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Abstract

Single-propagator traces are the most elementary fermion Wick contractions which oc-
cur in numerical lattice QCD, and are usually computed by introducing random-noise
estimators to profit from volume averaging. The additional contribution to the vari-
ance induced by the random noise is typically orders of magnitude larger than the one
due to the gauge field. We propose a new family of stochastic estimators of single-
propagator traces built upon a frequency splitting combined with a hopping expansion
of the quark propagator, and test their efficiency in two-flavour QCD with pions as
light as 190 MeV. Depending on the fermion bilinear considered, the cost of computing
these diagrams is reduced by one to two orders of magnitude or more with respect to
standard random-noise estimators. As two concrete examples of physics applications,
we compute the disconnected contributions to correlation functions of two vector cur-
rents in the isosinglet ω channel and to the hadronic vacuum polarization relevant for
the muon anomalous magnetic moment. In both cases, estimators with variances domi-
nated by the gauge noise are computed with a modest numerical effort. Theory suggests
large gains for disconnected three and higher point correlation functions as well. The
frequency-splitting estimators and their split-even components are directly applicable to
the newly proposed multi-level integration in the presence of fermions.
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1 Introduction

Disconnected fermion Wick contractions contribute to many physics processes at the
forefront of research in particle and nuclear physics: the hadronic contribution to the
muon anomalous magnetic moment, K → ππ decays, nucleon form factors, quantum
electrodynamics and strong isospin-breaking contributions to hadronic matrix elements,
η′ propagator to name a few. When computed numerically in lattice Quantum Chro-
modynamics (QCD) and if the distances between the disconnected pieces are large,
their variances are dominated by the vacuum contribution. The latter are well approx-
imated by the product of variances of the connected sub-diagrams the contractions are
made of. The recently-proposed multi-level Monte Carlo integration in the presence of
fermions [1, 2] is particularly appealing for computing disconnected contractions, since
the various sub-diagrams can be computed (essentially) independently from each other,
thus making the scaling of the statistical error with the cost of the simulation much
more favorable with respect to the standard Monte Carlo integration.

The simplest examples of this kind are the disconnected Wick contractions of
fermion bilinear two-point correlation functions, where each single-propagator trace is
usually computed by introducing random-noise estimators [3–5]. As the action of the
auxiliary fields is already factorized, the multi-level integration in the gauge field be-
comes highly profitable once the variance of each connected sub-diagram is driven by
its intrinsic gauge noise. The random-noise contribution, however, is typically orders of
magnitude larger than the one due to the gauge field, a fact which calls for more efficient
estimators in order to avoid the need of averaging over many random-noise fields with
large computational cost.

The aim of this paper is to fill this gap by introducing a new family of stochastic
estimators of single-propagator traces which combine the newly introduced split-even
estimators with a frequency splitting and a hopping expansion of the quark propagator.
We test their efficiency by simulating two-flavour QCD with pions as light as 190 MeV.
As a result, depending on the fermion bilinear considered, the cost of computing single-
propagator traces is reduced by one to two orders of magnitude or more with respect to
the computational needs for standard random-noise estimators. The frequency-splitting
estimators can be straightforwardly implemented in any standard Monte Carlo compu-
tation of disconnected Wick contractions, as well as directly combined with the newly
proposed multi-level integration in the presence of fermions.

In the next section we summarize basic facts about variances of generic disconnected
Wick contractions, while those of single-propagator traces are discussed in section 3. The
following section is dedicated to introduce stochastic estimators of single-propagator
traces of heavy quarks based on a hopping expansion of the propagator, while in sec-
tion 5 we introduce the split-even estimators for the difference of two single-propagator
traces also relevant for the muon anomalous magnetic moment. The frequency-splitting
estimators are introduced in section 6, where also the outcomes of their numerical tests
are reported. In section 7 we discuss the impact of these findings on two concrete ex-
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amples of physics applications: the disconnected contributions to the correlator of two
electromagnetic currents in the isospin limit relevant for the hadronic contribution to
the muon anomalous magnetic moment, and the propagator of the ω vector meson. The
paper ends with a short section of conclusions and outlook, followed by some appendices
where some useful notation and formulas are collected.

2 Variances of disconnected Wick contractions

The connected correlation function of a generic disconnected Wick contraction, made of
two sub-diagrams1 W0(0) and W1(x) centered at the origin and in x respectively, can
be written as

CW1W0
=
〈[
W1(x)− 〈W1(x)〉

][
W0(0)− 〈W0(0)〉

]〉
, (2.1)

with its variance given by

σ2
CW1W0

=
〈[
W1(x)− 〈W1(x)〉

]2[
W0(0)− 〈W0(0)〉

]2〉
− C2

W1W0
. (2.2)

For large distances |x|,
σ2

CW1W0

= σ2
CW1

· σ2
CW0

+ . . . (2.3)

where
σ2

CW0

=
〈[
W0(0)− 〈W0(0)〉

]2〉
(2.4)

and analogously for σ2
CW1

, and the dots stand for exponentially sub-leading effects. If
the gauge fields in the regions centered at the origin and in x are updated independently
in the course of a multi-level Monte Carlo, e.g. Ref. [1,2], the statistical error of each of
the two sub-diagrams CW0 and CW1 decreases (essentially) proportionally to the inverse
of the square root of the cost of the simulation. The overall statistical error on CW1W0

thus scales with the inverse of the cost rather than with its square root. The above
argument can be iterated straightforwardly to multi-disconnected contractions.

Maybe the simplest example of this kind is a disconnected Wick contraction of the
correlator of two bilinear operators for which, following Eq. (2.3), the variance is well
approximated by the product of variances of two single-propagator trace estimators.

