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Every end of an infinite graph G defines a tangle of infinite order in G.
These tangles indicate a highly cohesive substructure in the graph if and only
if they are closed in some natural topology.

We characterize, for every finite k, the ends w whose induced tangles of
order k are closed. They are precisely the tangles 7 for which there is a set of
k vertices that decides 7 by majority vote. Such a set exists if and only if the
vertex degree plus the number of dominating vertices of w is at least k.

1 Introduction

Tangles were introduced by Robertson and Seymour in [6] and have since become one
of the central objects of study in the field of graph minor theory. So far most of the
theory of tangles deals with tangles in finite graphs. In [1], it was shown how the set
O of tangles of infinite order of an arbitrary infinite graph can be used to compactify
it, much in the same way as the set {2 of ends of a connected locally finite graph can
be used to compactify it. Indeed, if a graph G is connected and locally finite, these
compactifications |G|g and |G|, of G coincide. This is because every end w of an infinite
graph G induces a tangle 7 = 7, of order Ry in G, and for locally finite connected G the
map w — T, is a bijection between the set 2 of ends of G and the set O of its Ny-tangles.
(Graphs that are not locally finite have Ny-tangles that are not induced by an end.)

In [1], a natural topology on the set § = gNo(G) of separations of finite order of G was
defined. A tangle 7 induced by an end of GG is a closed set in this topology if and only if
7 is defined by an Rg-block in G, that is, if there is an Ng-block K in G with K C B for
all separations (A, B) in 7.

Our research expands on this latter result. Every end w of a graph induces not only a
tangle of infinite order in G, but for each k € N the end w induces a k-tangle in G. The
set S, of all separations (A, B) of G with |AN B| < k is a closed set in S, and thus if the
tangle 7 induced by w in G is a closed set in S , the k-tangle 7N S, induced by w will be
closed as well. However, it is possible that a tangle 7 in G of infinite order fails to be
closed in S , while its restrictions 7 N 5‘; to S, are closed for some, or even all, k € N. In
this paper we characterize the ends of G by the behaviour of their tangles, as follows:



We show that, for an end w and its induced tangle 7, the restriction 7 N gk to 5,; is a
closed set in S if and only if

deg(w) + dom(w) > k,

where deg(w) and dom(w) denote the vertex degree and number of vertices dominating w,
respectively.

We further show that 7 is closed in S if and only if w is dominated by infinitely many
vertices.

A question raised in [3] asks whether for a k-tangle 7 in a finite graph G one can always
find a set X of vertices which decides 7 by majority vote, in the sense that (A, B) € 7 if
and only if |[AN X| < |[BN X]|, for all (A, B) € 5,. This problem is still open in general,
although some process has been made recently ([5]). We establish an analogue in the
infinite setting: we show that for an end w of G and its induced k-tangle 7N S, in G, the
existence of a finite set X which decides 7 N ?k in the above sense is equivalent to 7 N 5’,;
being a closed set in S,

This paper is organized as follows: Section 2 contains the basic definitions and some
notation. Following that, in Section 3, we recall the core concepts and results from [1]
that are relevant to our studies, including the topology defined on S. Finally, in Section 4,
we prove our main results Theorem 4.4 and Theorem 4.5. The first of these characterises
the ends of a graph by the behaviour of their tangles, and the second shows that 7N S,
being a closed set in S for a k-tangle 7 induced by some end w of G is equivalent to both
deg(w) 4+ dom(w) > k and to 7 N S, being decided by some finite set of vertices.

2 Separations, tangles, and their topology

Throughout this paper G = (V, E) will be a fixed infinite graph. For any graph-theoretical
notation not explained here we refer the reader to [2].

A separation of G is a set {A, B} with AU B = V such that G contains no edge
between A~ B and B\ A. We call such a set {A, B} an unoriented separation with
the two orientations (A, B) and (B, A). Informally we think of the oriented separation
(A, B) as pointing towards B and pointing away from A. The separator of a separation
{A, B} is the set AN B.

