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Abstract

The long-standing problem of representing the general massive one-loop Feynman integral as a meromorphic function of the space-

time dimension d has been solved for the basis of scalar one- to four-point functions with indices one. In 2003 the solution of

difference equations in the space-time dimension allowed to determine the necessary classes of special functions: self-energies

need ordinary logarithms and Gauss hypergeometric functions 2F1, vertices need additionally Kampé de Fériet-Appell functions

F1, and box integrals also Lauricella-Saran functions FS . In this study, alternative recursive Mellin-Barnes representations are used

for the representation of n-point functions in terms of (n− 1)-point functions. The approach enabled the first derivation of explicit

solutions for the Feynman integrals at arbitrary kinematics. In this article, we scetch our new representations for the general massive

vertex and box Feynman integrals and derive a numerical approach for the necessary Appell functions F1 and Saran functions FS

at arbitrary kinematical arguments.

1. Introduction

We are studying scalar one-loop Feynman integrals,

Jn(d) =

∫

ddk

iπd/2

1

Dν1
1 Dν2

2 · · ·Dνn
n

, (1)

with inverse propagators Di = (k + qi)
2 − m2

i + iε. We as-

sume νi = 1 as well as momentum conservation and all exter-

nal momenta to be incoming,
∑n

e=1 pe = 0. The qi are loop

momenta shifts and will be expressed for applications by the

external momenta pe. Dimensions d = 4+2n− 2ǫ with n ≥ 0
are of physical interest because tensor one-loop Feynman inte-

grals of rank r in 4−2ǫ dimensions may be expressed by scalar

integrals taken in higher dimensions up to d = 4 + 2r − 2ǫ
[1]. Higher indices νi will also appear in the representation, but

may be eliminated, so that a complete reduction basis of higher-

dimensional scalar one- to four point integrals may be derived.

For two- to seven-point tensor functions this has been worked

out in [2, 3].

The first terms of the ǫ-expansion of one- to four-point scalar

functions for d = 4− 2ǫ, until including the constant term, was

given by G. t’Hooft and M. Veltman in 1978 [4]. A systematic

numerical treatment of the next terms of order ǫ-terms was per-

formed in 1992 [5], and a systematic numerical approach was

worked out in 2001 [6]. It has been shown in 2003 [7, 8] that

representations in general dimension d, including d = 4 − 2ǫ,
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will rely on certain multiple hypergeometric functions of the

type 2F1, F1, FS . Though, the explicit solutions for arbitrary

kinematics could not be found.

A scetch of the Feynman integrals at arbitrary kinematics in

terms of 2F1, F1, FS and their explicit numerical determination

are the subject of this letter. The dependence on the external

momenta pe will be contained exclusively in the functions Rn:

Rn ≡ R12...n = − λn

Gn
− iε. (2)

The Rn carry the causal regulator −iε. The Cayley matrix

λ12...n was introduced in [9]. It is composed of the variables

Yij , and its determinant λn is:

λn ≡ det(λ12...n) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

Y11 Y12 . . . Y1n

Y12 Y22 . . . Y2n

...
...

. . .
...

Y1n Y2n . . . Ynn

∣

∣

∣

∣

∣

∣

∣

∣

∣

, (3)

with

Yij = Yji = m2
i +m2

j − (qi − qj)
2. (4)

Further, we use the (n− 1)× (n− 1) dimensional Gram deter-

minant Gn,

Gn ≡ −2n det(G12···n), (5)

and

det(G12···n) = (6)
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(q1 − qn)
2 . . . (q1 − qn)(qn−1 − qn)

(q1 − qn)(q2 − qn) . . . (q2 − qn)(qn−1 − qn)
...

. . .
...

(q1 − qn)(qn−1 − qn) . . . (qn−1 − qn)
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∣

∣

∣

∣

∣

.

We use the special assignment for tadpoles:

G1 = −2. (7)

Both determinants λn and Gn are independent of a common

shift of the internal momenta qi. Further, we introduce the no-

tion R(i),

R(i) ≡ r(i)− iε ≡ − det(λi)/G1 − iε = m2
i − iε, (8)

and use, wherever it is unique from the context,

R1 ≡ R(i). (9)

We derived in [10] a new ansatz, a recursion relation for the

Feynman integrals defined in (1),

Jn(d) =
−1

2πi

c0+i∞
∫

c0−i∞

ds
Γ(−s)Γ(d−n+1

2 + s)

2Γ(d−n+1
2 )

× Γ(s+ 1)R−s−1
n

n
∑

k=1

∂kRn k
−Jn(d+ 2s), (10)

and its solution by a sequence of Mellin-Barnes representations.

