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Abstract

We express the Hochschild complex of a finite tensor category using a specific projective resolution of the
canonical coend of the finite tensor category. This leads to our main result that the Hochschild complex of
a not necessarily semisimple modular category carries a canonical homotopy coherent projective action of
the mapping class group SL(2,Z) of the torus. This supports the idea to think of the Hochschild complex
of a modular category as a derived conformal block for the torus. In the semisimple case, the (underived)
conformal block is known to carry a commutative multiplication. For the derived conformal block (i.e. in
the non-semisimple case), we generalize this to an E2-structure. Our results allow us obtain a notion of
Hochschild chains for braided crossed monoidal categories in the sense of Turaev. We prove that these admit
an action of an operad built from Hurwitz spaces.

Contents

1 Introduction and outlook 2

2 Derived coends and Hochschild homology 4
2.1 Yoneda Lemma and Fubini Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Agreement principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 The Hochschild complex of a finite tensor category 8
3.1 Hochschild complex of Drinfeld doubles in finite characteristic . . . . . . . . . . . . . . . . . . . . 9
3.2 Traces, class functions and the Lyubashenko coend . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 Homotopy coherent projective mapping class group action 13
4.1 Homotopy coherent projective actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2 Homotopy coherent projective actions from central extensions of rank one . . . . . . . . . . . . . 15
4.3 Homotopy coherent projective SL(2,Z)-action on the Hochschild complex of a modular category 18

5 The derived Verlinde algebra 20
5.1 The loop operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.2 The multiplicative structure on the derived Verlinde algebra . . . . . . . . . . . . . . . . . . . . . 23
5.3 The equivariant case: Differential graded little bundles algebras . . . . . . . . . . . . . . . . . . . 25

1

ar
X

iv
:1

91
0.

00
55

9v
1 

 [
m

at
h.

Q
A

] 
 1

 O
ct

 2
01

9



1 Introduction and outlook

In this article, we investigate the Hochschild complex for a class of linear categories relevant in the representation
theory of finite-dimensional Hopf algebras and for the construction of topological field theories, namely finite
tensor categories as introduced in [EO04]. These are linear Abelian monoidal categories with an exact tensor
product which satisfy finiteness conditions and are rigid. They are not assumed to be semisimple. By the
Hochschild complex of a finite tensor category C (or more generally any linear category) we understand the
differential graded vector space given by the derived coend∫ X∈Proj C

L
C(X,X) (1.1)

over the endomorphism spaces C(X,X) of projective objects X (depending on the terminology one prefers,
one might also call this the Hochschild complex of the category Proj C ⊂ C of projective objects). Derived
coends and Hochschild homology are recalled in Section 2. If C is written as finite-dimensional modules over a
finite-dimensional algebra A, then (1.1) is equivalent to the Hochschild complex of A [MCar94, Kel99].

Let us give a summary of our main results before stating them in detail:

• We construct a canonical homotopy coherent projective action of the mapping class group SL(2,Z) of the
torus on the Hochschild complex of a (not necessarily semisimple) modular category (Theorem 4.7), a
special type of finite tensor category intimately related to the theory of modular functors.

• Moreover, we exhibit an E2-commutative multiplication on this complex (Theorem 5.5).

From the perspective of the theory of modular functors [BK01], these two results suggest to think of the
Hochschild complex of a modular category as a derived conformal block.

The proof of these results relies on a detailed investigation of the Hochschild complex of a finite tensor

category C: As a key tool, we introduce in Section 3.2 a specific projective resolution
∫X∈Proj C

fL X ⊗X∨ of the

canonical coend F =
∫X∈C

X ⊗X∨ of a finite tensor category from [Lyu95a, Lyu95b, KL01] and prove that we
may express the Hochschild chains of C up to equivalence by∫ X∈Proj C

L
C(X,X) ' C

(
I,

∫ X∈Proj C

fL
X ⊗X∨

)
, (1.2)

see Corollary 3.7. If C is pivotal, we have such an equivalence also for any projective resolution of F (Theo-
rem 3.9). The proof of the latter fact uses the modified trace on the tensor ideal of projective objects of a
pivotal finite tensor category [GKP18].

The description of the Hochschild complex in terms of a resolution of the canonical coend given in (1.2)
enables us to construct a homotopy coherent projective action of the mapping class group SL(2,Z) of the torus
on the Hochschild complex of a modular category. This extends previous results in this direction: By [SZ12]
there is a projective SL(2,Z)-action on the center of a ribbon factorizable Hopf algebra. Inspired by the fact that
the center is just the zeroth Hochschild cohomology, in [LMSS18] a projective SL(2,Z)-action on the Hochschild
cohomology of a ribbon factorizable Hopf algebra is constructed. In [Shi18] this is phrased in terms of the
representation categories. These actions just exist on the (co)homology. It is a natural question to ask whether
this action can be described in a canonical way as homotopy coherent projective action at the chain level. We
answer this question affirmatively:

Theorem 4.7. The Hochschild complex
∫X∈Proj C
L C(X,X) of a modular category C over an algebraically closed

field carries a canonical homotopy coherent projective action of the mapping class group SL(2,Z) of the torus.

The projectivity of this action arises naturally from the construction. For this reason, we work consistently
with projective actions regardless of whether the action can be made linear by appropriate choices, see also
Remark 4.5.

The proof of Theorem 4.7 first expresses
∫X∈Proj C
L C(X,X) in a slightly different way which is inspired by

a derived version of the factorization axiom for conformal blocks and then uses the projective action of the
braid group B3 on three strands (the mapping class group of the torus with a disk removed) on F given in
[Lyu95a, Lyu95b]. The group B3 is a central extension of SL(2,Z), and we finally prove and use a criterion for
the projective action of B3 to descend to a homotopy coherent projective action of SL(2,Z). This can be seen
as a homotopy coherent version of the strategy used in [LMSS19], see Remark 4.13.

The homotopy coherent projective action of the mapping class group suggests the interpretation of the

complex
∫X∈Proj C
L C(X,X) as a derived conformal block for the torus. As a further result, we establish a

multiplicative structure on
∫X∈Proj C
L C(X,X) which is in line with this topological viewpoint. As a motivation,
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let us consider a semisimple modular category: In this case,
∫X∈Proj C
L C(X,X) is equivalent to the ordinary

coend
∫X∈C C(X,X), and we can construct from C an (anomalous) three-dimensional topological field theory

whose value on the torus T2 is precisely
∫X∈C C(X,X); we refer to the monograph [Tur10-I] for the construction

procedure and to [BDSPV15] for the classification of 3-2-1-dimensional topological field theories by semisimple
modular categories. If we denote by P : S1 t S1 −→ S1 the pair of pants bordism, then we can evaluate the
topological field theory associated to C on the bordism P × S1 : T2 t T2 −→ T2. This yields an associative

multiplication on
∫X∈C C(X,X) which is induced by the tensor product of C. The braiding of C ensures that

the multiplication is commutative. The vector space
∫X∈C C(X,X) with this multiplication is referred to as the

Verlinde algebra of C.
The Reshetikhin-Turaev construction of a three-dimensional topological field theory from C is not available if

C is not semisimple, but the vector space
∫X∈C C(X,X) can be replaced by the derived coend

∫X∈Proj C
L C(X,X),

and we can ask whether the multiplicative structure present in the semisimple case still exists up to coherent
homotopy. We obtain the following result:

Theorem 5.5. For every braided finite tensor category C, the Hochschild complex
∫X∈Proj C
L C(X,X) is natu-

rally a non-unital E2-algebra in differential graded vector spaces. We refer to this E2-algebra as the derived
Verlinde algebra of C and denote it by VC .