The order of a separation (A, B) or {A, B} is the size |A N B of its separator. For a
cardinal k we write S, = Sk(G) for the set of all unoriented separations of G of order < k.
If S is a set of unoriented separations we write S for the corresponding set of oriented
separations, that is, the set of all separations (A, B) with {4, B} € S. Consequently we
write S, for the set of all separations (A, B) of G with |[A N B| < k.

If S is a set of unoriented separations of G, an orientation of S is a set O C S such
that O contains precisely one of (A, B) or (B, A) for every {A, B} € S. A tangle of S
in G is an orientation 7 of S such that there are no (Aj, By), (A2, B2), (As, Bs) € T for
which G[Al] U G[AQ] U G[Ag] =G.

Properties of sets of separations of finite graphs, including their tangles, often generalize
to sets of separations of infinite graphs but not always. Those sets of separations to



which these properties tend to generalize can be identified, however: they are the sets of
separations that are closed in a certain natural topology [4]. Let us define this topology
next. It is analogous to the topology of a profinite abstract separation system defined
in [4].!

From here on we denote by S = Sy,(G) the set of all (unoriented) separations of G of
finite order. Thus § = g}tO(G) is the set of all separations (A, B) of G with AN B finite.

We define our topology on S by giving it the following basic open sets. Pick a finite
set Z C V and an oriented separation (Az, Bz) of G[Z]. Then declare as open the set
O(Az,By) of all (A, B) € § such that ANZ = Ay and BN Z = By. We shall say that
these (A, B) induce (Az, Bz) on Z, writing (Az, Bz) =: (A, B) | Z, and that (A, B) and
(A, B") agree on Z if (A,B)|Z =(A",B')|Z.

It is easy to see that the sets O(Az, Bz) do indeed form the basis of a topology on S,
Indeed, (A, B) € § induces (A;, By) on Z; and (As, By) on Zy if and only if it induces
on Z = Z1 U Zy some separation (Az, Bz) which in turn induces (4;, B;) on Z; for both i.
Hence O(A1, B1) N O(Aa, By) is the union of all these O(Az, Byz).

As we shall see, the intuitive property of tangles in finite graphs that they describe, if
indirectly, some highly cohesive region of that graph — however ‘fuzzy’ this may be in
terms of concrete vertices and edges — will extend precisely to those tangles of .S that are
closed in S

3 End tangles of S

We think of an oriented separation (A, B) € S as pointing towards B, or being oriented
towards B. In the same spirit, given an end w of G, we say that (A, B) points towards w,
and that w lives in B, if some (equivalently: every) ray of w has a tail in B. Furthermore,
if (A, B) points to an end w, then (B, A) points away from w.

Clearly, for every end of G and every {A, B} € S, precisely one orientation of {A, B}
points towards that end. In this way, every end w of G defines an orientation of S by
orienting each separation in S towards w:

T =1,:={(A,B) €5 | every ray of w has a tail in B}

It is reasy to see ([1]) that this is a tangle in G. We call it the end tangle induced on S
by the end w.

Note that every end tangle contains all separations of the form (A, V) for finite A C V,
and thus no separation of the form (V, B). Furthermore, any two ends induce different
end tangles. Our aim in this section is to recall from [1] some properties of the end-tangles
of S that we shall later extend to its subsets Si. For the convenience of the reader, and
also in order to correct an inessential but confusing error in [1], we repeat some of the
material from [1] here to make our presentation self-contained.

Let us first see an example of an end tangle that is not closed in S.

!Even though S itself is not usually profinite in the sense of [4], the topology we define on S is the
subspace topology of S as a subspace of the (profinite) system of all oriented separations of G,
equipped with the inverse limit topology from [4].



Example 3.1. If G is a single ray vovy ... with end w, say, then T = 7, is not closed

Indeed, 7 contains (, V'), and hence does not contain (V,()). But for every fi-
nite Z C V the restriction (Z,0) of (V,0) to Z is also induced by the separation
({wvo, ..., vn},{vn,Unt1,...}) € T for every n large enough that Z C {uvp,...,vp—1}. So
(V,0) € § ~ 7 has no open neighbourhood in § ~ 7. O

Here is an example of an end tangle that is closed in 5. Unlike our previous example,
it describes a highly cohesive part of G.

