√
−g
[

1

2
gµνRµν −

1

2
(∂χ)2 − V (φ)

]
, (2.4)

where V is the Einstein-frame potential V = VJ/Ω
4 and χ is the canonical inflaton field

in this frame. The relation between χ and the Jordan-frame inflaton φ depends on the
formalism:

dχ

dφ
=


√

1

Ω2
+

3

2

(
d ln Ω2

dφ

)2

(metric),

1

Ω
(Palatini).

(2.5)

The slow-roll parameters and the e-folding are calculated through

ε =
1

2

(
dV/dχ

V

)2

=
1

2

(
dV/dφ

V

)2
1

(dχ/dφ)2
, (2.6)

η =
d2V/dχ2

V
=

[
d2V/dφ2

V

1

(dχ/dφ)2
− dV/dφ

V

d2χ/dφ2

(dχ/dφ)3

]
, (2.7)

N =

∫
dχ√
2ε

=

∫
dφ

d lnV/dφ

(
dχ

dφ

)2

, (2.8)

and the resulting inflationary predictions are expressed by

As =
1

24π2

V

ε
, ns = 1− 6ε+ 2η, r = 16ε. (2.9)

We use As = 2.1 × 10−9 (Planck TT,TE,EE+lowE+lensing+BK14+BAO [9]) throughout
our analysis.

♦8 For the Higgs field, this is a natural assumption since the gauge invariance allows only a pair H†H as
a basic building block. If we relax this condition, there are other potentially interesting cases without the
Z2 symmetry such as Ω2 = 1 + ξ2φ

2 + ξ3φ
3 and VJ = λ4φ

4 + λ6φ
6. In this case, the potential in Einstein

frame has a plateau at a large field limit, φ� max
(
ξ2
ξ3
,
√

λ4

λ6

)
as V ∼ VJ

Ω4 ∼ λ6

ξ23

(
1− ξ2

ξ3φ
+ λ4

λ6φ2

)
, which is

universal as long as limφ→∞
VJ

Ω4 → const. [64]. In this case inflationary dynamics would happen at a lower

regime φ < ξ2
ξ3
,
√

λ4

λ6
.
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2.2 Standard predictions without higher dimensional operators

Before including higher dimensional operators in Secs. 3 and 4, let us review the inflationary
predictions in the simplest setup. We truncate the Weyl-rescaling factor and the Jordan-
frame potential as

Ω2 = 1 + ξ2φ
2, VJ = λ4φ

4, (2.10)

for both metric and Palatini formalisms. The Einstein-frame potential becomes

V =
λ4φ

4

(1 + ξ2φ2)2
. (2.11)

Metric formalism

In the metric formalism, the relation (2.5) between χ and φ becomes

dχ

dφ
=

√
1 + ξ2 (1 + 6ξ2)φ2

1 + ξ2φ2
, (2.12)

and the integral of the e-folding (2.8) can be exactly performed:

N =
1

8

[
(1 + 6ξ2)φ

2 − 6 ln
(
1 + ξ2φ

2
)]
, (2.13)

where we have defined N as the number of e-folding from φ = 0. Note that generically
the difference between this definition and the usual one measured from max(|ε| , |η|) = 1 is
suppressed by 1/N in the expression of φ(N).

Eq. (2.12) can be solved as♦9

χ(φ) =

√
1 + 6ξ2
ξ2

arcsinh
[√

ξ2 (1 + 6ξ2)φ
]
−
√

6 arctanh

[ √
6ξ2φ√

1 + ξ2 (1 + 6ξ2)φ2

]
. (2.15)

Although this is an exact formula, it is hardly inverted in general. However, in the limit
ξ2 � 1, the new kinetic term ∼ (∂ ln Ω2)

2
originating from the Ricci scalar dominates over

the original kinetic term ∼ (∂φ)2 of the inflaton field, and thus the canonical inflaton field
is well approximated as

χ '
√

3

2
ln Ω2 =

√
3

2
ln
(
1 + ξ2φ

2
)
. (2.16)

♦9 The following formulae are useful: for −1 < x < 1,

arcsinhx = ln
(
x+

√
1 + x2

)
, arctanhx =

1

2
ln

(
1 + x

1− x

)
. (2.14)
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Substituting this back to the potential, we get

V ' λ4
ξ22

(
1− e−

√
2
3
χ
)2
. (2.17)

The slow-roll parameters with this potential are calculated as

ε ' 4

3
e−2
√

2
3
χ ' 3

4N2
, η ' −4

3
e−
√

2
3
χ ' − 1

N
, (2.18)

with the e-folding given by

N ' 3

4
e
√

2
3
χ. (2.19)

The inflationary predictions become

As '
N2

32π2

λ4
ξ22
, ns ' 1− 2

N
, r ' 12

N2
. (Metric) (2.20)

In the expression of ns, the deviation from unity is dominated by the contribution from η in
Eq. (2.9).

Calculations above are performed in terms of the canonical inflaton χ in the Einstein
frame. From Eq. (2.13), we can read off the behavior of φ for ξ2 � 1 as

φ '

√
4N

3ξ2
, (2.21)

which is consistent with Eqs. (2.16) and (2.19). We see that the value of φ for a fixed e-
folding scales as ∝ 1/

√
ξ2.
♦10 This scaling behavior turns out to be important in interpreting

our results later.