3 Single-propagator traces

The single traces we are interested in are

tΓ,r(x) = −aΓ

a4
tr
[
ΓD−1

mr(x, x)
]
, (3.1)

1Without loss of generality we assume Wi(x) to be real.
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where Dmr is the massive Dirac operator with bare quark mass mr (for definiteness
we adopt the O(a)-improved Wilson-Dirac operator, see Appendix A), a is the lattice
spacing, the factor

aΓ =

{
1 Γ = I, γ5, γµγ5, σµν
−i Γ = γµ

(3.2)

is chosen so that tΓ,r(x) is real, and σµν = i
2 [γµ, γν ]. We are interested in the zero

three-momentum field2

t̄Γ,r(x0) =
1

L3

∑
x

a3 tΓ,r(x) , (3.3)

whose expectation value is

sΓ,r = 〈t̄Γ,r(x0)〉 = aΓ〈ψ̄r(x)Γψr(x)〉 (3.4)

where ψr is a quark flavour of mass mr, and L3 is the three-dimensional lattice volume.
The variance of t̄Γ,r(x0),

σ2
t̄
Γ,r

= 〈t̄2
Γ,r

(x0)〉 − 〈t̄Γ,r(x0)〉2 , (3.5)

can be written as

σ2
t̄Γ,r

=
a2

Γ

L3

∑
x

a3〈OΓ,rr(0,x)O
Γ,r′r′ (0)〉c , (3.6)

where
OΓ,rs(x) = ψ̄r(x)Γψs(x) , (3.7)

the subscript c stands as usual for connected, and ψr′ is a second flavour3 of mass
mr′ = mr. The operator product expansion would predict generically that σ2

t̄Γ,r
diverges

as a−3. There are exceptions, however, depending on the symmetries preserved by the
regularization and on the operator implemented4. Moreover σ2

t̄Γ,r
vanishes in the free-

theory limit g0 → 0, and the first non-zero contribution appears at O(g4
0) or higher in

perturbation theory.

3.1 Random-noise estimator

We introduce random auxiliary fields (random sources) [3, 5] defined so that all their
cumulants are null with the exception of the two-point functions which satisfy

〈ηaγ(x){ηbδ(y)}∗〉 = δabδγδδxy , (3.8)

2Throughout this paper we focus on zero three-momentum fields only. All techniques presented,
however, are directly applicable to fields with non-zero three momentum.

3If not present in the theory, a valence quark ψr′ of mass mr can be added to it [6].
4If the regularization preserves the vector-flavour symmetry and its conserved current is adopted, for

instance, the corresponding variance vanishes in the infinite volume limit.
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id L/a κ MDU Ncfg Mπ[MeV] MπL

E5 32 0.13625 12800 100 440 4.7

F7 48 0.13638 9600 100(1200) 268 4.3

G8 64 0.136417 820 25 193 4.1

Table 1: Overview of the ensembles and statistics used in this study. We give the label, the
spatial extent of the lattice, the hopping parameter κ, the number of MDUs simulated after
thermalization, the number of independent configurations selected Ncfg, the pion mass Mπ, and
the productMπL. For F7, Ncfg = 100 configurations have been used for estimating the variances
while the final results for the two-point functions have been obtained with Ncfg = 1200.

where a, b and γ, δ are colour and spin indices respectively, and x, y are lattice coordi-
nates. By using Eq. (3.8), it is straightforward to prove that a random-noise estimator
of sΓ,r is given by

τΓ,r(x) = − 1

a4Ns

Ns∑
i=1

Re
[
aΓη

†
i (x)Γ{D−1

mrηi}(x)
]
, (3.9)

where ηi are Ns independent sources (colour and spin indices omitted from now on).
The variance of the zero-momentum estimator

τ̄Γ,r(x0) =
1

L3

∑
x

a3 τΓ,r(x) , (3.10)

reads

σ2
τ̄
Γ,r

= σ2
t̄
Γ,r
− 1

2L3Ns

{
a2

Γ

∑
x

a3〈O
Γ,rr′ (0,x)O

Γ,r′r(0)〉+ 1

a

∑
x

a4〈Prr′(x)Pr′r(0)〉
}
,(3.11)

where again ψr and ψr′ are two degenerate flavours of mass mr, and to simplify the
notation we have introduced the usual definition Prs = Oγ5,rs

for the pseudoscalar density
(no time-dilution is used since we are interested in the estimator at all times). The
random-noise contribution to the variances in Eq. (3.11) diverges proportionally to a−3

like the gauge one. Both integrated correlators on the r.h.s. of Eq. (3.11), however,
are colour enhanced with respect to the gauge noise and they are of O(1) in the free
theory, see Appendix B. The Γ-dependent contribution is indeed the flavour-connected
counterpart of the disconnected contraction appearing in Eq. (3.6). The Γ-independent
term 〈PP 〉, which is also integrated over the time-coordinate, diverges proportionally
to m−1

r when mr → 0 due to the pion pole, giving large contributions to the stochastic
variances of all bilinears indistinctly. It is interesting to notice that if we would not take
the real part in Eq. (3.9), the variances would be larger and Γ-independent since the
〈O

Γ,rr′OΓ,r′r〉 contributions are dropped, and the prefactor 1/(2Ns) goes into 1/Ns.
The random-noise contributions to the variances of the standard stochastic estima-

tors in Eq. (3.9) are thus expected to be much larger than the gauge-noise with large
ultraviolet and infrared divergent terms.
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Figure 1: Variances of the standard random noise estimators defined in Eq. (3.9) as a function
of the number of random sources Ns for the ensemble F7. The symbols S, P , Tjk, Ak and Vk
stand for Γ = I, γ5, σjk, γkγ5 and γk respectively. The dashed lines indicate the gauge-noise
contributions to the variances computed in section 6.

3.2 Numerical tests

To test the efficiency of the various stochastic trace estimators considered in this paper,
we have simulated QCD with two dynamical flavours discretized by the Wilson gluonic
action and the O(a)-improved Wilson–Dirac operator as defined in Appendix A. The
details of the ensembles of configurations considered, all generated by the CLS com-
munity [7–9], are listed in Table 1. The bare coupling constant is always fixed so that
β = 6/g2

0 = 5.3, corresponding to a spacing of a = 0.065 fm. All lattices have a size of
2L× L3, periodic boundary conditions for gluons, (anti-) periodic boundary conditions
in (time) space directions for fermions, and spatial dimensions always large enough so
that MπL ≥ 4. The pion mass ranges from 190 MeV to 440 MeV. We have always
skipped an enough number of molecular dynamics units (MDU) between two consecu-
tive measurements so that gauge-field configurations can be considered as independent
in the statistical analysis, see Ref. [9, 10] and references therein for more details.

