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Abstract: We compute the six-particle maximally-helicity-violating (MHV) and next-to-

MHV (NMHV) amplitudes in planar maximally supersymmetric Yang-Mills theory through

seven loops and six loops, respectively, as an application of the extended Steinmann relations

and using the cosmic Galois coaction principle. Starting from a minimal space of functions

constructed using these principles, we identify the amplitude by matching its symmetries and

predicted behavior in various kinematic limits. Through five loops, the MHV and NMHV

amplitudes are uniquely determined using only the multi-Regge and leading collinear limits.

Beyond five loops, the MHV amplitude requires additional data from the kinematic expansion

around the collinear limit, which we obtain from the Pentagon Operator Product Expansion,

and in particular from its single-gluon bound state contribution. We study the MHV am-

plitude in the self-crossing limit, where its singular terms agree with previous predictions.

Analyzing and plotting the amplitudes along various kinematical lines, we continue to find

remarkable stability between loop orders.
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1 Introduction

Recent years have seen enormous progress in our understanding and ability to compute scat-

tering amplitudes, particularly in the fertile testing ground of planar N = 4 super-Yang-Mills

(SYM) theory [1, 2]. This progress has included advances in the construction of integrands

that contribute to this theory [3–14] as well as the amplitudes resulting from their integra-

tion [15–34]. In particular, infrared divergences in this theory are understood to all orders

via the BDS ansatz [35]. This ansatz completely describes amplitudes involving four or five

particles, a fact which was later understood as a consequence of the theory’s (anomalous) dual

conformal invariance [3–5, 36–38]. For six or more particles the ansatz is corrected [39, 40]

by finite dual conformally invariant (DCI) contributions [5, 36, 41–46].

These DCI contributions to the amplitude have especially nice properties. In particular,

they have been observed to have uniform transcendental weight equal to twice the loop order.

While generic amplitudes in this theory may depend on elliptic polylogarithms [44, 47, 48]
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and even more complicated [49, 50] functions, maximally-helicity-violating (MHV) and next-

to-MHV (NMHV) amplitudes are expected [10] to contain only functions drawn from the

class of generalized polylogarithms. This class of functions is well understood, and has a

Hopf algebra coaction structure that has been exploited to great effect [17, 51–56]. (We will

often refer to this coaction loosely as a coproduct, even though technically it is not because

the two objects a function is mapped to under it are really of different types.) Maximally

iterating this coproduct yields an object called the symbol of a function [17]. In six- and

seven-particle kinematics (and for higher multiplicity two-loop MHV amplitudes) the letters

entering the symbol have intriguing connections to cluster algebras [22, 23, 25, 28, 57–61].

Using these known symbol letters in six-particle kinematics and considering functions

with physical branch cuts, it is possible to write down the space of functions within which

the amplitude should reside. Moreover, by requiring a general ansatz of these functions to

have the right symmetries and kinematic properties, the amplitude can be identified uniquely

within this space. This bootstrap procedure was first employed for the three-loop six-particle

MHV amplitude [19, 24]. Since then, it has been used to fix six-particle amplitudes through

five loops [20, 26, 27, 29, 31, 33] and seven-particle amplitudes through four loops [30, 34, 62].

Crucial to this progress has been an increasingly refined understanding of the space of

functions needed to represent these amplitudes. In particular, the hexagon and heptagon

bootstraps have in recent years been augmented by knowledge of the Steinmann relations [33,

34, 63–65]. In a companion paper [66], we present the next (and probably final) evolution

of this space. We find that the Steinmann relations can be applied at any depth in the

symbol [45, 66]. These conditions apply at the level of the symbol, but there are also important

restrictions on the function space that involve multiple zeta value (MZV) constants, which

are invisible at the level of the symbol. Once the amplitudes are properly normalized, they

belong to a space of functions that satisfies a cosmic Galois coaction principle [67–70], which

provides important restrictions on the MZVs that can appear. Furthermore, the space of

functions is minimal through weight seven: it is impossible to eliminate any more functions,

because all of them are needed to capture the iterated derivatives (or coproduct entries) of

the six and seven loop amplitudes. We call this minimal space of functions Hhex.

In this paper, we employ this space of functions to construct the six-particle amplitude

through seven loops in the MHV sector and through six loops in the NMHV sector. After

constructing an ansatz with the appropriate symmetries, we require that it behaves appro-

priately under the action of the dual superconformal Q̄ operator [21]—which constrains the

symbol letters that can appear in the final entry—and we require the expected leading-power

behavior in the collinear limit. To do this, we construct a basis of functions iteratively in the

weight, and work out their limiting behavior. At six and seven loops, these constraints leave

fewer than 20 free parameters, out of thousands of initial parameters.

To fix the remaining parameters, we consider additional kinematic limits that supply

independent information about the amplitude. We first consider the multi-Regge limit, in

which outgoing particles are widely separated in rapidity, and the amplitude factorizes in a

Fourier-Mellin transformed space [29, 40, 71–73]. The behavior in this limit is now understood
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to all orders via integrability techniques [74]. Constraints from this limit yield a unique answer

for the amplitude through five loops and for the six-loop NMHV amplitude. However, at

both six and seven loops for the MHV amplitude we observe a novel qualitative feature: the

appearance of a single function that vanishes in the leading-power collinear and multi-Regge

limits. Hence, the free parameter multiplying this function cannot be determined from these

limits alone.

To determine this one remaining coefficient in our ansatz, we use a kinematic expansion

around the collinear limit, which can be computed in the framework of the Wilson loop (or

Pentagon) Operator Product Expansion (OPE) [75–87]. Quite interestingly, this last step

requires going up to second order in the near-collinear expansion, and specifically examining

the OPE contribution of the first gluon bound state.

Having determined the amplitudes, we proceed to study their properties, which reveals

another novel feature that first appears at six loops: a previously conjectured cross-loop-order

relation between MHV amplitudes and NMHV amplitudes [29, 33], which held for several loop

orders, no longer seems to hold. As part of our analytic study, we present formulas for the

values of our amplitudes at various points in the space of kinematics, in order to exhibit their

number-theoretic properties. This study includes the limit of physical 2 → 4 and 3 → 3

kinematics where the corresponding Wilson loop approaches a self-crossing configuration [88–

91], and the singular terms can be resummed to arbitrary loop order. We also plot the

perturbative amplitudes numerically along various lines in the Euclidean region. The new

analytic features we described do not affect a remarkable numerical consistency between loop

orders at generic values of the cross ratios. We interpret this consistency as evidence that the

perturbative expansion of the amplitudes in these regions has a finite radius of convergence.

This paper is organized as follows. In section 2, we begin by reviewing our minimal space

of functions, and discuss how to normalize the six-particle MHV and NMHV amplitudes

in order to fit them into this space. Then, in section 3, we describe how to construct the

amplitude through seven loops in the MHV sector and at six loops in the NMHV sector, by

applying constraints from symmetries and kinematic limits. Section 4 contains the number-

theoretic and numeric exploration of the amplitudes on a variety of kinematic points and

lines. In section 5 we examine the self-crossing limit of the MHV amplitude. In section 6 we

conclude and discuss directions for future research.

We provide the following ancillary files along with this paper: SixGluonAmpsAndCops.m,

SixGluonHPLLines.m, SelfCross.m, SelfCrossSingular.m, hexMRKL1-7.m, WL0-6.m,

W1111L0-6.m, WL7.m, and WLOPEblocks.m. These computer-readable files describe results

that are too lengthy to place in the text, including (respectively) a coproduct description of the

amplitudes, their values on certain Euclidean lines in terms of harmonic polylogarithms [92],

the MHV values in the self-crossing limit, a formula for the singular self-crossing behavior to

20 loops, formulas for the amplitudes in the multi-Regge limit, formulas for the near-collinear

limit of the framed Wilson loop through six loops for MHV and NMHV and at seven loops

for MHV, and individual contributions to the Wilson loop OPE. The files are hosted at [93].
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2 Review and normalization

2.1 Superamplitudes, kinematic variables and generalized polylogarithms

Let us begin by briefly recalling certain facts about the general structure of six-particle

amplitudes in planar N = 4 SYM theory, including their kinematic dependence and the

class of functions that encompasses them. Due to the supersymmetry of this theory, we

may combine color-ordered amplitudes with different external particles into corresponding

superamplitudes, which are defined in an on-shell superspace [94–97]. The superfield Φ can be

written in terms of Grassmann variables ηA that transform in the fundamental representation

of the SU(4) R-symmetry,

Φ = G+ + ηAΓA + 1
2!η

AηBSAB + 1
3!η

AηBηCεABCDΓ
D

+ 1
4!η

AηBηCηDεABCDG
−, (2.1)

where the gluons of each helicity G±, gluinos of each helicity ΓA and Γ
A

, and scalars SAB
represent the on-shell particle content of the theory.

The superamplitude An(Φ1,Φ2, . . . ,Φn) is typically broken into three factors: the BDS

ansatz ABDS
n [35], the remainder function Rn [5], and a ratio function Pn [38], giving

An = ABDS
n × exp(Rn)× Pn . (2.2)

The BDS ansatz encodes the infrared-divergent part of the amplitude (in dimensional regu-

larization) as well as its non-DCI part. This leaves the remainder function and ratio function,

which are finite and respect dual conformal symmetry. The ratio function carries all de-

pendence on the Grassmann variables and can be expanded in Grassmann degree to isolate

contributions with different helicity structure:

P = 1 + PNMHV + PN2MHV + . . .+ PMHV . (2.3)

The kinematic dependence of the remainder and ratio function is most conveniently written

in terms of dual variables xi and θi, which are defined in terms of the external momenta ki
and the Grassmann variables ηA via

kαα̇i = λαi λ̃
α̇
i = xαα̇i − xαα̇i+1, λαi η

A
i = θαAi − θαAi+1 . (2.4)

Here the additional index i on the Grassmann variables associates them with the ith ex-

ternal particle, and λ, λ̃ are two-component spinors. For more background on these dual

(super-)coordinates, see for instance ref. [98].

Focusing now on the case of six particles, there are only three helicity configurations:

MHV, NMHV, and MHV. The MHV amplitude is parity conjugate to MHV, and thus the

entire amplitude is encoded in the MHV and NMHV components. After normalizing them

by the BDS ansatz, these amplitudes only depend on the kinematics through dual-conformal

invariant cross ratios. Only three algebraically independent cross ratios can be formed for six

particles, and traditionally they have been chosen as

u =
x2

13 x
2
46

x2
14 x

2
36

, v =
x2

24 x
2
51

x2
25 x

2
41

, w =
x2

35 x
2
62

x2
36 x

2
52

, (2.5)
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where x2
ij ≡ (xµi − x

µ
j )2 are squared differences of dual coordinates. These cross ratios can

also be expressed in terms of (planar) two- and three-particle Mandelstam invariants using

the translation si,i+1,...,i+n−1 = (ki + ki+1 + · · ·+ ki+n−1)2 = x2
i,i+n.

The MHV amplitude corresponds to the leading term in the expansion (2.3), and as such

it depends only on the remainder function R6(u, v, w) defined in eq. (2.2). This function is

expected to be a pure (generalized) polylogarithmic function (to be defined more precisely

below) of the cross ratios (2.5) to all loop orders, meaning that the kinematic dependence

only appears in polylogarithms and not in any rational prefactors multiplying these functions.

The NMHV contribution to the ratio function PNMHV is not pure, but it can be written as a

sum of pure polylogarithmic functions multiplied by R-invariants.

To define the R-invariants, we first recall the definition of momentum supertwistors [99,

100],

Zi = (Zi |χi), ZR=α,α̇
i = (λαi , x

βα̇
i λiβ), χAi = θαAi λiα . (2.6)

The momentum twistors Za, considered as vectors in CP3, can be contracted into SL(4)

invariants using the Levi-Civita tensor,

〈abcd〉 ≡ εRSTUZRa ZSb ZTc ZUd , (2.7)

where in particular x2
ij ∝ 〈i − 1ij − 1j〉, and the additional factors (which would make this

proportionality exact) cancel out in the fully dual-conformal invariant ratios in eq. (2.5).

Similarly, five-brackets of the Za are dual superconformal invariants known as R-invariants.

They are defined to be

(f) ≡ [abcde] =
δ4
(
χa〈bcde〉+ cyclic

)
〈abcd〉〈bcde〉〈cdea〉〈deab〉〈eabc〉

, (2.8)

where we denote the five-bracket of legs {a, b, c, d, e} by the remaining leg f . Using these

quantities, we can parametrize PNMHV in terms of a parity-even function V and a parity-odd

function Ṽ :

PNMHV =
1

2

[
[(1) + (4)]V (u, v, w) + [(2) + (5)]V (v, w, u) + [(3) + (6)]V (w, u, v)

+ [(1)− (4)]Ṽ (u, v, w)− [(2)− (5)]Ṽ (v, w, u) + [(3)− (6)]Ṽ (w, u, v)
]
. (2.9)

The remainder function, V , and Ṽ have perturbative expansions in the large-N coupling

g2 defined by

g2 =
λ

16π2
=
Ng2

YM

16π2
, (2.10)

where λ is the usual ’t Hooft coupling. The coefficients of the perturbative expansion are

linear combinations of generalized polylogarithms. These functions are defined as iterated

integrals over logarithmic kernels, commonly denoted by

Ga1,...,an(z) =

∫ z

0

dt

t− a1
Ga2,...,an(t) , G0, . . . , 0︸ ︷︷ ︸

p

(z) =
lnp z

p!
, (2.11)

– 5 –



with the recursion starting at G(z) = 1. The number n of nested integrations in the above

definition is referred to as the weight of the generalized polylogarithm.