Palatini formalism

In Palatini formalism, the relation (2.5) becomes

dχ

dφ
=

1√
1 + ξ2φ2

, (2.22)

and the e-folding (2.8) is obtained as

N =
φ2

8
↔ φ =

√
8N, (2.23)

where we have again defined N as the number of e-folding from φ = 0. We see that the
relation is independent of ξ2 in contrast to the metric formalism. We also see that the value

♦10In general, for monomial functions Ω2 = 1 + ξmφ
m and VJ ∝ φ2m, the scaling behavior is φ '

(
4N
3ξm

)1/m

with m ≥ 2 [64].
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of φPalatini ∼
√
N at a given e-folding N is significantly larger than that in metric one,

φmetric ∼
√
N/ξ2 for ξ2 � 1 in Eq. (2.21).

Again one can exactly solve Eq. (2.22):

χ =
1√
ξ2

arcsinh
[√

ξ2φ
]

=
1√
ξ2

ln
[√

ξ2φ+
√

1 + ξ2φ2
]

↔ φ =
1√
ξ2

sinh
[√

ξ2χ
]
,

(2.24)

and the Einstein-frame potential becomes

V =
λ4
ξ22

tanh4
[√

ξ2χ
]
, (2.25)

In the limit
√
ξ2χ� 1, we see

φ ' 1

2
√
ξ2
e
√
ξ2χ, N ' 1

32ξ2
e2
√
ξ2χ, (2.26)

and the slow-roll parameters become

ε ' 128ξ2e
−4
√
ξ2χ ' 1

8N2ξ2
, η ' −32ξ2e

−2
√
ξ2χ ' − 1

N
. (2.27)

From the expression of η we see that the inflation ends at χ ' ln(32ξ2)

2
√
ξ2
� 1 for ξ2 � 1, which

corresponds to φ ' 2
√

2. The curvature perturbation and other inflationary observables
become

As '
N2

3π2

λ4
ξ2
, ns ' 1− 2

N
, r ' 2

N2ξ2
. (Palatini) (2.28)

In the expression of ns, the deviation from unity is dominated by the contribution from η
in Eq. (2.9), similarly to the metric formalism. Note that the scaling As ∝ 1/ξ2 in Palatini
formalism is different from As ∝ 1/ξ22 in metric one. Also, the tensor-to-scalar ratio r is
multiplicatively suppressed by a factor of 1/ξ2 � 1 in contrast to the metric formalism.

3 Sensitivity to corrections in the Weyl-rescaling fac-

tor

The original truncation (2.10) takes into account up to the next-to-leading and leading
terms in VJ and Ω2, respectively. We naturally expect further terms arising from radiative
corrections and from new physics effects. Without knowing all sources of corrections, we
phenomenologically parametrize the corrections by introducing higher dimensional operators
as in Eq. (2.2).

To be specific, we first consider the correction to the Weyl rescaling factor Ω2 in both
metric and Palatini formalisms in detail and see their effects to the inflationary dynamics and
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observables. Correction to the Jordan-frame potential will be discussed in Sec. 4. Through-
out both the analysis, we assume that |ξp>2| � ξ2 and |λq>4| � λ4 so that the success of the
original Higgs-like inflation with nonminimal coupling ξ2 � 1 is maintained.

The first case we consider is a correction to the Weyl rescaling factor:

Ω2 = 1 + ξ2φ
2 + ξ4φ

4, VJ = λ4φ
4. (3.29)

Here we take into account the correction to Ω2 only, and leave the correction to VJ for the
later section. We fix their signs of ξ2 and λ4 to be positive, while we allow both positive and
negative values for ξ4. Now the Einstein-frame potential becomes

V =
λ4φ

4

(1 + ξ2φ2 + ξ4φ4)2
. (3.30)

In this setup we have three parameters

(λ4, ξ2, ξ4),

but we can eliminate one of them by fixing the observed value of As, which we take to be
As = 2.1× 10−9 (Planck TT,TE,EE+lowE+lensing+BK14+BAO [9]) as mentioned above.

3.1 Predictions

Metric formalism

In metric formalism, the relation (2.5) between χ and φ becomes

dχ

dφ
=

√
1 + ξ2φ2 + ξ4φ4 + 6 (ξ2φ+ 2ξ4φ3)2

1 + ξ2φ2 + ξ4φ4
. (3.31)

The slow-roll parameters and e-folding are calculated through Eqs. (2.6)–(2.8):

ε =
8(1− ξ4φ4)2

φ2 [1 + (ξ2 + 6ξ22)φ2 + (ξ4 + 24ξ2ξ4)φ4 + 24ξ24φ
6]
, (3.32)

η =
4 [3 + (ξ2 + 12ξ22)φ2 + (−2ξ22 − 12ξ32 + 24ξ2ξ4 − 11ξ4)φ

4 + · · ·+ 96ξ44φ
14]

φ2 [1 + (ξ2 + 6ξ22)φ2 + (ξ4 + 24ξ2ξ4)φ4 + 24ξ24φ
6]

2 , (3.33)