The first primary observables that we have computed are the estimators in Eq. (3.10)
with Gaussian random noise. Their variances are shown in Fig. 1 as a function of the
number of random-noise sources Ns for the ensemble F7. Data for the E5 and the G8
lattices show the same qualitative behaviour. Variances go down linearly in 1/Ns until
the random-noise contribution becomes negligible, see Eq. (3.11), after which a plateau
corresponds to the gauge noise (dashed lines). The first clear message from the data
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is that the random-noise contribution to the variances is comparable for the various
bilinears, as suggested by Eq. (3.11), and it is orders of magnitude larger than the gauge
noise. Moreover, the latter can vary by orders of magnitude among the various bilinears,
see section 6, with the densities having the largest gauge noise while the currents the
smallest one.

4 Hopping expansion of single-propagator traces

To investigate the contribution to trace variances from high-frequency modes of the quark
propagator, we first consider single-propagator traces of heavy quarks. In this kinematic
regime the hopping expansion (HPE) is known to lead to a significant reduction of the
random-noise contribution to trace variances [11–13]. For the O(a)-improved Wilson-
Dirac operator, it is natural to exploit the even-odd decomposition to generalize the
hopping parameter expansion to

D−1
m = M2n,m +D−1

m H2n
m , (4.1)

where

M2n,m =
1

Dee +Doo

2n−1∑
k=0

Hk
m , Hm = −

[
DeoD

−1
oo +DoeD

−1
ee

]
, (4.2)

and the subscript m has been omitted in the block matrices of the even-odd decomposi-
tion of the Dirac operator, see Appendix A for further details. The zero three-momentum
single-propagator traces in Eq. (3.3) can thus be decomposed as

t̄Γ,r(x0) = t̄M
Γ,r

(x0) + t̄R
Γ,r

(x0) , (4.3)

where
t̄M
Γ,r

(x0) = − aΓ

aL3

∑
x

tr[ΓM2n,mr(x, x)] (4.4)

collects the first 2n contributions of the HPE while

t̄R
Γ,r

(x0) = − aΓ

aL3

∑
x

tr
[
Γ{D−1

mrH
2n
mr}(x, x)

]
(4.5)

is the remainder. Notice that convergence of the expansion is not required for Eq. (4.3) to
be valid. For small n, t̄M

Γ,r
can be computed exactly and efficiently with 24n4 applications

ofM2n,mr , see Appendix C for more details. The second contribution t̄R
Γ,r

can be replaced
by the noisy estimator

τ̄R
Γ,r

(x0) = − 1

aL3Ns

∑
x

Ns∑
i=1

Re
{
aΓ

[
η†iH

n
mr

]
(x) Γ

[
D−1
mrH

n
mrηi

]
(x)
}
. (4.6)

A rough idea of the variance reduction achieved by the HPE can be obtained in the
free lattice theory, see Appendix B. For a bare mass of am = 0.3 and for n = 2, the
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Figure 2: Variances of the random-noise estimators τR
Γ,r

(remainder, open blue symbols) for the
pseudoscalar density (left) and the vector current (right) as a function of the number of random
sources Ns for the ensemble F7, n = 2, and a bare quark mass of amq,r = 0.3. For comparison
the variances of the standard random noise estimators (filled red symbols) and the gauge noise
of t̄M

Γ,r
(hopping, dashed red lines) for the same mass are also shown.

stochastic variances of the remainder τ̄R
Γ,r

are between one and two orders of magnitude
smaller than those of the standard estimators τ̄Γ,r . For n = 4 a further reduction of
approximately 4 to 8, depending on the bilinear, is obtained. If we had defined the
estimator of the remainder by applying H2n

mr to one source only, the variance in the free
case would increase approximately by a factor 2 or so. The ultraviolet filtering of Hn

mr

on both random sources is thus beneficial with respect to applying H2n
mr to one source

only.

4.1 Numerical tests

We have computed the single-propagator trace estimators τ̄Γ,r , t̄
M
Γ,r

and τ̄R
Γ,r

for n = 2

on all ensembles listed in Table 1 for several valence quark masses. For F7 and for
the subtracted bare quark mass amq,r = 0.3, the variances are shown in Fig. 2 for
the pseudoscalar density and for a spatial component of the vector current respectively.
Similar results are obtained for other bilinears and/or for the E5 and the G8 lattices. The
variances are in the same ballpark as the free-theory values. A clear picture emerges: the
bulk of the random-noise contribution to σ2

τ̄Γ,r
is due to M2n,mr for all bilinears. Once

the latter is subtracted from the propagator and its contribution to t̄Γ,r is computed
exactly, the random noise is reduced by approximately one order of magnitude or more.
Notice that σ2

t̄M
Γ,r

is from 2 (pseudoscalar) up to 5 (vector) orders of magnitude smaller

than σ2
τ̄Γ,r

for Ns = 1.
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Figure 3: Variances for Ns = 1 of the random-noise estimators τR
Γ,r

(remainder, open blue
symbols) for the pseudoscalar density (left) and the vector current (right) as a function of the
bare quark mass amq for the ensemble F7 and n = 2. For comparison the variances of the
standard random noise estimators (filled red symbols) and the gauge noise of t̄M

Γ,r
(hopping, line

symbols) for the same mass are also shown.

In Fig. 3, σ2
τ̄R
Γ,r

for Ns = 1 and σ2
t̄M
Γ,r

multiplied by 10 both for n = 2 are shown as a

function of the valence bare subtracted quark mass amq,r for the pseudoscalar density
and the spatial component of the vector current. As expected the variance reduction
due to the subtraction of M2n,mr gets larger and larger at heavier quark masses. In
particular at amq,r = 0.3 the variance of the remainder is approximately one order of
magnitude smaller than at the sea quark mass value of amq,r = 0.00207. It is worth
noting that even at this light mass, the random-noise contribution to σ2

τ̄Γ,r
from M2n,mr

is still significant for all bilinears. The variance reduction due to HPE, however, is only
a factor 2 or so.

All in all data suggest that at heavy masses an efficient estimator of s
Γ,r

is obtained
by computing t̄M

Γ,r
exactly and the remainder via the stochastic estimator τ̄R

Γ,r
. Which is

the optimal order n and how many random sources Ns are required for the remainder
depend on the bilinear considered and on the final target observable of interest, see
section 6.