At L loops in the perturbative expansion in g2, the remainder function, V , and Ṽ and

are all pure functions of uniform transcendental weight 2L. In practice this means that the

total differential of these functions, and the functions F we will be interested in later, can be

written in the form

dF =
∑
s∈Shex

F s d ln s , (2.12)

where Shex is the set of nine hexagon symbol letters that will be introduced below. If F has

weight n, then each F s is a pure function of weight n− 1.

Because of the motivic structure of generalized polylogarithms [17, 51, 54, 56, 68, 101],

the total differential (2.12) corresponds to the component of the coaction with weight-one

functions in its back entry,

∆n−1,1(F ) =
∑
s∈Shex

F s ⊗ ln s . (2.13)

The map ∆•,1 can be applied iteratively to the functions in the left factor of the coprod-

uct, breaking down the weight n polylogarithms entering F into n-fold tensor products of

logarithms, objects commonly referred to as symbols [17]. The letters s appearing in the

arguments of the logarithms belong to the hexagon symbol alphabet:

s ∈ Shex = {u, v, w, 1− u, 1− v, 1− w, yu, yv, yw} . (2.14)

Here we have introduced three parity-odd letters,

yu =
u− z+

u− z−
, yv =

v − z+

v − z−
, yw =

w − z+

w − z−
, (2.15)

defined in terms of the quantities

z± =
1

2

[
−1 + u+ v + w ±

√
∆
]
, ∆ = (1− u− v − w)2 − 4uvw. (2.16)

(The cross ratios (2.5) are parity even.)

In this paper we will often use the following equivalent symbol alphabet,

S ′hex = {a, b, c,mu,mv,mw, yu, yv, yw} , (2.17)

which is related to the original alphabet Shex through the relations

a =
u

vw
, b =

v

wu
, c =

w

uv
, mu =

1− u
u

, mv =
1− v
v

, mw =
1− w
w

. (2.18)

This alphabet makes the Steinmann relations more transparent by isolating the three inde-

pendent three-particle Mandelstam invariants si,i+1,i+2 in different letters, a, b and c. In this
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respect it resembles more closely the usual choice of alphabet for the seven-particle ampli-

tude [30].

At higher loops, expressing these functions in the G-function notation (2.11) becomes

overly cumbersome, and it proves more effective to encode the amplitude in terms of its ∆•,1
coproduct. This amounts to keeping track of the (iterated) derivatives of the amplitude, as

well as the integration constants required to reconstruct the amplitude from these derivatives.

This way of treating these functions will be reviewed in more depth in a companion paper [66],

and has been discussed elsewhere in the literature (see for example ref. [24]). In the next

subsection, we describe how we normalize the amplitudes so that they lie in Hhex.

2.2 Cosmic normalization

In ref. [66] we describe the construction of a minimal space of (extended) Steinman-satisfying

hexagon functions. In addition to the extended Steinmann relations, this space is constructed

to obey a coaction principle, which is to say it is invariant under the cosmic Galois group [67–

70]. This condition implies that if one studies the coaction of higher-loop amplitudes, the

first entry belongs to a stable space whose dimension at fixed weight saturates as the loop

order increases. Empirically, this saturation happens around weight L, namely at around half

the weight of the corresponding L-loop amplitude. While some of these restrictions have long

been understood at symbol level, at the level of functions they result in further restrictions

on the transcendental constants that are allowed to appear as free elements: only ζ4, ζ6, ζ8,

etc. are needed.

It is highly nontrivial that the six-point amplitudes lie within this space through seven

loops. In fact, they only do so once they are properly normalized. First of all, in order

to preserve the Steinmann constraints, we must normalize the amplitude by the BDS-like

ansatz [31, 33, 102] (up to a kinematically constant factor). The BDS-like ansatz differs from

the BDS ansatz by a factor of

exp

[
−1

4
Γcusp(g2) E(1)(u, v, w)

]
, (2.19)

where the cusp anomalous dimension is [103]

1

4
Γcusp(g2) = g2 − 2 ζ2 g

4 + 22 ζ4 g
6 −

[
219 ζ6 + 8 (ζ3)2

]
g8 + · · · , (2.20)

and

E(1)(u, v, w) = Li2

(
1− 1

u

)
+ Li2

(
1− 1

v

)
+ Li2

(
1− 1

w

)
(2.21)

is the finite, dual conformally invariant part of the one-loop MHV amplitude.

However, beyond two loops this normalization is not sufficient to place the amplitudes

into Hhex, and needs to be adjusted by a kinematical constant. (The Steinmann relations

uniquely fix the normalization, up to this constant.) One way to see the need for a new
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normalization is to inspect the three-loop values of the MHV amplitude Eold and NMHV

amplitude Eold defined in ref. [33] at the point (u, v, w) = (1, 1, 1):

Eold (3)(1, 1, 1) =
413

3
ζ6 + 8(ζ3)2 , Eold (3)(1, 1, 1) = −940

3
ζ6 + 8(ζ3)2 . (2.22)

Both amplitudes contain (ζ3)2 with the same nonzero coefficient. The presence of (ζ3)2 would

violate the coaction principle, because of a specific term in its coaction, namely ∆3,3[(ζ3)2] =

2ζ3 ⊗ ζ3. This term contains a ζ3 in its first entry, but no ζ3 is allowed there, because the

weight-three functions in Hhex all vanish at (1, 1, 1) [66].

Therefore, starting at three loops, we modify the BDS-like ansatz ABDS−like
6 by a function

of the coupling ρ(g2), in order to fit the amplitudes into a space that is invariant under the

cosmic Galois group. In other words, we define the “cosmically normalized” MHV amplitude

E in terms of the full, infrared-divergent amplitude A6, the BDS-like ansatz, and ρ, as

AMHV
6 (sij , ε) = ABDS−like

6 (si,i+1, ε)× ρ(g2)× E(u, v, w, g2). (2.23)

The BDS-like ansatz is [31, 102]

ABDS−like
6 (si,i+1, ε) = AMHV,tree

6 exp

[ ∞∑
L=1

(g2)L
(
f (L)(ε)M̂6(Lε) + C(L)

)]
, (2.24)

where C(L) is a constant at each loop order, as is f (L)(ε),

f(ε) =
∞∑
L=1

(g2)Lf (L)(ε) =
1

4
Γcusp +O(ε). (2.25)

(We suppress the two additional terms in the ε expansion of f here for simplicity.)

Finally, the quantity M̂6(ε) differs from the full one-loop MHV amplitude by an amount

proportional to E(1). It is given by

M̂6(ε) =(4πe−γE )ε
6∑
i=1

[
− 1

ε2

(
1 + ε ln

(
µ2

−si,i+1

)
+
ε2

2
ln2

(
µ2

−si,i+1

))
+

1

2
ln2

(
si,i+1

si+1,i+2

)
− 1

4
ln2

(
si,i+1

si+3,i+4

)
+

3

2
ζ2

]
+O(ε) , (2.26)

where γE is the Euler-Mascheroni constant.

It is important that M̂6(ε) only depends on the two-particle invariants si,i+1 to O(ε0), so

that factoring it out of the amplitude does not affect the Steinmann relations for three-particle

invariants [33].

The relation between E and the remainder function R6 is

E =
1

ρ
exp

[
1

4
ΓcuspE(1) +R6

]
. (2.27)
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The coefficient functions that specify the cosmically normalized NMHV amplitude, which we

call E and Ẽ, are defined similarly; in terms of the scheme-independent coefficient functions

V and Ṽ of the ratio function (2.9) they are defined by

E = E × V, Ẽ = E × Ṽ . (2.28)

To pass from the old normalization for Eold, Eold, Ẽold used in ref. [33] to the one used here,

simply divide the old functions by ρ(g2).

We compute ρ by requiring that the amplitudes fit into the minimal space that obeys the

coaction principle. For example, at three loops we need to have ρ(g2) = 1+8(ζ3)2 g6+O(g8) in

order to cancel the two appearances of (ζ3)2 in eq. (2.22). This criterion does not necessarily

determine ρ uniquely. For instance, ρ could be adjusted by terms involving even zeta values

ζ2L at L loops since these have free parameters associated with them (except for ζ2 at one

loop). We choose to fix this ambiguity by not including any ζ2L term at L loops. Through

seven loops, we find that the minimal solution for ρ does not require any genuine MZVs, nor

does it contain any factor of ζ2:

ρ(g2) = 1 + 8(ζ3)2 g6 − 160ζ3ζ5 g
8 +

[
1680ζ3ζ7 + 912(ζ5)2 − 32ζ4(ζ3)2

]
g10

−
[
18816ζ3ζ9 + 20832ζ5ζ7 − 448ζ4ζ3ζ5 − 400ζ6(ζ3)2

]
g12

+
[
221760ζ3ζ11 + 247296ζ5ζ9 + 126240(ζ7)2 − 3360ζ4ζ3ζ7 − 1824ζ4(ζ5)2

− 5440ζ6ζ3ζ5 − 4480ζ8(ζ3)2
]
g14 + O(g16). (2.29)

This form for ρ is uniquely fixed, given the following assumptions:

1. ρ does not contain MZVs of depth two or higher, e.g. no ζ5,3,

2. the coaction principle is satisfied through weight 14 at the point (1, 1, 1),

3. it is also satisfied at an analytic continuation of this point to 3 → 3 self-crossing kine-

matics,

4. a subspace of the hexagon functions that we can define to all weights, which saturates

the space of MZVs in Hhex through weight 10, also does so at weight 11.

The last constraint is only needed to uniquely fix ρ(7). It imposes one additional constraint

on the MZVs appearing at weight 11, which in turn implies one fewer allowed MZV at weight

14. Otherwise we would have an ambiguity in ρ at seven loops, because we do not yet know

the NMHV amplitude at this order.

Once we have fixed ρ at a given loop order, many constraints ensue as we go to higher

loop orders. For example, none of the {6, 1, 1} coproducts of the four-loop amplitudes can

contain a (ζ3)2 when evaluated at (1, 1, 1). It is interesting that the same value of ρ works

for both the MHV and NMHV amplitudes. Perhaps this fact indicates that ρ is determining

a particular infrared regularization scheme.
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In fact, ρ seems to be related to the inverse of the cusp anomalous dimension at low loop

orders.1 More precisely, the quantity ρ− 4 g2/Γcusp contains only even zeta values until five

loops:

ρ− 4 g2

Γcusp
= −2 ζ2 g

2 + 12 ζ4 g
4 − 100 ζ6 g

6 + 994 ζ8 g
8

−
[
10980 ζ10 − 96 (ζ5)2 − 16 ζ4 (ζ3)2

]
g10

+
[89756216

691
ζ12 − 3360 ζ5 ζ7 − 320 ζ4 ζ3 ζ5 − 240 ζ6 (ζ3)2

]
g12

−
[
1611350ζ14 − 30960(ζ7)2 − 48384ζ5ζ9 − 1056ζ4(ζ5)2

− 3360ζ4ζ3ζ7 − 4800ζ6ζ3ζ5 − 3024ζ8(ζ3)2
]
g14 + O(g16). (2.30)

Recall that the g4, g6 and g8 terms could be removed from this relation by redefining ρ, using

the fact that the corresponding zeta values are independent, constant elements of Hhex. Given

how the cusp anomalous dimension is tied to infrared divergences, eq. (2.30) might provide a

clue for how ρ defines a “cosmically-preferred” infrared regularization scheme.

Through five loops, the values of the MHV amplitude at (1, 1, 1) are, in the new normal-

ization,

E(1)(1, 1, 1) = 0 , (2.31)

E(2)(1, 1, 1) = −10 ζ4 , (2.32)

E(3)(1, 1, 1) =
413

3
ζ6 , (2.33)

E(4)(1, 1, 1) = −5477

3
ζ8 + 24

[
ζ5,3 + 5 ζ3 ζ5 − ζ2 (ζ3)2

]
, (2.34)

E(5)(1, 1, 1) =
379957

15
ζ10 − 12

[
4 ζ2 ζ5,3 + 25 (ζ5)2

]
− 96

[
2 ζ7,3 + 28 ζ3 ζ7 + 11 (ζ5)2 − 4 ζ2 ζ3 ζ5 − 6 ζ4 (ζ3)2

]
. (2.35)

For the NMHV amplitude (parity even part) they are

E(1)(1, 1, 1) = −2 ζ2 , (2.36)

E(2)(1, 1, 1) = 26 ζ4 , (2.37)

E(3)(1, 1, 1) = −940

3
ζ6 , (2.38)

E(4)(1, 1, 1) =
36271

9
ζ8 − 24

[
ζ5,3 + 5 ζ3 ζ5 − ζ2 (ζ3)2

]
, (2.39)

E(5)(1, 1, 1) = −1666501

30
ζ10 + 12

[
4 ζ2 ζ5,3 + 25 (ζ5)2

]
+ 132

[
2 ζ7,3 + 28 ζ3 ζ7 + 11 (ζ5)2 − 4 ζ2 ζ3 ζ5 − 6 ζ4 (ζ3)2

]
. (2.40)

We will give the six- and seven-loop values in section 4.1.