N =
1 + 6ξ2

16
√
ξ4

ln

[
1 +
√
ξ4φ

2

1−
√
ξ4φ2

]
− 3

4
ln
[(

1− ξ4φ4
) (

1 + ξ2φ
2 + ξ4φ

4
)]
. (3.34)

Here we do not show a complete expression for η just to avoid complications; see Appendix A
for it. Note that the e-folding diverges for ξ4 > 0 at φ = ξ

−1/4
4 , which corresponds to the

point where the potential derivative vanishes. The scalar power spectrum amplitude reads

As =
λ4φ

6

192π2

1 + ξ2 (1 + 6ξ2)φ
2 + (1 + 24ξ2) ξ4φ

4 + 24ξ24φ
6

(1− ξ4φ4)2 (1 + ξ2φ2 + ξ4φ4)2
. (3.35)
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Palatini formalism

In Palatini formalism, the relation (2.5) becomes

dχ

dφ
=

1√
1 + ξ2φ2 + ξ4φ4

, (3.36)

which can be explicitly solved as shown in Appendix A. Also, from Eqs. (2.6)–(2.8), the
slow-roll parameters and e-folding become

ε =
8(1− ξ4φ4)2

φ2 [1 + ξ2φ2 + ξ4φ4]
, (3.37)

η =
4(3− 2ξ2φ

2 − 14ξ4φ
4 − 2ξ2ξ4φ

6 + 3ξ24φ
8)

φ2 [1 + ξ2φ2 + ξ4φ4]
, (3.38)

N =
1

16
√
ξ4

ln

[
1 +
√
ξ4φ

2

1−
√
ξ4φ2

]
↔ φ = ξ

−1/4
4

√
tanh

[
8
√
ξ4N

]
, (3.39)

where we inverted the relation in the last equality. Note that the e-folding diverges at the
same point φ = ξ

−1/4
4 as the metric formalism for ξ4 > 0 because the potential derivative

vanishes there. The scalar power spectrum amplitude reads

As =
λ4φ

6

192π2

1

(1− ξ4φ4)2 (1 + ξ2φ2 + ξ4φ4)
. (3.40)

3.2 Results

In Fig. 1, we show predictions of the metric (left) and Palatini (right) formalisms in the
ns-r plane for N = 60 (top) and 50 (bottom).♦11 The blue contours show constant values
of ξ2, while the red ones show constant values of ξ4. The value of the quartic coupling λ4 is
also presented as a density plot. The smiley marker is the prediction of the quartic chaotic
inflation, while the star denotes the attractor point for ξ2 � 1. For ξ2 < 10−3 and ξ2 > 1, the
corresponding blue lines are almost degenerate with the upper and lower boundaries with
the gray regions, respectively. We see the following:

• For relatively small ξ2 (. 10−1), even a small injection of |ξ4| & 10−5 drastically changes
the inflationary predictions in both metric and Palatini formalisms.

• For relatively large ξ2 (& 1), the inflationary predictions are stable against the injection
of ξ4 for the metric formalism (left): we see that all the red lines converge to the
attractor point. On the other hand, the predictions are no more stable against the
injection of |ξ4| & 10−5 for the Palatini formalism (right).

In Fig. 2, we plot the behavior of λ4 as a function of |ξ4| for ξ4 < 0 (left panel) and
ξ4 > 0 (right panel) with N = 60 for fixed values of ξ2. In Fig. 3, we plot ns (solid, left axis)
and r (dashed, right axis) similarly. Figs. 4 and 5 are the corresponding ones with N = 50.
One immediately sees that the deviation from the attractor occurs around |ξ4| ∼ 10−4ξ22 and
around |ξ4| ∼ 10−5 for the metric and Palatini cases, respectively.

♦11 It has been pointed out that the e-folding number typically takes N ' 50 in the Palatini formalism [52].

8



log10λ4

-14

-12

-10

-8

-6

-4

-2

0

ξ2

ξ4

log10λ4

-14

-12

-10

-8

-6

-4

-2

0

ξ2

ξ4

Figure 1: Effects of the higher dimensional operator ξ4φ
4RJ in the metric (left) and Palatini (right)

formalisms with N = 60 (top) and 50 (bottom). We plot contours of fixed ξ2 (blue, horizontal) and
of fixed ξ4 (red, vertical) in the ns-r plane. The value of λ4 is also shown as a density plot. Allowed
regions of 1σ and 2σ from the Planck experiment [9] (TT,TE,EE+lowE+lensing+BK14+BAO) are
also shown in the center.
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Metric (N = 60)
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Figure 2: Behavior of λ4 along constant ξ2 slices in Fig. 1 for N = 60. We show λ4 as a function
of |ξ4| for ξ4 < 0 (left) and ξ4 > 0 (right). The lines are ξ2 = 1 (blue), 102 (red), and 104 (green)
for the metric case, while ξ2 = 106 (blue), 108 (red), and 1010 (green) for the Palatini case.
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Figure 3: Behavior of ns (solid, left axis) and r (dashed, right axis) along constant ξ2 slices in
Fig. 1 for N = 60. All the solid lines are degenerate for the Palatini case.
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Metric (N = 50)
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Figure 4: The same as in Fig. 2 except for N = 50.
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Figure 5: The same as in Fig. 3 except for N = 50.
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3.3 Interpretation

Let us interpret our results, especially the threshold value of ξ4 which gives deviation from
the observationally allowed region. In the following we use N � 1 and ξ2 � 1 and keep the
leading contribution for each order in ξ4 expansion when necessary.

