
DESY 19-028
IPPP/19/13
MCnet-19-05

HEJ 2: High Energy Resummation for Hadron Colliders

Jeppe R. Andersena, Tuomas Hapolaa, Marian Heila, Andreas Maierb,∗,
Jennifer Smilliec

aInstitute for Particle Physics Phenomenology,
University of Durham, South Road, Durham DH1 3LE, UK

bDeutsches Elektronen-Synchrotron, DESY, Platanenallee 6, 15738 Zeuthen, Germany
cHiggs Centre for Theoretical Physics, University of Edinburgh,

Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK

Abstract

We present HEJ 2, a new implementation of the High Energy Jets formalism
for high-energy resummation in hadron-collider processes as a flexible Monte
Carlo event generator. In combination with a conventional fixed-order event
generator, HEJ 2 can be used to obtain greatly improved predictions for
a number of phenomenologically important processes by adding all-order
logarithmic corrections in ŝ/p2⊥. A prime example for such a process is the
gluon-fusion production of a Higgs boson in association with widely separated
jets, which constitutes the dominant background to Higgs boson production
in weak-boson fusion.

Keywords: Quantum chromodynamics; Collider Physics; Resummation;
Monte Carlo Event Generators

PROGRAM SUMMARY
Program Title: HEJ 2
Licensing provisions: GPLv2 or later
Programming language: C++
Nature of problem:

Preprint submitted to Computer Physics Communications February 25, 2019

ar
X

iv
:1

90
2.

08
43

0v
1

 [
he

p-
ph

]
 2

2
Fe

b
20

19

Conventional event generators for high-energy colliders are based on fixed-order
perturbation theory, which converges poorly in regions of phase space with large
invariant masses between jets. However, reliable predictions in these regions are of
particular importance whenever cuts relevant to weak-boson fusion or weak-boson
scattering are applied. One highly relevant example is the separation of gluon
fusion and weak-boson fusion contributions to the production of a Higgs boson in
association with two or more jets.
Solution method:
The perturbative description can be amended by resumming the high-energy loga-
rithms associated with large invariant masses to all orders in perturbation theory.
HEJ 2 implements this resummation following the High Energy Jets framework.
Using HEJ 2 in conjunction with a conventional event generator allows one to obtain
reliable predictions for processes involving multiple jets in high-energy regions of
phase space.
Additional comments including Restrictions and Unusual features:
The current version of HEJ 2 implements multi-jet processes with at most a single
Higgs boson in the final state. Matching to fixed-order perturbation theory is
currently restricted to leading order.

1. Introduction

Measurements at the Large Hadron Collider (LHC) are testing our know-
ledge of elementary particle physics to unprecedented detail. Especially in
the light of the High-Luminosity LHC upgrade it is instrumental to develop a
thorough understanding of scattering processes over a wide range of phase
space, including specific corners of interest.

The high-energy region of phase space is characterised by large invariant
masses, or alternatively large rapidity separations, between pairs of jets.
This region is of particular relevance in the production of a Higgs boson
together with jets through weak-boson fusion, where the partons are typically
scattered in the forward region. Similar kinematics are observed in weak-boson
scattering. Experimental identification of such processes requires a precise
and reliable theoretical prediction for the background, which is dominated by
gluon fusion.

In the high-energy limit, the convergence of conventional perturbation the-
ory is spoiled by large logarithms of invariant masses. While these logarithms
can be predicted and resummed to all orders in the framework of BFKL[1–4],
it is found that a prediction based on only the logarithmic behaviour is

2

generally not sufficient in the phase space probed by current colliders. The
High Energy Jets framework pioneered in [5–7] remedies this shortcoming by
performing a systematic power expansion of the scattering amplitude thereby
retaining the logarithmic accuracy of BFKL while allowing event-by-event
matching to fixed-order matrix elements. As approximations are only applied
to the scattering matrix elements and not to the phase space, it is possible to
obtain fully exclusive predictions. A review of High Energy Jets can be found
in [8]. The method was implemented in the HEJ Monte Carlo event generator
and validated by comparing to measurements of multi-jet production and
the production of W or Z bosons in associations with jets in the high-energy
region [9–16].

In order to benefit from recent progress in the formulation of High Energy
Jets , it has been necessary to rewrite large parts of the implementation. Here,
we present the new program HEJ 2. HEJ 2 is based on a recently developed
matching algorithm, where events in the resummation phase space are gener-
ated from fixed-order events produced with a conventional fixed-order event
generator. A detailed description of the algorithm and its implementation is
given in [17]. In contrast to the previously used formulation, it allows fixed-
order matching to much higher multiplicities and to loop-induced processes.
As matching is no longer tied to hard-wired matrix elements, the scope of
matching is much broader than with the previous version of HEJ.

HEJ 2 has a much more modular structure, which makes it easier to
add and maintain code for new processes. It is straightforward to interface
HEJ 2 to arbitrary fixed-order event generators producing events in the Les
Houches Event File format. HEJ 2 natively supports Rivet [18] analyses and
the standard LHEF [19, 20] and HepMC [21, 22] formats for event output. It
is also possible to use custom analyses. Not only can HEJ 2 be used as a
stand-alone program, but also as a library. This will for example facilitate
future combinations with parton showers, cf. [23, 24].

In the following we explain how to install and run HEJ 2 in sections 2 and
3, respectively. Section 4 describes the HEJ fixed-order generator, which can
generate leading-order high-multiplicity events in the high-energy approxima-
tion. In sections 5 and 6, we show how a user-defined analysis and custom
renormalisation and factorisation scales can be defined. Finally, in section 7
we give an example how HEJ 2 can be used as a library. Continuously updated
documentation for HEJ can be found at https://hej.web.cern.ch.

3

https://hej.web.cern.ch

2. Installation

2.1. Download

A tar archive of the HEJ 2 source code can be downloaded and decom-
pressed with the command

curl https://hej.web.cern.ch/HEJ/downloads/HEJ_2.0.tar.gz | tar −xz

To obtain the latest stable HEJ version, HEJ_2.0.tar.gz should be replaced
by HEJ.tar.gz.

Alternatively, the HEJ source code can be obtained by installing the git
version control system [25] and running

git clone https://phab.hepforge.org/source/hej.git

We also provide a Docker [26] image containing a HEJ 2 installation on
https://hub.docker.com/r/hejdock/hej. This image can be pulled with

docker pull hejdock/hej

When using the Docker image the remaining installation steps can be skipped.