Example 3.2. If K CV spans an infinite complete graph in G, then
r={(A,B)eS|KCB} (1)

is a closed set in S .
We omit the easy proof. But note that 7 is indeed an end tangle: it is induced by the
unique end of G which contains all the rays in K.

Perhaps surprisingly, it is not hard to characterize the end tangles that are closed.
They are all essentially like Example 3.2: we just have to generalize the infinite complete
subgraph used appropriately. Of the two obvious generalizations, infinite complete
minors [8] or subdivisions of infinite complete graphs [7], the latter turns out to be the
right one.

Let k be any cardinal. A set of at least k vertices of G is (< k)-inseparable if no twoof
them can be separated in G by fewer than k vertices. A maximal (< k)-inseparable set
of vertices is a k-block. For example, the branch vertices of a T K, are (< k)-inseparable.
Conversely:

Lemma 3.3. When « is infinite, every (< k)-inseparable set of vertices in G contains
the branch vertices of some TK,, C G.

Proof. Let K C V be (< k)-inseparable. Viewing k as an ordinal we can find, inductively
for all @ < r, distinct vertices v, € K and internally disjoint v,-vg paths in G for all
B < « that also have no inner vertices among those vg or on any of the paths chosen
earlier; this is because |K| > k, and no two vertices of K can be separated in G by the
< K vertices used up to that time. O

The original statement of Lemma 3.3 in [1, Lemma 5.4] asserted that for infinite x a set
K CV is a k-block in G if and only if it is the set of branch vertices of some TK, C G.
It turns out that both directions of that assertion were false: the set of branch vertices of
a TK, C G is certainly (< k)-inseparable, but might not be maximal with this property
and hence not a k-block. Conversely, if K is a k-block, there might not be a TK, C G
whose set of branch vertices is precisely K: if |K| > k this is certainly not possible, but
even if || = k one might not be able to find a TK,; in G whose branch vertices are all
of K. If for instance the graph G is a clique on k vertices that is missing exactly one
edge, then K = V(G) is a k-block in G but not the set of branch vertices of a TK, C G.

For our main result of this section we need one more observation:



Lemma 3.4. If 7 is an end tangle of G and (A, B), (C,D) € 7 then (AUC, BND) € 7.

Proof. Observe first that (AU C', BN D) is a separation of G with finite order and thus
lies in 5. Moreover, if a ray of G has a tail in B and a tail in D, then that ray also has a
tail in BN D, from which it follows that (AU C', BN D) € 7, as claimed. O

We can now prove our main result of this section. Let us say that a set K C V defines
an end tangle 7 if 7 satisfies (1).

Theorem 3.5 ([1]). Let G be any graph. An end tangle of G is closed in S if and only
if it is defined by an A-block.

Proof. Suppose first that 7 is an end tangle that is defined by an A-block K. To show
that 7 is closed, we have to find for every (A, B) € S 7 a finite set Z C V such that no
(A,B) e S that agrees with (A,B) on Z liesin 7. As (A, B) ¢ 7, we have K C A; pick
z € K~ B. Then every (A, B') € § that agrees with (4, B) on Z := {z} also also lies
in S\ 7, since z € A~ B’ and this implies K ¢ B'.

Conversely, consider any end tangle 7 and let

K::n{B|(A,B) €T}

No two vertices in K can be separated by in G by a finite-order separation: one orientation
(A, B) of this separation would be in 7, which would contradict the definition of K since
AN B also meets K. If K is infinite, it will clearly be maximal with this property, and
hence be an A-block. This A-block K will define 7: by definition of K we have K C B
for ever (A, B) € 7, while also every (4, B) € § with K C B must be in 7: otherwise
(B,A) € 7 and hence K C A by definition of K, but K € AN B because this is finite.
Hence 7 will be defined by an A-block, as desired for the forward implication.?

It thus suffices to show that if K is finite then 7 is not closed in S , which we shall do
next.