In the metric formalism, let us first expand Eq. (3.34) by small ξ4 around φ ' φξ4=0 '√
4N/3ξ2 (see Eq. (2.21)):

N =

[
1 + 6ξ2

8
φ2 − 3

4
ln(1 + ξ2φ

2)

]
+ ξ4

[
1 + 6ξ2

24
φ6 − 3

4

ξ2φ
6

1 + ξ2φ2

]
+ · · · . (3.41)

Substituting φ = φξ4=0(1+cξ4) and comparing leading terms in ξ4 we find that the deviation
of φ is given by

φ ' φξ4=0

(
1− 8N2

27ξ22
ξ4

)
. (3.42)

We next expand ε (3.32) and η (3.33) by small ξ4 around the same point of φ, and then
substitute Eq. (3.42):

ε ' 4

3ξ22φ
4

(
1− 2ξ4φ

4
)
' 3

4N2

(
1− 64N2

27ξ22
ξ4

)
, (3.43)

η ' − 4

3ξ2φ2

(
1 + ξ4φ

4
)
' − 1

N

(
1 +

64N2

27ξ22
ξ4

)
. (3.44)

We see that the deviation becomes sizable for |ξ4| & ξ22/N
2. Since ε and η corresponds to

the r (vertical) and ns (horizontal) axes in Fig. 1, respectively, the direction of deviation for
positive and negative ξ4 is also explained.

In the Palatini formalism, let us first expand Eq. (3.39) by small ξ4 around φ ' φξ4=0 '√
8N (see Eq. (2.23)):

N =
1

8
φ2 +

1

24
ξ4φ

6 + · · · . (3.45)

Substituting φ = φξ4=0(1 + cξ4) and comparing leading terms in ξ4, we find

φ ' φξ4=0

(
1− 32N2

3
ξ4

)
. (3.46)

We next expand ε (3.37) and η (3.38) by small ξ4 around the same point of φ, and then
substitute Eq. (3.46):

ε ' 8

ξ2φ4

(
1− 2ξ4φ

4
)
' 1

8N2ξ2

(
1− 256N2

3
ξ4

)
, (3.47)

η ' − 8

φ2

(
1 + ξ4φ

4
)
' − 1

N

(
1 +

256N2

3
ξ4

)
. (3.48)
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We see that the deviation becomes sizable for |ξ4| & 10−2/N2 and that the direction of the
deviation is the same as in the metric formalism.

To summarize, the expressions for the slow-roll parameters, especially for η, imply that
the inflationary predictions (especially on ns) are significantly affected for

|ξ4| &


ξ22
N2

(metric),

10−2

N2
(Palatini).

(3.49)

This explains the behavior in Figs. 2–5. After taking the curvature normalization into
account, these values read

|ξ4| &


ξ22
N2
∼ λ4

32π2As
∼ 106λ4 (metric),

10−2

N2
(Palatini).

(3.50)

Therefore, we see that the inflationary predictions in the metric formalism become stable for
ξ2 � 1 (unless λ4 � 10−6), while they are spoiled by |ξ4| ∼ 10−5 independently of λ4 or ξ2
in the Palatini formalism.

In the case ξ4 > 0, we note that in both the formalisms ε becomes zero at ξ4φ
4 = 1 and

hence the e-folding diverges in the limit φ→ ξ
−1/4
4 . Then the necessary condition φ < ξ

−1/4
4

at φ ∼
√

4N/3ξ2 (metric) and φ ∼
√

8N (Palatini) reads

ξ4 .


9ξ22

16N2
(metric),

1

64N2
(Palatini).

(3.51)

Note that we used the relation between φ and N for ξ4 = 0 (and for ξ2 � 1 in metric for-
malism), and therefore these conditions are only approximate. We see that these conditions
give comparable threshold values to Eq. (3.49).

As we increase |ξ4| from zero, the inflationary prediction starts to deviate at around
the value in the right-hand side of Eq. (3.49). We note that this occurs when the higher
dimensional operator |ξ4φ4| is still much smaller than the lower dimensional one ξ2φ

2. Indeed,
by substituting the approximate values φ '

√
4N/3ξ2 (metric) and

√
8N (Palatini), the

condition ∣∣ξ4φ4
∣∣ . ξ2φ

2 (3.52)

becomes

|ξ4| .


ξ22
N

(metric),

10−1
ξ2
N

(Palatini),

(3.53)

which is well satisfied at the value in the right-hand side of Eq. (3.49).
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4 Sensitivity to corrections in the potential

Second, we consider a correction to the Jordan-frame potential:

Ω2 = 1 + ξ2φ
2, VJ = λ4φ

4 + λ6φ
6. (4.1)

Again we fix the signs of ξ2 and λ4 to be positive, while we allow both positive and negative
signs for λ6. The Einstein-frame potential becomes

V =
λ4φ

4 + λ6φ
6

(1 + ξ2φ2)2
. (4.2)

In this setup we have three parameters

(λ4, λ6, ξ2),

but we can eliminate one since As is fixed by the observation.