5 Differences of single-propagator traces

To analyse the contribution to trace variances from low-frequency modes of the quark
propagator, we consider the difference of two single-propagator traces with different
masses. It is worth noting, however, that often the difference itself is a sub-diagram of
the correlator of interest, e.g. the disconnected contribution to the hadronic vacuum
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polarization from the up, down and strange quarks in the exact isospin limit. The
estimator of the difference of two single-propagator traces reads

tΓ,rs(x) ≡ tΓ,r(x)− tΓ,s(x)

= −aΓ

a4
tr
[
Γ{D−1

mr(x, x)−D−1
ms(x, x)}

]
= −aΓ

a4
(ms −mr) tr

[
ΓD−1

mrD
−1
ms(x, x)

]
, (5.1)

where mr 6= ms. Its expectation value can be written as

sΓ,rs ≡ sΓ,r − sΓ,s = aΓ

{
〈OΓ,rr(x)〉 − 〈OΓ,ss(x)〉

}
= aΓ (ms −mr)

∑
y

a4〈Srs(y)OΓ,sr(x))〉 (5.2)

where, to simplify the notation, we have introduced the usual notation Srs = OI,rs for
the scalar density. If we define the zero three-momentum field as

t̄Γ,rs(x0) =
1

L3

∑
x

a3 tΓ,rs(x) , (5.3)

its variance is given by

σ2
t̄
Γ,rs

=
a2

Γ

L3
(ms −mr)

2
∑

y1,y2,y3

a11〈Srs(y1)OΓ,sr(0,y2)Ss′r′(y3)O
Γ,r′s′ (0)〉c , (5.4)

where two extra valence fermions ψr′ and ψs′ , with masses mr′ = mr and ms′ = ms

respectively, are introduced if not already present in the theory. This time the operator
product expansion generically predicts that σ2

t̄
Γ,rs

diverges as a−1, i.e. two powers less
than in Eq. (3.6) thanks to the presence of the squared-mass difference in the prefactor.
Analogously to section 3, there are exceptions depending on the symmetries preserved by
the regularization and on the discretization chosen for the operator, and σ2

t̄
Γ,rs

vanishes

in the free-theory limit with the first non-zero contribution appearing at O(g4
0) or higher

in perturbation theory.

5.1 Standard random-noise estimator

Maybe the simplest random-noise estimator of sΓ,rs is

θΓ,rs(x) = −(ms −mr)

a4Ns

Ns∑
i=1

Re
[
aΓη

†
i (x)Γ{D−1

mrD
−1
msηi}(x)

]
, (5.5)

where the variance of its zero three-momentum counterpart

θ̄Γ,rs(x0) =
1

L3

∑
x

a3 θΓ,rs(x) (5.6)
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is

σ2
θ̄
Γ,rs

= σ2
t̄
Γ,rs
− (ms −mr)

2

2L3Ns

{
a2

Γ

∑
y1,y2,y3

a11〈Srs(y1)O
Γ,ss′ (0,y2)Ss′r′(y3)O

Γ,r′r(0)〉+

1

a

∑
y1,y2,y3

a12〈Srs(y1)Pss′(y2)Ss′r′(y3)Pr′r(0)〉
}
. (5.7)

Generically the random-noise contribution on the r.h.s of (5.7) diverges proportionally
to a−1 like the gauge variance. The Γ-independent contribution 〈SPSP 〉 is one of the
spectral sums introduced in Ref. [14]. It is integrated over one time-coordinate more
with respect to the first term, and it gives large contributions to the stochastic variances
of all bilinears indistinctly. If we would not take the real part in Eq. (5.5), the variances
would be larger and Γ-independent since the 〈SOSO〉 contributions are dropped, and
the prefactor 1/(2Ns) goes into 1/Ns.

5.2 Split-even random-noise estimator

An alternative random-noise estimator of the difference of two traces is

τΓ,rs(x) = −(ms −mr)

a4Ns

Ns∑
i=1

Re
[
aΓ{η†iD−1

mr}(x) Γ {D−1
msηi}(x)

]
. (5.8)

The corresponding zero three-momentum field is

τ̄Γ,rs(x0) =
1

L3

∑
x

a3 τΓ,rs(x) , (5.9)

and its variance reads

σ2
τ̄
Γ,rs
= σ2

t̄
Γ,rs
− a2

Γ
(ms −mr)

2

2L3Ns

∑
y1,y2,y3

a11
{〈
Srs(y1)O

Γ,ss′ (0,y2)Ss′r′(y3)O
Γ,r′r(0)

〉
+
〈
Prr′(y1)O

Γ,r′s′ (0,y2)Ps′s(y3)OΓ,sr(0)
〉}

(5.10)

where again two extra valence fermion fields ψr′ and ψs′ with masses mr′ = mr and
ms = ms′ are introduced if not already present in the theory. Also this time the operator
product expansion predicts generically that σ2

τ̄
Γ,rs

diverges as a−1, but with respect to
the standard random-noise estimator the (large) Γ-independent spectral sum 〈SPSP 〉
is absent. The first four-point correlation function on the r.h.s. of Eq. (5.10) is the
flavour-connected counterpart of the disconnected contraction appearing in Eq. (5.4),
the second is analogous but with scalar densities replaced by the pseudoscalar ones and
two flavour indices exchanged. Both integrated correlators on the r.h.s. of Eq. (5.10) are
colour enhanced with respect to the gauge noise and they are of O(1) in the free theory,
see Appendix B.
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Figure 4: Variances of the standard θ
Γ,rs

(filled red symbols) and the split-even τ
Γ,rs

(open
blue symbols) estimators for differences of single-propagator traces for the pseudoscalar density
(left) and the vector current (right) as a function of the number of random sources Ns for the
ensemble F7 and for the bare quark masses amq,r = 0.00207 and amq,s = 0.0189 corresponding
to the sea and approximately the strange quark masses.

The random-noise contributions to the variances of the split-even estimators in
Eq. (5.9) are thus expected to be significantly smaller than for the standard estimators5

of differences of single-propagator traces. This is not surprising since in this case both
sources, ηi and η

†
i , are ultraviolet filtered by a quark propagator and the variance has

one integral less in the time-coordinate analogously to the case of time-diluted sources6.
With respect to the gauge variance, however, the random-noise contribution is still
expected to be larger.