We use the representation ∂kRn for the co-factor of the Cayley

matrix, also called signed minors in e.g. [9]:

∂kRn =
∂Rn

∂m2
k

=

(

0
k

)

n

. (11)

The operator k− reduces an n-point Feynman integral Jn(d)
to (n − 1)-point integrals Jn−1(d + 2s) by shrinking the kth

propagator, 1/Dk:

k
− Jn(d) =

∫

ddk

iπd/2

1
∏n

j 6=k,j=1 Dj
. (12)

The recurrence relation (10) is the master integral for one-loop

n-point functions in space-time dimension d, representing them

by n integrals over (n− 1)-point functions with a shifted, con-

tinuous dimension d + 2s. The recurrence starts at n = 2 with

the tadpole J1(d) in the integrand:

J1(d;m
2
i ) =

∫

ddk

iπd/2

1

k2 −m2
i + iε

= − Γ(1− d/2)

(m2
i − iε)1−d/2

≡ −Γ(1− d/2)

R1
1−d/2

. (13)

Eqn. (10) contains for n = 2 the term
∫

ds(R1

R2

)s, multiplied

by Γ-matrices with arguments depending on s, and is formally

a Mellin-Barnes integral. Our representation is an alternative to

Eq. (19) of [8]. There, an infinite sum over a discrete dimen-

sional parameter s was derived in order to represent an n-point

function Jn(d) by integrals Jn−1(d+ 2s).

The further evaluations will depend, concerning the kine-

matics, exclusively on the R1, R2, etc. introduced in (2). Al-

though, there will arise exceptional cases when the specific choi-

ce of the external scalars (peipej ) or of internal mass squares

m2
i will lead to vanishing or divergent determinants λn or Gn.

In such cases, one has to go back to intermediate definitions and

look for specific solutions.1 See also the remarks in [11].

2. Massive vertex and box functions

Representations of the massive self-energy, vertex and box

integrals can be derived iteratively from (10) by closing the in-

tegration contours of the Mellin-Barnes integrals e.g. to the

right and taking the two series of residues of the correspond-

ing Γ-functions with arguments (−s + · · · ). One Cauchy sum

constitutes the analogue of the so-called boundary or b-terms of

[8], the other one has a genuine d-dependence. Both sums to-

gether represent the Feynman integrals. In our approach, closed

analytical expressions could be determined for arbitrary kine-

matics.

The general massive vertex and box integrals J3(d), J4(d)
have first been published at LL2018 [12]. An alternative, in-

structive version of the vertex is

J3(d) = J123 + J231 + J312, (14)

with short notations R3 = R123, R2 = R12 etc., and:

J123 = Γ

(

2− d

2

)

∂3R3

R3

∂2R2

R2

R2

2
√

1−R1/R2

(15)

[

− R
d
2
−2

2

√
π

2

Γ
(

d
2 − 1

)

Γ
(

d
2 − 1

2

) 2F1

(

d− 2

2
, 1;

d− 1

2
;
R2

R3

)

+ R
d
2
−2

3 2F1

(

1, 1;
3

2
;
R2

R3

)

]

+ Γ

(

2− d

2

)

∂3R3

R3

∂2R2

R2

R1

4
√

1−R1/R2

[

+
2R1

d
2
−2

d− 2
F1

(

d− 2

2
; 1,

1

2
;
d

2
;
R1

R3
,
R1

R2

)

− R
d
2
−2

3 F1

(

1; 1,
1

2
; 2;

R1

R3
,
R1

R2

)

]

+ (R1(1) ↔ R1(2)).

We use the abbreviation (11). For d → 4, both the sums of ex-

pressions with 2F1 and F1 in square brackets in (15) approach

zero, thus compensating the pole factor Γ(2−d/2) in this limit.

The J3 stays finite at d = 4, as it should be for any massive 3-

point function. And the ǫ expansion for J123 to order n needs,

in this case, the evaluation of the components to order (n+ 1).