4.1 Predictions

Before discussing predictions in each formalism, we note that the dependence of ε, η, and N
on λ4 and λ6 shown below appears only through the ratio λ6/λ4. In the following analysis, we
fix the quartic coupling λ4 by the overall normalization As and adopt λ6/λ4 as an independent
variable instead of λ6.

Metric formalism

In the metric formalism, the relation (2.5) between χ and φ is the same as Eqs. (2.12)–(2.15).
The slow-roll parameters and e-folding are calculated through Eqs. (2.6)–(2.8):

ε =
2 (2λ4 + 3λ6φ

2 + ξ2λ6φ
4)

2

φ2 [1 + (ξ2 + 6ξ22)φ2] (λ4 + λ6φ2)2
, (4.3)

η =
2 [6λ4 + (2ξ2λ4 + 24ξ22λ4 + 15λ6)φ

2 + · · ·+ (2ξ32λ6 + 12ξ42λ6)φ
8]

φ2 [1 + (ξ2 + 6ξ22)φ2]
2

(λ4 + λ6φ2)
, (4.4)

N =

∫
dφ

φ [1 + (ξ2 + 6ξ22)φ2] (λ4 + λ6φ
2)

2 (1 + ξ2φ2) (2λ4 + 3λ6φ2 + ξ2λ6φ4)
. (4.5)

Here we do not show a complete expression for η to avoid complications; see Appendix A
for it. Note that for λ6 < 0 the e-folding diverges at the point where the potential derivative

vanishes, namely, at φ =
√
−3 +

√
9− 8ξ2λ4/λ6/2ξ2. The scalar power spectrum amplitude

reads

As =
λ4φ

6

192π2

[
1 + ξ2φ

2 (1 + 6ξ2)
](

1 +
λ6
λ4
φ2

)3

(
1 + ξ2φ

2
) [

1 +
3λ6
2λ4

φ2

(
1 +

ξ2
3
φ2

)]2 . (4.6)
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Palatini formalism

In the Palatini formalism, the relation (2.5) between χ and φ is the same as Eqs. (2.22)–
(2.24). The slow-roll parameters and e-folding are calculated through Eqs. (2.6)–(2.8):

ε =
2 (2λ4 + 3λ6φ

2 + ξ2λ6φ
4)

2

φ2 (1 + ξ2φ2) (λ4 + λ6φ2)2
, (4.7)

η =
2 [6λ4 + (−4ξ2λ4 + 15λ6)φ

2 + 7ξ2λ6φ
4 + 2ξ22λ6φ

6]

φ2 (1 + ξ2φ2) (λ4 + λ6φ2)
, (4.8)

N =

∫
dφ

φ (λ4 + λ6φ
2)

2 (2λ4 + 3λ6φ2 + ξ2λ6φ4)
. (4.9)

For λ6 < 0, the e-folding diverges at the same point as the metric formalism, where the
potential derivative vanishes. The scalar power spectrum amplitude reads

As =
λ4φ

6

192π2

(
1 +

λ6
λ4
φ2

)3

(
1 + ξ2φ

2
) [

1 +
3λ6
2λ4

φ2

(
1 +

ξ2
3
φ2

)]2 . (4.10)

4.2 Results

First in Fig. 6, we show predictions of the metric (left) and Palatini (right) formalisms at
N = 60 (top) and 50 (bottom) in the ns-r plane. The blue contours show constant values
of ξ2, while the red ones show constant values of λ6/λ4. The value of λ4 is also shown as
a density plot. The smiley marker is the prediction of the quartic chaotic inflation, while
the star denotes the attractor point ξ2 � 1. For ξ2 < 10−3 and ξ2 > 1, the corresponding
blue lines are almost degenerate with the upper and lower boundaries with the gray regions,
respectively. We see the following:

• For relatively small ξ2 (. 10−1), even a small injection of |λ6/λ4| drastically changes
the inflationary predictions in both formalisms.

• For relatively large ξ2 (& 1), the inflationary predictions are stable against the in-
jection of λ6/λ4 for the metric formalism (left), just as Sec. 3. On the other hand,
the predictions are no more stable against the injection of |λ6/λ4| & 10−5ξ−12 for the
Palatini formalism (right).

In Fig. 7, we plot the behavior of λ4 for N = 60 as a function of |λ6/λ4| for λ6/λ4 < 0 (left
panel) and λ6/λ4 > 0 (right panel) while fixing the overall normalization As as mentioned
above. Similarly, in Fig. 8 we plot ns (left axis) and r (right axis). Figs. 9 and 10 are the
corresponding ones at N = 50. We note the following:

• In the metric formalism (upper panels of Figs. 7–10), deviation from the attractor
occurs at the threshold |λ6/λ4| ∼ 10−3ξ2. For λ6 < 0 the behavior of ns and r is
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Figure 6: Effects of the higher dimensional operator λ6φ
6 in the metric (left) and Pala-

tini (right) formalisms with N = 60 (top) and 50 (bottom). We plot contours of fixed ξ2
(blue, horizontal) and of fixed λ6/λ4 (red, vertical) in the ns-r plane. The value of λ4 is
also shown as a density plot. Allowed regions of 1σ and 2σ from the Planck experiment [9]
(TT,TE,EE+lowE+lensing+BK14+BAO) are also shown in the center. Dashed lines in the right
panels correspond to λ6 = −10−16.25,−16.5 and 10−16.5,−16.25,−16,−15.75,−15.5 from left to right.
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Figure 7: Behavior of λ4 along constant ξ2 slices in Fig. 6 for N = 60. We plot λ4 as a function of
|λ6/λ4| for λ6/λ4 < 0 (left) and λ6/λ4 > 0 (right). The lines are ξ2 = 1 (blue), 102 (red), and 104