5.3 Numerical tests

We have computed the two random-noise estimators in Eqs. (5.6) and (5.9) on all en-
sembles listed in Table 1 and for several pairs of quark masses. For F7 and for the
bare valence masses amq,r = 0.00207 and amq,s = 0.0189, corresponding to the sea and
approximately the strange quark masses [9,15], the variances are shown in Fig. 4 for the
pseudoscalar density and for one spatial component of the vector current. Similar re-
sults are obtained for other bilinears and/or other lattices. The variance of the standard
estimators σ2

θ̄
Γ,rs

(red filled symbols) turns out to be essentially Γ-independent as sug-

gested by Eq. (5.7), and it is dominated by the spectral sum 〈SPSP 〉. The split-even
5The split-even is an estimator for all times at once, as well as the standard estimator in Eq. (5.6) we

compare with. If time-dilution was used in (5.6), the computation of the estimator for all times would
have been singificantly more expensive.

6By the same argument, if a split-line estimator localized in a given region of space is chosen, the
sum over y2 in Eq. (5.10) is restricted to that region.
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estimators τ̄Γ,rs(x0) have much smaller variances7. The reduction factor ranges from
approximately one order of magnitude for the scalar and pseudoscalar densities up to
around two orders of magnitude or more for the axial and vector currents as well as for
the tensor bilinear. The gauge noise is still smaller than the random noise, but with the
split-even estimator the number Ns of random sources needed to approach the gauge
noise is moderate. It ranges from a few for the pseudoscalar density up to O(100) for
the vector current.

Overall, the data show that the split-even random-noise estimator is much more
efficient than the standard one for computing differences of single-propagator traces,
and it allows one to approach the gauge noise for all bilinears with a moderate number
of noisy sources.

6 Frequency-splitting of single-propagator traces

The results of the last two sections suggest to introduce a family of frequency-splitting
random-noise estimators of single-propagator zero three-momentum traces defined as

τ̄ fs
Γ,r1

(x0) = t̄M
Γ,rm

(x0) + τ̄R
Γ,rm

(x0) +
m−1∑
k=1

τ̄Γ,rkrk+1
(x0) , (6.1)

where t̄M
Γ,rm

, τ̄R
Γ,rm

, and τ̄Γ,rkrk+1
are defined in Eqs. (4.4), (4.6), and (5.9) respectively.

The corresponding variances are given by

σ2
τ̄ fs
Γ,r1

= σ2
t̄
Γ,r1

+ {σ2
τ̄R
Γ,rm

− σ2
t̄R
Γ,rm

}+
m−1∑
k=1

{σ2
τ̄
Γ,rkrk+1

− σ2
t̄
Γ,rkrk+1

} (6.2)

where the various terms on the r.h.s are defined in sections 4 and 5. At high momenta
(heavy masses) the contribution from t̄M

Γ,rm
, responsible for the bulk of the variance of the

standard random-noise estimator, is computed exactly with a limited number of probing
vectors, and only the remainder τ̄R

Γ,rm
is estimated by a random-noise estimator. The

low-frequency contributions τΓ,rkrk+1
can then be estimated by the very efficient split-

even estimator. It is rather clear that splitting the single-propagator traces in several
parts whose contributions come from different frequency regions is beneficial. It allows
us to design a customized estimator for each contribution which profits from its own
peculiarities. An important ingredient in this analysis is the fact that solvers invert the
Dirac operator with heavier quark masses at a lower numerical cost.

7The so called one-end trick estimator used in the context of twisted-mass discretization of QCD
is a particular case of split-even estimator, for which significant numerical gain has been observed
empirically [16, 17]. The analysis of the variances presented here applies straightforwardly to this
estimator too, for which a Schwarz inequality between its variance and the one of the standard estimator
can also be derived.
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Figure 5: Variances of the two frequency-splitting estimators FS1 and FS2 (see the main
text for explanations) for the pseudoscalar density (left) and the vector current (right) for the
ensemble F7 and for the target mass amq = 0.00207 corresponding to the sea quark mass. On
the horizontal axis, Ns is the number of times the frequency-splitting estimator is evaluated
and averaged over for each gauge configuration. For comparison the variances of the standard
random-noise estimators (filled red symbols) are also shown, where in this case Ns coincides
with the number of random sources processed and averaged over for each gauge configuration.
In the right plot, the continuum line represents the linear term of a linear fit in 1/Ns of the
points, while the dashed line is the constant term corresponding to the gauge noise.

6.1 Numerical tests

The best choice of the number of mass differences, the values of the masses, and the
order of the HPE for defining the frequency-splitting estimators in Eq. (6.1) depends on
many factors: the bilinear of interest, the target mass, the solver chosen for inverting the
Dirac operators and its particular implementation, etc. It is not the aim of this paper to
optimize with respect to all these factors8 but, provided a reasonable choice is made, our
goal is to give a numerical proof that the frequency-splitting estimators are efficient and
allow to reduce significantly the numerical cost for computing single-propagator traces.
To this aim we have implemented two such estimators:

• FS1 is the simplest frequency-splitting estimator with one mass difference only.
The masses are amq = 0.00207 and 0.1, τ̄Γ,r0r1

and τ̄R
Γ,r1

are defined with Ns = 1

and 4 respectively. For the lattice F7, inverting the Dirac operator at the heavier
mass costs approximately 1/3 than at the target lighter mass. Each evaluation of
this estimator therefore costs approximately 2.5 times more than processing one
random source for the standard estimator9.

8Computing variances for such an optimization is cheap because it requires a few sources only.
9We do not include the preparatory cost for computing t̄M

Γ,rn
since it becomes quickly negligible after

few evaluations of the random-noise components of the estimator.

13



• FS2 is defined by 4 mass splittings corresponding to the masses amq = 0.00207,
0.02, 0.06, 0.15, 0.3, and the corresponding random-noise estimators are defined
with Ns = 1, 1, 2, 3, and 10 random sources respectively. For the lattice F7,
the cost of inverting the Dirac operator for the second up to the fifth mass is
approximately 1/2, 1/3, 1/4, and 1/6 with respect to the lightest quark mass
respectively. Each application of this estimator thus costs approximately 6.5 times
with respect to processing one random source for the standard estimator.