1A complete analysis of the exceptional kinematical cases has been per-

formed by K.H.P; to be published elsewhere.
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The corresponding massive four-point function is:

J4(d) = J1234 + J2341 + J3412 + J4123, (16)

with R4 = R1234, R3 = R123, R2 = R12 etc., and:

J1234 = Γ

(

2− d

2

)

∂4R4

R4

{

[

b123
2

(

− R
d
2
−2

3 2F1

(

d− 3

2
, 1;

d− 2

2
;
R2

R3

)

+ R
d
2
−2

4

√
π
Γ
(

d−2
2

)

Γ
(

d−3
2

)

× 2F1

(

1

2
, 1; 1;

R2

R3

)

)]

+
Γ
(

d−2
2

)

Γ
(

d−3
2

)

√
π

4

∂3R3

R3

∂2R2
√

1−R1/R2

× 2F1

(

1

2
, 1; 1;

R2

R3

)

[

+
R

d
2
−2

2

d− 3
F1

(

d− 3

2
; 1,

1

2
;
d− 1

2
;
R2

R4
,
R2

R3

)

− R
d
2
−2

4 F1

(

1

2
; 1,

1

2
;
3

2
;
R2

R4
,
R2

R3

)

]

+
R1

8

Γ
(

d−2
2

)

Γ
(

d−3
2

)

∂3R3

R3

∂2R2

R2

1

1−R1/R3

1

1−R1/R2

[

− R
d
2
−2

1

Γ
(

d−3
2

)

Γ
(

d
2

)

×FS

(

d− 3

2
, 1, 1; 1, 1,

1

2
;
d

2
,
d

2
,
d

2
;
R1

R4
, · · ·

R1

R1 −R3
,

R1

R1 −R2

)

+ R
d
2
−2

4

√
π

×FS(
1

2
, 1, 1; 1, 1,

1

2
; 2, 2, 2,

R1

R4
,

R1

R1 −R3
,

R1

R1 −R2
)
]

+ (R1(1) ↔ R1(2))

}

+ (2, 3, 1) + (3, 1, 2), (17)

where the function b123 is independent of d,

b123 =
1

2

∂3R3

R3

∂2R2

R2

[

R2
√

1− R1

R2

2F1

(

1, 1;
3

2
;
R2

R3

)

− 1

2

R1
√

1− R1

R2

F1

(

1; 1,
1

2
; 2;

R1

R3
,
R1

R2

)

]

+ (1 ↔ 2).

(18)

Here, it is R1 = R1(1) and (11) defines derivatives like ∂2r2.

The term b123, when multiplied with Γ(− d−4
2 )R

d
2
−2

3 , equals

the term of J123 in (15) with d-independent F1 and FS . It re-

places the so-called b3-term of the vertex integral in [8] for arbi-

trary kinematics, while the d-dimensional parts of J1234 agree.

For d → 4, all the expressions in square brackets in (17)

approach zero, thus compensating the pole of Γ(2−d/2) in this

limit. As a result, the J4 stays finite at d = 4, as it should be for

any massive 4-point function. And the ǫ expansion for J1234 to

order n needs, in this case, the evalution of the components to

order (n+ 1).
The derivations of J123 and J1234 were done under the as-

sumption that the kinematical arguments x, y, z of the 2F1, F1,

FS fulfill |x|, |y|, |z| < 1. Nevertheless, the above formulae are

valid at arbitrary kinematical arguments, for massive vertices at

ℜe(d) > 2 and for box integrals at ℜe(d) > 3. In Appendix A

to Appendix C we will show how to calculate the various F1

and FS for arbitrary complex arguments; for 2F1 we assume

that such calculations are well-known.

3. Numerical results

The scalar one-loop basis consists of one- to four-point func-

tions. Our two-point function J2(d) was reproduced in [12]

and is in complete agreement with [8], while for J3(d) and

J4(d) our results are novel. Concerning numerical results for

the 3-point functions we refer to several tables in [13, 10]. The

kinematics was chosen such that the results of [8] could be com-

pared.2 Another numerical comparison, for a box integral J4(d)
with vanishing Gram determinant, may be found in [11, 14].

In Table 1 we show few examples of four-point functions

in comparison to other packages. We did not aim at maximal

accuracy and claim essentially eight safe digits. Further, one

propagator is massive and d = 4 or d = 5, and we can also

allow for complex masses at the internal lines. A true sample

ε-expansion is reproduced for the generalized hypergeometric

function F1 in Table B.2.