(green) for the metric case, while ξ2 = 106 (blue), 108 (red), and 1010 (green) for the Palatini case.
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Figure 8: Behavior of ns (solid, left axis) and r (dashed, right axis) along constant ξ2 slices in
Fig. 6 for N = 60.
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Figure 9: The same as in Fig. 7 except for N = 50.
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Figure 10: The same as in Fig. 8 except for N = 50.
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relatively simple (upper left panels of Figs. 8 and 10): as |λ6/λ4| increases, both ns
and r start to decrease at this threshold value. From the relation ns ' 1 − 6ε + 2η
and r ' 16ε, we see that both ε and η start to decrease at this threshold value while
keeping the relation |ε| � |η|. On the other hand, for λ6 > 0 the behavior of ns and
r is more complicated (upper right panels of Figs. 8 and 10): as |λ6/λ4| increases, r
reaches to O(1) values while ns first increases and then decreases. From the relation
ns ' 1 − 6ε + 2η and r ' 16ε, we see that as |λ6/λ4| increases ε reaches to O(0.1)
values and exceeds η, causing the decrease in ns observed in the upper right panels of
Figs. 8 and 10.

• In the Palatini formalism (lower panels of Figs. 7–10), there is no attractor for ξ2 � 1
and the deviation from the observationally allowed region occurs around the threshold
|λ6/λ4| ∼ 10−5ξ−12 .

4.3 Interpretation

Let us interpret our results and estimate the threshold value of λ6 which causes significant
deviation from the observationally allowed region. In the following we use N � 1 and ξ2 � 1
and keep the leading contribution for each order in ξ4 expansion when necessary.

In the metric formalism, let us first expand Eq. (4.5) by small λ6/λ4 around φ ' φλ6=0 '√
4N/3ξ2 (see Eq. (2.21)):

N =

∫
dφ

φ · 6ξ22φ2 · (λ4 + λ6φ
2)

2 · ξ2φ2 · (2λ4 + ξ2λ6φ4)
+ · · · = 3

4
ξ2φ

2 − 1

8

λ6
λ4
ξ22φ

6 + · · · . (4.11)

Substituting φ = φλ6=0(1 + c(λ6/λ4)) and comparing leading terms in λ6/λ4, we find that
the deviation of φ is given by

φ ' φλ6=0

(
1 +

4N2

27ξ2

λ6
λ4

)
. (4.12)

We next expand ε (4.3) and η (4.4) by small λ6/λ4 around the same point of φ, and then
substitute Eq. (4.12):

ε ' 4

3ξ22φ
4

(
1 +

λ6
λ4
ξ2φ

4

)
' 3

4N2

(
1 +

32N2

27ξ2

λ6
λ4

)
, (4.13)

η ' − 4

3ξ2φ2

(
1− 1

2

λ6
λ4
ξ2φ

4

)
' − 1

N

(
1− 32N2

27ξ2

λ6
λ4

)
. (4.14)

We see that the deviation of η (and hence of ns) becomes sizable for |λ6/λ4| & ξ2/N
2. From

the relation ns ' 1 − 6ε + 2η and r ' 16ε, the direction of deviation in Fig. 6 for positive
and negative λ6 with a fixed ξ2 can also be explained.

In the Palatini formalism, let us first expand Eq. (4.9) by small λ6/λ4 around φ ' φλ6=0 '√
8N (see Eq. (2.23)):

N =

∫
dφ

φ · (λ4 + λ6φ
2)

2 · (2λ4 + ξ2λ6φ4)
+ · · · = 1

8
φ2 − 1

48

λ6
λ4
ξ2φ

6 + · · · . (4.15)
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Substituting φ = φλ6=0(1 + c(λ6/λ4)) and comparing leading terms in λ6/λ4, we find

φ ' φλ6=0

(
1 +

16N2ξ2
3

λ6
λ4

)
. (4.16)

We next expand ε (4.7) and η (4.8) by small λ6/λ4 around the same point of φ, and then
substitute Eq. (4.16):

ε ' 8

ξ2φ4

(
1 +

λ6
λ4
ξ2φ

4

)
' 1

8N2ξ2

(
1 +

128N2ξ2
3

λ6
λ4

)
, (4.17)

η ' − 8

φ2

(
1− 1

2

λ6
λ4
ξ2φ

4

)
' − 1

N

(
1− 128N2ξ2

3

λ6
λ4

)
. (4.18)

We see that the deviation of η (and hence of ns) becomes sizable for |λ6/λ4| & 10−1/N2ξ2
and that the direction of the deviation is the same as in the metric formalism.