2.2. Prerequisites

Before installing HEJ 2, the following programs and libraries are needed:

• CMake version 3.1 [27, 28] or later.

• A compiler supporting the C++14 standard, for example gcc 5 [29] or
later.

• FastJet [30].

• CLHEP version 2.3.1 or later [31]

• LHAPDF6 [32, 33].

• The IOStreams and uBLAS boost libraries [34].

• yaml-cpp [35].

HEJ 2 was tested with CMake version 3.12.3, gcc 5.3.0, FastJet 3.3.1, CLHEP
2.4.1.0, LHAPDF 6.1.6, boost 1.68, and yaml-cpp 0.6.2 as well as with various
other combinations. For including finite top mass corrections in Higgs boson
plus jets production, version 2 of the QCDLoop library [36, 37] is required in
addition to the above libraries. HEJ 2 supports Rivet [18] and versions 2 and
3 of HepMC [21, 22] if any of them are installed, but does not require them.

4

https://hub.docker.com/r/hejdock/hej

2.3. Compilation

HEJ 2 can be compiled and installed with the commands

cmake HEJ2/source/directory −DCMAKE_INSTALL_PREFIX=target/directory
make install

where HEJ2/source/directory is the directory containing the file CMakeLists.txt.
If −DCMAKE_INSTALL_PREFIX=target/directory is omitted HEJ 2 will be installed
to some default location.

In case some of the aforementioned prerequisites are not found by cmake
a hint can be given by adding an additional argument

−Dlibname_ROOT_DIR=/directory/with/library

where libname should be replaced by the name of the library in question.

2.4. Testing

The installation can be tested after downloading the NNPDF 2.3 PDF
set with

lhapdf install NNPDF23_nlo_as_0119

The tests can be run with the command

make test

3. Running HEJ 2

3.1. Quick start

In order to run, HEJ 2 needs a configuration file and a file containing fixed-
order events. A sample configuration is given by the config.yml file distributed
together with HEJ 2. Events in the Les Houches Event File format can be
generated with standard Monte Carlo generators like MadGraph5 aMC@NLO [38]
or Sherpa [39]. It is also possible to use Les Houches Event Files compressed
with gzip [40] as input. HEJ 2 assumes that the cross section is given by the
sum of the event weights. Depending on the fixed-order generator it may be
necessary to adjust the weights in the Les Houches Event File accordingly.

The processes supported by HEJ 2 so far are

• pure multijet production,

• production of a Higgs boson with jets,

5

where at least two jets are required in each case. Only leading-order events are
supported; work is ongoing to extend the matching to next-to-leading-order.

After generating an event file events.lhe, adjust the parameters under
the fixed order jets setting in config.yml to the settings in the fixed-order
generation. Resummation can then be added by running

HEJ config.yml events.lhe

Using the default settings, this will produce an output event file HEJ.lhe with
events including high-energy resummation.

When using the Docker image, HEJ can be run with

docker run −v $PWD:$PWD −w $PWD hejdock/hej HEJ config.yml events.lhe

3.2. Settings

HEJ 2 configuration files follow the YAML [41] format. The following
configuration parameters are supported:

• trials: High-energy resummation is performed by generating a number
of resummation phase space configurations corresponding to an input
fixed-order event. This parameter specifies how many such configura-
tions HEJ 2 should try to generate for each input event. Typical values
vary between 10 and 100.

• min extparton pt: Specifies the minimum transverse momentum in
GeV of the most forward and the most backward parton. This setting
is needed to regulate an otherwise uncancelled divergence. Its value
should be slightly below the minimum transverse momentum of jets
specified by resummation jets: min pt. See also the max ext soft
pt fraction setting.

• max ext soft pt fraction: Specifies the maximum fraction that soft
radiation can contribute to the transverse momentum of each the most
forward and the most backward jet. Values between around 0.05 and
0.1 are recommended. See also the min extparton pt setting.

• fixed order jets: This tag collects a number of settings specifying the
jet definition in the event input. The settings should correspond to
the ones used in the fixed-order Monte Carlo that generated the input
events.

6

– min pt: Minimum transverse momentum in GeV of fixed-order
jets.

– algorithm: The algorithm used to define jets. Allowed settings
are kt, cambridge, antikt, cambridge for passive. See the FastJet
documentation for a description of these algorithms [30].

– R: The R parameter used in the jet algorithm, roughly correspond-
ing to the jet radius in the plane spanned by the rapidity and the
azimuthal angle.

• resummation jets: This tag collects a number of settings specifying
the jet definition in the observed, i.e. resummed events. These settings
are optional, by default the same values as for the fixed order jets
are assumed.

– min pt: Minimum transverse momentum in GeV of resummation
jets. This should be between 25% and 50% larger than the mini-
mum transverse momentum of fixed order jets set by fixed order
jets: min pt.

– algorithm: The algorithm used to define jets. HEJ 2 can cover
the resummation phase space particularly efficiently when using
antikt jets [42], so this value is strongly recommended. For a list
of possible other values, see the fixed order jets: algorithm
setting.

– R: The R parameter used in the jet algorithm.

• FKL: Specifies how to treat events respecting FKL rapidity ordering.
These configurations are dominant in the high-energy limit (see [8]).
The possible values are reweight to enable resummation, keep to keep
the events as they are up to a possible change of renormalisation and
factorisation scale, and discard to discard these events.

• unordered: Specifies how to treat events with one emission that does
not respect FKL ordering. In the high-energy limit, such configurations
are logarithmically suppressed compared to FKL configurations. The
possible values are the same as for the FKL setting, but reweight is
currently only supported for Higgs boson plus jets production.

7

• non-HEJ: Specifies how to treat events where no resummation is
possible. The allowed values are keep to keep the events as they are
up to a possible change of renormalisation and factorisation scale and
discard to discard these events.

• scales: Specifies the renormalisation and factorisation scales for the
output events. This can either be a single entry or a list [scale1, ↪→
↪→ scale2, ...]. For the case of a list the first entry defines the central
scale. Possible values are fixed numbers to set the scale in GeV or the
following:

– H_T: The sum of the scalar transverse momenta of all final-state
particles.

– max jet pperp: The maximum transverse momentum of all jets.

– jet invariant mass: Sum of the invariant masses of all jets.

– m_j1j2: Invariant mass between the two hardest jets.