1We thank Mark Spradlin for discussions on this point.
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3 Bootstrapping the six-particle amplitude

In this section we describe the constraints that we impose in order to uniquely determine the

MHV amplitude through seven loops, and the NMHV amplitude through six loops.

3.1 Discrete symmetries, Q̄ supersymmetry, and collinear limit

Our starting point is the space of functions described in ref. [66]: generalized polylogarithms

with symbol letters drawn from the alphabet Shex of eq. (2.14), that have branch cuts ending

where the cross ratios u, v, and w become zero or infinity, and that satisfy the extended

Steinmann relations and obey a cosmic Galois coaction principle.

The general linear combination of all such functions with transcendental weight 2L forms

an initial ansatz for each of the (cosmically normalized) functions E(L), E(L), and Ẽ(L).

These functions inherit a set of discrete symmetries from the dihedral symmetry of the full

superamplitude: E is fully symmetric under all permutations of u, v, w, while

E(u, v, w) = E(w, v, u) , Ẽ(yu, yv, yw) = −Ẽ(yw, yv, yu) . (3.1)

We also impose the condition [29]

Ẽ(yu, yv, yw) + Ẽ(yv, yw, yu) + Ẽ(yw, yu, yv) = 0 , (3.2)

which removes an unphysical degree of freedom in the function Ẽ, as any cyclically symmetric

piece of Ẽ drops out of the full amplitude due to the following linear relation between R-

invariants,

(1) + (3) + (5) = (2) + (4) + (6). (3.3)

At this early stage it is convenient to impose the “final entry condition” that follows

from the Q̄ equation [21, 104, 105]. The dual superconformal generator Q̄ is a first-order

differential operator acting on the n-point L-loop NkMHV amplitude, which relates it to an

integral over the (n + 1)-point (L − 1)-loop Nk+1MHV amplitude. By choosing appropriate

differentials, the latter “source term” can be made to vanish, leading to a set of homogeneous

constraints. In the MHV case, they take the form,

Eu + E1−u = Ev + E1−v = Ew + E1−w = 0 . (3.4)

These relations imply that the final entries of E can only be drawn from a subset of the normal

symbol letters, which we may write in the alphabet (2.17) as

E final entries ∈ {mu,mv,mw, yu, yv, yw} . (3.5)

The NMHV final entry conditions are slightly more involved [31]. The allowed final symbol

entries here depend on which R-invariant the polylogarithm multiplies. The allowed combi-

nations are

(1) d ln b , (1) d ln

(
mw

yvmu

)
, (3.6)[

(2) + (5) + (3) + (6)
]
d lnmv + (1) d ln(mwyu) + (4) d ln(muyw) ,
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along with their cyclic images. Note that the appearance of products like d ln(mwyu) means

that these constraints link E and Ẽ; after imposing these final entry conditions, our ansätze

for these functions can no longer be considered independent.

We apply these constraints first because they are easy to impose, and because they

constrain a large number of coefficients. For example, at six loops, of the 3692 undetermined

coefficients present in our initial weight 12 ansatz, only 236 and 102 parameters remain in the

MHV and NMHV amplitudes, respectively, after imposing the above symmetries and final

entry conditions.

We next turn to the collinear limit, where the six-point amplitude reduces to a five-point

amplitude times a universal splitting function. Since the six-point BDS ansatz captures the

correct collinear limits of the six-point amplitude, both the remainder function and the ratio

function must vanish at loop level in this limit. E and E do not vanish, but their behavior

can be easily found by taking the collinear limit of eq. (2.27). In the u, v, and w variables,

the collinear limit corresponds to v → 0 and u→ 1− w, where we have that

E
∣∣
coll

=
1

2
(E(v, w, u) + E(w, u, v))

∣∣
coll

=
exp
[

1
4Γcusp E(1)|coll

]
ρ

. (3.7)

Similar constraints apply in the cyclically related collinear limits, but are automatically en-

forced by the discrete symmetry conditions already imposed.

Imposing this behavior in the strict collinear limit (which is to say, at leading power)

fixes many of the remaining parameters in our ansatz. As we will see in the next section, it

leaves us with fewer than 20 free parameters to constrain.

3.2 Multi-Regge kinematics

Next we constrain these remaining parameters, using input from additional kinematic limits.

The multi-Regge limit, in which the collision of two highly energetic particles produces four

particles that are strongly ordered in rapidity, is a prime source of such input. In terms of

Mandelstam invariants, with particles 3 and 6 incoming and particles 1,2,4,5 outgoing, the

2→ 4 multi-Regge limit reads

s12 � s345, s123 � s34, s45, s56 � s23, s61, s234 . (3.8)

In this section, we will use (u1, u2, u3) instead of (u, v, w) to avoid confusion with the multi-

Regge variable w. In the cross ratios the multi-Regge limit becomes,

u1 → 1 , u2, u3 → 0 , (3.9)

with the ratios

u2

1− u1
≡ 1

(1 + w) (1 + w∗)
and

u3

1− u1
≡ ww∗

(1 + w) (1 + w∗)
(3.10)
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held fixed in terms of the complex-valued multi-Regge variable w. The behavior of the

remaining letters,

y1 → 1, y2 →
1 + w∗

1 + w
, y3 →

(1 + w)w∗

w(1 + w∗)
, (3.11)

may be inferred from the following momentum twistor parametrization,
√
τ√
w

1 −1 0 0 0

0 0 0 1 1
√
w∗√
τ

1√
τ
√
w∗ 0 0 −1 0 1√

τ
√
w∗√

τ
√
w 0 1 1 0 0

 , (3.12)

where the columns correspond to (Z1, . . . , Z6), the rows correspond to their components, and

the limit amounts to
√
u2u3 ' τ → 0.

In the Euclidean region, loop corrections to the BDS-normalized amplitude vanish in the

multi-Regge limit [40], due to its conformal equivalence to a soft limit [24, 106]. Nontrivial

behavior in the limit is obtained by analytically continuing into physical 2 → 4 Minkowski

kinematics. For particles 3 and 6 in the initial state, the Mandelstam variables s12 and

s45 in the numerator of u1 should be continued into the time-like region, which amounts to

continuing

u1 → e−2πiu1 (3.13)

before taking the limit.

As we will review shortly, it is possible to obtain direct predictions for the behavior of the

amplitude in multi-Regge kinematics when the external particles are gluons. For the bosonic

MHV amplitude this is true by definition, whereas for the NMHV superamplitude, we need

to specialize to its gluonic components. Without loss of generality we may choose the (χ4)4

component of the ratio function (that is, P(4444)
NMHV) [31], which describes the NMHV helicity

configuration2

3+6+ → 2+4−5+1+ . (3.14)

Taking the limits of the R-invariants that the functions E and Ẽ multiply, we may express

the corresponding BDS-normalized gluon amplitude in multi-Regge kinematics as

P(4444)
NMHV e

R6 =
ρe−

Γcusp
4
E(1)

2(1 + w∗)

{
E(u1, u2, u3) + E(u3, u1, u2) + Ẽ(y1, y2, y3)− Ẽ(y3, y1, y2)

+ w∗[E(u2, u3, u1) + E(u3, u1, u2) + Ẽ(y2, y3, y1)− Ẽ(y3, y1, y2)]
}
. (3.15)

The first factor in this relation takes into account the change from (cosmic) BDS-like nor-

malization back to BDS normalization. Moreover, all transcendental functions should be

2In conventions where the momenta p3, p6 are incoming, and the rest outgoing. In the limit, helicity is

preserved along the lines of the incoming gluons, and the only other inequivalent helicity configuration may

be obtained by a parity transformation.
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understood as having been first analytically continued as (3.13), and then evaluated in the

limit (3.9). For instance,

E(1) MRK−−−→− 1

2
(ln2 u2 + ln2 u3)− 2πi ln(1− u1) + 10ζ2

= − ln2 τ − ln2 |w| − 2πi ln
τ |1 + w|2

|w|
+ 10ζ2 (3.16)

in this limit, where we also used the shorthand ww∗ ≡ |w|2 etc.

The amplitude is invariant with respect to the discrete y2 ↔ 1/y3 transformation, known

as target-projectile symmetry. The latter is a combination of a dihedral flip (y2 ↔ y3 or

Zi → Z3−i) and a parity (yi → 1/yi or Zi → Zi+3) transformation. In the multi-Regge limit

it becomes equivalent to the inversion w → 1/w, w∗ → 1/w∗. Thus if our ansatz for E, Ẽ

already respects target-projectile symmetry in general kinematics, we need only compute the

first line of eq. (3.15), and the second line follows from the first by replacing w → 1/w.

The behavior of the amplitude in multi-Regge kinematics may be studied directly within

the BFKL approach [29, 40, 71–73], yielding dispersion relation-type integrals for the ampli-

tude. These integrals have the form,

eR6+iπδ|MRK = cosπωab + ig2
∞∑

n=−∞
(−1)n

( w
w∗

)n
2 P

∫ +∞

−∞
dν

ΦReg(ν, n)

(ν2 + n2

4 )

× |w|2iνe−(ln τ+iπ)ω(ν,n) ,

P(4444)
NMHV × e

R6+iπδ|MRK = cosπωab + ig2
∞∑

n=−∞
(−1)n

( w
w∗

)n
2 P

∫ +∞

−∞
dν

ΦReg(ν, n)

(ν2 + n2

4 )
H̄(ν, n)

× |w|2iνe−(ln τ+iπ)ω(ν,n) , (3.17)

where

ωab =
1

4
Γcusp(g2) ln |w|2 , (3.18)

δ =
1

4
Γcusp(g2) ln

|w|2

|1 + w|4
, (3.19)

τ =
√
u2u3 =

(1− u1)|w|
|1 + w|2

, (3.20)

and Γcusp is the cusp anomalous dimension, given in eq. (2.20). The remaining building

blocks of the integrand are known as the BFKL eigenvalue ω, the regularized (MHV) impact

factor ΦReg and the NMHV form factor H̄.3 They were first obtained to the first few orders

in perturbation theory by analyzing the effective particles whose exchange dominates in the

limit, also by studying the limits of the amplitudes [26], and more recently to all loops with

3The NMHV form factor is essentially the ratio between the regularized MHV and NMHV impact factors.

In the notations of refs. [29, 31], ΦMHV
Reg = ΦReg and ΦNMHV

Reg = 2iν+n
2iν−n H̄ΦReg.
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the help of integrability [74]. We refer to the latter reference for their expansion to arbitrary

loop order, where in the notation there

H̄(ν, n) =
x[u(ν) + in/2]

x[u(ν)− in/2]
. (3.21)

Finally, the P on the right-hand side of eq. (3.17) denotes the Cauchy principal value of

the integral, which has a pole at n = ν = 0. Equivalently, we take half the value of the

corresponding residue, when evaluating the integral using Cauchy’s residue theorem.

Given that all building blocks in the integrand (3.17) start at O(1), except for ω(ν, n)

which starts at O(g2), it is easy to see that at L loops R(L)
6 and PNMHV can be written

in the limit as a polynomial in ln(1 − u1), or ln τ , of degree L − 1 (plus power-suppressed

terms). The coefficient of lnL−1 τ is referred to as the leading-log (LL) contribution, and

similarly the coefficient of lnL−1−k τ corresponds to the (next-to)k-leading logarithmic (NkLL)

contribution. We provide the result of evaluating the Fourier-Mellin integral in eq. (3.17),

separated by logarithmic order, in the ancillary file hexMRKL1-7.m.

Aside from the rational prefactors 1/(1 + w∗) and w∗/(1 + w∗) in the NMHV case, the

coefficients of the large logarithms are single-valued harmonic polylogarithms (SVHPLs) in

w,w∗ [107, 108]. From eqs. (3.10) and (3.12) it can be seen that these functions have the

symbol alphabet {w, 1+w,w∗, 1+w∗}, and that the first entry can be only ww∗ or (1+w)(1+

w∗). SVHPLs have the important property that they can be uniquely reconstructed from their

holomorphic part, defined to be their value at w∗ = 0, also removing any divergent lnw∗.

This observation significantly simplifies the computation of the dispersion integrals (3.17),

since the holomorphic part comes only from the residues satisfying iν = −n/2 [109, 110] (see

also ref. [106]).

We can match this holomorphic part directly to the holomorphic part of the multi-Regge

limit of our ansatz for the amplitude. In order to obtain this limit, we iteratively compute

the multi-Regge limit of each function in our basis through weight 11. This can be done

using the coproduct entries of these functions, which encode the derivative of each function

with respect to w. (The multi-Regge limit of all the functions appearing in these coproduct

entries is known from the previous iteration in the computation.) Each function’s derivative

can thus be matched to a basis of SVHPLs of the appropriate weight. (There are 3259

SVHPLs at weight 11, including MZVs multiplied by lower weight SVHPLs.) We fix the

constants of integration by first computing all functions on the 2→ 4 self-crossing line where

(u, v, w)→ (1− δ, v, v), as described in section 3 of ref. [91] and section 5 of this paper, and

then sending v → 0; this limit intersects the w → −1 limit of the multi-Regge limit. In

the coproduct representation of our ansatz, matching to holomorphic data means that we

only need to consider the final symbol letters w and 1 + w. At seven loops, matching at the

level of weight 11 functions means that we compare to the {11, 1, 1, 1} coproduct component.