To summarize, the deviation of η (and hence of ns) becomes sizable for

|λ6| &


λ4ξ2
N2

(metric),

10−1
λ4
N2ξ2

(Palatini),

(4.19)

while ε (and hence r) is rather insensitive compared to η. If we substitute λ4 with As, we
get

|λ6| &


102Asξ

3
2

N4
∼ 10−6

ξ32
N4

(metric),

As
N4
∼ 10−9

1

N4
(Palatini).

(4.20)

We see that near the attractor ξ2 � 1 the metric formalism is stable against injection of λ6
(unless ξ2 � 105), while it is extremely sensitive to even tiny injection of λ6 of order 10−16

in the Palatini formalism, regardless of ξ2.
As we increase |λ6| from zero, the inflationary prediction starts to deviate at around

the value in the right-hand side of Eq. (4.19). We note that this occurs when the higher
dimensional operator λ6φ

6 is still much smaller than the lower dimensional one λ4φ
4. Indeed,

by substituting the approximate values φ '
√

4N/3ξ2 (metric) and
√

8N (Palatini), the
condition ∣∣λ6φ6

∣∣ . λ4φ
4 (4.21)

becomes

|λ6| .


λ4ξ2
N

(metric),

10−1
λ4
N

(Palatini),

(4.22)

which is well satisfied at the value in the right-hand side of Eq. (4.19).
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5 Summary and discussion

The Higgs(-like) inflation with the quartic coupling λ4 and the non-minimal coupling ξ2 is
one of the best models from the viewpoint of cosmic microwave background observations. We
have investigated the sensitivity of this model to higher dimensional operators in the Weyl
rescaling factor (ξ4φ

4) or in the potential (λ6φ
6) both in the metric and Palatini formalisms.

We have found that, in the metric formalism, injection of order |ξ4| ∼ 10−6 or |λ6| ∼
10−16 makes the value of ns out of the observationally allowed region for ξ2 . 1, while
the inflationary predictions are relatively stable against λ6 or ξ4 for ξ2 � 1 because of the
existence of attractor. On the other hand, in the Palatini formalism, we have found that
large ξ2 � 1 does not help the stability: injection of order |ξ4| ∼ 10−6 or |λ6| ∼ 10−16 spoils
the successful inflationary predictions regardless of the value of ξ2. We have also pointed
out that these threshold values cannot be estimated from a näıve comparison between ξ2φ

2

and ξ4φ
4 or between λ4φ

4 and λ6φ
6 at the φ value corresponding to e-folding N ∼ 50− 60.

Our study underscores the theoretical challenge in realizing inflationary models with the
nonminimal coupling in the Palatini formalism.

Our result shows that large ξ2 is necessary not only for the realization of inflation itself but
also for the robustness of the prediction against the injection of the tiny higher dimensional
operators in the metric formalism. This is interesting from theoretical point of view because
it is unlikely to have such a large ξ2 only in a single term in the field expansion in the low
energy effective field theory. This may indicate a principle beyond.♦12♦13

It is known that the radiative corrections to λ4 becomes important for λ4 � 1, namely
for the critical Higgs inflation. This will be studied in a separate publication.
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A Equations

In this appendix we summarize expressions for the φ-χ relations, slow-roll parameters, and
e-folding. We consider ξ2 > 0, λ4 > 0, and φ > 0 for Appendix A.1, while ξ2 > 0, λ4 > 0,
and φ > 0 for Appendix A.2.

♦12 See e.g. Ref. [65].
♦13 Even in the vanilla model with only λ4 and ξ2, it is theoretically intriguing why we have λ2 � λ4 and

1� ξ2; the former is nothing but the hierarchy problem for the Higgs mass-squred.
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A.1 Correction to the nonminimal coupling

Metric formalism

φ-χ relation:

dχ

dφ
=

√
1 + ξ2φ2 + ξ4φ4 + 6 (ξ2φ+ 2ξ4φ3)2

1 + ξ2φ2 + ξ4φ4
. (A.1)

Slow-roll parameters and e-folding:

ε =
8(1− ξ4φ4)2

φ2 [1 + (ξ2 + 6ξ22)φ2 + (ξ4 + 24ξ2ξ4)φ4 + 24ξ24φ
6]
, (A.2)

η =

4

 3 + (ξ2 + 12ξ22)φ2 + (−2ξ22 − 12ξ32 + 24ξ2ξ4 − 11ξ4)φ
4

− (18ξ2ξ4 + 144ξ22ξ4)φ
6 − (2ξ22ξ4 + 12ξ32ξ4 + 11ξ24 + 384ξ2ξ

2
4)φ8

+ (ξ2ξ
2
4 − 12ξ22ξ

2
4 − 288ξ34)φ10 + (3ξ34 + 72ξ2ξ

3
4)φ12 + 96ξ44φ
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φ2 [1 + (ξ2 + 6ξ22)φ2 + (ξ4 + 24ξ2ξ4)φ4 + 24ξ24φ

6]
2 , (A.3)

N =

∫
dφ

φ [1 + (ξ2 + 6ξ22)φ2 + (ξ4 + 24ξ2ξ4)φ
4 + 24ξ24φ

6]

4(1− ξ4φ4)(1 + ξ2φ2 + ξ4φ4)

=



1 + 6ξ2

8
√
ξ4

arctanh
[√

ξ4φ
2
]
− 3

4
ln
[(

1− ξ4φ4
) (

1 + ξ2φ
2 + ξ4φ

4
)]