For the safe numerical calculation of massive vertices J3
and massive box integrals J4 we collect stable numerical repre-

sentations for the generalized hypergeometric functions F1 and

FS in the Appendices.

4. Discussion

The massive oneloop Feynman integrals have been repre-

sented as meromorphic functions of space-time d in terms of

generalized hypergeometric functions. Many details left out

here will be published elsewhere. The Feynman integrals can

be calculated numerically at arbitrary kinematics and arbitrary

dimension d, including potential pole locations at d = 4 + 2n.

For phenomenological or multi-loop applications, it is wishful

to have the pole expansions in closed analytical form. Their

derivation is subject of a subsequent study.

The new recursion (10) has a unique feature. It allows to

derive n-dimensional Mellin-Barnes integrals for n-point Feyn-

man integrals. Generally, n-dimensional integrals are obtained

2We would like to thank Oleg Tarasov for a helpful discussion concerning

this issue.
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Tab. 1: Comparison of the box integral J4 defined in (17) with the Loop-

Tools function D0(p2
1
, p2

2
, p2

3
, p2

4
, (p1+p2)2, (p2+p3)2, m2

1
,m2

2
,m2

3
, m2

4
)

[15, 16] at m2

2
= m2

3
= m2

4
= 0. Further numerical references are the

packages K.H.P D0 (PHK, unpublished) and MBOneLoop [14]. External

invariants: (p2
1
= ±1, p2

2
= ±5, p2

3
= ±2, p2

4
= ±7, s = ±20, t = ±1).

(p21, p
2
2, p

2
3, p

2
4, s, t) 4-point integral

(−,−,−,−,−,−) d = 4, m2
1 = 100

J4 0.00917867

LoopTools 0.0091786707

MBOneLoop 0.0091786707

(+,+,+,+,+,+) d = 4, m2
1 = 100

J4 −0.0115927− 0.00040603 i

LoopTools −0.0115917− 0.00040602 i

MBOneLoop −0.0115917369− 0.0004060243 i

(−,−,−,−,−,−) d = 5, m2
1 = 100

J4 0.00926895

K.H.P D0 0.00926888

MBOneLoop 0.0092689488

(+,+,+,+,+,+) d = 5, m2
1 = 100

J4 −0.00272889+ 0.0126488 i

K.H.P D0 (–)

MBOneLoop −0.0027284242+ 0.0126488134 i

(−,−,−,−,−,−) d = 5, m2
1 = 100− 10 i

J4 0.00920065+ 0.000782308 i

K.H.P D0 0.0092006 + 0.000782301 i

MBOneLoop 0.0092006481+ 0.0007823090 i

(+,+,+,+,+,+) d = 5, m2
1 = 100− 10 i

J4 −0.00398725+ 0.012067 i

K.H.P D0 −0.00398723+ 0.012069 i

MBOneLoop −0.0039867702+ 0.0120670388 i

by sector decomposition methods, while in the Mellin-Barnes

approach, as it is advocated in numerical loop calculations, the

number of dimension grows faster. Within the MBsuite, AM-

BRE generates for the most general massive n-point one-loop

function an Nn = 1
2n(n + 1)-dimensional MB-integral; ac-

cording to the number of entries Yij in the second Symanzik

polynomial, F (x) = 1
2xiYijxj − iε. For a vertex or box, N3 =

6, N4 = 10. In the present approach, it is only N ′
3 = 3, N ′

4 = 4.

Evidently, a replacement of the original kinematical invariants

m2
i , (pe,ipe,j) or Yij by the alternatives Rn = −λn/Gn is an

essential building block and it might well be possible to find

similar lower-dimensional MB-representations also for more

involved multi-loop integrals.

Basic numerical features of the new n-dimensional MB-

representation (10) have been studied in [17, 14] in compari-

son with [2], with the package MBOneLoop,including cases of

small or vanishing Gram determinant.

It is interesting to compare our results for J3(d) and J4(d)
with the earlier study [8]. The d-dependent part of J3(d) as

well as much of the d-dependent part of J4(d) agree with our

results. Further, the expressions for the b-terms in [8] differ

from our d-independent parts, although in certain kinematical

regions they do agree numerically for J3(d). We find no agree-

ment for J4(d), due to the various contributing b-terms.