Scales can be multiplied or divided by an overall factor, e.g. H_T/2.

It is also possible to import scales from an external library, see section 6.

• scale factors: A list of numeric factors by which each of the scales
should be multiplied. The renormalisation scale µr and the factorisation
cales µf are varied independently. For example, a list with entries
[0.5, 2] would give the four scale choices (0.5µr, 0.5µf), (0.5µr, 2µf),
(2µr, 0.5µf), (2µr, 2µf) in this order. The ordering corresponds to the
order of the final event weights.

• max scale ratio: Specifies the maximum factor by which renormal-
isation and factorisation scales may differ. For a value of 2 and the
example given for the scale factors the scale choices (0.5µr, 2µf) and
(2µr, 0.5µf) will be discarded.

• log correction: Whether to include corrections due to the evolution of
the strong coupling constant in the virtual corrections. Allowed values
are true and false.

• event output: Specifies the name of a single event output file or
a list of such files. The file format is either specified explicitly or

8

derived from the suffix. For example, events.lhe or, equivalently Les ↪→
↪→ Houches: events.lhe generates an output event file events.lhe in the
Les Houches format. The supported formats are

– file.lhe or Les Houches: file: The Les Houches event file format.

– file.hepmc or HepMC: file: The HepMC format.

• random generator: Sets parameters for random number generation.

– name: Which random number generator to use. Currently, mixmax [43,
44] and ranlux64 [45] are supported. See the CLHEP documenta-
tion [31] for details on the generators.

– seed: The seed for random generation. This should be a single
number for mixmax and the name of a state file for ranlux64.

• analysis: Name and settings for the event analyses; either a custom
analysis plug-in or Rivet. For the first the plugin sub-entry should be
set to the analysis file path. All further entries are passed on to the
analysis. To use Rivet a list of Rivet analyses have to be given in
Rivet and a prefix for the yoda file has to be set through output. See
section 5 for details.

• Higgs coupling: This collects a number of settings concerning the
effective coupling of the Higgs boson to gluons. This is only relevant for
the production process of a Higgs boson with jets and only supported if
HEJ 2 was compiled with QCDLoop support.

– use impact factors: Whether to use impact factors for the
coupling to the most forward and most backward partons. Impact
factors imply the infinite top-quark mass limit.

– mt: The value of the top-quark mass in GeV. If this is not specified,
the limit of an infinite mass is taken.

– include bottom: Whether to include the Higgs coupling to bot-
tom quarks.

– mb: The value of the bottom-quark mass in GeV.

9

4. The HEJ fixed order generator

For high jet multiplicities event generation with standard fixed-order
generators becomes increasingly cumbersome. For example, the leading-
order production of a Higgs Boson with five or more jets is computationally
prohibitively expensive.

To this end, HEJ 2 provides the HEJFOG fixed-order generator that allows
to generate events with high jet multiplicities. To facilitate the computation
the limit of Multi-Regge Kinematics with large invariant masses between
all outgoing particles is assumed in the matrix elements. The typical use
of the HEJFOG is to supplement low-multiplicity events from standard
generators with high-multiplicity events before using the HEJ 2 program to
add high-energy resummation.

4.1. Installation

The HEJFOG comes bundled together with HEJ 2 and the installation
is very similar. After downloading HEJ 2 and installing the prerequisites as
described in section 2.2 the HEJFOG can be installed with

cmake /path/to/FixedOrderGen −DCMAKE_INSTALL_PREFIX=target/directory ↪→
↪→ −DCMAKE_BUILD_TYPE=Release

make install

where /path/to/FixedOrderGen refers to the FixedOrderGen subdirectory in the
HEJ 2 directory.

If HEJ 2 was installed to a non-standard location, it may be neces-
sary to specify the directory containing HEJ−config.cmake. If the base in-
stallation directory is /path/to/HEJ, HEJ−config.cmake should be found in
/path/to/HEJ/lib/cmake/HEJ and the commands for installing the HEJFOG
would read

cmake /path/to/FixedOrderGen −DHEJ_DIR=/path/to/HEJ/lib/cmake/HEJ ↪→
↪→ −DCMAKE_INSTALL_PREFIX=target/directory

make install

The installation can be tested with::

make test

provided that the CT10nlo PDF set is installed.

10

4.2. Running the fixed-order generator

After installing the HEJFOG you can modify the provided configuration
file configFO.yml and run the generator with:

HEJFOG configFO.yml

The resulting event file, by default named HEJFO.lhe, can then be fed into
HEJ 2 like any event file generated from a standard fixed-order generator, see
section 3.1.

4.3. Settings

Similar to HEJ 2, the HEJFOG uses a YAML configuration file. The
settings are

• process: The scattering process for which events are being generated.
The format is in1 in2 => out1 out2

The incoming particles, in1, in2 can be

– quarks: u, d, u_bar, and so on,

– gluons: g,

– protons p or antiprotons p_bar.

At most one of the outgoing particles can be a boson. At the moment
only the Higgs boson h is supported. All other outgoing particles are
jets. Multiple jets can be grouped together, so p p => h j j is the same
as p p => h 2j. There have to be at least two jets.

• events: Specifies the number of events to generate.

• jets: Defines the properties of the generated jets.

– min pt: Minimum jet transverse momentum in GeV.

– peak pt: Optional setting to specify the dominant jet transverse
momentum in GeV. If the generated events are used as input for
HEJ resummation, this should be set to the minimum transverse
momentum of the resummation jets. The effect is that only a small
fraction of jets will be generated with a transverse momentum
below the value of this setting.

11

– algorithm: The algorithm used to define jets. Allowed settings
are kt, cambridge, antikt, cambridge for passive. See the FastJet
documentation for a description of these algorithms.

– R: The R parameter used in the jet algorithm.

– max rapidity: Maximum absolute value of the jet rapidity.

• beam: Defines various properties of the collider beam.

– energy: The beam energy in GeV. For example, the 13 TeV LHC
corresponds to a value of 6500.

– particles: A list [p1, p2] of two beam particles. The only sup-
ported entries are protons p and antiprotons p_bar.

• pdf : The LHAPDF number of the PDF set. For example, 230000
corresponds to an NNPDF 2.3 NLO PDF set.