This leaves three integration constants unfixed. However, the constants can be determined as

described above, using the self-crossing limit of just the coproduct entries of the amplitude

itself, rather than for all weight 12, 13, and 14 functions inHhex. (An analogous procedure was
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used to evaluate the strict collinear and near-collinear limits, where the boundary conditions

are also fixed using the same self-crossing line, but this time on the Euclidean sheet where it

intersects the collinear limit at its soft endpoint.)

Since ω(ν, n) is zero at tree level, any term containing a square or higher power of ln τ

is determined entirely by lower-loop data [33]. That is, at any given loop order such terms

may be predicted using only lower-loop amplitudes and the structure of eq. (3.17), without

the need for prior knowledge of the precise form of the integrand building blocks from, say,

integrability. If all parameters in our ansatz can be fixed by such terms, then our bootstrap

is in some sense “pure”, in that it does not rely on external data.

Quite interestingly, while the multi-Regge limits at the ln2 τ level fixed all remaining

parameters through five loops [33], they no longer do so at six or seven loops. The NMHV

amplitude can be fixed at six loops using just this data, but in the MHV amplitude a single

parameter evades determination in the multi-Regge limit at both six and seven loops, even

when the independent predictions of ref. [74] are used for the most subleading large logarithms

ln τ and ln0 τ . We will analyze the function accompanying this final six-loop parameter in

more detail in subsection 3.4; however, its appearance is not a problem. As we now describe,

another limit can fix this coefficient. This limit can, in principle, supply an infinite amount

of boundary data for the amplitude.

3.3 Near-collinear operator product expansion

Independent predictions for the behavior of the amplitude in an expansion around the collinear

limit may be obtained within the framework of the Wilson loop (or Pentagon) Operator

Product Expansion [75–87]. The limit in question is most conveniently described in terms of

variables T = e−τ , S = eσ, and F = eiφ that appear in the following parametrization of the

momentum twistors Zi [77], 
S√
F

1 −1 0 0 0

0 0 0 1 1 1√
FS√

F
T 0 0 −1 0

√
F
T√

FT 0 1 1 0 0

 , (3.22)

where the limit corresponds to τ →∞ or T → 0. We may express any conformally invariant

cross ratio in terms of T , S, and F with the help of the above parametrization, and the

definition of the cross ratio in terms of four-brackets (2.7). For example, the cross ratios u,

v, and w evaluate to

u =
F

F + FS2 + ST + F 2ST + FT 2
,

v =
FS2

(1 + T 2) (F + FS2 + ST + F 2ST + FT 2)
,

w =
T 2

1 + T 2
,

(3.23)
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in this parametrization.

As its name suggests, the natural object in the Wilson loop OPE approach is not the

amplitude per se, but the closely related, appropriately normalized (framed) Wilson loop.

Focusing momentarily on the MHV case, the relation between E and the corresponding Wilson

loop W is

W = ρ E exp

(
1

4
Γcusp[X − E(1)]

)
, (3.24)

where E(1) is defined in eq. (2.21), and X is given by [77]

X = −Li2(1−u)−Li2(1−v)+Li2(w)+ ln2(1−w)− ln(1−w) ln
(v
u

)
− lnu ln v+

π2

6
. (3.25)

The normalization factor ρ appears in eq. (3.24) to compensate for the fact the Wilson loop is

related to the original BDS-like normalized amplitude, not its cosmically normalized cousin.

Notice that unlike E , the function X and thus also W are not dihedrally symmetric. The

asymmetry is a consequence of the framing of the hexagonal Wilson loop, which requires

dividing it by two pentagonal Wilson loops and multiplying back by a quadrilateral one; the

orientation of these auxiliary polygons breaks the dihedral symmetry.

The collinear limit corresponds to T → 0, and the Wilson loop OPE is nothing but an

expansion of W in powers TEi for different exponents Ei, which govern how fast the limit is

approached. Both the exponent and the coefficient of these powers can be computed exactly

in the coupling, as a consequence of the physical interpretation of each term as an excitation of

an integrable flux tube, formed by the Wilson lines of the quadrilateral in the aforementioned

framing of the Wilson loop.

At loop order L in the weak coupling regime, which is the focus of this paper, the OPE

framework predicts that

W(L) =

∞∑
m=1

m∑
n=−m

TmFnf (L)
m,n(T, S) , (3.26)

where f
(L)
m,n(T, S) is a polynomial (of degree L − 1 for MHV) in lnT , whose coefficients are

sums of rational times transcendental functions of S. In the above, m and n correspond

respectively to the total particle number and helicity of the flux tube excitation, both of

which are good quantum numbers.

Here, we will mostly consider the excitations with m = |n|, and n = ±1 or ±2, whose

contributions to the near-collinear limit have the form,

f|n|,n(T, S) =

∞∑
L=1

g2Lf
(L)
|n|,n(T, S) . (3.27)

Given that the field content of the theory consists of scalars, fermions and gluons with helicity

0, ±1/2 and ±1 respectively, these contributions only come from gluonic excitations of the
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same helicity. It can be shown that gluons of the same helicity may also form bound states

[78, 111]. The flux tube description of these contributions is

f1,±1 =W[±1] ,

f2,±2 =W[±2] +W[±1,±1] ,
(3.28)

where [80]

W[a] =

∫
du

2π
µa(u)T γa(u)Sipa(u) (3.29)

denotes the contribution of a single-particle excitation which is a bound state of |a| gluons

with helicity a and rapidity u, and

W[a,b] =
1

1 + δab

∫
dudv

(2π)2

µa(u)µb(v)

Pa|b(u|v)Pb|a(v|u)
T γa(u)+γb(v)Si[pa(u)+pb(v)] (3.30)

is a superposition of two such excitations, consisting of gluons with helicities a and b such

that ab > 0, and rapidities u and v, respectively.

The physical quantities pa and γa = Ea−|a| are the momentum and quantum correction

to the energy of the flux tube excitation, while µa and Pa|b are the measure and pentagon

transition, respectively. The finite-coupling expressions for all these quantities have been

provided in ref. [80], together with a method for their systematic weak-coupling expansion.

In order to avoid clutter, here we illustrate only the leading terms for ab > 0:

pa(u) = 2u+ 2ig2
[
ψ( |a|2 + iu)− ψ( |a|2 − iu)

]
+O(g4) , (3.31)

γa(u) = 2g2
[
ψ(1 + |a|

2 + iu) + ψ(1 + |a|
2 − iu)− 2ψ(1)

]
+O(g4) , (3.32)

µa(u) = (−1)ag2 Γ( |a|2 + iu)Γ( |a|2 − iu)

Γ(|a|)(u+ i|a|
2 )(u− i|a|

2 )
+O(g4) , (3.33)

Pa|b(u|v) =
(−1)b( |a|2 − iu)( |b|2 + iv)Γ( |a|−|b|2 + iu− iv)Γ( |a|+|b|2 − iu+ iv)

g2Γ( |a|2 + iu)Γ( |b|2 − iv)Γ(1 + |a|−|b|
2 − iu+ iv)

+O(g0) . (3.34)

We provide expressions for these quantities to eight loops in the ancillary file WLOPEblocks.m.

Because the MHV Wilson loop is a bosonic scalar object, it is invariant under parity,

which flips the sign of the helicity. This symmetry implies that

f|n|,−n = f|n|,n , or W[−a] =W[a] , W[−a,−b] =W[a,b] , (3.35)

as can also be seen explicitly in the leading-order expressions above. From the same expres-

sions, it is evident that W[a] will start at O(g2). At L loops, it is a polynomial in lnT of

degree L− 1, whereas W[a,b] starts at O(g8), and has degree L− 4. Remarkably, this implies

that the single-gluon state has a distinct signature at order T 2, since at L loops all lnk T

contributions to f2,±2 with L− 1 ≤ k ≤ L− 3 come purely from it.

A general algorithm for the weak-coupling evaluation ofW[±1] was developed in ref. [112],

and later extended to W[±2] [113]. In both cases explicit expressions were obtained up to six
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loops.4 In the latter paper, W[±1,±1] was computed at four loops, by observing that although

it is represented as a two-fold integral (3.30), it can always be reduced into a sum of products

of one-fold integrals, to which the method of ref. [112] is applicable. Because this property is

independent of loop order, it was also used [109] to determine W(5)
[±1,±1]; here we have pushed

these three OPE contributions to seven loops. We include them in the files WL0-6.m and

WL7.m, through six loops and at seven loops respectively.

Thus we have the complete OPE prediction through seven loops for the TF±1 and T 2F±2

terms in the T → 0 limit of the MHV amplitude E(L), after using the conversion (3.24). At six

loops, we compare this prediction to the limit of our ansatz, with the single parameter that

survives the multi-Regge limit. Quite interestingly, at six loops we find that the single such

parameter is fixed from the T 2F 2 ln4 T contribution, namely from the single-gluon bound state

alone. (Recall that at six loops, the two-gluon superposition only contributes to terms with

at most two powers of lnT .) We have checked that our answer for the amplitude also agrees

with all the remaining T 2F±2 terms, including those sensitive to the two-gluon superposition.

Our answer for the limit of the amplitude also contains the T 2F 0 terms, which we also include

in the ancillary file WL0-6.m. These terms have not been checked against the OPE, although

of course we expect them to agree.

At seven loops, we proceed in a slightly different fashion. The combined constraints, up

to and including the multi-Regge limit, again leave one parameter free in the ansatz. Because

the near-collinear limit is computationally demanding at seven loops, we instead examine the

origin, where (u, v, w)→ (0, 0, 0). We observe that through six loops the remainder function

has only a very mild singularity, quadratic in logarithms of u, v, w. (See section 4.2.) On

the other hand, the function multiplying the one free parameter is far more singular at the

origin, behaving like ln6 u ln4 v ln4w+ cyclic. Therefore we fix its coefficient by requiring only

quadratic behavior in the remainder function at seven loops. We have verified that this choice

for the last parameter matches the OPE predictions in the near-collinear limit for all T 1F±1

and T 2F±2 terms, i.e. to the same accuracy checked at six loops.5 We have also investigated

the near-collinear limit of the final seven-loop ambiguity, and find that its limit contains terms

of order T 2F±2 ln6 T , meaning that its coefficient can also be fixed using just the single-gluon

bound state. Again, we extract the T 2F 0 terms in the Wilson loop OPE from the amplitude

in this limit, and we include them in the ancillary file WL7.m.

Moving on to the NMHV case, we will focus on taking the near-collinear limit of the (1111)

component of the superamplitude, which may be expressed in terms of the E, Ẽ coefficient

4In particular, the relations between our notations, and those used in the aforementioned papers, are

W[±1] = I0 =WF , W[±2] =WDF , W[±1,±1] =WFF =W2[1,1]/2.
5The Wilson loop evaluation at seven loops and order T 2F±2 lnk T for k < 4 was done as an expansion for

large S through O(1/S50); for all other values of k the comparison was carried out exactly.
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functions as

E(1111) =
1

2

[
S [E(u, v, w)− Ẽ(u, v, w)]

S + FT
+

E(w, u, v) + Ẽ(w, u, v)

(1 + T 2)[1 + T (FS + T )]

+
T (FS + T )3 [E(v, w, u) + Ẽ(v, w, u)]

[F (1 + T (FS + T ))][F (1 + S2) + T (S(1 + F 2) + FT )]

+
TF 3[E(v, w, u)− Ẽ(v, w, u)]

(S + FT )[F + T (S + FT )][F (1 + S2) + T (S(1 + F 2) + FT )]

+
T 4 [E(w, u, v)− Ẽ(w, u, v)]

F (1 + T 2)[F + T (S + FT )]

]
. (3.36)

This equation follows from the BDS-like normalized analog of eq. (2.9), after taking into

account that the (1111) component of the R-invariants, namely the coefficient of the χ4
1 term

in the definition (2.8),6 is

(1)→ 0 , (2)→ F 3T

(S + FT ) (F + ST + FT 2) (F + FS2 + ST + F 2ST + FT 2)
,

(3)→ 1

(1 + T 2) (1 + FST + T 2)
, (4)→ S

S + FT
, (3.37)

(5)→ T (FS + T )3

F (1 + FST + T 2) (F + FS2 + ST + F 2ST + FT 2)
,

(6)→ T 4

F (1 + T 2) (F + ST + FT 2)
,

when the cross ratios are parametrized by F , S and T .

The relation of the (1111) superamplitude component of eq. (3.36) to the corresponding

component of the NMHV super-Wilson loop, the expansion of the latter in the collinear limit,

as well as the predictions for the leading and subleading gluonic OPE contributions to this

expansion, then follow straightforwardly from their MHV counterparts, eqs. (3.24)–(3.30),

upon the simple replacement

E → E(1111) , W∗ →W(1111)
∗ , µa(u)→ µa(u)ha(u) , (3.38)

where ∗ can denote the full Wilson loop (component), as in eqs. (3.24)–(3.26), or a particular

OPE contribution to it, as in eqs. (3.28)–(3.30). (Note that the factor of ρ in eq. (3.24) is

required in the NMHV case too, given how we cosmically normalize E and Ẽ in eq. (3.36).)