Appendix A. The Appell functionF1 and Lauricella-Saran

function FS

Numerical calculations of specific Gauss hypergeometric

functions 2F1, Appell functions F1 (Eqn. (1) of [18]), and

Lauricella-Saran functions FS (Eqn. (2.9) of [19]) are needed

for the scalar one-loop Feynman integrals:

2F1(a, b; c;x) =
∞
∑

k=0

(a)k(b)k
k! (c)k

xk, (A.1)

F1(a; b, b
′; c; y, z)

=

∞
∑

m,n=0

(a)m+n(b)m(b′)n
m! n! (c)m+n

ymzn, (A.2)

FS(a1, a2, a2; b1, b2, b3; c, c, c;x, y, z) (A.3)

=
∞
∑

m,n,p=0

(a1)m(a2)n+p(b1)m(b2)n(b3)p
m! n! p! (c)m+n+p

xmynzp.

The (a)k is the Pochhammer symbol. The series converge for

|x|, |y|, |z| < 1, but the functions are needed for arbitrary ar-

guments. All the 2F1, F1, FS are finite and have no pole terms

in ǫ. Practically all aspects of 2F1 are well-known and imple-

mented in computer algebra systems, in Mathematica as built-

in symbol Hypergeometric2F1[a,b,c,z]. There is no

public FS-package, while the Appell function F1(a; b1, b2;
c;x, y) [18] is implemented in Mathematica as built-in symbol

AppellF1[a,b1,b2,c,x,y] [20]. Another public pack-

age is f1 [21, 22], and a wrapper package for f1 is appell

[23]. All the implementations mentioned have systematic limi-

tations.

One approach to the numerics of F1 and FS may be based

on Mellin-Barnes representations. For the Gauss function 2F1

and the Appell function F1, Mellin-Barnes representations are

known. See Eqn. (1.6.1.6) in [24],

2F1(a, b; c; z) =
1

2πi

Γ(c)

Γ(a)Γ(b)
(A.4)

×
∫ +i∞

−i∞
ds (−z)s

Γ(a+ s)Γ(b+ s)Γ(−s)

Γ(c+ s)
,

and Eqn. (10) in [18], which is a two-dimensional MB-integral:

F1(a; b, b
′; c;x, y) =

1

2πi

Γ(c)

Γ(a)Γ(b′)
(A.5)

×
∫ +i∞

−i∞
dt (−y)t 2F1(a+ t, b; c+ t, x)

× Γ(a+ t)Γ(b′ + t)Γ(−t)

Γ(c+ t)
.
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For the Lauricella-Saran function FS we derived the following,

new, three-dimensional MB-integral:

FS(a1, a2, a2; b1, b2, b3; c, c, c;x, y, z) (A.6)

=
1

2πi

Γ(c)

Γ(a1)Γ(b1)

∫ +i∞

−i∞
dt F1(a2; b2, b3; c+ t; y, z)

× (−x)t
Γ(a1 + t)Γ(b1 + t)Γ(−t)

Γ(c+ t)
.

A general numerical evaluation of these representations deserves

some sophistication. Let us mention the simple one-loop mas-

sive QED vertex for which no trivial MB method exists when

the kinematics is Minkowskian, a problem discussed e.g. in

[25] and solved in [26]. It was demonstrated in [27] that MB-

OneLoop, a fork of the package MBnumerics [28, 11, 14] may

be used to solve (A.4) to (A.6) at arbitrary kinematics with high

precision.

One might also try to approach the generalized hyperge-

ometric functions using Pochhammer’s double loop contours

[29, 30], or study the defining differential equations [31, 32,

33], etc. After several trials, we decided to base our numerics

on the integral representations of F1 proposed in [34] and FS

proposed in [35]; see Appendix B and Appendix C. Astonish-

ing enough, it will (nearly) suffice to use mathematics known

to well-educated German gymnasiasts.

Appendix B. The Appel functions F1

A one-dimensional integral representation for F1 [34] is

quoted in Eqn. (9) of [18]:

F1(a; b, b
′; c;x, y) =

Γ(c)

Γ(a)Γ(c− a)
(B.1)

×
∫ 1

0

du
ua−1(1− u)c−a−1

(1 − xu)b(1− yu)b′
.