• subleading fraction: This setting is related to the fraction of events
that are not FKL configurations and thus subleading in the high-energy
limit. Currently only unordered emissions are implemented, and only
for Higgs boson plus multijet processes. This value must be positive
and not larger than 1. It should typically be chosen between 0.01 and
0.1. Note that while this parameter influences the chance of generating
subleading configurations, it generally does not correspond to the actual
fraction of subleading events.

• subleading channels: Optional parameter to select the production of
specific channels that are subleading in the high-energy limit. Only has
an effect if subleading fraction is non-zero. Currently three values are
supported:

– all: All subleading channels are allowed. This is the default.

– none: No subleading contribution, only FKL configurations are
allowed. This is equivalent to subleading fraction: 0.

– unordered: Unordered emission are allowed.

Unordered emission are any rapidity ordering where exactly one
gluon is emitted outside the FKL rapidity ordering. More precisely,
if at least one of the incoming particles is a quark or antiquark and

12

there are more than two jets in the final state, subleading fraction
states the probability that the flavours of the outgoing particles
are assigned in such a way that an unordered configuration arises.

• unweight: This setting defines the parameters for the partial unweight-
ing of events. You can disable unweighting by removing this entry from
the configuration file.

– sample size: The number of weighted events used to calibrate
the unweighting. A good default is to set this to the number of
target events. If the number of events is large this can lead to
significant memory consumption and a lower value should be cho-
sen. Contrarily, for large multiplicities the unweighting efficiency
becomes worse and the sample size should be increased.

– max deviation: Controls the range of events to which unweighting
is applied. A larger value means that a larger fraction of events
are unweighted. Typical values are between -1 and 1.

• Particle properties: Specifies various properties of the different par-
ticles (Higgs, W or Z). This is only relevant if the chosen process is
the production of the corresponding particles with jets. For example,
for the process p p => h 2j the mass, width and (optionally) decays of
the Higgs boson are required, while all other particle properties will be
ignored. In the current version, the production of W and Z bosons is
not implemented and those entries will always be ignored. This will
change in future versions.

– Higgs, W+, W- or Z: The particle (Higgs, W+, W−, Z) for which
the following properties are defined.

∗ mass: The mass of the particle in GeV.

∗ width: The total decay width of the particle in GeV.

∗ decays: Optional setting specifying the decays of the particle.
Only the decay into two particles is implemented. Each decay
has the form {into: [p1,p2], branching ratio: r} where p1
and p2 are the particle names of the decay product (e.g. photon)
and r is the branching ratio. Decays of a Higgs boson are
treated as the production and subsequent decay of an on-shell
Higgs boson, so decays into e.g. Z bosons are not supported.

13

• scales: Specifies the renormalisation and factorisation scales for the
output events. For details, see the corresponding entry in section 3.2.
Note that this should usually be a single value, as the weights resulting
from additional scale choices will simply be ignored when adding high-
energy resummation with HEJ 2.

• event output: Specifies the name of a single event output file or a list
of such files. See the corresponding entry in section 3.2 for details.

• random generator: Sets parameters for random number generation.
See section 3.2 for details.

• analysis: Specifies the name and settings for a custom analysis library.
This can be useful to specify cuts at the fixed-order level. See the
corresponding entry in section 3.2 for details.

• Higgs coupling: This collects a number of settings concerning the
effective coupling of the Higgs boson to gluons. See the corresponding
entry in section 3.2 for details

5. Writing custom analyses

HEJ 2 and the HEJ fixed-order generator can generate HepMC files, so it
is always possible to run a Rivet analysis on these. However if HEJ 2 was
compiled with Rivet support one can use the native Rivet interface. For
example

analysis:
rivet: [MC_XS, MC_JETS]
output: HEJ

would call the generic MC_XS and MC_JETS Rivet analyses and write the result
into HEJ[.Scalename].yoda. HEJ 2 will then run Rivet over all different scales
separately and write out each into a different yoda file. Alternatively instead
of using Rivet, one can provide a custom analysis inside a C++ library.

An analysis is a class that derives from the abstract Analysis base class
provided by HEJ 2. It has to implement three public functions:

• The pass_cuts member function return true if and only if the given
event (first argument) passes the analysis cuts.

14

• The fill member function adds an event to the analysis, which for
example can be used to fill histograms. HEJ 2 will only pass events for
which pass_cuts has returned true.

• The finalise member function is called after all events have been
processed. It can be used, for example, to print out or save the analysis
results.

The pass_cuts and fill functions take two arguments: the resummation event
generated by HEJ 2 and the original fixed-order input event. Usually, the
second argument can be ignored. It can be used, for example, for implementing
cuts that depend on the ratio of the weights between the fixed-order and the
resummation event.

In addition to the two member functions, there has to be a global
make_analysis function that takes the analysis parameters in the form of
a YAML Node and returns a std::unique_ptr to the Analysis.

The following code creates the simplest conceivable analysis.

#include <memory> // for std::unique_ptr

#include "HEJ/Analysis.hh"

class MyAnalysis: public HEJ::Analysis {
public:
MyAnalysis(YAML::Node const & /∗ config ∗/) {}

void fill(
HEJ::Event const & /∗ event ∗/,
HEJ::Event const & /∗ FO_event ∗/

) override { }

bool pass_cuts(
HEJ::Event const & /∗ event ∗/,
HEJ::Event const & /∗ FO_event ∗/

) override {
return true;

}

void finalise() override { }

};

extern "C"
std::unique_ptr<HEJ::Analysis> make_analysis(
YAML::Node const & config

){

15

return std::make_unique<MyAnalysis>(config);
}

After saving this code to a file, for example myanalysis.cc, this code can be
compiled into a shared library. Using the g++ compiler, the library can be
built with

g++ $(HEJ−config −−cxxflags) −fPIC −shared ↪→
↪→ −Wl,−soname,libmyanalysis.so −o libmyanalysis.so myanalysis.cc

With g++ it is also good practice to add __attribute__((visibility("default")))
after extern "C" in the above code snippet and then compile with the addi-
tional flag −fvisibility=hidden to prevent name clashes.