In addition,

ha(u) =

(
x(u+ ia/2)x(u− ia/2)

g2

)sign(a)

'

(
u2 + a2

4

g2
+O(1)

)sign(a)

(3.39)

6Note that ref. [77] uses ηi, rather than χi, to refer to dual supercoordinates.
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are NMHV form factors, responsible for creating OPE excitations that are charged under the

R-symmetry of the theory. They are expressible in terms of so-called Zhukowski variables,

x(u) =
1

2

(
u+

√
u2 − 4g2

)
' u+O(g2) , (3.40)

for which we have also indicated the choice of branch at weak coupling.

In contrast to the MHV case, the presence of these form factors implies that OPE contri-

butions with opposite helicity will no longer be equal, e.g. W(1111)
[−a] 6= W(1111)

[a] . Nevertheless,

we may also evaluate them using the existing summation algorithms mentioned earlier in

this section, after taking into account two minor differences for the case a > 0. First, the

presence of inverse powers of the coupling in eq. (3.39) implies that we have to expand the

MHV integrand multiplying the form factor to higher order in g2 than the loop order we wish

to compute. And second, particularly for W(1111)
[2] , it proves simpler to compute the integral

by first defining a reduced integrand f(u) to be the original integrand divided by (u2 +a2/4),

then evaluating the integral of the reduced integrand by residues. From that integral we

obtain the result for the original integrand by differentiating,7∫
du

2π

(
u2 +

a2

4

)
S2iuf(u) =

(
1

(2i)2

∂2

∂(lnS)2
+
a2

4

)∫
du

2π
S2iuf(u) . (3.41)

In this manner, we have also determined the TF±1 and T 2F±2 terms in the collinear OPE

expansion of the (1111) NMHV super-Wilson loop component to six loops. All terms com-

puted agreed with the near-collinear limit of the NMHV amplitude, which is an independent

cross check, since all parameters were fixed by the multi-Regge limit in the NMHV case. We

include the near-collinear limit of this component of the super-Wilson-loop in the ancillary

file W1111L0-6.m, including T 2F 0 terms which have not yet been checked against the OPE.

Table 1 summarizes the number of parameters left after imposing the various constraints

we have discussed, through six loops. The left-hand entry in parentheses is the number for

the MHV amplitude, while the right-hand one is NMHV. “MRK” refers to multi-Regge kine-

matics, with the number of N’s indicating how many logarithms below the leading logarithms

(LL). There are a couple of question marks in the table at six loops, or weight 12, having

to do with the number of parity-odd functions that are not allowed by branch cut and other

conditions, even though their symbol is allowed by symbol-level constraints [66]. The issue

arises because we do not yet have a complete weight 12 basis at function level, but it is un-

likely to affect the final number by more than one. There are also some asterisks related to

how the constant ρ is fixed. If ρ were known ahead of time at a given loop order, the number

of parameters would be exactly the number shown. But in practice it is not, and so one

should add the number of asterisks indicated. For example, there are two extra parameters

associated with ρ for the six loop MHV amplitude after the strict collinear limits are imposed,

in addition to 6 other parameters that are independent of the value of ρ.

7Note that f(u) is independent of S, namely we have taken out of the integral any factors of lnS coming

from the weak-coupling expansion of the integrand, so that the differential operator doesn’t act on them.
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Constraint L = 1 L = 2 L = 3 L = 4 L = 5 L = 6

1. Hhex 6 27 105 372 1214 3692?

2. Symmetry (2,4) (7,16) (22,56) (66,190) (197,602) (567,1795?)

3. Final-entry (1,1) (4,3) (11,6) (30,16) (85,39) (236,102)

4. Collinear (0,0) (0,0) (0∗, 0∗) (0∗, 2∗) (1∗3, 5∗3) (6∗2, 17∗2)

5. LL MRK (0,0) (0,0) (0,0) (0,0) (0∗, 0∗) (1∗2,2∗2)

6. NLL MRK (0,0) (0,0) (0,0) (0,0) (0∗, 0∗) (1∗, 0∗2)

7. NNLL MRK (0,0) (0,0) (0,0) (0,0) (0,0) (1, 0∗)

8. N3LL MRK (0,0) (0,0) (0,0) (0,0) (0,0) (1,0)

9. Full MRK (0,0) (0,0) (0,0) (0,0) (0,0) (1,0)

10. T 1 OPE (0,0) (0,0) (0,0) (0,0) (0,0) (1,0)

11. T 2 OPE (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)

Table 1. Remaining parameters in the ansätze for the (MHV, NMHV) amplitude after each con-

straint is applied, at each loop order. The superscript “∗” (“∗n”) denotes an additional ambiguity (n

ambiguities) which arises only due to lack of knowledge of the cosmic normalization constant ρ at the

given stage. The “?” indicates an ambiguity about the number of weight 12 odd functions that are

“dropouts”; they are allowed at symbol level but not function level. The seven-loop MHV amplitude

was constrained in a somewhat different order. As the parameter counts are not directly comparable

it is omitted from the table.

The table clearly shows the difference between six loop MHV and all other cases shown,

in that one parameter survives all the way through the multi-Regge limit and the one flux

tube (T 1) OPE constraints. The same is true at seven loops. We omit the seven-loop

MHV numbers because we constrained the result somewhat differently, using symbol-level

constraints first and then reapplying the constraints at function level, so the numbers are not

directly comparable. However, the number of surviving symbol-level parameters after the

strict collinear limit is 17. This number is consistent with the general pattern of the number

of parameters rising by roughly a factor of 3 per loop.

3.4 The fate of inter-loop relations

Once we arrive at the final expressions for the six-particle MHV and NMHV amplitudes

through seven and six loops respectively, following the steps we described in the previous

subsections, we move on to examine their properties. Most of the quantitative and qualitative

analysis in various points and lines of the space of kinematics will be done in the next section,

but let us conclude this section by noting another new feature that first appears at six loops.

Based on empirical observations up to L = 4, a relationship between the L-loop MHV

amplitude and the (L − 1)-loop NMHV amplitude was conjectured [29]. This relation was
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then confirmed to hold also at L = 5 [33]. In our notation, which essentially coincides with

that of the latter reference, the relation takes the form,

g2 (2E−E) = Eyu,yu+Eyw,yw−3Eyv ,yv−Ev,v−E1−v,v+2(Eyu,yv+Eyw,yv)−Eyu,yw−Eyw,yu , (3.42)

where F x,y refers to the corresponding component of the ∆n−2,1,1 “double” coproduct of the

function F , and E = E(u, v, w).

Here, we observe that this relation in fact breaks down at six and seven loops. Very

interestingly, this breakdown is closely related to the phenomenon described at the end of

section 3.1, namely the appearance of functions in Hhex that vanish in the near-collinear

limits through O(T ) and in the multi-Regge limits. These functions are precisely the ones

multiplying the parameters of our ansatz that remain free after applying the corresponding

constraints. We saw that there exists one such function at weight 12 that contributes to the

MHV amplitude, which we can call Z(u, v, w) for concreteness. A similar function appears

at weight 14, which we call Z̃(u, v, w).

Both Z and Z̃ are totally symmetric under dihedral S3 transformations. Moreover, their

parity-even {2L− 1, 1} coproducts vanish identically,

Zu = Zv = Zw = Z1−u = Z1−v = Z1−w = 0, (3.43)

so that they are entirely specified by their yu coproduct. The T derivative of any function

satisfying eq. (3.43) can be expressed in terms of the coproducts Zyu , Zyv and Zyw , with

coefficients that are O(T 0) as T → 0. Because Z is parity even, the Zyi are parity-odd, and

so they vanish like T 1 as T → 0 (times powers of lnT ). Thus the T derivative of Z vanishes

like T 1 lnk T , and so Z itself must vanish like T 2 lnk T (provided that Z is not a constant). In

other words, eq. (3.43) alone is enough to ensure that a parity even function Z is undetectable

in the near-collinear limit at the level of one flux tube excitation. (It is not as clear to us why

such a function has to vanish in the multi-Regge limit.) Why didn’t such functions turn up

at lower loop orders? The answer is that within our function space there are no parity-even

solutions to eq. (3.43) until weight 12!

Returning to the connection between the six loop function Z and the relation (3.42), we

find that we can satisfy this relation if we shift E(6) → E(6) + αZ(u, v, w) for some rational

number α. In other words, the only effect of the MHV-NMHV relation at six loops is to set the

coefficient of Z(u, v, w) in E(6) to an incorrect value. This is nontrivial, since eq. (3.42) could

alternatively yield no solution at all. We suspect that its validity through five loops is linked

to the non-existence of analogs of Z(u, v, w) at lower weight. We should also remark that at

seven loops it is not possible to solve eq. (3.42) solely by shifting E(7) → E(7) + βZ̃(u, v, w)

for any β.

Could there be other relations between MHV and NMHV amplitudes and their double

coproducts at one loop higher? By surveying our data up to six loops, we find three such

relations:

g2E = −2
(
Eb,mu + Eb,mw

)
+ Eb,b + 2

(
Eb,mu + Eb,mw

)
− Eyv ,yv (3.44)
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and its cyclic images. It remains to be seen whether they continue to hold at higher loops,

but paralleling our analysis of the breakdown of eq. (3.42), they may be related to the absence

or presence of functions that vanish even faster than Z in the near-collinear limit.

4 Numerics and number theory in kinematic limits

In the ancillary file SixGluonAmpsAndCops.m accompanying this paper, the six- and seven-

loop functions E , E, and Ẽ are expressed in terms of iterated ∆•,1 coproduct entries, supple-

mented by boundary data at the point (1,1,1). This is formally equivalent to providing these

functions in the generalized polylogarithm notation (2.11) but is far more compact. While at

five (and lower) loops, both types of expressions have been published [33, 114], the polyloga-

rithmic expressions become too unwieldy by weight 12. In fact, it already proves prohibitively

difficult to use these expressions to generate numerics at five loops. However, these functions

simplify drastically on a number of codimension two and three subspaces. This allows us to

more easily probe the analytic and numerical properties of the amplitudes.

In particular, it was observed by several of the authors [24] that the remainder function

appears to behave extremely similarly across loop orders for moderate values of the cross

ratios (0 . u . 1). This was interpreted [26, 31] as a signature of the finite radius of

convergence of the perturbative series in planar N = 4 SYM, a property that is expected

from the absence of instantons and renormalons. It can be explicitly demonstrated for some

quantities that are known at finite coupling, such as the cusp anomalous dimension [103].

The small-coupling expansion of the cusp anomalous dimension has a radius of convergence

of 1/16. Stated differently, at high orders the ratio between the coefficients of successive

orders in the coupling approaches −16.8

From prior observations at lower loops, we expect that for values of u, v, w of order

unity, the ratios of successive loop orders for the functions E, Ẽ, and E should approach a

similar radius of convergence, and should do so quite rapidly in the loop expansion. Later in

this section, we will confirm that this behavior continues to hold at six and seven loops by

plotting the ratios of successive loop orders. First we discuss the functions’ behavior at the

point (1, 1, 1) and at the origin.

4.1 The point (1, 1, 1)

Because the amplitude is smooth throughout the interior of the Euclidean region, the functions

E and E have finite values at the point (u, v, w) = (1, 1, 1). (The function Ẽ vanishes at this

8The difference from the ratio of −8 quoted in refs. [26, 31] is due to a different normalization of the coupling

there.
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point due to parity.) At six and seven loops, these functions become

E(6)(1, 1, 1) = −2273108143

6219
ζ12

+
260

3

[
140ζ5ζ7 − 56ζ2ζ3ζ7 − 10ζ2(ζ5)2 − 60ζ4ζ3ζ5 + 49ζ6(ζ3)2

]
+ 384

[
ζ2ζ7,3 + 14ζ2ζ3ζ7 + 3ζ2(ζ5)2 − 7ζ6(ζ3)2

]
+ 120

[
4ζ4ζ5,3 + 20ζ4ζ3ζ5 − 7ζ6(ζ3)2

]
+

5392

3

[
ζ9,3 + 27ζ3ζ9 + 20ζ5ζ7 − 2ζ2ζ3ζ7 − ζ2(ζ5)2 − 6ζ4ζ3ζ5 − 5ζ6(ζ3)2

]
,(4.1)

E(7)(1, 1, 1) =
2519177639

1260
ζ14 + 2496

[
2ζ5,3,3ζ3 − 2ζ5,3,3,3 − ζ5,3(ζ3)2

]
− 87648ζ9,5 + 302160ζ11,3 −

61024

3
ζ9,3ζ2 − 3264ζ7,3ζ4 − 7160ζ5,3ζ6

+
361720

3
ζ8(ζ3)2 + 416ζ2(ζ3)4 + 206216ζ6ζ3ζ5 − 4160(ζ3)3ζ5 + 95136ζ4(ζ5)2

+ 203136ζ4ζ3ζ7 − 77408ζ2ζ5ζ7 + 1208712(ζ7)2 + 252640ζ2ζ3ζ9 + 1082048ζ5ζ9

− 1241760ζ3ζ11 , (4.2)

E(6)(1, 1, 1) =
5066300219

6219
ζ12

− 344

3

[
140ζ5ζ7 − 56ζ2ζ3ζ7 − 10ζ2(ζ5)2 − 60ζ4ζ3ζ5 + 49ζ6(ζ3)2

]
− 528

[
ζ2ζ7,3 + 14ζ2ζ3ζ7 + 3ζ2(ζ5)2 − 7ζ6(ζ3)2

]
+ 60

[
4ζ4ζ5,3 + 20ζ4ζ3ζ5 − 7ζ6(ζ3)2

]
− 9952

3

[
ζ9,3 + 27ζ3ζ9 + 20ζ5ζ7 − 2ζ2ζ3ζ7 − ζ2(ζ5)2 − 6ζ4ζ3ζ5 − 5ζ6(ζ3)2

]
.(4.3)

Notice that similar linear combinations of MZVs appear in E(6) and E(6). This property

reflects consistency with a cosmic Galois coaction principle, given the values of lower-loop

amplitudes and their coproducts at this point.9 This point is discussed in depth in our

companion paper [66].