We need three specific cases, taken at d ≥ 4. Namely for ver-

tices:

F v
1 (d) ≡ F1

(

d− 2

2
; 1,

1

2
;
d

2
;xc, yc

)

(B.2)

=
1

2
(d− 2)

∫ 1

0

du u
d
2
−2

(1− xcu)
√
1− ycu

.

Integrability is violated at u = 0 if not ℜe(d) > 2. Similarly,

for box integrals:

F b
1 (d) ≡ F1

(d− 3

2
; 1,

1

2
;
d− 1

2
;xc, yc

)

(B.3)

=
1

2
(d− 3)

∫ 1

0

du ud/2−5/2

(1− xcu)
√
1− ycu

= F v
1 (d− 1),

Integrability is violated at u = 0 if not ℜe(d) > 3. Finally for

the definition of the box Saran function FS (C.1):

FS
1 (yc, zc) ≡ F1(1; 1,

1

2
,
3

2
; yc, zc) (B.4)

=
1

2

∫ 1

0

u du√
1− u(1 − xcu)

√
1− ycu

.

The singularity at u = 1 is integrable.

Appendix B.1. Specific values of 2F1 and F1 at d = 4

The vertex function (15) contains 2F1 and F1 with specific

values at d = 4:

2F1

(

1, 1;
3

2
;xc

)

=
ArcSin(

√
xc)√

1− xc
√
xc

(B.5)

and

F1

(

1; 1,
1

2
; 2;xc, yc

)

= 2
ArcTanh

[√
xc

√
1−yc√

xc−yc

]

√
xc
√
xc − yc

− 2
ArcTanh

[ √
xc√

xc−yc

]

√
xc
√
xc − yc

. (B.6)

Using logarithms only, ArcSin(z) = −i ln(iz +
√
1− z2) and

ArcTanh(z) = 1
2 [ln(1+z)−ln(1−z)]. Eqn. (B.6) is only valid

if (xc−yc) has a well-defined imaginary part. For xc = x−iεx
and yc = y − iεy this is not necessarily the case if εx and εy
are independent and both infinitesimal. So (B.6) has to be used

with a grain of care.

The box function (17) contains additional 2F1 and F1 with

specific values at d = 4:

2F1

(

1

2
, 1; 1;xc

)

=
1√

1− xc
(B.7)

and

F1

(

1

2
; 1,

1

2
;
3

2
;xc, yc

)

=
1√

1− yc
2F1(

1

2
; 1,

3

2
;
xc − yc
1− yc

)

=
ArcTanh

(√

xc−yc

1−yc

)

√
xc − yc

.

(B.8)

Eqn. (B.8) is only valid if (xc − yc) has a well-defined imagi-

nary part. Finally, we like to mention that we have no analogue

to (B.7) and (B.8) for FS at d = 4, namelyFS(
1
2 , 1, 1; 1, 1,

1
2 ; 2,

2, 2;xc, yc, zc).
The Appell function FS

1 = F1(1; 1,
1
2 ;

3
2 ; yc, zc) used in the

integrand of the definition of the Saran function (C.1) can also

be simplified:

F1(1; 1,
1

2
;
3

2
; yc, zc) =

1

1− zc
2F1

(

1, 1;
3

2
;
yc − zc
1− zc

)

=
ArcSin

√

yc−zc
1−zc

√

(yc − zc)(1 − zc)
.

(B.9)

Both representations in (B.9) are only valid when the imaginary

part of the difference (yc − zc) is well-defined.
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For the Feynman integrals studied here, we have to take

into account that xc, yc and zc may have, in general, uncor-

related infinitesimal imaginary parts, and so their difference

may be not well-defined. Let us remind that xc = R1/R4, and

yc = R1/(R1−R3), and zc = R1/(R1−R2). Here, all the Rn

have, according to (2), identical imaginary parts −iε. This leads

to different infinitesimal imaginary parts −εx,−εy,−εz , with

potentially different signs. So, one has basically two equivalent

options. Either one treats εx, εy and εz as independent quan-

tities and avoids the appearance of terms like (xc − yc) and

(yc − zc). Or one uses the exact knowledge of the imaginary

parts of the Rn from their definitions and arrives at well-defined

imaginary parts of these (xc − yc) and (yc − zc).

Appendix B.2. Numerical calculation of F v
1 (d)

For xc = x − iX and yc = y − iY , Eqn. (B.2) may be

used for numerics if (X,Y ) ≥ const. > 0 or if (x, y) < 1.