In both cases the solver used is the generalized conjugate residual (GCR) algorithm
preconditioned by a Schwarz alternating procedure (SAP) and local deflation as imple-
mented in openQCD-1.6 [18].

In Fig. 5 we show the variances of FS1, FS2 and of the standard estimator as a
function of Ns, the number of evaluations of each of them per gauge configuration.
Similar plots are obtained for the other bilinears and the other two lattices. A clear
message emerges: a large gain is obtained for both frequency-splitting estimators with
mild differences in efficiency between them. The FS1 is slightly better for the scalar
and pseudoscalar densities, while FS2 is more efficient for the vector, axial-vector and
tensor bilinears. In particular, the variance of FS1 is approximately 20 and 15 times
smaller than the one of the standard estimators for the scalar and pseudoscalar densities
respectively. Taking into account that one application of FS1 costs approximately 2.5
more, the gain in computation cost is 8 and 6 for the scalar and pseudoscalar10 densities
respectively. For the vector and the axial-vector, the variance of FS2 is approximately 2
orders of magnitude smaller than the one of the standard estimators. As the FS2 is 6.5
times more expensive, the gain in computational cost is approximately a factor 15. For
the tensor the factor gained reaches approximately 20.

It is worth noting that for the scalar, pseudoscalar and the tensor bilinears just one
or a few evaluations of the frequency-splitting estimators are needed for the variance
to be comparable to the gauge noise. For the axial-vector and vector currents O(10)

and O(100) evaluations of the FS2 estimators are required to reach the same goal. As
a result, in all cases the gauge noise is reached with a limited and affordable number
of evaluations of the frequency-splitting estimators. If necessary the frequency-splitting
estimator can be easily combined with low-mode averaging [19,20] and its variants [21].

7 Numerical tests for two-point functions

In this section we discuss the numerical results for two representative examples of discon-
nected contributions to two-point functions, which are the simplest correlation functions
with a non-trivial time dependence composed only of single-propagator traces. We use
the estimators proposed in sections 5 and 6 to confirm the expected improvement over

10If we had used U(1) sources instead of Gaussian ones, the standard estimator for the pseudoscalar
density would have a variance smaller by approximately a factor 3 on this lattice. We prefer to use
Gaussian sources for all bilinears, however, for which the theoretical analysis is simpler.
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Figure 6: Left: variance of the disconnected contribution in Eq. (7.1) with x0/a = 10 using
the standard (red filled squares) and split-even estimator (blue open squares). The stochastic
noise of the split-even estimator is comparable with the gauge noise after Ns ∼ 256. Right: the
disconnected contribution using the split-even estimator from Ncfg = 1200 gauge configurations.

the standard estimator, and check the factorization formula for the variance given in
section 2.

7.1 Split-even estimator for electromagnetic current

As alluded to in section 5, an important application of the split-even estimator is the
determination of the disconnected contribution to the correlation function of two elec-
tromagnetic currents with three light flavours. In the isospin limit, this gives rise to a
difference of single-propagator traces as in Eq. (5.1) with r and s corresponding to the
up/down and strange quark flavours respectively. In particular the correlator

CrsV V (x0) = − L3

3L0

3∑
k=1

∑
y0

a 〈t̄γk,rs(x0 + y0) t̄γk,rs(y0)〉 (7.1)

determines the light disconnected contribution, via the time-momentum representa-
tion [22], of the leading-order hadronic vacuum polarization, once each current is renor-
malized by ZV = 0.74636(70) [23] and the correct electric charge factor of 1/9 is included.

In the left-hand panel of Fig. 6, we show the variance of this correlation function for
x0/a = 10 computed by using the standard (red filled squares) and split-even estimators
(blue open squares) in Eqs. (5.6) and (5.9) respectively. A reduction of the variance
of up to four orders of magnitude is obtained with the split-even estimator (two orders
of magnitude in the cost), which starts to be comparable to the gauge noise for Ns ∼
256. As expected, the variance is practically constant in x0 and well-described by the
factorization formula in Eq. (2.3) when the averaging over time and the polarizations of
the current are taken into account.
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disconnected contribution using the FS2 estimator from Ncfg = 1200 gauge configurations. With
the same number of configurations and the same numerical cost, no signal is observed with the
standard estimator.

In the right-hand panel of Fig. 6 our best estimate of the correlation function using
the split-even estimator is shown using an increased number of gauge configurations,
with respect to those used for estimating the variances, of Ncfg = 1200. This in turn
corresponds to a relative statistical precision of approximately 10% to the disconnected
light-quark part of the muon anomalous magnetic moment coming from contributions
to the integral up to time-distances of 1.5 fm. If the integral is computed up to 3.0 fm or
so, the relative statistical error grows up to 70%, calling for the multi-level integration
to determine the contribution from the long distance part of the integrand. To properly
renormalize the correlator each current has to be multiplied by the factor ZV which
brings a negligible error with respect to the statistical error of the bare correlator11.

7.2 Frequency-splitting estimator for isoscalar vector currents

In spectroscopic applications, disconnected diagrams arise generically in isoscalar chan-
nels. The vector channel, for instance, contains the contribution

CrV V (x0) = − L3

3L0

3∑
k=1

∑
y0

a 〈t̄γk,r(x0 + y0) t̄γk,r(y0)〉. (7.2)

To evaluate this correlation function, we use the FS2 estimator introduced in section 6
for both single-propagator traces. In the left plot of Fig. 7 we show the variances of the

11Improving the vector current goes beyond the scope of this paper. All formulas, however, can be
found in Ref. [24,25].
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standard estimator (filled symbols) against the number of sources, and the improved FS2
estimator (open symbols) against the number of its evaluations per gauge configuration.
The gauge variance is approached with about Ns ∼ 256 evaluations of the FS2 estimator,
similarly to the case of the one-point function of section 6. In this case, while the
disconnected piece gives only a small contribution to the isoscalar channel at intermediate
hadronic distances, its variance quickly dominates the statistical error at large distances.
The improved estimator thus allows the full correlation function to be resolved at much
larger distances.

8 Conclusions

The numerical computation of disconnected Wick contractions is challenging in lattice
QCD because (a) their variances are dominated by the vacuum contribution, which in
turn implies that statistical errors remain constant with the distance of the disconnected
pieces while the signal typically decreases exponentially, and (b) averaging each discon-
nected sub-diagram over the volume tends to be numerically expensive because the quark
propagators must be re-computed at each lattice point.