In other words,
∫X∈Proj C
L C(X,X) carries a multiplication whose commutativity is controlled by the braid group.

One should note that this E2-structure does not just follow from the functoriality of the derived coend applied
to the E2-structure on C because the differential graded operad obtained from the Hochschild chains of the
fundamental groupoid ΠE2 of E2 is not an E2-operad (Remark 5.2).

The strategies used to construct the derived Verlinde algebra and their relation to conformal and topological
field theory can be used to obtain, for any finite group G, a candidate for Hochschild chains on braided G-
crossed monoidal category C =

⊕
g∈G Cg in the sense of Turaev [Tur10-II], see [Gal17] for a slightly different

definition that we will adopt (Section 5.3). We prove that this equivariant Hochschild complex carries an action
of an operad built from Hurwitz spaces, as we will explain now: We propose that the Hochschild chains of
C =

⊕
g∈G Cg come in fact in a family with each member labeled by a central element z ∈ Z(G). For a

fixed such central element z, the Hochschild chains are G-graded with the component (in field theory language:
sector) for g ∈ G given by the derived coend

VC,zg :=

∫ X∈Proj Cg

L
Cg(z.X,X) . (1.3)

This definition is relatively intransparent from a purely algebraic point of view, but very natural from the per-
spective of (extended) G-equivariant topological field theory and its relation to G-equivariant braided monoidal
categories [Tur10-II, TV12, TV14, SW19]: The definition ensures that (z, g) defines a G-bundle over the torus
making (1.3) the appropriate derived version of the equivariant conformal block associated to the pair (z, g) of
commuting holonomies. This field-theoretic viewpoint suggests that the complexes (1.3) should carry a multi-
plication whose commutativity behaviour is controlled by the homotopy quotient of the braid group action on
the space of G-bundles over a punctured plane, i.e. by Hurwitz spaces. We make this statement precise using
the little bundles operad [MW19], a topological operad built from Hurwitz spaces:

Theorem 5.10. Let G be a group and z ∈ Z(G) an element in its center. Then for any finite braided G-crossed
tensor category, the assignment

g 7−→ VC,zg :=

∫ X∈Proj Cg

L
Cg(z.X,X)

defines a non-unital little bundles algebra in differential graded vector spaces. We refer to (VC,zg )g∈G as the
G-equivariant derived Verlinde algebra of C and the central element z ∈ Z(G).

The results of this paper are inspired by the idea that the Hochschild complex describes the genus one
derived conformal block of a non-semisimple modular category. The construction of a fully-fledged derived
modular functor, including a derived version of the sewing axioms and homotopy coherent projective action of
mapping class group of higher genus surfaces, will be subject of future work. The mapping class group actions
will be the key towards a modular homology for modular categories (Remark 4.14).
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Conventions. Throughout this text, we will work over a field k which is not assumed to have characteristic
zero.

By Chk we denote the symmetric monoidal category of differential graded vector spaces over k (aka chain
complexes over k) equipped with its projective model structure in which weak equivalences (for short: equiva-
lences) are quasi-isomorphisms and fibrations are degree-wise surjections. Whenever we say that two complexes
are canonically equivalent, this will not necessarily mean that there is a canonical map between which is an
equivalence, but more generally a zig-zag of such maps. We will denote equivalences and zig-zags thereof by
the symbol '.

A (small) category enriched over Chk will be called a differential graded category. Unless otherwise stated,
functors between differential graded categories will automatically be assumed to be enriched. Note that Chk is
a differential graded category itself.

For a category C, the sets (or in the enriched setting: space, complex) of morphisms from X ∈ C to Y ∈ C
will be denoted by C(X,Y ).

Acknowledgements. We would like to thank Adrien Brochier, Jürgen Fuchs, David Jordan, André
Henriques, Simon Lentner, Ehud Meir, Svea Nora Mierach, Lukas Müller and Yorck Sommerhäuser for helpful
discussions.

CS and LW are supported by the RTG 1670 “Mathematics inspired by String theory and Quantum Field
Theory”.

2 Derived coends and Hochschild homology

In this preliminary section, we discuss a suitable version of a derived coend that we obtain by slightly modifying
the derived functor tensor product given in [Shu09] and [Rie14, Chapter 9]. We can see the construction also as
the Hochschild-Mitchell chains on a differential graded category [Kel99, CR05] with coefficients in a bimodule.
For the convenience of the reader, the presentation will be self-contained.

For differential graded categories C and D, we denote by C⊗D the differential graded category whose objects
are pairs (X,Y ) ∈ C × D of objects of C and D, which we will also denote as X × Y , and whose morphism
complexes are given by

(C ⊗ D)(X × Y,X ′ × Y ′) := C(X,X ′)⊗D(Y, Y ′) for X,X ′ ∈ C, Y, Y ′ ∈ D .

Definition 2.1. Let C be a differential graded category. For a functor F : Cop ⊗ C −→ Chk (by the above
conventions, we will always assume that F is enriched), we define the (enriched) simplicial bar construction as
the simplicial object in Chk with n-simplices

BnF :=
⊕

X0,...,Xn∈C
C(X1, X0)⊗ · · · ⊗ C(Xn, Xn−1)⊗ F (X0, Xn) .

The face and degeneracy maps are defined similarly to [Rie14, Definition 9.1.1]. The j-th face map composes
morphisms over the j-th object thereby deleting it from the list of objects indexing the summand and the
j-degeneracy maps inserts an identity at the j-th object thereby doubling it in the list of objects indexing the
summand. In more detail, we have:

• The face map ∂0 : BnF −→ Bn−1F is induced by the map

C(X1, X0)⊗ F (X0, Xn) −→ F (X1, Xn)

which is part of the data of F being an enriched functor.

• For 0 < j < n the face map ∂j : BnF −→ Bn−1F arises from the composition map

C(Xj , Xj−1)⊗ C(Xj+1, Xj) −→ C(Xj+1, Xj−1) .

• The face map ∂n : BnF −→ Bn−1F is induced by the map

C(Xn, Xn−1)⊗ F (X0, Xn) −→ F (X0, Xn−1)

which is part of the data of F being an enriched functor.
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• The degeneracy map sj : BnF −→ Bn+1F inserts an identity at Xj using the canonical map k −→ C(X,X)
selecting the identity.

We define the derived coend of F as the realization of B∗F , i.e. by∫ X∈C

L
F (X,X) := |B∗F | =

∫ n∈∆op

N∗(∆
n; k)⊗BnF ,

where N∗(∆
n; k) are the normalized chains on the standard simplex ∆n with coefficients in k (equivalently, we

may see B∗F as a double complex and totalize).

For a differential graded category C, a functor F : Cop ⊗ C −→ Chk will also be referred to as C-bimodule.

The derived coend
∫X∈C
L F (X,X) will also be called the derived trace of F .

The above constructions can be done for more general model categories than chain complexes over a field.
But since we want to develop the techniques with an eye towards the intended applications, we deliberately
reduce the generality. However, for a slight generalization that we need later on see Remark 2.12.