It is interesting to note that the sum Σ(L) = E(L)+E(L) has somewhat simpler coefficients

9A convenient way to verify the coaction principle is by writing the MZVs in terms of an f alphabet [54]

using the Maple program HyperlogProcedures [115].
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at this point:

Σ(1)(1, 1, 1) = −2 ζ2 , (4.4)

Σ(2)(1, 1, 1) = 16 ζ4 , (4.5)

Σ(3)(1, 1, 1) = −527

3
ζ6 , (4.6)

Σ(4)(1, 1, 1) =
19840

9
ζ8 , (4.7)

Σ(5)(1, 1, 1) = −906587

30
ζ10

+ 36
[
2 ζ7,3 + 28 ζ3 ζ7 + 11 (ζ5)2 − 4 ζ2 ζ3 ζ5 − 6 ζ4 (ζ3)2

]
, (4.8)

Σ(6)(1, 1, 1) =
2793192076

6219
ζ12

− 28
[
140ζ5ζ7 − 56ζ2ζ3ζ7 − 10ζ2(ζ5)2 − 60ζ4ζ3ζ5 + 49ζ6(ζ3)2

]
− 144

[
ζ2ζ7,3 + 14ζ2ζ3ζ7 + 3ζ2(ζ5)2 − 7ζ6(ζ3)2

]
+ 180

[
4ζ4ζ5,3 + 20ζ4ζ3ζ5 − 7ζ6(ζ3)2

]
− 1520

[
ζ9,3 + 27ζ3ζ9 + 20ζ5ζ7 − 2ζ2ζ3ζ7 − ζ2(ζ5)2 − 6ζ4ζ3ζ5 − 5ζ6(ζ3)2

]
.(4.9)

We currently know of no physical reason why the sum should appear to be simpler.

4.2 The origin

In the limit where u, v, w all approach zero, all hexagon functions become polynomials in the

logarithms lnu, ln v, and lnw. We can determine the (transcendental) coefficients of this

polynomial for the functions E , E, and Ẽ by first considering them at the point u = 1 and

v, w → 0. This point is in the collinear limit, so we know the values of these three functions

here. To translate this information to the origin, we integrate the amplitude along the (u, 0, 0)

line, where v, w → 0 but u is generic. Along this line, all hexagon functions become harmonic

polylogarithms in u with coefficients that are polynomials in ln v, lnw.

A generic weight-2L hexagon function gives rise to a polynomial of total degree 2L in the

logarithms. However, from the leading OPE behavior on the double-scaling surface v → 0

one can show that for the L-loop amplitude, this polynomial should have a degree of at most

L in ln v, and similarly for the degree in lnu and in lnw [18, 19].10

That is indeed the maximum logarithmic behavior that we find for the even and odd

contributions to the ratio function, V and Ṽ . Remarkably, for the remainder function through

seven loops we find much less singular behavior, at most quadratic in the total power of the

logarithms. Also, linear terms in the logarithms do not appear. Because R6(u, v, w) is totally

10The original analyses focused on amplitudes with a one-loop leading OPE contribution. More generally,

it can be shown that if the leading OPE contribution an amplitude receives is at k loops, the highest degree

of logarithmic divergence is L− k [116], with k = 0 being of course maximal.
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symmetric, and there are only two totally symmetric quadratic polynomials, we find that

R(L)
6 (u, v, w) → c

(L)
1 P1(u, v, w) + c

(L)
2 P2(u, v, w) + c

(L)
0 +O(u, v, w) , (4.10)

as (u, v, w)→ (0, 0, 0), where

P1(u, v, w) = ln2 u+ ln2 v + ln2w + lnu ln v + ln v lnw + lnw lnu, (4.11)

P2(u, v, w) = lnu ln v + ln v lnw + lnw lnu. (4.12)

Here c
(L)
1 and c

(L)
2 are zeta values of weight 2L − 2, while c

(L)
0 has weight 2L. The values of

these constants from two to seven loops are:

c
(2)
1 = 0, (4.13)

c
(3)
1 = −5

2
ζ4 , (4.14)

c
(4)
1 =

413

8
ζ6 − 2(ζ3)2 , (4.15)

c
(5)
1 = −6679

8
ζ8 + 12 ζ2(ζ3)2 + 40 ζ3ζ5 , (4.16)

c
(6)
1 =

2033119

160
ζ10 − 159 ζ4(ζ3)2 − 240 ζ2ζ3ζ5 − 420 ζ3ζ7 − 204 (ζ5)2 , (4.17)

c
(7)
1 = −8404209697

44224
ζ12 + 1620 ζ6(ζ3)2 + 3252 ζ4ζ3ζ5 + 2520 ζ2ζ3ζ7

+ 1224 ζ2(ζ5)2 + 4704 ζ3ζ9 + 4368 ζ5ζ7 + 20 (ζ3)4 , (4.18)

c
(2)
2 = ζ2 , (4.19)

c
(3)
2 = −16 ζ4 , (4.20)

c
(4)
2 =

781

4
ζ6 , (4.21)

c
(5)
2 = −9753

4
ζ8 − 8 ζ2(ζ3)2 , (4.22)

c
(6)
2 =

2532489

80
ζ10 + 126 ζ4(ζ3)2 + 160 ζ2ζ3ζ5 , (4.23)

c
(7)
2 = −9382873343

22112
ζ12 − 1360 ζ6(ζ3)2 − 2568 ζ4ζ3ζ5 − 1680 ζ2ζ3ζ7

− 816 ζ2(ζ5)2 − 8 (ζ3)4 , (4.24)
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and

c
(2)
0 =

17

4
ζ4 , (4.25)

c
(3)
0 = −1691

24
ζ6 + 2 (ζ3)2 , (4.26)

c
(4)
0 =

32605

32
ζ8 − 18 ζ2(ζ3)2 − 40 ζ3ζ5 , (4.27)

c
(5)
0 = −2310937

160
ζ10 + 175 ζ4(ζ3)2 + 360 ζ2ζ3ζ5 + 420 ζ3ζ7 + 228 (ζ5)2 , (4.28)

c
(6)
0 =

54491355251

265344
ζ12 −

5741

4
ζ6(ζ3)2 − 3620 ζ4ζ3ζ5 − 3780 ζ2ζ3ζ7

− 1836 ζ2(ζ5)2 − 4704 ζ3ζ9 − 5208 ζ5ζ7 − 14 (ζ3)4 , (4.29)

c
(7)
0 = −3768411721

1280
ζ14 +

52815

4
ζ8(ζ3)2 + 31187 ζ6ζ3ζ5 + 38850 ζ4ζ3ζ7

+ 18750 ζ4(ζ5)2 + 42336ζ2ζ3ζ9 + 39312 ζ2ζ5ζ7 + 156 ζ2(ζ3)4

+ 55440 ζ3ζ11 + 61824 ζ5ζ9 + 31560 (ζ7)2 + 560 (ζ3)3ζ5 . (4.30)

Notice that the potential terms in c
(L)
2 that are products of just two odd zeta values (for

example, (ζ3)2 in c
(4)
2 ) all have vanishing coefficients.

Although we do not have a proof that the remainder function is at most quadratic in

lnu, ln v, lnw, there is an expectation in the literature that this is indeed the case [102]. As-

suming that it holds, it’s worth noting that this constraint can be used to eliminate the MHV

ambiguity arising from the function Z(u, v, w), which is not fixed by the multi-Regge limit,

nor by the OPE at the level of one flux-tube excitation. (These two constraints are apparently

closely related by analyticity.) In the limit (u, v, w)→ (0, 0, 0), Z is highly singular, with up

to 12 total powers of logarithms (but at most 4 powers in any individual logarithm):

Z(u, v, w) ∼ ln4 u ln4 v ln4w . (4.31)

So in principle we could have used the quadratic logarithmic behavior of R(6)
6 (u, v, w) in the

(u, v, w)→ (0, 0, 0) limit, right after the multi-Regge constraint, to remove the final parameter

multiplying Z. In practice, this is how we removed the parameter multiplying the analogous

function Z̃ at seven loops, using the fact that

Z̃(u, v, w) ∼ ln4 u ln4 v ln4w(ln2 u+ ln2 v + ln2w) . (4.32)

After fixing that last parameter, we then verified the OPE limits.

4.3 The line (u, u, 1)

Now let us consider the line on which (u, v, w) = (u, u, 1). Here, the hexagon symbol alphabet

Shex can be written in terms of just two letters, {u, 1 − u}. This means that functions on

this line can be written in terms of harmonic polylogarithms [92] in u, with weight vector

– 28 –



10-5 0.1 1000 107
u-50

-40

-30

-20

-10

EL(u,u,1)/EL-1(u,u,1)

L=6

L=5

L=4

L=3

L=2

Figure 1. E(L)(u, u, 1)/E(L−1)(u, u, 1) evaluated at successive loop orders. As there are points where

E(L−1)(u, u, 1) = 0 in this interval, the plot diverges at those points.

entries drawn from {0, 1}. Parity-odd functions (most importantly, Ẽ) vanish on this line, as

∆(u, u, 1) = 0. From the symmetries of E and E , we have

E(u, u, 1) = E(1, u, u) , (4.33)

E(u, u, 1) = E(u, 1, u) = E(1, u, u) . (4.34)

Thus, only E(u, u, 1), E(u, 1, u), and E(u, u, 1) represent independent functions. In the ancil-

lary file SixGluonHPLLines.m, we provide these functions through six loops (seven loops for

E(u, u, 1)).

We plot E(u, u, 1), E(u, 1, u), and E(u, u, 1) in figures 1, 2, and 3 respectively, through

six loops (seven loops for E(u, u, 1)), as ratios of successive loop orders. For u between 10−2

and 102, remarkably, the ratios flatten out more and more with each additional loop, and

they appear to be steadily approaching the cusp value of −16. Near u = 0.1 for E(u, u, 1),

and for u between 0.1 and 1 for E(u, u, 1) there is a dip/spike feature, which is simply because

each function crosses zero at a slightly different value of u. For u → 0 and u → ∞, the

ratios no longer display the expected radius of convergence, either diverging logarithmically

at different rates or, for the examples of E(u, u, 1) and E(u, u, 1) below, approaching constant

values that do not have the same ratio of −16 between loop orders.
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Figure 2. E(L)(u, 1, u)/E(L−1)(u, 1, u) evaluated at successive loop orders.
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Figure 3. E(L)(u, u, 1)/E(L−1)(u, u, 1) evaluated at successive loop orders. As there are points where

E(L−1)(u, u, 1) = 0 in this interval, the plot diverges at those points.

4.4 The line (u, 1, 1)

We can also study the line on which (u, v, w) = (u, 1, 1). As in the previous subsection,

hexagon functions can here be expressed in terms of harmonic polylogarithms. The symme-
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Figure 4. E(L)(u, 1, 1)/E(L−1)(u, 1, 1) evaluated at successive loop orders.

tries of E, Ẽ, and E give,

E(u, 1, 1) = E(1, 1, u), (4.35)

Ẽ(u, 1, 1) = −Ẽ(1, 1, u), (4.36)

Ẽ(1, v, 1) = 0, (4.37)

E(u, 1, 1) = E(1, 1, u) = E(1, u, 1). (4.38)

Thus, on this line we can express all functions in terms of E(u, 1, 1), E(1, v, 1), Ẽ(u, 1, 1),

and E(u, 1, 1). We provide these functions through six loops (seven loops for E(u, 1, 1)) in the

ancillary file SixGluonHPLLines.m.

We plot E(u, 1, 1), E(1, v, 1), Ẽ(u, 1, 1), and E(u, 1, 1), in figures 4, 5, 6, and 7 respec-

tively, through six loops (seven loops for E(u, 1, 1)), in ratios between successive loop orders.

Because Ẽ(1) ≡ 0, figure 6 starts at L = 3. Once again the functions have remarkably consis-

tent behavior across loop orders, displaying their rapid approach for u ∼ 1 to the radius of

convergence suggested by the cusp anomalous dimension.
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Figure 5. E(L)(1, v, 1)/E(L−1)(1, v, 1), evaluated at successive loop orders.
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Figure 6. Ẽ(L)(u, 1, 1)/Ẽ(L−1)(u, 1, 1) evaluated at successive loop orders.