The remaining cases (X = −εx, Y = −iεy) → +0 deserve a

closer inspection. They appear from Feynman integrals.

We exemplify here the first one of the two more involved

cases: 1 < x < y and 1 < y < x.

We introduc an auxiliary split parameter

um =
1

2

(

1

y
+

1

x

)

with 0 <
1

y
< um <

1

x
< 1. (B.10)

In the integrand of F1 there will a cut begin at u = 1
y and a pole

arise at u = 1
x for infinitesimal εx, εy . A split of the integral at

um,

∫ 1

0

du =

∫ um

0

du+

∫ 1

um

du ≡ iL + iR, (B.11)

will lead to a separation of the singularities. In both integrals

at the right hand side, the integrand is regular with one exclu-

sion. We discuss now several opportunities of calculations, all

of them with an accuracy of eight safe digits or better.

Our most careful approach persued the following ansatz

with additional splittings:

F v
1 (d) = IA + I0 + IC + ID + IB + IE

= lim
R→+0

[

∫ 1

y
−R

0

+

∫ 1

y
+R

1

y
−R

+

∫ um

1

y
+R

+

∫ 1

x
−R

um

+

∫ 1

x
+R

1

x
−R

+

∫ 1

1

x
+R

]

(B.12)

After performing the limit R → 0 wherever possible, the inte-

grals A and B will give real contributions, and the others are

purely imaginary:

F v
1 (d) = [ℜeF v

1 (d)] + i [ℑmF v
1 (d)]

= [A+ sign(εx)sign(εy) B]

+ i [sign(εy) (−C +D + E)] . (B.13)

It is

I0 = 0, (B.14)

A =
d− 2

2

∫ 1

y

0

du ud/2−2

(1− xu)
√
1− yu

, (B.15)

B =
d− 2

2
π

1

x
√

y
x − 1 xd/2−2

, (B.16)

C =
d− 2

2

∫ um

1

y

du ud/2−2

(1− xu)
√
yu− 1

, (B.17)

D =
d− 2

2

∫ 1

x

um

du

1− xu
(

ud/2−2

√
yu− 1

− x−d/2+2

√ y
x − 1

)

+
d− 2

2

1
√

y
x − 1 xd/2−2

[

ln(R)− ln(
1

2x
− 1

2y
)

]

, (B.18)

E =
d− 2

2

∫ 1

1

x

du

1− xu
(

ud/2−2

√
yu− 1

− x−d/2+2

√

y
x − 1

)

+
d− 2

2

1
√

y
x − 1 xd/2−2

[

− ln(R) + ln(1− 1

x
)

]

. (B.19)

The remaining R-dependences in (B.18) and (B.19) drop out in

the sum of D and E.

Alternatively, with a subtraction in each of the two partial

integrals in (B.11), one may regularize the integrand of F v
1 (d)

as follows:

iL =

∫ um

0

du
gx(u)− gx

(

1
y

)

√
1− yu

+ ianaL , (B.20)

iR =

∫ 1

um

du
gy(u)− gy

(

1
x

)

1− xu
+ ianaR , (B.21)

with

ianaL = − 2
gx

(

1
y

)

yc

[

√

1− ycum − 1
]

(B.22)

→ − 2
gx

(

1
y

)

yc

[

−1 + i sign(εy)
√

yum − 1
]

,

ianaR = −gy
(

1
x

)

xc
ln

(

1− xc

1− xcum

)

(B.23)

→ −gy
(

1
x

)

x

[

ln

(

x− 1

1− xum

)

+ iπ sign (εx)

]

.

Finally, a simplest approach will also do a reasonable nu-

merics: Perform mean value integrals, like e.g. the built-in
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function of Mathematica:

F v
1 (d) = lim

ǫ→+0

[(

∫ 1

y
−ǫ

0

+

∫ um

1

y
+ǫ

)

+

(

∫ 1

x
−ǫ

um

+

∫ 1

1

x
−ǫ

)]

.

(B.24)

Of course, a calculation with, say, more than eight safe digits,

will deserve an explicit control of the algorithmic details.

Numerical examples for F v
1 (d) are collected in Tables B.1

and (B.2).