A milestone for solving the second problem was the introduction of random-noise es-
timators [3–5] which allow one to sum over many or all source points stochastically. How-
ever for single-propagator traces, the simplest among the disconnected sub-diagrams,
such estimators tend to have variances which are typically orders of magnitude larger
than the intrinsic gauge noise. An a priori theoretical analysis of the variances is thus
mandatory for deciding how to define exactly the stochastic observables.

Luckily the random-noise contribution to the variances can be re-expressed in the
form of simple integrated correlation functions of local composite operators, a fact which
allows us to use the quantum field theory machinery for analyzing the origin of the
statistical errors and eventually to reduce them.

As a result, we have introduced new stochastic observables for single-propagator
traces: the split-even and the frequency-splitting estimators for difference of two traces
and for single traces respectively. The former needs from a few random sources for the
pseudoscalar density up to O(100) for the vector current to approach the gauge noise.
The reduction in numerical cost with respect to the standard estimator ranges from one
order of magnitude for the scalar and pseudoscalar densities up to around two orders of
magnitude or more for the axial and vector currents as well as for the tensor bilinear.
Just one or a few evaluations of the frequency-splitting estimators are needed for the
variances of the scalar, pseudoscalar and tensor bilinears to be comparable to the gauge
noise, while for the axial-vector and vector currents O(10) and O(100) evaluations are
required to reach the same goal. In this case the reduction of the computational cost
with respect to the standard estimator is of one order of magnitude or so depending
on the bilinear. In all cases considered the variances of the stochastic estimators reach
the level of the intrinsic gauge noise with a moderate number of evaluations per gauge
configuration.
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The use of these new estimators significantly speeds up the computation of discon-
nected fermion Wick contractions which contribute to many physics processes at the
forefront of research in particle and nuclear physics: the hadronic contribution to the
muon anomalous magnetic moment, K → ππ decays, nucleon form factors, quantum
electrodynamics and strong isospin-breaking contributions to hadronic matrix elements,
η′ propagator, etc. As an example we have shown their potential for computing the
disconnected contribution to the light-quark contribution to the muon anomalous mag-
netic moment and to the correlator of two singlet vector currents. Theory suggests large
gains for disconnected three and higher point correlation functions as well. To solve
or mitigate the problem (a) alluded to at the beginning of this section, the next step
is to combine these estimators with the newly proposed multi-level integration in the
presence of fermions [1, 2].
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A O(a)-improved Wilson-Dirac operator

The massive O(a)-improved Wilson-Dirac operator is defined as [26,27]

Dm = Dw + δDv +m , (A.1)

where m is the bare quark mass, Dw is the massless Wilson-Dirac operator

Dw =
1

2

{
γµ(∇∗µ +∇µ)−∇∗µ∇µ

}
, (A.2)

γµ are the Dirac matrices, and the summation over repeated indices is understood. The
covariant forward and backward derivatives ∇µ and ∇∗µ are defined to be

a∇µψ(x) = Uµ(x)ψ(x+ µ̂)− ψ(x) , a∇∗µψ(x) = ψ(x)− U †µ(x− µ̂)ψ(x− µ̂) , (A.3)

where Uµ(x) are the link fields. The clover term is defined as

δDvψ(x) = a cSW

i

4
σµνF̂µν(x)ψ(x) , (A.4)

where the field strength of the gauge field is

a2F̂µν(x) =
1

8
{Qµν(x)−Qνµ(x)} (A.5)
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with

Qµν(x) = Uµ(x)Uν(x+ µ̂)U †µ(x+ ν̂)U †ν (x)

+ Uν(x)U †µ(x− µ̂+ ν̂)U †ν (x− µ̂)Uµ(x− µ̂) (A.6)

+ U †µ(x− µ̂)U †ν (x− µ̂− ν̂)Uµ(x− µ̂− ν̂)Uν(x− ν̂)

+ U †ν (x− ν̂)Uµ(x− ν̂)Uν(x+ µ̂− ν̂)U †µ(x) .

A.1 Hopping expansion

By applying the standard even-odd decomposition of the Wilson–Dirac operator

Dm =

(
Dee Deo

Doe Doo

)
, (A.7)

see Ref. [28] for unexplained notation, it is straightforward to verify that

D−1
m =

1

Dee +Doo

1

1−Hm
, (A.8)

where
Hm = −

[
DeoD

−1
oo +DoeD

−1
ee

]
, (A.9)

and for clarity the subscript m has been omitted in the block matrices of the even/odd
decomposition defined in Eq. (A.7). It follows that

D−1
m = M2n,m +D−1

m H2n
m , (A.10)

where

M2n,m =
1

Dee +Doo

2n−1∑
k=0

Hk
m . (A.11)

B Bilinear chains in the free case

The propagator of a free Wilson fermion is

S(x− y) = 〈ψ(x)ψ̄(y)〉 =

∫
BZ

d4p

(2π)4
K−1(p) eip(x−y) , (B.1)

where
K(p) = iγµp̄µ +M(p) , M(p) = m+

a

2
p̂2 , (B.2)

with
p̄µ =

1

a
sin(pµa) , p̂µ =

2

a
sin
(pµa

2

)
, (B.3)

and as usual p̄2 = p̄µp̄µ and p̂2 = p̂µp̂µ.
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B.1 Two-point correlators

The integrated two-point correlation functions of non-singlet bilinears are∑
x

a3〈O
Γ,rr′ (0,x)O

Γ,r′r(0)〉 = −12

∫
BZ

d3p

(2π)3

{
bΓ G(p,mr)G(p,mr′) +

cΓ p̄
2F (p,mr)F (p,mr′)

}
(B.4)

where

F (p,m) =

∫
BZ

dp0

2π

1

p̄2 +M2(p)
, G(p,m) =

∫
BZ

dp0

2π

M(p)

p̄2 +M2(p)
(B.5)

and

bΓ =

{
1 Γ = I, γ5, γµ, σµν
−1 Γ = γµγ5

cΓ =


−1 Γ = I

1 Γ = γ5

1− 2
3(1− δµ0) Γ = γµ, γµγ5

−1 + 2
3(2− δµ0 − δν0) Γ = σµν

(B.6)
By using

K†(p)K(p) = K(p)K†(p) = p̄2 +M2(p) , K†(p) = γ5K(p)γ5 , (B.7)

it is straightforward to obtain∑
y

a4〈Prr′(y)Pr′r(0)〉 = −12

∫
BZ

d4p

(2π)4

p̄2 +Mr(p)Mr′(p)

[p̄2 +M2
r (p)][p̄2 +M2

r′(p)]
,

where Mr(p) is evaluated at the bare mass of mr.