Assume that K is finite. We have to find some (A, B) € § ~ 7 that is a limit point
of 7, i.e., which agrees on every finite Z C V with some (A, B’) € 7. We choose
(A, B) := (V, K), which lies in § ~ 7 since (K, V) € .

To complete our proof as outlined, let any finite set Z C V be given. For every
z € Z N K choose (A,,B,) € 7 with z € A, \ B,: this exists, because z ¢ K. As
(K,V) € 7, by Lemma 3.4 we have (A’, B') € 7 for

A=Ku |J 4. and B':=Vn () B..
z€Z~\K z€Z~\K

As desired, (A",B') | Z = (A,B) | Z (which is (Z,Z N K), since (4,B) = (V,K)):
every z € Z ~ K lies in some A, and outside that B., so z € A’ ~ B’, while every
z € ZNK lies in K C A" and also, by definition of K, in every B, (and hence in B’),
since (A,, B,) € T. O

2Whether or not 7 is closed in 3 is immaterial; we just did not use this assumption.



We conclude the section with the remark that an end tangle 7 of an infinite graph G
is defined by an A-block if and only if it is defined by some set X C V: for if 7 is defined
by some X C V, then X must be infinite, as otherwise {X,V} € S would witness that
X does not define 7. But if X is infinite then so is K := (\{B | (4,B) € 7} 2 X, and
we can follow the proof of Theorem 3.5 to show that K is an .A-block defining 7.

4 End tangles in S;

For k € N we write S}, for the subset of S containing all separations of G of order < k. In
this section we shall extend Theorem 3.5 from the previous section to these Sy, where we
will also be able to prove a stronger and wider statement which will allow us to classify
ends by the behaviour of their end tangles — specifically, by the set of those k € N for
which their end tangle is closed in S;.

For every k € N the set S, is a closed set in S. Given an end w of G with end tangle
T = T,, the tangle induced by w in Sk is 7N S,. We say that w induces a closed tangle in
Sy if TN ?k is a closed set in g;, where the latter is equipped with the subspace topology
of 5.

We seek to classify and characterize ends by the set of k for which their induced tangles
are closed in Sy, similarly to Theorem 3.5. For [ < k the set §, is closed in §k,, and hence
any end inducing a closed tangle in Sy also induces a closed tangle in S;. Therefore, the
ends of GG all fall into one of the following three categories:

(i) Ends inducing a closed tangle in S;

(ii) ends whose induced tangle in S is not closed in S, but whose induced tangle in Sy
is closed in S, for every k € N;

(iii) ends whose induced tangle in Sy, is not closed in S, for some k € N.

The ends belonging to the first category are characterized in Theorem 3.5: they are
those ends whose tangle in 5;0 is defined by an A-block. In the remainder of this section
we shall characterize the ends which fall into the latter two categories. Furthermore,
for an end w belonging to the third category, there exists a least k € N for which the
tangle induced by w in S is not closed in S,. We shall determine this k and show that it
depends just on the vertex degree and number of dominating vertices of w.

Let us see examples of ends belonging to the third and second category, respectively:

Example 4.1. Let G be as in Example 3.1, that is, a single ray vguvy ... with end w.
The same argument as in Example 3.1 shows that 7 N .5, is not closed in S, for k > 2.
However, w does induce a closed tangle in S;: the set 7N S, = {(0,V)} is closed in S,

Example 4.2. Let GG be the infinite grid, w the unique end of G and 7 the tangle induced
by win S = S(G). As G is locally finite it does not contain an A-block. Therefore 7
cannot be defined by an A-block and is thus not closed in s by Theorem 3.5. However,
for every k € N, it is easy to see that Tﬂg]; is closed in 5’;: indeed, for fixed k € N, the size



of A is bounded in terms of k for every (A, B) € 7N S,. Thus, for every (4, B') € 5, \ T,
any Z C V(G) with |Z N A’| sufficiently large witnesses that (A’, B’) does not lie in the
closure of 7: if Z is large enough that |Z N A’| > |A| for every (A, B) € 7N S, then no
(A, B) € 7N S, will agree with (A, B') on Z.