=
1 + 6ξ2

16
√
ξ4

ln

[
1 +
√
ξ4φ

2

1−
√
ξ4φ2

]
− 3

4
ln
[(

1− ξ4φ4
) (

1 + ξ2φ
2 + ξ4φ

4
)]

(ξ4 > 0 & φ < ξ
1/4
4 ),

1 + 6ξ2

8
√
−ξ4

arctan
[√
−ξ4φ2

]
− 3

4
ln
[(

1− ξ4φ4
) (

1 + ξ2φ
2 + ξ4φ

4
)]

=
1 + 6ξ2

16
√
ξ4

ln

[
1 +
√
ξ4φ

2

1−
√
ξ4φ2

]
− 3

4
ln
[(

1− ξ4φ4
) (

1 + ξ2φ
2 + ξ4φ

4
)]

(ξ4 < 0).

(A.4)

Palatini formalism

φ-χ relation:

dχ

dφ
=

1√
1 + ξ2φ2 + ξ4φ4

, (A.5)

χ = −i

√
ξ2 +

√
ξ22 − 4ξ4

2ξ4
F

(
i arcsinh

[√
2ξ4

ξ2 +
√
ξ22 − 4ξ4

φ

] ∣∣∣∣∣ − 1 +
ξ2(ξ2 +

√
ξ22 − 4ξ4)

2ξ4

)
,

(A.6)
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where F (ϕ |m) is the elliptic integral of the first kind.
Slow-roll parameters and e-folding:

ε =
8(1− ξ4φ4)2

φ2(1 + ξ2φ2 + ξ4φ4)
, (A.7)

η =
4(3− 2ξ2φ

2 − 14ξ4φ
4 − 2ξ2ξ4φ

6 + 3ξ24φ
8)

φ2(1 + ξ2φ2 + ξ4φ4)
, (A.8)

N =

∫
dφ

φ

4(1− ξ4φ4)

=


1

8
√
ξ4

arctanh
[√

ξ4φ
2
]

=
1

16
√
ξ4

ln

[
1 +
√
ξ4φ

2

1−
√
ξ4φ2

]
(ξ4 > 0 & φ < ξ

1/4
4 ),

1

8
√
−ξ4

arctan
[√
−ξ4φ2

]
=

1

16
√
ξ4

ln

[
1 +
√
ξ4φ

2

1−
√
ξ4φ2

]
(ξ4 < 0).

(A.9)

A.2 Correction to the potential

Metric formalism

φ-χ relation:

dχ

dφ
=

√
1 + ξ2(1 + 6ξ2)φ2

1 + ξ2φ2
, (A.10)

χ =

√
1 + 6ξ2
ξ2

arcsinh
[√

ξ2 (1 + 6ξ2)φ
]
−
√

6 arctanh

[ √
6ξ2φ√

1 + ξ2 (1 + 6ξ2)φ2

]

=

√
1 + 6ξ2
ξ2

ln
[√

ξ2 (1 + 6ξ2)φ+
√

1 + ξ2 (1 + 6ξ2)φ2
]

−
√

6

2
ln

[√
1 + ξ2 (1 + 6ξ2)φ2 +

√
6ξ2φ√

1 + ξ2 (1 + 6ξ2)φ2 −
√

6ξ2φ

]
. (A.11)

Slow-roll parameters and e-folding:

ε =
2(2 + 3λ64φ

2 + ξ2λ64φ
4)2

φ2 [1 + (ξ2 + 6ξ22)φ2] (1 + λ64φ2)2
, (A.12)

η =

2

[
6 + (2ξ2 + 24ξ22 + 15λ64)φ

2 + (−4ξ22 − 24ξ32 + 2ξ2λ64 + 72ξ22λ64)φ
4

+(9ξ22λ64 + 36ξ32λ64)φ
6 + (2ξ32λ64 + 12ξ42λ64)φ

8

]
φ2 [1 + (ξ2 + 6ξ22)φ2]

2
(1 + λ64φ2)

, (A.13)

N =

∫
dφ

φ [1 + (ξ2 + 6ξ22)φ2] (1 + λ64φ
2)

2(1 + ξ2φ2)(2 + 3λ64φ2 + ξ2λ64φ4)
, (A.14)

where we use

λ64 ≡ λ6/λ4 (A.15)
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for abbreviation.

Palatini formalism

φ-χ relation:

dχ

dφ
=

1√
1 + ξ2φ2

, (A.16)

χ =
1√
ξ2

arcsinh
[√

ξ2φ
]

=
1√
ξ2

ln
[√

ξ2φ+
√

1 + ξ2φ2
]
. (A.17)

Slow-roll parameters and e-folding:

ε =
2(2 + 3λ64φ

2 + ξ2λ64φ
4)2

φ2(1 + ξ2φ2)(1 + λ64φ2)2
, (A.18)

η =
2 [6 + (−4ξ2 + 15λ64)φ

2 + 7ξ2λ64φ
4 + 2ξ22λ64φ

6]

φ2(1 + ξ2φ2)(1 + λ64φ2)
, (A.19)

N =

∫
dφ

φ(1 + λ64φ
2)

2(2 + 3λ64φ2 + ξ2λ64φ4)
. (A.20)
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