The analysis can be used in HEJ 2 or the HEJ fixed-order generator by
adding

analysis:
plugin: /path/to/libmyanalysis.so

to the .yml configuration file.
As a more interesting example, here is the code for an analysis that sums

up the total cross section and prints the result to both standard output and
a file specified in the .yml config with

analysis:
plugin: analysis/build/directory/src/libmy_analysis.so
output: outfile

To access the configuration at run time, HEJ 2 uses the yaml-cpp library.
The analysis code itself is

#include <memory>
#include <iostream>
#include <fstream>
#include <string>
#include <cmath>

#include "HEJ/Analysis.hh"
#include "HEJ/Event.hh"

#include "yaml−cpp/yaml.h"

class MyAnalysis: public HEJ::Analysis {
public:
MyAnalysis(YAML::Node const & config):
xsection_{0.}, xsection_error_{0.},
outfile_{config["output"].as<std::string>()}

16

{}

void fill(
HEJ::Event const & event,
HEJ::Event const & /∗ FO_event ∗/

) override {
const double wt = event.central().weight;
xsection_ += wt;
xsection_error_ += wt∗wt;

}

bool pass_cuts(
HEJ::Event const & /∗ event ∗/,
HEJ::Event const & /∗ FO_event ∗/

) override {
return true;

}

void finalise() override {
std::cout << "cross section: " << xsection_ << " +− "
<< std::sqrt(xsection_error_) << "\n";

std::ofstream fout{outfile_};
fout << "cross section: " << xsection_ << " +− "
<< std::sqrt(xsection_error_) << "\n";

}

private:
double xsection_, xsection_error_;
std::string outfile_;

};

extern "C"
std::unique_ptr<HEJ::Analysis> make_analysis(

YAML::Node const & config
){
return std::make_unique<MyAnalysis>(config);

}

6. Custom scales

HEJ 2 comes with a small selection of built-in renormalisation and fac-
torisation scales, as described in section 3.2. In addition to this, user-defined
scales can be imported from custom libraries.

17

6.1. Writing the library

Custom scales are defined through C++ functions that take an event and
compute the corresponding scale. As an example, let us consider a function
returning the transverse momentum of the softest jet in an event. To make
it accessible from HEJ 2, we have to prevent C++ name mangling with
extern "C":

#include "HEJ/Event.hh"

extern "C"
double softest_jet_pt(HEJ::Event const & ev){
const auto softest_jet = sorted_by_pt(ev.jets()).back();
return softest_jet.perp();

}

After saving this code to some file myscales.cc, we can compile it to a shared
library. With the g++ compiler this can be done with the command

g++ $(HEJ−config −−cxxflags) −fPIC −shared ↪→
↪→ −Wl,−soname,libmyscales.so −o libmyscales.so myscales.cc

6.2. Importing the scale into HEJ 2

Our custom scale can now be imported into HEJ 2 by adding the following
lines to the YAML configuration file

import scales:
/path/to/libmyscales.so: softest_jet_pt

It is also possible to import several scales from one or more libraries:

import scales:
/path/to/libmyscales1.so: [first_scale, second_scale]
/path/to/libmyscales2.so: [another_scale, yet_another_scale]

The custom scales can then be used as usual in the scales setting, for example

scales: [H_T, softest_jet_pt, 2∗softest_jet_pt]

7. Using HEJ 2 as a library

As mentioned before, HEJ 2 can also be used as a library, which allows
lots of flexibility. The documentation of the complete functionality can be
found on https://hej.web.cern.ch/HEJ/doc/2.0/library.

18

https://hej.web.cern.ch/HEJ/doc/2.0/library

As an example, we show a toy program that computes the square of a
matrix element in the HEJ approximation for a single event. First, we include
the necessary header files:

#include "HEJ/Event.hh"
#include "HEJ/MatrixElement.hh"

We then specify the incoming and outgoing particles. A particle has a type
and four-momentum (px, py, pz, E). For instance, an incoming gluon could be
defined as

fastjet::PseudoJet momentum{0, 0, 308., 308.};
HEJ::Particle gluon_in{HEJ::ParticleID::gluon, momentum};

We collect all incoming and outgoing particles in a partonic event. Here is an
example for a partonic gu→ gghu event:

HEJ::UnclusteredEvent partonic_event;

// incoming particles
partonic_event.incoming[0] = {
HEJ::ParticleID::gluon,
{ 0., 0., 308., 308.}

};
partonic_event.incoming[1] = {
HEJ::ParticleID::up,
{ 0., 0.,−164., 164.}

};
// outgoing particles
partonic_event.outgoing.push_back({
HEJ::ParticleID::higgs,
{ 98., 82., 14., 180.}

});
partonic_event.outgoing.push_back({
HEJ::ParticleID::up,
{ 68.,−54., 36., 94.}

});
partonic_event.outgoing.push_back({
HEJ::ParticleID::gluon,
{−72., 9., 48., 87.}

});
partonic_event.outgoing.push_back({
HEJ::ParticleID::gluon,
{−94.,−37., 46., 111.}

});

Alternatively, we could read the event from a Les Houches event file, possibly
compressed with gzip. For this, the additional header files HEJ/stream.hh and
LHEF/LHEF.h have to be included.

19

HEJ::istream in{"events.lhe.gz"};
LHEF::Reader reader{in};
reader.readEvent();
HEJ::UnclusteredEvent partonic_event{reader.hepeup};

In this specific example we will later choose a constant value for the
strong coupling, so that the HEJ matrix element does not depend on the
renormalisation scale. However, in a more general scenario, we will want to
set a central scale:

partonic_event.central.mur = 50.;

It is possible to add more scales in order to perform scale variation:

partonic_event.variations.resize(2);
partonic_event.variations[0].mur = 25.;
partonic_event.variations[1].mur = 100.;

In the next step, we leverage FastJet to construct an event with clustered
jets. Here, we use anti-kt jets with R = 0.4 and transverse momenta of at
least 30 GeV.

const fastjet::JetDefinition jet_def{
fastjet::JetAlgorithm::antikt_algorithm, 0.4
};
const double min_jet_pt = 30.;
HEJ::Event event{partonic_event, jet_def, min_jet_pt};

In order to calculate the Matrix element, we now have to fix the physics
parameters. For the sake of simplicity, we assume an effective coupling of the
Higgs boson to gluons in the limit of an infinite top-quark mass and a fixed
value of αs = 0.118 for the strong coupling.

const auto alpha_s = [](double /∗ mu_r ∗/) { return 0.118; };
HEJ::MatrixElementConfig ME_config;
// whether to include corrections from the
// evolution of \alpha_s in virtual corrections
ME_config.log_correction = false;
HEJ::MatrixElement ME{alpha_s, ME_config};

If QCDLoop is installed, we can also take into account the full loop effects
with finite top and bottom quark masses:

HEJ::MatrixElementConfig ME_config;
ME_config.Higgs_coupling.use_impact_factors = false;
ME_config.Higgs_coupling.mt = 163;
ME_config.Higgs_coupling.include_bottom = true;
ME_config.Higgs_coupling.mb = 2.8;

20

Finally, we can compute and print the square of the matrix element with

std::cout << "HEJ ME: " << ME(event).central << ’\n’;

In the case of scale variation, the weight associated with the scale event.variations[i].mur
is ME(event).variations[i].