Example 2.2. For any k-algebra A (by this we always mean an associative and unital k-algebra) the category
?//A with one object whose endomorphisms are given by A is a differential graded category, and a functor
(?//A)

op ⊗ (?//A) −→ Chk is a differential graded module M over the enveloping algebra Ae = Aop ⊗ A of
A, i.e. an A-bimodule. Now the derived coend of M over ?//A is just given by the Hochschild chains for the
algebra A with coefficients in the Ae-module M which we denote by CH(A;M).

Remark 2.3. For a differential graded category C and a C-bimodule F : Cop ⊗ C −→ Chk, we obtain a Cop-
bimodule F op : C ⊗ Cop −→ Chk by precomposition of F with the flip map. Then by reading backwards
the families of objects used for the definition of the bar construction of F , we obtain a reversal isomorphism∫X∈Cop
L F op(X,X) ∼=

∫X∈C
L F (X,X).

One key feature of the derived coend is its homotopy invariance:

Proposition 2.4. Let C be a differential graded category. Then an equivalence F
'−−→ G between functors

F,G : Cop ⊗ C −→ Chk induces an equivalence∫ X∈C

L
F (X,X)

'−−→
∫ X∈C

L
G(X,X) .

The homotopy invariance for the homotopy coend is an extremely crucial built-in property (otherwise the
homotopy coend would not deserve its name); it will be used without further mention. The proof of Proposi-
tion 2.4 readily follows from the following Lemma, which we obtain from the fact that every simplicial vector
space is Reedy cofibrant and [Hir03, Theorem 19.8.4 (1)] applied to the framing obtained by normalized chains
on the standard simplices:

Lemma 2.5. Let C be a differential graded category and F : Cop⊗C −→ Chk a functor. Then there is a natural
equivalence ∫ X∈C

L
F (X,X) ' hocolim

n∈∆op
BnF .

2.1 Yoneda Lemma and Fubini Theorem

Next we discuss some important tools which will help us to compute with derived coends. They generalize
to some extent the calculus for ordinary coends [Mac71]. We will often encounter the requirement that both
the differential graded category and the bimodule are concentrated in non-negative degree (or more generally,
bounded below). First, we formulate the Yoneda Lemma:

Proposition 2.6. Let C be a differential graded category and H : C −→ Chk a functor such that both the
morphism spaces of C and the values of H are concentrated in non-negative degree. Then there is a canonical
equivalence ∫ X∈C

L
C(X,−)⊗H(X)

'−−→ H . (2.1)

Moreover, this map is surjective and hence a trivial fibration.
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Proof. For Y ∈ C the maps C(X,Y ) ⊗H(X) −→ H(Y ) provide an augmentation B∗(C(−, Y ) ⊗H) −→ H(Y )
whose realization is a map ∫ X∈C

L
C(X,Y )⊗H(X) −→ H(Y ) (2.2)

which is natural in Y and therefore gives us the map (2.1). This map is clearly surjective.
It remains to show that for fixed Y the map (2.2) is an equivalence: Thanks to the assumptions on C and

H, the derived coend
∫X∈C
L C(X,−) ⊗H(Y ) is the realization of the simplicial object B∗(C(−, Y ) ⊗H) in the

simplicial model category of non-negatively graded chain complexes over k. By [Rie14, Corollary 4.5.2] the
augmentation (2.2) is an equivalence if we can exhibit extra degeneracies for the augmentation, see [GJ09,
Section III.5] for a definition of this notion.

We construct extra degeneracies for the augmentation as follows: For n ≥ 0 the summand of Bn(C(−, Y )⊗H)
belonging to a family (X0, . . . , Xn) of objects in C is given by

C(X1, X0)⊗ · · · ⊗ C(Xn, Xn−1)⊗ C(X0, Y )⊗H(Xn) .

Using the identity of Y and the symmetric braiding on Chk, this summand admits a natural map to

C(X0, Y )⊗ C(X1, X0)⊗ · · · ⊗ C(Xn, Xn−1)⊗ C(Y, Y )⊗H(Xn) ,

i.e. to the summand of Bn+1(C(−, Y )⊗H) belonging to (Y,X0, . . . , Xn). This yields a map sn−1 : Bn(C(−, Y )⊗
H) −→ Bn+1(C(−, Y ) ⊗ H). It is straightforward to verify that this gives us extra degeneracies for the aug-
mentation.

For derived coends, there is a Fubini Theorem making a statement about the ‘order of integration’ for
iterated coends:

Proposition 2.7. Let C and D be differential graded categories and F : (C ⊗ D)
op ⊗ C ⊗D −→ Chk a functor.

Then there is a natural isomorphism∫ X∈C

L

∫ Y ∈D

L
F (X × Y,X × Y ) ∼=

∫ Y ∈D

L

∫ X∈C

L
F (X × Y,X × Y ) .

Proof. Note that from the definitions we obtain∫ X∈C

L

∫ Y ∈D

L
F (X × Y,X × Y )

=

∫ m∈∆op

N∗(∆
m; k)⊗

( ⊕
X0,...,Xm∈C

C(X1, X0)⊗ · · · ⊗ C(Xm, Xm−1)

⊗
∫ n∈∆op

N∗(∆
n; k)⊗

( ⊕
Y0,...,Yn∈D

D(Y1, Y0)⊗ · · · ⊗ D(Yn, Yn−1)⊗ F (X0 × Y0, Xm × Yn)

))
.

Using that tensor products of chain complexes, direct sums and coends commute, we see that this is canonically

isomorphic to
∫ Y ∈D
L

∫X∈C
L F (X × Y,X × Y ).

The above Proposition tells us that the ‘order of integration does not matter’. Therefore, instead of∫X∈C
L

∫ Y ∈D
L or

∫ Y ∈D
L

∫X∈C
L we will just write

∫ X∈C
Y ∈D
L .

2.2 Agreement principle

In the sequel, we will often have to evaluate derived coends over (sub)categories of modules over some algebra.
It is a pertinent question whether such a derived coend can be reduced to a derived coend over the one-object
category associated to that algebra and hence to (ordinary) Hochschild chains (Example 2.2). This leads us to
an Agreement Principle that goes back to [MCar94, Kel99], where it appears in a slightly different form. We
explain the relation after Corollary 2.10.

We refer to a k-linear category as a finite-dimensional algebroid over k if it is equivalent to a k-linear category
with finitely many objects and finite-dimensional morphism spaces. The main example is the one-object category
whose endomorphisms are given by a finite-dimensional k-algebra.

For a finite-dimensional algebroid A over k, we denote by ModkA the k-linear category of all finite-
dimensional A-modules. Here, a finite-dimensional A-module is a k-linear functor from A to finite-dimensional
k-vector spaces. By ProjkA ⊂ ModkA we denote the full k-linear subcategory of finite-dimensional projective
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A-modules. We refer to [Wei94, Section 2.2] for the usual equivalent descriptions of projective modules. Fol-
lowing our general conventions for the notation, we denote by A(−,−), ModkA(−,−) and ProjkA(−,−) the
morphism spaces in these k-linear categories.