B.2 Four-point correlators

The integrated four-point correlation functions of non-singlet bilinears we are interested
in are ∑

y1,y2,y3

a11
〈
Prr′(y1)O

Γ,r′s′ (0,y2)Ps′s(y3)OΓ,sr(0)
〉

=

−12 a2
Γ

∫
BZ

d3p

(2π)3
F (p,mr)F (p,ms) (B.8)

and ∑
y1,y2,y3

a11
〈
Srs(y1)O

Γ,ss′ (0,y2)Ss′r′(y3)O
Γ,r′r(0)

〉
=

−12

∫
BZ

d3p

(2π)3

{
bΓ [K(p,mr,ms)]

2 + cΓ p̄
2[H(p,mr,ms)]

2
}

(B.9)
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where

H(p,mr,ms) =

∫
BZ

dp0

2π

Mr(p) +Ms(p)

[p̄2 +M2
r (p)][p̄2 +M2

s (p)]
, (B.10)

K(p,mr,ms) =

∫
BZ

dp0

2π

Mr(p)Ms(p)− p̄2

[p̄2 +M2
r (p)][p̄2 +M2

s (p)]
, (B.11)

and mr′ = mr and ms′ = ms. Finally∑
y1,y2,y3

a12〈Srs(y1)Pss′(y2)Ss′r′(y3)Pr′r(0)〉 = (B.12)

−12

∫
BZ

d4p

(2π)4

1

{p̄2 +M2
r (p)}{p̄2 +M2

s (p)}
where again we are interested in the case mr′ = mr and ms′ = ms.

B.3 Variance of the HPE remainder

In the free theory, the variance of the noisy estimator of the remainder in Eq. (4.6) is

σ2
τ̄R
Γ,m

=
6

L3Ns

∫
d3p

(2π)3

{
J0,n(p,m)J1,n(p,m) + [I1,2n(p,m)]2a2

ΓbΓ +

[I0,2n(p,m)]2 p̄2 a2
Γ cΓ

}
(B.13)

where

J0,n(p,m) =

∫
BZ

dp0

2π

{
(c1,n(p))2p̄2 + (c0,n(p))2

}
(B.14)

J1,n(p,m) =

∫
BZ

dp0

2π

(c1,n(p))2p̄2 + (c0,n(p))2

p̄2 +M2(p)
(B.15)

I0,n(p,m) =

∫
BZ

dp0

2π

c1,n(p)M(p)− c0,n(p)

p̄2 +M2(p)
(B.16)

I1,n(p,m) =

∫
BZ

dp0

2π

c1,n(p)p̄2 + c0,n(p)M(p)

p̄2 +M2(p)
(B.17)

with

cm,n =

(n−m)/2∑
k=0

(
n

2k +m

)
(c0,1)n−(2k+m)(c1,1)2k+m(−p̄2)k , m = 0, 1 , (B.18)

and

c0,1(p) =
4− a2p̂2/2

am+ 4
, c1,1(p) = − a

am+ 4
, (B.19)
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Figure 8: Two schemes of probing vectors suitable for a matrix whose generic column has non-
zero entries on the sites within the shaded region. Left: the probing vectors have support, e.g.
white squares, on one point of each of the squared blocks. The column of the matrix M2n,m

corresponding to (x/a) = (4, 4) has non-zero entries only in the shaded region where the probing
vector is zero. Right: as on the left but for smaller blocks labeled even and odd.

where the highest k in the sum (B.18) is the last integer value, i.e. either (n − m)/2

or (n−m− 1)/2. If the noise estimator of the remainder in Eq. (4.6) would have been
defined by applying H2n

m to one source vector only, its variance would be as in Eq. (B.13)
but with the replacement J0,n(p,m)J1,n(p,m)→ (1/a)J1,2n(p,m).

C Exact computation of the first 2n terms in the HPE

The matrix M2n,m in Eq. (4.2) is sparse. Its diagonal elements can thus be computed
with a few applications of M2n,m on a well chosen set of probing vectors. Following
Ref. [29], if for a matrixM there exist K probing vectors v0, . . . , vK−1 which satisfy12

K−1∑
k=0

vki v
k
j = δij for all i, j where Mij 6= 0, (C.1)

then the diagonal elements ofM are given by (no summation over i)

Mii =
K−1∑
k=0

vki u
k
i , where uk =Mvk. (C.2)

The non-zero elements of M2n,m are those that connect two lattice sites x and y with
‖x− y‖1 < na, while the matrix is dense in the spin and colour indices. For a lattice
which can be decomposed in hypercubic blocks of size (2na)4, an obvious scheme to
define the set of probing vectors which satisfies the condition (C.1) is

vk(x) =

{
1 k = ics + 12 l2n(x)

0 otherwise
(C.3)

12In Ref. [30] probing vectors were introduced in the context of lattice QCD to define stochastic
estimators of traces of the full quark propagator.
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where ics = 1, . . . , 12 indicates the spin-colour index and l2n(x) = (x0/a) mod 2n+ 2n ·
[(x1/a) mod 2n] + . . . is the lexicographical index labeling the sites in any given block.
This scheme, illustrated in Fig. 8 for n = 2, requires K = 192n4 probing vectors because
one vector is required for each of the spin-colour components for every site in the block.

A more efficient scheme, already outlined in Ref. [31], is depicted in the right-hand
panel of Fig. 8, where even-odd blocks of half the linear size of the previous ones are
introduced. The probing vectors are defined by

vk(x) =

{
1 k = ics + 12 {p+ 2 ln(x)}
0 otherwise

(C.4)

where as before ics indicates the spin-colour index, p = 0, 1 is the parity of the block,
and again ln(x) is the lexicographical index labeling the sites in any given block. This
scheme requires just K = 24n4 vectors, which is a factor 8 fewer than the first one.
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