Collecting the above pieces, we have the following program:

#include "HEJ/Event.hh"
#include "HEJ/MatrixElement.hh"

int main(){
HEJ::UnclusteredEvent partonic_event;
// incoming particles
partonic_event.incoming[0] = {
HEJ::ParticleID::gluon,
{ 0., 0., 308., 308.}

};
partonic_event.incoming[1] = {
HEJ::ParticleID::up,
{ 0., 0.,−164., 164.}

};
// outgoing particles
partonic_event.outgoing.push_back({
HEJ::ParticleID::higgs,
{ 98., 82., 14., 180.}

});
partonic_event.outgoing.push_back({
HEJ::ParticleID::up,
{ 68.,−54., 36., 94.}

});
partonic_event.outgoing.push_back({
HEJ::ParticleID::gluon,
{−72., 9., 48., 87.}

});
partonic_event.outgoing.push_back({
HEJ::ParticleID::gluon,
{−94.,−37., 46., 111.}

});

const fastjet::JetDefinition jet_def{
fastjet::JetAlgorithm::antikt_algorithm, 0.4

};
const double min_jet_pt = 30.;
HEJ::Event event{partonic_event, jet_def, min_jet_pt};

const auto alpha_s = [](double /∗ mu_r ∗/) { return 0.118; };
HEJ::MatrixElementConfig ME_config;
// whether to include corrections from the
// evolution of \alpha_s in virtual corrections

21

ME_config.log_correction = false;
HEJ::MatrixElement ME{alpha_s, ME_config};

std::cout
<< "HEJ ME: " << ME(event).central
<< " = tree ∗ virtual = " << ME.tree(event).central
<< " ∗ " << ME.virtual_corrections(event).central
<< ’\n’;

}

After saving the above code to a file matrix_element.cc, it can be compiled
into an executable matrix_element with a suitable compiler. For example,
with g++ this can be done with the command

g++ −o matrix_element matrix_element.cc −lHEJ −lfastjet

If HEJ or any of the required libraries (see section 2.2) was installed to a
non-standard location, it may be necessary to explicitly specify the paths to
the required header and library files. This can be done with the HEJ−config
executable and similar programs for the other dependencies:

g++ $(fastjet−config −−cxxflags) $(HEJ−config −−cxxflags) −o ↪→
↪→ matrix_element matrix_element.cc $(HEJ−config −−libs) ↪→
↪→ $(fastjet−config −−libs)

8. Summary

We have presented the HEJ 2 event generator which may be used to
generate Monte Carlo events for hadron colliders at leading-logarithmic (LL)
accuracy in ŝ/p2⊥, for multi-jet production and for Higgs boson production
in association with jets. It takes as input fixed-order samples, currrently at
leading-order (LO), and maintains this accuracy to give combined LO+LL
predictions. The addition of the LL terms has been seen to be particularly
significant in regions of large invariant mass between jets (or equivalently
large rapidity separation), which is particularly pertinent for gluon-fusion
production of a Higgs boson in association with dijets.

The HEJ 2 code is publicly available from https://hej.web.cern.ch.
In this contribution we have outlined all necessary details to download, install
and run HEJ 2, including a full description of the possible settings which
can be user-defined in an input file. We have further discussed how to create
a general analysis of the events produced and how HEJ 2 can also be used
as a standalone library. Therefore, this documentation will allow anyone to

22

https://hej.web.cern.ch

generate their own predictions for arbitrary experimental setups at the LHC
and future colliders.

Acknowledgements

The authors would like to thank Gavin Salam for discussions on the anti-kt
jet clustering algorithm [42].

This work has received funding from the European Union’s Horizon 2020
research and innovation programme as part of the Marie Sk lodowska-Curie
Innovative Training Network MCnetITN3 (grant agreement no. 722104), the
Marie Sk lodowska-Curie grant agreement No. 764850, SAGEX, and COST
action CA16201: “Unraveling new physics at the LHC through the precision
frontier”, and from the UK Science and Technology Facilities Council (STFC).
JMS is supported by a Royal Society University Research Fellowship and the
ERC Starting Grant 715049 “QCDforfuture”.

References

[1] V. S. Fadin, E. A. Kuraev, L. N. Lipatov, On the Pomeranchuk singularity
in asymptotically free theories, Phys. Lett. B60 (1975) 50–52.

[2] E. A. Kuraev, L. N. Lipatov, V. S. Fadin, Multi - Reggeon processes in
the Yang-Mills theory, Sov. Phys. JETP 44 (1976) 443–450.

[3] E. A. Kuraev, L. N. Lipatov, V. S. Fadin, The Pomeranchuk singularity
in nonabelian gauge theories, Sov. Phys. JETP 45 (1977) 199–204.

[4] I. I. Balitsky, L. N. Lipatov, The Pomeranchuk singularity in quantum
chromodynamics, Sov. J. Nucl. Phys. 28 (1978) 822–829.

[5] J. R. Andersen, J. M. Smillie, Constructing All-Order Corrections to
Multi-Jet Rates, JHEP 1001 (2010) 039. arXiv:0908.2786, doi:10.

1007/JHEP01(2010)039.

[6] J. R. Andersen, J. M. Smillie, The Factorisation of the t-channel Pole
in Quark-Gluon Scattering, Phys.Rev. D81 (2010) 114021. arXiv:0910.
5113, doi:10.1103/PhysRevD.81.114021.

[7] J. R. Andersen, J. M. Smillie, Multiple Jets at the LHC with High
Energy Jets, JHEP 1106 (2011) 010. arXiv:1101.5394, doi:10.1007/
JHEP06(2011)010.