There is a canonical embedding ιA : Aop −→ ProjkA sending a ∈ A to A(a,−) along which we can restrict
derived coends over ProjkA. To make a statement about such restricted derived coends, we need the following
Lemma:

Lemma 2.8. For any finite-dimensional algebroid A over k, any functor F : (ProjkA)
op⊗ProjkA −→ Chk whose

values are concentrated in non-negative degree and X,Y ∈ ProjkA the natural map∫ a∈A

L
ProjkA(X, ιA(a))⊗ F (ιA(a), Y )

'−−→ F (X,Y ) (2.3)

is an equivalence.

Proof. Without loss of generality, we can assume that A has finitely many objects and finite-dimensional
morphism spaces. We now observe that for a fixed projective A-module Y , the statement that the map (2.3) is
an equivalence is true in the following cases:

(1) For X = A(b,−) for any b ∈ A it is true by the Yoneda Lemma (Proposition 2.6),

(2) It is true for finite-dimensional A-modules X and X ′ if and only if it is true for X ⊕X ′. Here we use that
F by our conventions is always assumed to be enriched. As a consequence, it preserves finite biproducts,
i.e. F (X ⊕X ′, Y ) ∼= F (X,Y )⊕ F (X ′, Y ).

Now if X is an arbitrary finite-dimensional and projective A-module, then the finite-dimensional A-module
Y :=

⊕
a∈AA(a,−)⊗X(a) comes with a canonical surjection π : Y −→ X, and the short exact sequence

0 −→ kerπ −→ Y −→ X −→ 0

splits by projectivity of X, and hence Y ∼= X ⊕ kerπ. From (1) and (2) it follows that the statement is true for
Y and therefore also for X by (2).

Theorem 2.9 (Agreement principle). Let A be a finite-dimensional algebroid over k and F : (ProjkA)
op⊗

ProjkA −→ Chk a functor whose values are concentrated in non-negative degree. Then the canonical embedding
ιA : Aop −→ ProjkA induces an equivalence∫ a∈A

L
F (ιA(a), ιA(a))

'−−→
∫ X∈Projk A

L
F (X,X) . (2.4)

Proof. The map (2.4) is the composition of the reversal isomorphism∫ a∈A

L
F (ιA(a), ιA(a)) ∼=

∫ a∈Aop

L
F op(ιA(a), ιA(a))

from Remark 2.3 with the map

ιA :

∫ a∈Aop

L
F op(ιA(a), ιA(a)) −→

∫ X∈Projk A

L
F (X,X) (2.5)

induced directly by the embedding ιA. Hence, it suffices to prove that (2.5) is an equivalence. To this end, we
note that it fits into the square∫ a∈Aop

L
F op(ιA(a), ιA(a))

∫ X∈Projk A

L
F (X,X)

∫ a∈Aop

L

∫ X∈Projk A

L
Projk A(X, ιA(a))⊗ F op(ιA(a), X)

∫ X∈Projk A

L

∫ a∈Aop

L
Projk A(X, ιA(a))⊗ F op(ιA(a), X) ,

ιA

ϕ

α β

where α is the natural equivalence from the Yoneda Lemma (Proposition 2.6), β is the equivalence from
Lemma 2.8 (combined with Remark 2.3), and the isomorphism ϕ is a consequence of the Fubini Theorem
(Proposition 2.7). It remains to prove that the square commutes up to homotopy because then we may con-
clude that (2.5) is an equivalence.

To prove this, we first note that we can see all the complexes in the above square as realizations of simplicial
complexes, namely the simplicial bar constructions that we have used to define derived coends (the two lower
complexes are iterated derived coends, hence they are even bisimplicial); moreover, all the maps involved arise
as simplicial maps between the simplicial bar constructions. Therefore, we may as well exhibit a simplicial
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homotopy ιAα ' βϕ, see [Wei94, Definition 8.3.11] for the definition. The complex in the left lower corner
of the square can be modeled by the total complex associated to a bisimplicial object, and the latter can be
described as the realization of the diagonal simplicial object by the generalized Eilenberg-Zilber Theorem of Dold
and Puppe [GJ09, IV.2 Theorem 2.5]. Therefore, the needed simplicial homotopy will run from the simplicial
chain complex which in degree n is given by a direct sum of (the reader may ignore the (∗)-labeled underbraces
for the moment)

A(a0, a1)⊗ · · · ⊗ A(aj−1, aj)⊗A(aj , aj+1)⊗ · · · ⊗ A(an−1, an)︸ ︷︷ ︸
(∗)

⊗ProjkA(X1, X0)⊗ · · · ⊗ ProjkA(Xj , Xj−1)︸ ︷︷ ︸
(∗)

⊗ProjkA(Xj+1, Xj)⊗ · · · ⊗ ProjkA(Xn, Xn−1)

⊗ProjkA(X0, ιA(an))︸ ︷︷ ︸
(∗)

⊗F (ιA(a0), Xn)

(2.6)

for a0, . . . , an ∈ A and X0, . . . , Xn ∈ ProjkA to B∗F as given in Definition 2.1. For every 0 ≤ j ≤ n, the tensor
factors marked by (∗) admit a map to ProjkA(Xj , ιA(aj)) which uses composition in A and ProjkA. Combining
this with the functor ιA, we obtain a map hj from the summand (2.6) to the summand

ProjkA(ιA(a1), ιA(a0))⊗ · · · ⊗ ProjkA(ιA(aj), ιA(aj−1))⊗ ProjkA(Xj , ιA(aj))

⊗ProjkA(Xj+1, Xj)⊗ · · · ⊗ ProjkA(Xn, Xn−1)⊗ F (ιA(a0), Xn) .

of Bn+1F indexed by ιA(a0), . . . , ιA(aj), Xj , . . . , Xn. As can be verified by a direct computation, these maps
yield a simplicial homotopy from ∂0h0 = βϕ to ∂n+1hn = ιAα.

As an important application, Theorem 2.9 yields:

Corollary 2.10. For any finite-dimensional algebroid A over k, the canonical map∫ a∈A

L
A(a, a)

'−−→
∫ X∈Projk A

L
ProjkA(X,X)

is an equivalence.

Example 2.11. If A = ?//A for a finite-dimensional k-algebra A and if F : (ProjkA)
op ⊗ ProjkA −→ Chk

satisfies the hypotheses of Theorem 2.9, we have CH(A;F (A,A)) '
∫X∈Projk A
L F (X,X), where F (A,A) is the

A-bimodule that we obtain by evaluation of F on the free A-module A, and CH(A;F (A,A)) are the Hochschild
chains of A with coefficients in that bimodule (Example 2.2). In particular, we obtain the Agreement Principle
from [MCar94] and [Kel99, Theorem 1.5 (a)] that the Hochschild homology of A and the Hochschild-Mitchell
homology of the k-linear category of finite-dimensional projective A-modules are isomorphic.

Remark 2.12 (Generalization). Above, we have defined and investigated derived coends of functors going
from Cop⊗C for some differential graded category C to chain complexes Chk over a field k. In fact, we could have
also used chain complexes of modules over an algebra over k instead of Chk. Let us sketch this generalization:
For a functor F : Cop ⊗ C −→ ChR to chain complexes of modules over some k-algebra R, we can consider the
functor QF : Cop ⊗ C −→ ChR obtained by replacing F cofibrantly pointwise (here we fix again the projective
model structure on ChR). Using the tensoring of ChR over Chk, we now define the bar construction B∗QF by
precisely the same formulae as in Definition 2.1. Its realization∫ X∈C

L
F (X,X) := |B∗QF |

will be referred to as derived coend of F . Having replaced F pointwise will ensure that B∗QF is cofibrant in
each level, which implies that B∗QF is Reedy cofibrant. As a consequence, the proof of homotopy invariance
goes through. This allows us to prove the generalization of the Yoneda Lemma, the Fubini Theorem and the
Agreement Principle.