Example 4.2 shows that the end tangle 7 of the infinite grid is not defined by aset X C V'
in the sense of (1). Moreover, even for any fixed k € N5, we cannot find a set X CV
with X C B for all (A, B) € 7N S,: for every € X the separation ({z} UN(z), V ~{z})
lies in 7N S, Thus, even the tangles that 7 induces in S, are not defined by any subset
of V. However, they come reasonably close to it: for X = V and any (A, B) € 7, the
majority of X lies in B, that is, we have |AN X| < |BN X]|. In fact, for any fixed k € N,
any finite set X C V that is at least twice as large as max{|A| | (4, B) € 7N S,} has the
property that |[AN X| < |BN X]| for every (A,B) € 7N S,.. Therefore, even though no
7N S, is defined by a X C V, we can for each k € N find a (finite) X C V which ‘defines’
NS, by simple majority.

To make the above observation formal, for an end tangle 7 of G, let us call a set X C V
a decider set for T (resp., for 7N S,) if we have |[AN X| < |BN X| for every (A, B) € T
(resp., (A,B) € TN g,ﬂ) Thus, if we have a decider set for an end tangle 7, given a
separation (4, B) € §, the decider set tells us which of (A, B) and (B, A) lies in 7 by a
simple majority vote. By Theorem 3.5, every end tangle that is closed in S has a decider
set, as the A-block defining it is such a decider set. In analogy with this, we shall show in
the remainder of this section that for an end tangle 7 its induced tangle 7 N S, is closed
in S, if and only if 7N S, has a finite decider set. Such a finite decider set can be thought
of as a local encoding of the tangle, or a local witness to the tangle being closed in S,

In contrast, it is easy to see that every end tangle has an infinite decider set:

Proposition 4.3. For any end w of G the end tangle T induced by w has an infinite
decider set.

Proof. For any ray R € w its vertex set V(R) is a decider set for 7. O]

As no end tangle of S can have a finite decider set the existence of decider sets for
end tangles is thus only interesting for finite decider sets of the tangle’s restrictions to
some S,.

We shall complement this local witness of a given end tangle being closed with a more
global type of witness. For this we need to introduce some notation.

The (vertex) degree deg(w) of an end w of G is the largest size of a family of pairwise
disjoint w-rays®. A vertex v € V' dominates and end w if it sends infinitely many disjoint
paths to some (equivalently: to all) ray in w. We write dom(w) for the number of vertices
of G which dominate w. An end w is undominated if dom(w) = 0; it is finitely dominated
if finitely many (including zero) vertices of G dominate w; and, finally, w is infinitely
dominated if dom(w) = co. We will show that the category that an end w belongs to
depends just on these parameters deg(w) and dom(w). Concretely, we will show the
following:

3Here our notation deviates from that in [2], where d(w) is used for the degree of w.



Theorem 4.4. Let T the end tangle induced by an end w of G. Then the following
statements hold:

(i) 7 is closed in S if and only if dom(w) = cc.

(ii) 7 is not closed in S but 7N S, is closed in S, for every k € N if and only if
deg(w) = 0o and dom(w) < oo.

(iii) NS, is not closed in S, for some k € N if and only if deg(w) + dom(w) < co.

Theorem 4.4 will be a consequence of Theorem 3.5 and the following theorem, which
characterizes for which k € N a given end tangle is closed in S, and makes the connection
to finite decider sets:

Theorem 4.5. Let 7 be the end tangle induced by an end w of G and let k € N. Then
the following are equivalent:

(i) 7N S, is closed in S,;
(i

) deg(w) + dom(w) > k;
(iii) 7N S, has a finite decider set;
)

(iv) 7N S, has a decider set of size exactly k.
Let us first prove Theorem 4.4 from Theorem 3.5 and Theorem 4.5:

Proof of Theorem 4.4. We will show (i) using Theorem 3.5 and (ii) with Theorem 4.5.
The third statement is then an immediate consequence of the first two and the fact that
an end tangle which is closed in S is also closed in S,.

To see that (i) holds, let us first suppose that 7 is closed in S. Then, by Theorem 3.5,
7 is defined by an A-block K C V. It is easy to see that every vertex in K dominates w,
hence dom(w) = 0o as K is infinite.