23

http://arxiv.org/abs/0908.2786
https://doi.org/10.1007/JHEP01(2010)039
https://doi.org/10.1007/JHEP01(2010)039
http://arxiv.org/abs/0910.5113
http://arxiv.org/abs/0910.5113
https://doi.org/10.1103/PhysRevD.81.114021
http://arxiv.org/abs/1101.5394
https://doi.org/10.1007/JHEP06(2011)010
https://doi.org/10.1007/JHEP06(2011)010

[8] J. R. Andersen, T. Hapola, A. Maier, J. M. Smillie, Higgs Boson Plus
Dijets: Higher Order Corrections, JHEP 09 (2017) 065. arXiv:1706.

01002, doi:10.1007/JHEP09(2017)065.

[9] J. R. Andersen, T. Hapola, J. M. Smillie, W Plus Multiple Jets at the
LHC with High Energy Jets, JHEP 1209 (2012) 047. arXiv:1206.6763,
doi:10.1007/JHEP09(2012)047.

[10] J. R. Andersen, J. J. Medley, J. M. Smillie, Z/γ∗ plus multiple hard
jets in high energy collisions, JHEP 05 (2016) 136. arXiv:1603.05460,
doi:10.1007/JHEP05(2016)136.

[11] G. Aad, et al., Measurement of dijet production with a veto on additional
central jet activity in pp collisions at

√
s = 7 TeV using the ATLAS

detector, JHEP 1109 (2011) 053. arXiv:1107.1641, doi:10.1007/

JHEP09(2011)053.

[12] S. Chatrchyan, et al., Measurement of the inclusive production cross
sections for forward jets and for dijet events with one forward and one
central jet in pp collisions at

√
s = 7 TeV, JHEP 1206 (2012) 036.

arXiv:1202.0704, doi:10.1007/JHEP06(2012)036.

[13] S. Chatrchyan, et al., Ratios of dijet production cross sections as a
function of the absolute difference in rapidity between jets in proton-
proton collisions at

√
s = 7 TeV, Eur. Phys. J. C72 (2012) 2216. arXiv:

1204.0696, doi:10.1140/epjc/s10052-012-2216-6.

[14] V. M. Abazov, et al., Studies of W boson plus jets production in pp̄
collisions at

√
s = 1.96 TeV, Phys.Rev. D88 (2013) 092001. arXiv:

1302.6508, doi:10.1103/PhysRevD.88.092001.

[15] G. Aad, et al., Measurements of jet vetoes and azimuthal decorrelations
in dijet events produced in pp collisions at

√
s = 7 TeV using the ATLAS

detector, Eur. Phys. J. C74 (11) (2014) 3117. arXiv:1407.5756, doi:
10.1140/epjc/s10052-014-3117-7.

[16] G. Aad, et al., Measurements of the W production cross sections in
association with jets with the ATLAS detector, Eur. Phys. J. C75 (2)
(2015) 82. arXiv:1409.8639, doi:10.1140/epjc/s10052-015-3262-7.

24

http://arxiv.org/abs/1706.01002
http://arxiv.org/abs/1706.01002
https://doi.org/10.1007/JHEP09(2017)065
http://arxiv.org/abs/1206.6763
https://doi.org/10.1007/JHEP09(2012)047
http://arxiv.org/abs/1603.05460
https://doi.org/10.1007/JHEP05(2016)136
http://arxiv.org/abs/1107.1641
https://doi.org/10.1007/JHEP09(2011)053
https://doi.org/10.1007/JHEP09(2011)053
http://arxiv.org/abs/1202.0704
https://doi.org/10.1007/JHEP06(2012)036
http://arxiv.org/abs/1204.0696
http://arxiv.org/abs/1204.0696
https://doi.org/10.1140/epjc/s10052-012-2216-6
http://arxiv.org/abs/1302.6508
http://arxiv.org/abs/1302.6508
https://doi.org/10.1103/PhysRevD.88.092001
http://arxiv.org/abs/1407.5756
https://doi.org/10.1140/epjc/s10052-014-3117-7
https://doi.org/10.1140/epjc/s10052-014-3117-7
http://arxiv.org/abs/1409.8639
https://doi.org/10.1140/epjc/s10052-015-3262-7

[17] J. R. Andersen, T. Hapola, M. Heil, A. Maier, J. M. Smillie, Higgs-boson
plus Dijets: Higher-Order Matching for High-Energy Predictions, JHEP
08 (2018) 090. arXiv:1805.04446, doi:10.1007/JHEP08(2018)090.

[18] A. Buckley, J. Butterworth, L. Lönnblad, D. Grellscheid, H. Hoeth,
J. Monk, H. Schulz, F. Siegert, Rivet user manual, Comput. Phys.
Commun. 184 (2013) 2803–2819. arXiv:1003.0694, doi:10.1016/j.
cpc.2013.05.021.

[19] E. Boos, et al., Generic user process interface for event generators,
in: Physics at TeV colliders. Proceedings, Euro Summer School, Les
Houches, France, May 21-June 1, 2001, 2001. arXiv:hep-ph/0109068.
URL http://lss.fnal.gov/archive/preprint/

fermilab-conf-01-496-t.shtml

[20] J. Alwall, et al., A Standard format for Les Houches event files, Comput.
Phys. Commun. 176 (2007) 300–304. arXiv:hep-ph/0609017, doi:

10.1016/j.cpc.2006.11.010.

[21] M. Dobbs, J. B. Hansen, The HepMC C++ Monte Carlo event record
for High Energy Physics, Comput. Phys. Commun. 134 (2001) 41–46.
doi:10.1016/S0010-4655(00)00189-2.

[22] HepMC3 event record library, https://hepmc.web.cern.ch/hepmc/.

[23] J. R. Andersen, L. Lönnblad, J. M. Smillie, A Parton Shower for High
Energy Jets, JHEP 1107 (2011) 110. arXiv:1104.1316, doi:10.1007/
JHEP07(2011)110.

[24] J. R. Andersen, H. M. Brooks, L. Lönnblad, Merging High Energy with
Soft and Collinear Logarithms using HEJ and PYTHIA, JHEP 09 (2018)
074. arXiv:1712.00178, doi:10.1007/JHEP09(2018)074.

[25] git, https://git-scm.com/.

[26] Docker, https://www.docker.com/.

[27] K. Martin, B. Hoffman, An Open Source Approach to Developing Soft-
ware in a Small Organization, IEEE Software 24 (1) (2007) 46–53.
doi:10.1109/MS.2007.5.