3 The Hochschild complex of a finite tensor category

In this section, we investigate the Hochschild complex of a finite tensor category. By means of a resolution of the
canonical coend of a finite tensor category we express the Hochschild complex in terms of derived class functions
(Section 3.2). This will turn out to be the key to a topological interpretation of the Hochschild complex in
Section 4, where we construct a homotopy coherent action of the torus mapping class group.

We start by giving definitions and recalling standard terminology: Based on the comparison between derived
coends and ordinary Hochschild homology in Section 2.2, it makes sense to make the following Definition:
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Definition 3.1. For a k-linear category C we call the differential graded vector space∫ X∈Proj C

L
C(X,X)

the Hochschild complex of C.

This definition reduces to the standard definition of Hochschild homology of a differential graded (here: just
linear) category as appearing in [Kel99, CR05]. Sometimes it is also referred to as a derived trace. Let us
emphasize, however, that in the above definition the derived coend only runs over the projective objects.

In [Shi18] a version of Hochschild cohomology of a finite Abelian linear category is proposed using the
category of right exact endofunctors. Hochschild homology is then defined indirectly using the Nakayama
functor and a dualization. Due to the strong finiteness conditions in [Shi18], all these definitions are equivalent
on their common domain of definition.

Definition 3.1 is of course made in such a way that, if C is a finite category, i.e. a linear category given by

finite-dimensional modules over some finite-dimensional algebra A, then
∫X∈Proj C
L C(X,X) is just equivalent to

the ordinary Hochschild chains on A with coefficients in the A-bimodule A.
Since the categories we are interested in will all be of that type, one might ask why it is necessary to

consider the complex
∫X∈Proj C
L C(X,X) when it is just equivalent to the Hochschild complex of some algebra.

The answer is that just knowing that
∫X∈Proj C
L C(X,X) is equivalent to a Hochschild complex of some algebra is

often not very helpful because this presentation in terms of an algebra might be non-canonical; in some sense it

corresponds to a choice of coordinates. As a consequence, constructions performed on
∫X∈Proj C
L C(X,X) might

not have direct counterpart for the Hochschild complex of the randomly chosen algebra (in other cases they
might have, but those constructions might be a lot more complicated). This is especially problematic when the
category has more structure (tensor product, braiding, ribbon twist). This additional structure might not be
reflected on the algebra. Since the main goal of this article is to investigate the additional structure which is

present on
∫X∈Proj C
L C(X,X) when C is a monoidal category or braided monoidal category (possibly with more

structure or properties), using Definition 3.1 is justified.
Before proceeding let us recall some standard notions from the theory of linear monoidal categories: A

k-linear monoidal category is a monoidal category with k-linear monoidal product. In a rigid k-linear monoidal
category every object X ∈ C has a left dual X∨ and a right dual ∨X. These give us the natural adjunction
isomorphisms

C(X ⊗ Y,Z) ∼= C(X,Z ⊗ Y ∨) ,

C(Y ∨ ⊗X,Z) ∼= C(X,Y ⊗ Z) ,

C(X ⊗ ∨Y , Z) ∼= C(X,Z ⊗ Y ) ,

C(Y ⊗X,Z) ∼= C(X, ∨Y ⊗ Z)

for X,Y, Z ∈ C (we are following here the conventions of [EGNO17]). A k-linear Abelian rigid monoidal category
with simple unit will be referred to as a tensor category. A finite tensor category [EO04] is a tensor category
which is also finite as linear category. Such a category has the important property that P ⊗X is projective for
P ∈ Proj C and X ∈ C and that the tensor product is exact in both arguments. Furthermore, it is self-injective,
i.e. the projective objects are precisely the injective ones.

3.1 Hochschild complex of Drinfeld doubles in finite characteristic

Before investigating the properties of the derived coend
∫X∈Proj C
L C(X,X) in general, it is certainly instructive to

look at a certain class of finite tensor categories which allow us to perform some concrete computations, namely
Drinfeld doubles. Recall from e.g. [Kas95, Chapter IX] that for a finite group G the Drinfeld double D(G) is
a ribbon factorizable Hopf algebra whose underlying vector space is k(G)⊗ k[G]. Here we denote by k(G) the
commutative algebra of k-valued functions on G; a basis will be given by the functions (δg)g∈G supported in a
single group element. Moreover, we denote by k[G] the group algebra. Now the multiplication of D(G) is given
by

(δa ⊗ b)(δc ⊗ d) = δaδbcb−1 ⊗ bd for all a, b, c, d ∈ G .

Modules over D(G) can be equivalently written as Yetter-Drinfeld modules over k[G], see [Kas95, Theo-
rem IX.5.2], and hence as modules over the action groupoid G//G of G acting on itself by conjugation;

ModkD(G) ' Modk(G//G) . (3.1)

9



The groupoid G//G is equivalent to the groupoid PBunG(S1) of G-bundles over the circle, and in fact this

observation will give a topological interpretation to
∫X∈ProjkD(G)

L HomD(G)(X,X).
To see this, we introduce some notation: For a groupoid Γ , denote by by ΛΓ its loop groupoid, i.e. the

groupoid ΓΠ(S1) of functors from the fundamental groupoid Π(S1) of the circle S1 to Γ . For a group G and
the groupoid BG with one object and automorphism group G, the loop groupoid ΛBG is equivalent to the
groupoid of G-bundles over the circle,

ΛBG = BGΠ(S1) ' PBunG(S1)

by the holonomy classification of G-bundles, and hence equivalent to the action groupoid G//G. A similar
computation shows ΛnBG ' PBunG(Tn) and in particular

Λ(G//G) ' PBunG(T2) . (3.2)

The chains on the loop groupoid ΛΓ of any groupoid Γ are equivalent to the Hochschild chains of the free
k-linear category k[Γ ] on Γ . This can be seen as a groupoid version of the classical result [Wei94, Corollary 9.7.5].

Lemma 3.2. For any groupoid Γ , there is an equivalence∫ x∈Γ

L
k[Γ ](x, x) ' N∗(ΛΓ ; k) .

Proof. Up to equivalence, we can describe Π(S1) as the groupoid ?//Z with one object and automorphism
group Z. As an abbreviation, we will write Sn for the space of n-simplices of the simplicial bar construction of
k[Γ ](−,−). Taking Remark 2.3 into account we can write

Sn =
⊕

x0,...,xn∈Γ
k[Γ (x0, x1)]⊗ · · · ⊗ k[Γ (xn, x0)] .

A string of n morphisms in ΛΓ is a commutative diagram

x0 x1 . . . xn

x0 x1 . . . xn .

ϕ0

α0 α1

ϕ1 ϕn−1

αn

ϕ0 ϕ1 ϕn−1

Sending this string to the loop

x0
ϕ0−−−→ x1 −→ . . . −→ xn

(ϕn−1...ϕ0)−1αn−−−−−−−−−−−−→ x0 ∈ Sn

yields an isomorphism from the free simplicial vector space k[BΛΓ ] on the nerve BΛΓ of the loop groupoid of
Γ to S∗. By taking normalized chains, the claim follows.