Appendix B.3. Numerical calculation of the box Appell func-

tion F b
1 (d)

For the calculation of four-point Feynman integrals, one

needs F b
1 (d) as introduced in (B.3), both for d = 4 and for

d = 4 + n − 2ε. The box F1-function is related to the ver-

tex function F v
1 (d) by (B.3). Consequently, the numerics of the

foregoing subsections may be taken over.

Appendix C. The Lauricella-Saran function Fs

For the calculation of the 4-point Feynman integrals, one

needs the Lauricella-Saran function FS [35]. Saran defines FS

as three-fold sum (A.3), see Eqn. (2.9) in [35]. He derives a 3-

fold integral representation in Eqn. (2.15) and a 2-fold integral

in Eqn. (2.16). We will use the following quite useful represen-

tation, derived at p. 304 of [35]:

FS(a1, a2, a2; b1, b2, b3; c, c, c, x, y, z) (C.1)

=
Γ(c)

Γ(a1)Γ(c− a1)
∫ 1

0

dt
tc−a1−1(1− t)a1−1

(1 − x+ tx)b1
F1(a2; b2, b3; c− a1; ty, tz).

In our case, this becomes

F b
S(d) = FS

(

d− 3

2
, 1, 1; 1, 1,

1

2
;
d

2
,
d

2
,
d

2
, xc, yc, zc

)

=
Γ(d2 )

Γ(d−3
2 )Γ(32 )

(C.2)

×
∫ 1

0

dt

√
t(1 − t)

d−5

2

(1− xc + xct)
F1(1; 1,

1

2
;
3

2
; yct, zct)

Eqn. (C.2) is valid if ℜe(d) > 3. With a grain of care one may

often use (B.9) for FS
1 . Because the F1 under the t-integral

is finite and smooth, we have to concentrate only on the term

1/(1−xc+xct), which develops a pole in the integration region

at tx = (1− x)/x if ℜe(xc) = x > 1 and if ℑm(xc) = −εx is

infinitesimal.

Appendix C.1. Case (i) F b
S(d) at x ≤ 1

For x = 1, the integral (C.2) is not well-defined. If x < 1,

a direct, stable numerical integration of FS is trivial once F1 is

known.

Appendix C.2. Case (ii) F b
S(d) at x > 1

If x > 1, one has to apply a regularization procedure to

F b
S(d), as it is described in (Appendix B.2), and will get a sta-

ble result for FS . The calculation of the F1 in the integrand in

(C.2) is discussed in Appendix B.1.

One now has to study the singularity structure of the t-
integral as a function of xc with regular FS

1 . Introduce

F b
S(d) =

∫ 1

0

dt
gS(t)− gS(tx)

1− x+ xt
+ gS(tx) I

reg
S (xc),

(C.3)

with

gS(t) =
√
t (1 − t)(d−5)/2 FS

1 (yct, zct) (C.4)

and

tx = 1− 1

x
. (C.5)

The first integral in (C.3) is numerically stable, and what re-

mains is to calculate analytically the integral

IregS (xc) = +
1

xc

∫ 1

0

dt

t− txc

=
1

xc
ln

(

1− 1

txc

)

.

(C.6)

For infinitesimal εx, we get

IregS (xc) →
1

x
[− ln(x− 1) + iπ sign(εx)] . (C.7)
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[5] U. Nierste, D. Müller, M. Böhm, Two loop relevant parts of D-

dimensional massive scalar one loop integrals, Z. Phys. C57 (1993) 605–

614. doi:10.1007/BF01561479.

[6] G. Passarino, An approach toward the numerical eval-

uation of multiloop Feynman diagrams, Nucl. Phys.

B619 (2001) 257–312. arXiv:hep-ph/0108252,

doi:10.1016/S0550-3213(01)00528-4.

[7] O. Tarasov, Application and explicit solution of recurrence

relations with respect to space-time dimension, Nucl. Phys.

Proc. Suppl. 89 (2000) 237. arXiv:hep-ph/0102271,

doi:10.1016/S0920-5632(00)00849-5.

[8] J. Fleischer, F. Jegerlehner, O. Tarasov, A new hypergeomet-

ric representation of one loop scalar integrals in d dimensions,

Nucl. Phys. B672 (2003) 303. arXiv:hep-ph/0307113,

doi:10.1016/j.nuclphysb.2003.09.004.

[9] D. B. Melrose, Reduction of Feynman diagrams, Nuovo Cim. 40 (1965)

181–213. doi:10.1007/BF028329.
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