25

http://arxiv.org/abs/1805.04446
https://doi.org/10.1007/JHEP08(2018)090
http://arxiv.org/abs/1003.0694
https://doi.org/10.1016/j.cpc.2013.05.021
https://doi.org/10.1016/j.cpc.2013.05.021
http://lss.fnal.gov/archive/preprint/fermilab-conf-01-496-t.shtml
http://arxiv.org/abs/hep-ph/0109068
http://lss.fnal.gov/archive/preprint/fermilab-conf-01-496-t.shtml
http://lss.fnal.gov/archive/preprint/fermilab-conf-01-496-t.shtml
http://arxiv.org/abs/hep-ph/0609017
https://doi.org/10.1016/j.cpc.2006.11.010
https://doi.org/10.1016/j.cpc.2006.11.010
https://doi.org/10.1016/S0010-4655(00)00189-2
https://hepmc.web.cern.ch/hepmc/
http://arxiv.org/abs/1104.1316
https://doi.org/10.1007/JHEP07(2011)110
https://doi.org/10.1007/JHEP07(2011)110
http://arxiv.org/abs/1712.00178
https://doi.org/10.1007/JHEP09(2018)074
https://git-scm.com/
https://www.docker.com/
https://doi.org/10.1109/MS.2007.5

[28] CMake, https://cmake.org/.

[29] gcc, https://gcc.gnu.org/.

[30] M. Cacciari, G. P. Salam, G. Soyez, FastJet User Manual, Eur.
Phys. J. C72 (2012) 1896. arXiv:1111.6097, doi:10.1140/epjc/

s10052-012-1896-2.

[31] CLHEP, https://proj-clhep.web.cern.ch/proj-clhep/.

[32] A. Buckley, J. Ferrando, S. Lloyd, K. Nordström, B. Page, M. Rüfenacht,
M. Schönherr, G. Watt, LHAPDF6: parton density access in the LHC
precision era, Eur. Phys. J. C75 (2015) 132. arXiv:1412.7420, doi:
10.1140/epjc/s10052-015-3318-8.

[33] LHAPDF, https://lhapdf.hepforge.org/.

[34] boost, https://www.boost.org/.

[35] J. Beder, yaml-cpp, https://github.com/jbeder/yaml-cpp/.

[36] S. Carrazza, R. K. Ellis, G. Zanderighi, QCDLoop: a comprehen-
sive framework for one-loop scalar integrals, Comput. Phys. Commun.
209 (2016) 134–143. arXiv:1605.03181, doi:10.1016/j.cpc.2016.07.
033.

[37] QCDLoop, https://github.com/scarrazza/qcdloop.

[38] J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer,
H. S. Shao, T. Stelzer, P. Torrielli, M. Zaro, The automated computation
of tree-level and next-to-leading order differential cross sections, and their
matching to parton shower simulations, JHEP 07 (2014) 079. arXiv:

1405.0301, doi:10.1007/JHEP07(2014)079.

[39] T. Gleisberg, S. Höche, F. Krauss, M. Schönherr, S. Schumann, F. Siegert,
J. Winter, Event generation with SHERPA 1.1, JHEP 02 (2009) 007.
arXiv:0811.4622, doi:10.1088/1126-6708/2009/02/007.

[40] gzip, https://www.gnu.org/software/gzip/.

[41] YAML, https://yaml.org.

26

https://cmake.org/
https://gcc.gnu.org/
http://arxiv.org/abs/1111.6097
https://doi.org/10.1140/epjc/s10052-012-1896-2
https://doi.org/10.1140/epjc/s10052-012-1896-2
https://proj-clhep.web.cern.ch/proj-clhep/
http://arxiv.org/abs/1412.7420
https://doi.org/10.1140/epjc/s10052-015-3318-8
https://doi.org/10.1140/epjc/s10052-015-3318-8
https://lhapdf.hepforge.org/
https://www.boost.org/
https://github.com/jbeder/yaml-cpp/
http://arxiv.org/abs/1605.03181
https://doi.org/10.1016/j.cpc.2016.07.033
https://doi.org/10.1016/j.cpc.2016.07.033
https://github.com/scarrazza/qcdloop
http://arxiv.org/abs/1405.0301
http://arxiv.org/abs/1405.0301
https://doi.org/10.1007/JHEP07(2014)079
http://arxiv.org/abs/0811.4622
https://doi.org/10.1088/1126-6708/2009/02/007
https://www.gnu.org/software/gzip/
https://yaml.org

[42] M. Cacciari, G. P. Salam, G. Soyez, The anti-kt jet clustering algorithm,
JHEP 04 (2008) 063. arXiv:0802.1189, doi:10.1088/1126-6708/

2008/04/063.

[43] G. K. Savvidy, N. G. Ter-Arutunian Savvidy, ON THE MONTE CARLO
SIMULATION OF PHYSICAL SYSTEMS, J. Comput. Phys. 97 (1991)
566. doi:10.1016/0021-9991(91)90015-D.

[44] K. G. Savvidy, The MIXMAX random number generator, Comput. Phys.
Commun. 196 (2015) 161–165. arXiv:1403.5355, doi:10.1016/j.cpc.
2015.06.003.

[45] M. Lüscher, A Portable high quality random number generator for lattice
field theory simulations, Comput. Phys. Commun. 79 (1994) 100–110.
arXiv:hep-lat/9309020, doi:10.1016/0010-4655(94)90232-1.

27

http://arxiv.org/abs/0802.1189
https://doi.org/10.1088/1126-6708/2008/04/063
https://doi.org/10.1088/1126-6708/2008/04/063
https://doi.org/10.1016/0021-9991(91)90015-D
http://arxiv.org/abs/1403.5355
https://doi.org/10.1016/j.cpc.2015.06.003
https://doi.org/10.1016/j.cpc.2015.06.003
http://arxiv.org/abs/hep-lat/9309020
https://doi.org/10.1016/0010-4655(94)90232-1

	1 Introduction
	2 Installation
	2.1 Download
	2.2 Prerequisites
	2.3 Compilation
	2.4 Testing

	3 Running HEJ 2
	3.1 Quick start
	3.2 Settings

	4 The HEJ fixed order generator
	4.1 Installation
	4.2 Running the fixed-order generator
	4.3 Settings

	5 Writing custom analyses
	6 Custom scales
	6.1 Writing the library
	6.2 Importing the scale into HEJ 2

	7 Using HEJ 2 as a library
	8 Summary