Proposition 3.3. Let G be a finite group. Then there is an equivalence of differential graded vector spaces∫ X∈ProjkD(G)

L
HomD(G)(X,X) ' N∗(PBunG(T2); k) . (3.3)

Proof. The k-linear categories of finite-dimensional representations of D(G) and G//G are equivalent by (3.1),
and hence so are their Hochschild chains. If we apply Corollary 2.10 to the free k-linear category k[G//G], we
arrive at ∫ X∈ProjkD(G)

L
HomD(G)(X,X) '

∫ g∈G//G

L
k[G//G](g, g) .

Now we use Lemma 3.2 and (3.2).

The left hand side of (3.3) is also equivalent to the ordinary Hochschild chains on D(G) with coefficients in
D(G) seen as bimodule over itself (Example 2.11). By transporting the geometric mapping class group action
from N∗(PBunG(T2); k) to the left hand side we obtain:

Corollary 3.4. For any finite group G, the Hochschild chains of the Drinfeld double D(G) carry a homotopy
coherent SL(2,Z)-action.

The category of modules over a Drinfeld double is a very tractable example of a modular category (the
definition of a modular category will be recalled at the beginning of Section 4). It is non-semisimple if and only
if the characteristic of k divides |G|. The above result establishes a homotopy coherent mapping class group
action on its Hochschild complex. As one of the main results of this article (Theorem 4.7), we generalize this
to arbitrary modular categories. In the general case, a geometric argument as in Proposition 3.3 will not be
available.
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3.2 Traces, class functions and the Lyubashenko coend

If we are given a finite tensor category C and consider its Hochschild complex
∫X∈Proj C
L C(X,X), then the tensor

structure is of course not needed to define the complex itself. However, it leads to simplifications when trying
to compute the Hochschild homology. The idea is to express a (derived) trace (i.e. a (derived) coend of some
sort) via a (derived) space of class functions.

Before making this idea precise below in the case of interest to us, we explain in more detail a related instance
where it appears in a different form: Let C,D and E be finite categories over k and F : D ⊗ Cop ⊗ C −→ E
a linear functor. Of course, if E has sufficiently many colimits, we may consider the coend

∫X∈C
F (−, X,X)

to obtain a functor D −→ E . However, if F is left-exact, we might want to consider a coend of functors such
that the result is again left-exact and such that the universality of the coend holds with respect to left-exact
functors. Such requirements arise in conformal field theory for the gluing of conformal blocks. Motivated by

this problem, a coend
∮X∈C

F (−, X,X) with values in left-exact functors was studied in [Lyu96], see also [FS17]
for a review and the relation to conformal field theory. It is a key insight that the coend in left-exact functors
can be represented by a canonical object in the following way: Let C be a finite tensor category. Then one may
define the coend

F :=

∫ X∈C
X ⊗X∨

which is called the canonical coend of C or also the Lyubashenko coend due to its appearance in [Lyu95a,
Lyu95b, KL01]. By [Lyu96, Section 8.2] we find∮ X∈C

C(X,−⊗X) ∼= C(I,−⊗ F) ,

i.e. the coend of the morphism space functor computed in the category of left-exact functors (which is just a type
of trace) can be written as the space of morphisms from the monoidal unit to some special object F. If C arises
as finite-dimensional modules over a finite-dimensional Hopf algebra, then F is the coadjoint representation.
For this reason, C(I,F) should be thought of as a generalized space of class functions. In summary, we see an
instance where a trace is expressed as a space of class functions. We should note that the object F is not only
interesting because it provides a description of certain coends in left-exact functors. It also turns out to be the
key ingredient for the construction of the mapping class group actions in [Lyu95a, Lyu95b], see also Section 4.

This suggests the question whether we can describe for a finite tensor category C in an analogous way the

derived trace
∫X∈Proj C
L C(X,X), i.e. the Hochschild complex, as a derived space of class functions using some

special differential graded object of C; and if so, whether it is related to the Lyubashenko coend. In order to

answer these questions, we consider for any functor F : Cop ⊗ C −→ C the derived coend
∫X∈Proj C
L F (X,X) by

means of the generalizations given in Remark 2.12. Strictly speaking, we cannot see this (as we would like) as
a differential graded object in C because C does not have infinite coproducts, but the definition of the derived
coend involves coproducts over all projective objects. Fortunately, we know that up to equivalence we can

write
∫X∈Proj C
L F (X,X) using some finite collection of projective objects. By the Agreement Principle, even one

suitably chosen projective module will suffice. We will denote such a ‘finite version’ of
∫X∈Proj C
L F (X,X) by∫ X∈Proj C

fL
F (X,X) . (3.4)

This is now a differential graded object in C concentrated in non-negative degree. Up to equivalence, this object
is independent of how we make the derived coend finite, i.e. two ‘finite versions’ are related by a canonical zig-
zag of equivalences. The computation of (3.4) simplifies when F sends pairs of projective objects to projective
objects because then the pointwise cofibrant replacement for F is not necessary (see Remark 2.12). In that
case, (3.4) is level-wise projective.

Using such finite derived coends in C we are able to express
∫X∈Proj C
L C(G(X), X) for any endofunctor G of

C as a morphism space from the monoidal unit to some object:

Theorem 3.5. Let C be a finite tensor category. Then for any linear functor G : C −→ C there is a canonical
equivalence ∫ X∈Proj C

L
C(G(X), X) ' C

(
I,

∫ X∈Proj C

fL
X ⊗G(X)∨

)
Proof. By duality and the Agreement Principle we find∫ X∈Proj C

L
C(G(X), X) ∼=

∫ X∈Proj C

L
C(I,X ⊗G(X)∨) '

∫ X∈Proj C

fL
C(I,X ⊗G(X)∨) . (3.5)
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We want to compare this with C
(
I,
∫X∈Proj C

fL X ⊗G(X)∨
)

, where the object
∫X∈Proj C

fL X ⊗G(X)∨ is a special

case of the construction (3.4). The point-wise cofibrant replacement that would usually be involved in the
definition of this derived coend may be omitted because X ⊗ G(X)∨ is projective whenever X is. Since∫X∈Proj C

fL C(I,X⊗G(X)∨) is defined using finite direct sums which are preserved by the hom functor, we now find∫X∈Proj C
fL C(I,X ⊗G(X)∨) ∼= C

(
I,
∫X∈Proj C

fL X ⊗G(X)∨
)

which combined with (3.5) yields the assertion.

This statement is not very useful unless we can understand the differential graded object
∫X∈Proj C

fL X⊗G(X)∨

in C. To this end, we note that for any functor F : Cop ⊗ C −→ C there is an augmentation∫ X∈Proj C

fL
F (X,X) −→

∫ X∈Proj C

f

F (X,X)

as follows from the definition of the underived coend as a coequalizer. Here the ‘f’ on the right hand side
indicates that the same reduction to a finite coend has been used. This map is surjective, hence a fibration.