For the converse, suppose that w is infinitely dominated, and let us show that 7 is closed
in 5. For every separation (A, B) € T every vertex dominating w must lie in B. Therefore
K :=({B | (A, B) € 7} is infinite and thus, as seen in the proof of Theorem 3.5, an
A-block defining 7, which is hence closed in S.

Let us now show (ii). By (i), 7 is not closed in § if and only if dom(w) < oo.
On the other hand, by Theorem 4.5, 7 N S, is closed in S, for all k if and only if
deg(w) + dom(w) > k for all k£ € N, that is, if at least one summand is infinite. Thus (ii)
holds.

Claim (iii) now follows either from claim (i) and (ii), or directly from Theorem 4.5. [

We will conclude this section by proving Theorem 4.5. For this we shall need two
lemmas. The first lemma can be seen as an analogue of Menger’s Theorem between a
vertex set and an end. Given a set X C V and an end w, we say that F' C V separates
X from w if every w-ray which meets X also meets F'.



Lemma 4.6. Let w be an undominated end of G and X CV a finite set. The largest
size of a family of disjoint w-rays which start in X is equal to the smallest size of a set
T CV separating X from w.

Proof. Let T be a set separating X from w of minimal size. Clearly, a family of disjoint
w-rays which all start in X cannot be larger than T, as every ray in that family must
meet T'. So let us show that we can find a family of |T'| disjoint w-rays starting in X.

Observe that, as w is undominated, for every vertex v € V we can find a finite set
T, CV ~ {v} which separates v from w. Thus, for every finite set Y C V' we can find a
finite set in V' 'Y separating Y from w: for instance, the set {7, \Y | v € Y'}.

Pick a sequence of finite sets T;,, C V inductively by setting Ty := T and picking as T},
a set of minimal size with the property that T,,_1 N'7T;,, = ) and that T,, separates T;,_1
from w; these sets exist by the above observation. Let C, be the component of G — T,
that contains w. Clearly T,, C C),_1.

We claim that C' := (,cy Cr = 0. To see this, consider any v € C' and a shortest v-X
path in G. This path must pass through T;, for every n € N, which is impossible since
the separators T,, are pairwise disjoint. Therefore C' must be empty.

By the minimality of each T;,, the sets T;, are of non-decreasing size, and furthermore
Menger’s Theorem yields a family of |T,,| many disjoint paths between T,, and T, for
each n € N, as well as |Tp| many disjoint paths between X and Tj. By concatenating
these paths we obtain a family of |Ty| = |T'| many rays starting in X. To finish the proof
we just need to show that these rays belong to w. To see this, let w’ be another end of G,
and T” a finite set separating w and w’. As C = () we have C,, N T" = () for sufficiently
large n, which shows that the rays constructed do not belong to w’ and hence concludes
the proof. O

An immediate consequence of Lemma 4.6 is that, for an undominated end w, every
finite set X C V can be separated from w by at most deg(w) many vertices. In fact, we
can state a slightly more general corollary:

Corollary 4.7. Let w be a finitely dominated end of G and X CV a finite set. Then X
can be separated from w by some T'C V with |T| < deg(w) + dom(w).

Proof. Let D be the set of vertices dominating w and consider the graph G’ := G — D
and the set X' := X ~\ D. By Lemma 4.6 there is a set 7" C V(G’) of size at most deg(w)
separating X’ from w in G’. Set T :=T’"U D. Then T separates X from w in G and has
size |T| = |T"| + |D| < deg(w) + dom(w). O

The second lemma we shall need for our proof of Theorem 4.5 roughly states that, for
an end of high degree, we can find a large family of disjoint w-rays whose set of starting
vertices is highly connected in G, even after removing the tails of these rays:

Lemma 4.8. Let w be an end of G and k < deg(w) + dom(w). Then there are a set
X CV of k vertices and a set R of disjoint w-rays with the following properties: every
verter in X is either the start-vertex of a ray in R, or dominates w and does not lie on
any R € R, and furthermore for any two sets A, B C X there are min(|A|,|B]|) many
disjoint A-B-paths in G whose internal vertices meet no ray in R and no vertex of X.