4.5 The line (u, u, u) and strong coupling

Unlike the previous two lines considered, projecting to the line u = v = w does not reduce our

functions to harmonic polylogarithms. Instead, representing them would require cyclotomic

polylogarithms [117]. In practice, we evaluate our functions numerically on this line using

series expansions around u = 0, 1, and ∞ with overlapping ranges of convergence.
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Figure 7. E(L)(u, 1, 1)/E(L−1)(u, 1, 1) evaluated at successive loop orders. As there are points where

E(L−1)(u, 1, 1) = 0 in this interval, the plot diverges at those points.

This line is particularly interesting because the remainder function is known here not

only for weak coupling, but for strong coupling as well, due to the work of Alday, Gaiotto,

and Maldacena (AGM) [102] who represented it in terms of the area of a minimal surface in

AdS5. In fact, the area can be evaluated numerically for generic kinematics, but on this line

an analytic strong-coupling formula is available:

R
(∞)
6 (u, u, u) = −π

6
+

[3 cos−1(1/
√

4u)]2

3π
− 3

4
Li2

(
1− 1

u

)
− π2

12
. (4.39)

The last term in eq. (4.39) ensures that R
(∞)
6 (u, v, w) vanishes in the collinear limit.

In figure 8, we plot our results for the remainder function on this line, alongside the strong-

coupling AGM result. We normalize each result by its value at (1, 1, 1) for ease of comparison.

This normalization forces all curves to go through unity at u = 1. Once normalized in this

way, the functions are almost indistinguishable for u < 1, while for u > 1 their behavior

remains rather similar, diverging from each other for large u, similarly to their behavior on

other lines.

In ref. [79] Basso, Sever and Vieira (BSV) pointed out that, because certain scalars

become very light at strong coupling, the determinant for fluctuations around the minimal-

area surface is parametrically of the same order as the area term; that is, it is also proportional

to g ∼
√
λ at strong coupling. The net result of this computation is to add an additional

constant −π/72 to the AGM result:

R
(∞)
6 (u, u, u) → R

(BSV)
6 (u, u, u) ≡ R

(∞)
6 (u, u, u)− π

72
. (4.40)
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Figure 8. Normalized perturbative coefficients of the remainder function, R
(L)
6 (u, u, u)/R

(L)
6 (1, 1, 1),

for L = 2 to 7, plotted along with the strong-coupling result of AGM. The curves all have a remarkably

similar shape for u . 1.

BSV argued that the collinear limit does not commute with the strong-coupling limit, as a

consequence of the constant offset in eq. (4.40). The line (u, u, u) is far from the collinear

limit, but we can still ask, how do large perturbative orders behave, compared to eq. (4.39)

or eq. (4.40)? To do this, in fig. 9 we re-plot the perturbative results in fig. 8, normalizing

everything by R
(∞)
6 (u, u, u)/R

(∞)
6 (1, 1, 1) and expanding the scale so we can see differences

that were indistinguishable in the previous plot. The dashed line shows the strong-coupling

BSV prediction in the numerator, and the same R
(∞)
6 (u, u, u)/R

(∞)
6 (1, 1, 1) in the denomina-

tor. Again all curves must go through unity at u = 1. For 0.4 < u < 0.1, all the perturbative

results have the same shape as the strong-coupling result R
(∞)
6 (u, u, u) to within a few per-

cent. However, a naive extrapolation to yet higher loop orders suggests that the shape for

0.5 < u < 0.1 is starting to resemble the AGM+BSV prediction more closely than the AGM

prediction.
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Figure 9. For a limited range in u, we again plot R
(L)
6 (u, u, u)/R

(L)
6 (1, 1, 1), but now also normalized

by the strong-coupling result of AGM. We also show (dashed line) the strong-coupling result shifted

by −π/72, and normalized by the AGM result.

5 The self-crossing limit

A hexagonal Wilson loop can be deformed until two of its lines, on opposite sides of the

hexagon, almost cross each other. This limit was first studied for Wilson loops in planar

N = 4 super-Yang-Mills theory in refs. [88–90]. In ref. [91], it was pointed out that the

limit for 2 → 4 kinematics mimics double parton scattering in hadronic collisions, and this

limit and an analogous limit for 3 → 3 kinematics were thoroughly explored. Making use

of the anomalous dimension matrix for crossing Wilson lines [118], it was argued that the

singular parts of E should not depend on the residual kinematic variable characterizing the

self-crossing kinematics. By matching to the multi-Regge limit discussed in section 3.2, it was

possible to predict the singular terms to high loop orders. In this section, we will test these

predictions and provide results for related but nonsingular terms in the self-crossing limit.

In self-crossing kinematics, the cross ratios (u, v, w) approach (1 − δ, v, v) with δ → 0,

after performing an analytic continuation from the Euclidean region. In the 2→ 4 case, the

analytic continuation to be performed is u → e−2πiu, as in eq. (3.13); the surviving cross

ratio v is restricted to 0 < v < 1, and the small parameter δ is positive. In the 3→ 3 case, v

is restricted to either v < 0 or v > 1, and δ is negative, so we will express the results in terms

of |δ| = −δ. For v < 0, the analytic continuation is u→ e+2πiu, v → e+πiv, w → e+πiw. We

can go from v < 0 to v > 1 by analytically continuing ln(1 − v) → ln(v − 1) − iπ. In fact,

E3→3(1 + |δ|, v, v) is smooth around v = ±∞, and so no analytic continuation is necessary

after writing it in the right representation in terms of harmonic polylogarithms.

The amplitude is simpler in 3→ 3 self-crossing kinematics than in 2→ 4 kinematics. The

reason is that the hexagonal Wilson loop has an alternating structure, incoming-outgoing-

incoming-· · · , which makes it quasi-Euclidean. As a result, all the singularities as |δ| → 0 are
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in the imaginary part of the amplitude. In ref. [91], a formula was provided for a nonsingularly-

framed Wilson loop,

1

2πi

dWns
3→3

d ln |δ|
= exp

[
−Γcusp

4
(ln2 |δ| − L2)

]
g(ln |δ|,Γcusp) , (5.1)

where L = ln(1− 1/v) and the function g(ln |δ|,Γcusp) (not to be confused with the coupling

constant g) was given through 7 loops. The relation between Wns and E was also deter-

mined, except that the E in ref. [91] differs from the one here by the constant factor ρ given

in eq. (2.29). Correcting for that difference, we have

E3→3 =
Wns

3→3

ρ
× exp

[
−Γcusp

4

(
L2 − 4 ζ2

)]
. (5.2)

Since ρ is a nonsingular constant, the derivative with respect to ln |δ| passes right through it,

and we obtain,

1

2πi

dE3→3

d ln |δ|
= exp

[
−Γcusp

4
(ln2 |δ| − 4 ζ2)

] g(ln |δ|,Γcusp)

ρ
. (5.3)

This formula controls all of the singular terms in E3→3 as δ → 0. Note that these terms are

totally independent of v.

In ref. [91], the function g(ln |δ|,Γcusp) was evaluated completely through 7 loops, and

partially at 8 and 9 loops, using the connection to the multi-Regge limit. However, motivated

by the fact that the self-crossing limit is a virtual Sudakov region, where virtual gluons are

confined to narrow jets as |δ| → 0, it is possible to give another representation for the singular

terms in E3→3 in the self-crossing limit:

1

2πi

dE3→3

d ln |δ|
=
g2

ρ
exp
[

1
2ζ2Γcusp + 2Γ3

]
× 2

∫ ∞
0

dνJ1(2ν) exp
[
−1

4
Γcusp[λ(ν)]2 − Γvirtλ(ν)

]
, (5.4)

where J1 is the first Bessel function and

λ(ν) = 2(ln ν + γE)− ln |δ|, (5.5)

with γE the Euler-Mascheroni constant. We have also introduced two additional anomalous

dimensions, Γvirt and Γ3, which arise in the large-rapidity limit of the flux-tube spectrum [76,

77, 103, 119].

Define the semi-infinite matrix K [103] and vector κeff by

Kij = 2j(−1)j(i+1)

∫ ∞
0

dt

t

Ji(2gt)Jj(2gt)

et − 1
, κeff

j =

∫ ∞
0

dt

t

Jj(2gt)J0(2gt)− gtδj,1
et − 1

, (5.6)
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and M = (1 +K)−1, Qij = j(−1)j+1δij . Then the three anomalous dimensions are

Γcusp = 4g2M11 , (5.7)

Γvirt = 4g
∞∑
j=1

M1jκ
eff
j , (5.8)

Γ3 = −2

∞∑
i,j,k=1

κeff
i QijMjkκ

eff
k +

∫ ∞
0

dt

t

1− [J0(2gt)]2

et − 1
− 1

2
ζ2Γcusp . (5.9)

We have

Γvirt = −12ζ3g
4 + (80ζ5 + 16ζ2ζ3)g6 − (700ζ7 + 80ζ2ζ5 + 168ζ3ζ4)g8 + . . . , (5.10)

Γ3 =
7

2
ζ4g

4 −
(115

3
ζ6 +

56

3
(ζ3)2

)
g6 +

(1701

4
ζ8 + 260ζ3ζ5 + 28ζ2(ζ3)2

)
g8 + . . . , (5.11)

while the first few terms of Γcusp are given in eq. (2.20).

Given these anomalous dimensions, it is straightforward to evaluate eq. (5.4) perturba-

tively to very high orders (or indeed, nonperturbatively). After expanding the integrand in

g2, one encounters integrals of the Bessel function J1(2ν) multiplied by powers of ln ν + γE .

The integrals can be performed by Taylor expanding the identity [120]

2

∫ ∞
0

dνJ1(2ν)e2(ln ν+γE)ξ = e2γEξ
Γ(1 + ξ)

Γ(1− ξ)
(5.12)

around ξ = 0. In an ancillary file, SelfCrossSingular.m, we evaluate eq. (5.4) through 20

loops. (We have multiplied it back by ρ, because we only know ρ to 7 loops.)

In the rest of this section, we provide some information about the terms in the MHV11

amplitude E that are nonsingular as δ → 0. The limit v → ±∞ is smooth, i.e. there are no ln v

singularities for E in this limit. We will give the singular terms, as well as some nonsingular

constants, in this limit. The following expressions match eqs. (3.28)–(3.33) of ref. [91] through

five loops, after accounting for a factor of two difference in the loop expansion parameter,

11The NMHV amplitude is trickier to evaluate in the self-crossing limit because some of the R-invariants

diverge there, necessitating a higher-order expansion of the transcendental functions in δ, which we won’t

perform here.
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and (starting from three loops) from the factor of ρ used to define E here:

E(0)
3→3(v =∞) = 1 , (5.13)

E(1)
3→3(v =∞) = 2πi ln |δ| + 2ζ2 , (5.14)

E(2)
3→3(v =∞) = 2πi

[
−1

3
ln3 |δ| + 2ζ2 ln |δ| + 8ζ3

]
+ 28ζ4 , (5.15)

E(3)
3→3(v =∞) = 2πi

[
1

10
ln5 |δ| − 2ζ3 ln2 |δ| + 2ζ4 ln |δ| − 84ζ5 + 36ζ2ζ3

]
− 3787

12
ζ6 + 2(ζ3)2 , (5.16)

E(4)
3→3(v =∞) = 2πi

[
− 1

42
ln7 |δ| − 1

5
ζ2 ln5 |δ| − 1

3
ζ3 ln4 |δ| − 14

3
ζ4 ln3 |δ|

+ 4(4ζ5 − 3ζ2ζ3) ln2 |δ| − 1

3

(
13ζ6 + 72(ζ3)2

)
ln |δ|

+ 1141ζ7 − 476ζ2ζ5 − 68ζ3ζ4

]
+

56911

9
ζ8 + 20ζ5,3 − 92ζ3ζ5 + 272ζ2(ζ3)2 , (5.17)

E(5)
3→3(v =∞) = 2πi

[
1

216
ln9 |δ| +

2

21
ζ2 ln7 |δ| +

5

9
ζ3 ln6 |δ| +

18

5
ζ4 ln5 |δ|

+
4

3
(6ζ5 + 7ζ2ζ3) ln4 |δ| +

4

9

(
115ζ6 + 54(ζ3)2

)
ln3 |δ|

+ 2
(
−55ζ7 + 68ζ2ζ5 + 44ζ3ζ4

)
ln2 |δ|

+
4

9

(
257ζ8 + 1170ζ3ζ5 − 18ζ2(ζ3)2

)
ln |δ|

− 40369

2
ζ9 + 7645ζ2ζ7 +

3119

2
ζ3ζ6 + 2295ζ4ζ5 − 184(ζ3)3

]
− 2668732849

16800
ζ10 −

1467

7
ζ7,3 +

4868

5
ζ2ζ5,3 − 2851ζ4(ζ3)2

− 12044ζ2ζ3ζ5 +
5819

2
ζ3ζ7 +

14169

7
(ζ5)2 , (5.18)
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E(6)
3→3(v =∞) = 2πi