In fact, the zeroth homology of
∫X∈Proj C

fL F (X,X) is
∫X∈Proj C

f
F (X,X) as follows again by definition of the

underived coend. But in general, there is no reason why
∫X∈Proj C

fL F (X,X) should be a projective resolution of∫X∈Proj C
f

F (X,X). However, we prove below that this will be true when F is exact and sends pairs of projective
objects to projective objects. In this case, we will understand F as a functor F : Cop � C −→ C, where �
denotes the Deligne product. First observe that by [KL01, Proposition 5.1.7] the exactness of F ensures that

the canonical map
∫X∈Proj C

f
F (X,X) −→

∫X∈C
F (X,X) is an isomorphism (this is a statement about underived

coends). Therefore, we will just write
∫X∈C

F (X,X) instead of
∫X∈Proj C

f
F (X,X).

Proposition 3.6. Let C be a finite category and F : Cop � C −→ C an exact functor that sends pairs of
projective objects to projective objects. Then∫ X∈Proj C

fL
F (X,X) −→

∫ X∈C
F (X,X)

is a projective resolution. In particular, for any finite tensor category C and any exact functor G : C −→ C∫ X∈Proj C

fL
X ⊗G(X)∨ −→

∫ X∈C
X ⊗G(X)∨

is a projective resolution.

Proof. By what has just been explained above, it remains to prove Hp

(∫X∈Proj C
fL F (X,X)

)
= 0 for p 6= 0. For

the proof of this fact, we write C as finite-dimensional modules over a finite-dimensional algebra A. By the

Agreement Principle (Theorem 2.9)
∫X∈Proj C

fL F (A,A) is equivalent to the Hochschild chains A
L
⊗Ae F (A,A) for

the C-valued A-bimodule F (A,A). In order to compute the corresponding Hochschild homology, we consider
the object A�A ∈ Cop � C, where A acts by right multiplication on the first copy and by left multiplication on
the second copy. But A can additionally act from the left on the first copy and from the right on the second
copy. This makes A�A an A-bimodule in Cop � C. The Hochschild complex for this bimodule is given by

. . . A⊗2 • (A�A) A • (A�A) A�A ,

where • denotes the tensoring of objects in Cop � C with vector spaces from the left. This is a complex (or
simplicial object) in C � C. The underlying complex of vector spaces, however, is just the Hochschild complex
for the free A-bimodule. Therefore, the augmentation

A
L
⊗Ae (A�A) −→ A⊗Ae (A�A) (3.6)

is an equivalence. Since F is linear, the augmentation map

A
L
⊗Ae F (A,A) −→ A⊗Ae F (A,A) (3.7)

of the Hochschild complex A
L
⊗Ae F (A,A) is the image of the equivalence (3.6) under F . By exactness of F the

map (3.7) is now also an equivalence, which proves the claim.
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Corollary 3.7. For any finite tensor category C, the object
∫X∈Proj C

fL X ⊗X∨ is a projective resolution of the

canonical coend F =
∫X∈C

X ⊗X∨ and allows to write the Hochschild complex of C up to equivalence as∫ X∈Proj C

L
C(X,X) ' C

(
I,

∫ X∈Proj C

fL
X ⊗X∨

)
.

This finally allows us to describe the Hochschild complex as a generalized space of class functions, i.e. as
a hom from the monoidal unit to the derived Lyubashenko coend. Note however that Corollary 3.7 does not

say that
∫X∈Proj C
L C(X,X) is equivalent to C(I,QF) for an arbitrary projective resolution QF of F. Of course,

QF '
∫X∈Proj C

fL X ⊗ X∨ by the essential uniqueness of projective resolutions, but C(I,−) need not preserve
this equivalence in general. However, in the following technical Lemma, whose proof is based on the theory of
modified traces [GKP18], we find that, under the assumption that C is pivotal, this will be true.

Lemma 3.8. Let C be a pivotal tensor category over an algebraically closed field with finite-dimensional mor-
phism spaces and enough projectives. Then for X ∈ C the functor C(X,−) preserves equivalences between
non-negatively differential graded objects which are degree-wise projective.

Proof. Let D be the projective cover of the monoidal unit and α the socle of D. Consider now the right modified
α-trace on the tensor ideal of projective objects [GKP18, Section 5.3]. This trace in particular provides non-
degenerate pairings

C(X,P )⊗ C(α⊗ P,X) −→ k (3.8)

for X ∈ C and P ∈ Proj C which are moreover natural in X and P . In particular, C(X,P ) ∼= C(α ⊗ P,X)∗ by
natural isomorphisms.

Let now P −→ Q be an equivalence of non-negatively differential graded objects in C which are degree-wise
projective. We need to show that for X ∈ C the induced map C(X,P ) −→ C(X,Q) is an equivalence. Using the
non-degenerate pairing (3.8) we can equivalently show that the induced map C(P, ∨α⊗X)∗ −→ C(Q, ∨α⊗X)∗

is an equivalence. Since this is a map of finite-dimensional differential graded vector spaces, it suffices to show
that the dual map C(Q, ∨α⊗X) −→ C(P, ∨α⊗X) is an equivalence. But this is a standard fact from homological
algebra, see e.g. [Iv86, Theorem 7.5].

Theorem 3.9. Let C be a pivotal finite tensor category over an algebraically closed field. Then for any exact
functor G : C −→ C there is a canonical equivalence∫ X∈Proj C

L
C(G(X), X) ' C

(
I,Q

∫ X∈C
X ⊗G(X)∨

)
, (3.9)

where Q
∫X∈C

X ⊗G(X)∨ is an arbitrary projective resolution of
∫X∈C

X ⊗G(X)∨. In particular,∫ X∈Proj C

L
C(X,X) ' C (I,QF) .

Proof. By Theorem 3.5 we know∫ X∈Proj C

L
C(G(X), X) ' C

(
I,

∫ X∈Proj C

fL
X ⊗G(X)∨

)
;

moreover
∫X∈Proj C

fL X ⊗G(X)∨ is a projective resolution of
∫X∈C

X ⊗G(X)∨ by Proposition 3.6. However, as

explained above, this does not mean that (3.9) holds automatically for any projective resolution of
∫X∈C

X ⊗
G(X)∨ because C(I,−) may not preserve equivalences between two projective resolutions. But this is ensured
by Lemma 3.8 if we assume that C is pivotal and over an algebraically closed field.

4 Homotopy coherent projective mapping class group action

As one of the main results of this article, we establish a canonical homotopy coherent projective action of the
mapping class group SL(2,Z) of the torus on the Hochschild complex of a modular category. As explained in
the introduction, our result provides a homotopy coherent extension of the work of [LM94, Lyu95a, Lyu95b,
LMSS18, Shi18].

Let us briefly recall the definition of a modular category: For a braided finite tensor category, one defines
the Müger center as the subcategory spanned by all objects X ∈ C such that the double braiding cY,XcX,Y with
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every other object Y ∈ C is the identity. A braided finite tensor category is called non-degenerate if its Müger
center just consists of finitely coproducts of the monoidal unit I, see [Shi19] for different characterizations of
non-degeneracy. A ribbon twist on a braided finite tensor category C is a natural automorphism of the identity
of C whose components θX : X −→ X satisfy

θX⊗Y = cY,XcX,Y (θX ⊗ θY ) ,

θI = idI ,

θX∨ = θ∨X .

A finite ribbon category is a braided finite tensor category equipped with a ribbon twist. Finally, a modular
category is a finite ribbon category whose underlying braided finite tensor category is non-degenerate. Since a
modular category is ribbon and hence pivotal, we may use the techniques developed in the last section.