Proof. Pick a set D of vertices dominating w and a set R of disjoint w-rays not meeting
D such that |D| + |R| = k; we shall find suitable tails of the rays in R such that their
starting vertices together with D are the desired set X.

Using the fact that the vertices in D dominate w and that the rays in R belong to w,
we can pick for each pair x1, zs of elements of D UR an x1—xo-path in G in such a way
that these paths are pairwise disjoint with the exception of possibly having a common
end-vertex in D. Let P be the set of these paths. Now for each ray in R pick a tail of
that ray which avoids all the paths in P. Let R’ be the set of these tails and X the union
of their starting vertices and D. We claim that X and R’ are as desired.

To see this, let us show that for any sets A, B C X we can find min(|4|, |B|) many
disjoint A—B-paths in G whose internal vertices avoid D as well as V(R') for every
R € R'. Clearly it suffices to show this for disjoint sets A, B of equal size. So let
A, B C X be two disjoint sets with n := |A| = |B| and let R4 p be the set of all rays
in R that contain a vertex from A or B. For each pair (a,b) € A x B there is a unique
path P € P such that each of its end-vertices either is a or b (if @ € D or b € D) or lies
on a ray in R4 p which contains a or b; let P,; be the a—b-path obtained from P by
extending it, for each of its end-vertices that is not either a or b, along the corresponding
ray in R up to a or b. Let P4 g be the set of all these paths P, ;. Note that the internal
vertices of each path P, € P4 p meet none of the rays in R’ or vertices in X.

We claim that A and B cannot be separated by fewer than n = |A| vertices in

G = U P.y;

Pav€PA,B

the claim will then follow from Menger’s Theorem. So suppose that some set T' C V(G’)
of size less than n is given. Every vertex from 7' can lie on at most n + 1 paths from
Pa,p: for any v € T, if v does not lie in D or on some R € R4 g, then v can meet at
most one path from P4 p as the paths in P4 p are pairwise internally disjoint; if v is
a vertex in D then v meets at most the n paths in P4 p which have v as one of their
end-vertices; and finally, if v lies on a ray R € R4 g, then v can meet all of the n paths
in P4 g which have an end-vertex on R, and additionally v can be the internal vertex of
up to one other path in P4 p that does not end on R.
Thus, as |T| < n — 1, the set T can meet at most

IT|(n+1)<(n—1(n+1)=n>-1

of the paths in P4 p. Since P4 p contains an a—b-path for every pair (a,b) in A x B,
there are |A x B| = n? paths in Pa.p, which proves that T' cannot separate A and B
in G'.

We can thus apply Menger’s Theorem to obtain n disjoint A—B-paths in G’, which are
the desired disjoint paths in G whose internal vertices avoid the rays in R’ and vertices
in X: the only vertices that are contained both in V(G’) as well as in either X or a ray
from R’ are vertices from A or B, which cannot be internal vertices of the n = |A| = |B)
disjoint A—B-paths. O
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We would like to thank Christian Elbracht for pointing out the counting argument
used in the final part of the proof of Lemma 4.8.
We are now ready to prove Theorem 4.5:

Theorem 4.5. Let 7 be the end tangle induced by an end w of G and let k € N. Then
the following are equivalent:

(i) 7N S, is closed in S;;
(ii) deg(w)+ dom(w) > k;
(iii) 7N S, has a finite decider set;
(iv) 7N S, has a decider set of size exactly k.

Proof. We will show (i) = (ii) = (iv) = (iii) = (i).

To see that (i) = (ii), let us first suppose that deg(w) + dom(w) < k and show that
7N 8, is not closed in S,. Let D be the set of dominating vertices of w. As |D| =
dom(w) < k the separation (V, D) lies in S,. By definition of 7 we have (D, V) € 7 and
(V,D) ¢ 7. Thus it suffices to show that (V, D) lies in the closure of 7N S}, in S,. This
will be the case if for every finite set X C V there is a separation (A4, B) € 7N S, with
(A,B)1 X = (V,D)| X.