[
− 1

1320
ln11 |δ| − 1

36
ζ2 ln9 |δ| − 1

4
ζ3 ln8 |δ| − 34

21
ζ4 ln7 |δ|

− 1

15

(
152ζ5 + 90ζ2ζ3

)
ln6 |δ| − 1

15

(
632ζ6 + 308(ζ3)2

)
ln5 |δ|

− 1

3

(
555ζ7 + 444ζ2ζ5 + 428ζ3ζ4

)
ln4 |δ|

− 1

9

(
5446ζ8 + 6648ζ3ζ5 + 1272ζ2(ζ3)2

)
ln3 |δ|

−
(
−168ζ9 + 1860ζ2ζ7 + 1336ζ4ζ5 +

3184

3
ζ6ζ3 + 128ζ3

3

)
ln2 |δ|

−
(26441

15
ζ10 + 496ζ2ζ3ζ5 + 744ζ4(ζ3)2 + 6464ζ3ζ7 + 3312(ζ5)2

)
ln |δ|

+
98955281

160
ζ11 −

8892

5
ζ5,3,3 +

72

5
ζ3ζ5,3 −

4301861

18
ζ2ζ9 −

1647589

20
ζ4ζ7

− 160435

3
ζ6ζ5 −

984359

30
ζ8ζ3 − 1400ζ2(ζ3)3 + 11520(ζ3)2ζ5

]
+

1993553577827

398016
ζ12 − 176ζ6,4,1,1 + 1818ζ9,3 −

157183

14
ζ2ζ7,3 − 10272ζ4ζ5,3

+ 335729ζ2ζ3ζ7 +
3000535

14
ζ2(ζ5)2 + 180706ζ4ζ3ζ5 + 85268ζ6(ζ3)2

− 981071

9
ζ3ζ9 − 151629ζ5ζ7 − 452(ζ3)4 , (5.19)
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and

E(7)
3→3(v =∞) = 2πi

[
1

9360
ln13 |δ|+ 1

165
ζ2 ln11 |δ|+ 13

180
ζ3 ln10 |δ|+ 55

108
ζ4 ln9 |δ|

+
1

15

(
74ζ5 + 40ζ2ζ3

)
ln8 |δ|+ 1

63

(
1265ζ6 + 764(ζ3)2

)
ln7 |δ|

+
(617

3
ζ7 +

572

5
ζ2ζ5 +

1030

9
ζ3ζ4

)
ln6 |δ|

+
(4546

9
ζ8 +

11884

15
ζ3ζ5 +

1036

5
ζ2(ζ3)2

)
ln5 |δ|

+
(

4396ζ9 + 2740ζ2ζ7 + 2592ζ4ζ5 +
16390

9
ζ6ζ3 + 384(ζ3)3

)
ln4 |δ|

+
(66892

9
ζ10 +

17792

3
ζ2ζ3ζ5 +

9712

3
ζ4(ζ3)2 +

39904

3
ζ3ζ7

+
20000

3
(ζ5)2

)
ln3 |δ|

+
(

21672ζ11 + 31584ζ2ζ9 + 24188ζ4ζ7 +
50828

3
ζ6ζ5 +

37160

3
ζ8ζ3

+ 2192ζ2(ζ3)3 + 9232(ζ3)2ζ5

)
ln2 |δ|

+
(157796480

6219
ζ12 + 19072ζ2ζ3ζ7 + 9120ζ2(ζ5)2 + 28720ζ4ζ3ζ5

+ 9628ζ6(ζ3)2 + 97440ζ3ζ9 + 96480ζ5ζ7 + 1376(ζ3)4
)

ln |δ|

− 323782470527

16800
ζ13 +

153703

7
ζ7,3,3 −

3165856

175
ζ5,5,3 −

98576

5
ζ2ζ5,3,3

+
10966

7
ζ3ζ7,3 +

235982

5
ζ5ζ5,3 +

5336

5
ζ2ζ3ζ5,3

+
1912832287

240
ζ2ζ11 +

48297353

56
ζ4ζ9 +

1116988937

560
ζ6ζ7

+
20103611

12
ζ8ζ5 +

8268675281

8400
ζ10ζ3 + 115968ζ2(ζ3)2ζ5

+
78950

3
ζ4(ζ3)3 − 332586(ζ3)2ζ7 −

2649110

7
ζ3(ζ5)2

]
− 26743565967068063

119750400
ζ14 +

407994591437

142560
ζ11,3 −

15377712919

19440
ζ9,5

− 231544

5
ζ5,3,3,3 +

3473431

6
ζ2ζ9,3 +

397712

3
ζ2ζ6,4,1,1 + 2384ζ3ζ5,3,3

− 835791ζ4ζ7,3 −
358802

15
ζ6ζ5,3 +

9804

5
(ζ3)2ζ5,3 −

277080440

27
ζ2ζ3ζ9

− 52133752

3
ζ2ζ5ζ7 −

486350

9
ζ2(ζ3)4 − 118926569

12
ζ4ζ3ζ7 −

63595231

12
ζ4(ζ5)2

− 6455307ζ6ζ3ζ5 −
472744763

180
ζ8(ζ3)2 +

68075555

16
ζ3ζ11

+
555617147837

23760
ζ5ζ9 +

5061150659977

285120
(ζ7)2 +

187276

3
(ζ3)3ζ5 . (5.20)

The ln |δ| terms in the results are all consistent with the predictions of eqs. (5.3) and (5.4).
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As the point v = 1 is approached from above, i.e. from the 3→ 3 side, the results are also

relatively simple. Because the ln |δ|-dependent terms are identical to those presented above

for v =∞, here we give only the finite terms:

E(0),fin
3→3 (v → 1+) = 1 , (5.21)

E(1),fin
3→3 (v → 1+) = 0 , (5.22)

E(2),fin
3→3 (v → 1+) = 2πi× 4ζ3 − 10ζ4 , (5.23)

E(3),fin
3→3 (v → 1+) = 2πi

[
−32ζ5 + 16ζ2ζ3

]
+

35

3
ζ6 , (5.24)

E(4),fin
3→3 (v → 1+) = 2πi

[
312ζ7 − 152ζ2ζ5 + 20ζ3ζ4

]
− 77

3
ζ8 + 24ζ5,3 + 120ζ3ζ5 + 120ζ2(ζ3)2 , (5.25)

E(5),fin
3→3 (v → 1+) = 2πi

[
−3428ζ9 + 1640ζ2ζ7 − 360ζ4ζ5 −

598

3
ζ6ζ3 − 48(ζ3)3

]
− 3961

3
ζ10 − 192ζ7,3 + 240ζ2ζ5,3 − 1920ζ2ζ3ζ5 + 576ζ4(ζ3)2

− 2688ζ3ζ7 − 1356(ζ5)2 , (5.26)

E(6),fin
3→3 (v → 1+) = 2πi

[
37972ζ11 + 32ζ5,3,3 − 32ζ3ζ5,3 −

53464

3
ζ2ζ9 + 5580ζ4ζ7

+
13508

3
ζ6ζ5 +

53338

9
ζ8ζ3 −

896

3
ζ2(ζ3)3 + 1040(ζ3)2ζ5

]
+

167184257

6219
ζ12 +

5392

3
ζ9,3 − 1920ζ2ζ7,3 + 480ζ4ζ5,3

+ 15360ζ2ζ3ζ7 + 7560ζ2(ζ5)2 − 13584ζ4ζ3ζ5 − 4740ζ6(ζ3)2

+ 48528ζ3ζ9 + 48080ζ5ζ7 , (5.27)

E(7),fin
3→3 (v → 1+) = 2πi

[
−426820ζ13 − 576ζ7,3,3 + 576ζ5,5,3 + 480ζ3ζ7,3 + 64ζ5ζ5,3

− 64ζ2ζ3ζ5,3 + 203640ζ2ζ11 −
261296

3
ζ4ζ9 − 83366ζ6ζ7

− 1061720

9
ζ8ζ5 −

2072438

15
ζ10ζ3 + 13280ζ2(ζ3)2ζ5 +

6560

3
ζ4(ζ3)3

− 2656(ζ3)2ζ7 − 2464ζ3(ζ5)2

]
− 4788480727

1260
ζ14 − 4992ζ5,3,3,3 + 302160ζ11,3 − 87648ζ9,5 +

5600

3
ζ2ζ9,3

+ 4992ζ3ζ5,3,3 − 3264ζ4ζ7,3 + 5944ζ6ζ5,3 − 2496(ζ3)2ζ5,3 + 84640ζ2ζ3ζ9

− 212000ζ2ζ5ζ7 + 203136ζ4ζ3ζ7 + 95136ζ4(ζ5)2 + 158840ζ6ζ3ζ5

+
258520

3
ζ8(ζ3)2 − 2080ζ2(ζ3)4 − 1241760ζ3ζ11 + 1082048ζ5ζ9

+ 1208712(ζ7)2 − 4160(ζ3)3ζ5 . (5.28)

Notice that the expressions in the limit v → 1+ are quite a bit simpler than those in the

– 41 –



v →∞ limit.

There do not seem to be many restrictions on the MZVs that can appear at v = ±∞,

or in the (singular) imaginary part as v → 1+. However, the real part as v → 1+, which is

finite as δ → 0, does have MZV restrictions, and a coaction principle operates at this point

as well, even though it is not on the Euclidean sheet. In fact, the dimensionality of the space

of allowed MZVs here is exactly the same as for the Euclidean point (1, 1, 1) through at least

weight 11, although the actual values are different [66].

We have also evaluated the MHV amplitude as a function of v for the 3→ 3 configurations

with v < 0 and v > 1, and the 2 → 4 configuration with 0 < v < 1, through seven loops, in

terms of harmonic polylogarithms. Because these expressions are rather lengthy at six and

seven loops, where they go beyond ref. [91], we provide them in an ancillary file, SelfCross.m.
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6 Conclusions

In this work, we have bootstrapped the six- and seven-loop six-particle MHV amplitudes,

as well as the six-loop NMHV amplitude, in planar N = 4 super-Yang-Mills theory. The

space of functions Hhex that provides the initial ansatz for this procedure is presented in a

companion paper [66]. This space of functions takes advantage of constraints following from

cosmic Galois theory and the extended Steinmann relations, and appears to be the minimal

space required to express the six-point amplitudes in this theory.

In order to fit the amplitude into this space, we have absorbed several constants into a

function of the coupling ρ(g2). This function is universal for MHV and NMHV, and it is

natural to wonder whether it has physical meaning. Its number-theoretic content appears to

be related to the cusp anomalous dimension, but further work will be necessary to establish

whether the relation between these quantities can be made precise. Such work might hint at

a physical meaning and answer the question: why is it possible to normalize these amplitudes

in such a way that they respect a cosmic Galois coaction principle between loop orders?

Collinear and final-entry constraints both powerfully constrain the ansatz formed out of

this space of functions. Together with information from the multi-Regge limit, they almost

suffice to determine the amplitude completely. A novel feature we encountered, however, was

the appearance of one potential contribution to the MHV amplitude at six loops, and again

one at seven loops, that vanished in each of these limits. We successfully detected these

contributions by their nonvanishing terms in the near-collinear expansion to next-to-leading

order, which is governed by the Pentagon Operator Product Expansion, and in particular

its first gluon bound state. It is interesting to note that while the multi-Regge limit can be

reached from the OPE by an analytic continuation that also includes this state [74], it is

nevertheless weaker. In other words, the analytic continuation causes some information to be

lost.

Since the Pentagon OPE offers an infinite amount of boundary information, the presence

of functions that cannot be detected by their multi-Regge and strict collinear limits is in

principle not a problem at higher loops. In practice, accessing increasingly subleading terms in

the near-collinear expansion also becomes increasingly difficult. It corresponds to acting with

more and more derivatives on the transcendental functions, which in turn requires tabulating

many complicated expressions. An alternative would be to partially resum a relatively simple

subset of OPE excitations, that spans a more general limit where the amplitude does not

vanish when evaluated there in a strict sense. The double scaling limit [80] is an excellent

example. It corresponds to sending one cross ratio to zero while holding the other two cross

ratios fixed. The resummation of the infinite set of purely gluonic excitations that dominate

this limit was initiated in ref. [109]. Indeed, the distinct signature of OPE excitations that

were resummed in the latter paper, if pursued to six and seven loops, would be able to fix

the final free parameters there.

Better yet, it would be very exciting if we could harness the power of the OPE in order to

access the origin in cross ratio space, where we saw that functions which can only be detected
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from the OPE have unusually divergent behavior, in contrast to the remainder function,

which is only quadratic in the logarithms of the cross ratios through seven loops. While the

origin is outside of the radius of convergence of the OPE, it certainly lies within the subspace

spanned by the aforementioned double scaling limit. We are optimistic that it can be reached

by means of an analytic continuation, as was the case with the multi-Regge limit.

We also studied the self-crossing limit in this paper. The singular terms as this limit is

approached were computed to seven loops, and found to match previous predictions [91]. A

compact, Sudakov-based formula for the singular terms was presented that can be evaluated

to very high loop order. In addition we studied the nonsingular terms, which at one point

are governed by the coaction principle in a nontrivial way.

We continue to observe that the amplitudes have very numerically consistent ratios be-

tween successive loop orders. These ratios approach the radius of convergence previously

observed for the cusp anomalous dimension. It is interesting that the ratios of loop orders

are already beginning to converge at this order, which is quite atypical for other examples of

quantum field theories with finite radii of convergence.

Finally, we are optimistic that these techniques can be applied to other theories without

such a high degree of symmetry.
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