So let X be a finite subset of V. By Corollary 4.7 some set T of size at most
deg(w) + dom(w) separates X from w. Let C be the component of G containing w. We
define the separation (A, B) by setting A:=V ~C and B:=T UC. Then (A, B) is a
separation of G with

|(A,B)| = |T| < deg(w) + dom(w) < k,

so (A4, B) € §,. In fact (A, B) lies in 7N S, as w lives in B. Furthermore we have X C A
and D C B since no vertex dominating w can be separated from w by T. Therefore
(A,B)| X = (X,XND)=(V,D)| X, showing that (V, D) lies in the closure of 7 N S,
in §;

Let us now show that (ii) = (iv). So let us assume that deg(w) + dom(w) > k. Then
by Lemma 4.8 we find a set X C V of size k and a family R of w-rays such that every
vertex of X either dominates w or is the start-vertex of a ray in R, and such that for
any A, B C X we can find min(|A|, |B|) many disjoint A-B-paths in G whose internal
vertices meet neither X nor any ray in R.

We claim that X is the desired decider set for 7 N S),. To see this, let (A, B) be
any separation in 7 N S,; we need to show that |[ANX| < [BNX|. Let us write
Xap=(A~NB)NX and Xp. 4 :=(BNA)NX aswell as Xynp:=(ANB)NX. It
then suffices to prove | X 4. g| < |Xp-4l.

So suppose to the contrary that [ X 4. g| > | Xp.4|. Note first that no vertex in X4 p
dominates w as witnessed by the finite-order separation (A, B) € T C Si. Therefore, for
every vertex in X 4. g, we have a ray in R starting at that vertex. Each of those disjoint
rays must pass through the separator A N B, and none of them hits X gsnp. Furthermore
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by Lemma 4.8 there are | X p._4| many disjoint X 4. 5—X p._4-paths whose internal vertices
avoid R and X. These paths, too, must pass the separator AN B without meeting X snp
or any of the rays above. Thus we have

|AN Bl > |Xang| + [ XaB| + Xl = |X]| =k,

a contradiction since (A, B) € S and hence |AN B| < k. Therefore we must have
| XaB| < |XB-al|, which immediately implies |[AN X| < |BN X].

Finally, let us show that (i) = (i). So let X C V(@) be a finite decider set for 7N S}.
We need to show that no (A, B) € Sk ~\ 7 lies in the closure of 7N S,. For this let
(A,B) € Sk~ 7 be given; then X witnesses that (A, B) does not lie in the closure
of 7. To see this, let any (C,D) € 7 be given. As X is a decider set for 7 we have
|CNX| < |DnX|, and since (A, B) ¢ 7 we have |[AN X| > |BN X|. Therefore (A, B)
and (C, D) do not agree on X, which thus witnesses that (A, B) does not lie in the
closure of 7N S, in Sk O

Note that in our proof above that (iii) implies (i) we did not make use of the assumption
that the tangle 7 was induced by an end of G: indeed, every orientation of Sy that has a
finite decider set is closed in §k

For an end tangle 7 that is closed in S we can say slightly more about its decider sets
in S,: for every k € N the restriction 7N S, has a decider set of size exactly k which is a
(< k)-inseparable set. Finding these (< k)-inseparable decider sets is straightforward:
such an end tangle 7 is defined by an A-block K by Theorem 3.5, and every subset X C K
of size k is a (< k)-inseparable decider set for 7N S,. However, having a (< k)-inseparable
decider set for N S, for all k € N is not a characterizing property for the closed end
tangles of G:

Example 4.9. For n € N let K™ be the complete graph on n vertices. Let G be the
graph obtained from a ray R = vivs... by replacing each vertex v, with the complete
graph K”. Then G has a unique end w; let 7 be the end tangle induced by w. Since w is
undominated 7 is not closed in § = §(G) by Theorem 4.4. However, for every k € N, the
tangle 7 N S, has a (< k)-inseparable decider set of size k: the clique K* which replaced
the vertex vy of R is such a (< k)-inseparable decider set.
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