4.1 Homotopy coherent projective actions

We begin by recalling the notion of a homotopy coherent (projective) group action and by discussing suitable
resolutions in order to write such actions down in the case of interest. The reader familiar with homotopy
coherent actions can just skim through the lines below and take note of the specific resolutions that will be
used.

The idea underlying the notion of a homotopy coherent action % of a group G on a chain complex C is
to relax the requirement that for g, h ∈ G the chain maps %(gh) and %(g)%(h) are equal. Instead, they will
just be homotopic by a specific homotopy Hg,h : %(gh) ' %(g)%(h) that does not only exist, but is part of the
data. Moreover, one requires these homotopies to be coherent, i.e. all the different homotopies Hg,h for g, h ∈ G
should be related by higher homotopies: For example, for g, h, ` ∈ G the diagram

%(g)%(h`)

%(gh`) %(g)%(h)%(`)

%(gh)%(`)

%(g)Hh,`Hg,h`

Hgh,` Hg,h%(`)

is required to commute up to homotopy, and again this homotopy is part of the data – and so on and so forth,
as will be made precise below; for an introduction to homotopy coherent mathematics we refer to [Rie18].

In the sequel, we will need a slight variation of the above, namely homotopy coherent projective representa-
tions of a group G. A projective G-representation on a vector space V (or chain complex) is a group morphism
G −→ P Aut(V ), where P Aut(V ) is the quotient of Aut(V ) by the normal subgroup k× · idV . Often it is con-
venient to assign to each g ∈ G an actual automorphism %(g) of V by choosing a lift of Aut(V ) −→ P Aut(V ).
Then

%(g)%(h) = ξ(g, h)%(gh)

for g, h ∈ G and a cocycle ξ ∈ Z2(G; k×). We will then say that % is ξ-projective because once a lift is chosen, the
cocycle ξ controls the projectivity. This point of view is rather helpful because it allows to describe projective
actions via the twisted group algebra kξ[G] of G and ξ ∈ Z2(G; k×). The underlying vector space of kξ[G] is
the free vector space on G. The multiplication is given by

〈g〉〈h〉 = ξ(g, h)〈gh〉 for all g, h ∈ G ,

where 〈g〉 is the basis element corresponding to g ∈ G. The cocycle ξ will be referred to as the twist. Now a
ξ-projective G-representation on a vector space V is just a kξ[G]-action on V .

In order to formalize the notion of a homotopy coherent (projective) action, we may as well define the notion
of a homotopy coherent action of an algebra (which will then include the case of a twisted group algebra). To this
end, we recall the bar construction of an algebra A over k that one constructs via the free-forgetful adjunction

F : Vectk
// Algk : U .oo

Suppressing the forgetful functor in the notation, we will see F as an endofunctor of Algk. The algebra A gives
rise to a simplicial algebra BarA

. . . F 3A F 2A FA ,
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which in level n is given by Fn+1A – the bar resolution of A. Of course, we can also see this simplicial
algebra as a differential graded algebra (via the Dold-Kan correspondence). The bar construction comes with
an augmentation BarA −→ A which is also a trivial fibration (on the level of underlying simplicial vector spaces,
this augmentation admits extra degeneracies).

The algebra of 0-simplices of BarA is the free algebra on the vector space A, i.e. the tensor algebra on the
vector space A. For an element a1 ⊗ · · · ⊗ an in the free algebra on A we will write (a1) . . . (an). This bracket
notation borrowed from [Rie18] is rather convenient because it allows to write the higher simplices of the bar
construction by nested brackets. Then the j-the face operator ∂j deletes the j-th pair of brackets (counted
from outside to inside). For example, for a, b ∈ A we have a 1-simplex ((a)(b)) with ∂0((a)(b)) = (a)(b) and
∂1((a)(b)) = (ab). Hence, the 0-simplices (a)(b) and (ab) are not equal, but there is a path between them.

In order to define homotopy coherent actions, we also need the internal hom of differential graded vector
spaces: For differential graded vector spaces and C and D, their internal hom [C,D] is the differential graded
vector space with [C,D]n :=

∏
m∈Z Homk(Cm, Dm+n). As usual, composition endows [C,C] with the structure

of a differential graded algebra.

Definition 4.1. For a k-algebra A a homotopy coherent action of A on a differential graded vector space C is
a map of differential graded algebras BarA −→ [C,C].

Remark 4.2. For the reader familiar with homotopy coherent actions, let us remark that this coincides with
the usual definition of the homotopy coherent action of an operad [BM06] because BarA cofibrantly resolves
the operad whose unary operations are given by A.

As a consequence, given a group G and a cocycle ξ ∈ Z2(G; k×), a homotopy coherent ξ-projective action
of G on a differential graded vector space C is a map Bar kξ[G] −→ [C,C] of differential graded algebras.

4.2 Homotopy coherent projective actions from central extensions of rank one

Let 0 −→ J −→ G −→ H −→ 0 be a short exact sequence of groups. If we are given a representation of G
on a vector space, then its is easy to decide whether this representation descends to H: We just have to verify
that all elements in the kernel J of G −→ H are sent to the identity. A similar statement holds for projective
actions. If however we are given a (projective) action of G on a chain complex and are able to show that all
elements in the kernel J of G −→ H act by chain maps which are homotopic to the identity, then this is not
enough to conclude that we get in a canonical way a homotopy coherent (projective) action of the quotient H.

The purpose of this subsection is to highlight at least one case, namely the one of a central extension of rank
one, in which we actually get a homotopy coherent (projective) action of the quotient. This result will be key
for the construction of the homotopy coherent mapping class group action in the next subsection.

Proposition 4.3. Let 0 −→ Z −→ G
π−→ H −→ 0 be a central extension of groups and ξ ∈ Z2(H; k×). We

denote the image of 1 ∈ Z under Z −→ G by τ . Suppose we are given a π∗ξ-projective representation % of G on

a chain complex C and a homotopy %(τ)
L' idC such that L%(g) = %(g)L for all g ∈ G. Then this data induces

in a canonical way a homotopy coherent ξ-projective representation of H on C.

The proof of this technical result will require the inductive construction of a simplicial map that will follow
a standard procedure that we recall now:

Lemma 4.4. Let X and Y be simplicial vector spaces. Suppose we are given a family φn : Xn −→ Yn of linear
maps that is characterized inductively in the following way:

(1) φ0 : X0 −→ Y0 is just an arbitrary linear map.

(2) For some n ≥ 1 suppose the linear maps φp : Xp −→ Yp for 0 ≤ p ≤ n − 1 are already such that they
satisfy f∗φqσ = φpf

∗σ for f ∈ ∆(p, q) and σ ∈ Xq for 0 ≤ p, q ≤ n− 1. Furthermore, the φn : Xn −→ Yn
are given as follows:

(a) If σ ∈ Xn is degenerate, then there is a unique iterated degeneracy operator S = sj1 . . . sj` with
j1 > · · · > j` and a unique non-degenerate n − `-simplex τ such that write σ = Sτ . Then set
φn(σ) = Sφn−`(τ).

(b) If σ is non-degenerate, then denote by φn−1(∂σ) : k[∂∆n] −→ Y the simplicial map that we obtain
by evaluation of φn−1 on the faces on σ (the fact that this map is well-defined is due to the fact that
the φp respect the simplicial operators for 0 ≤ p ≤ n− 1). Now φn(σ) is given as a lift

k[∂∆n] Y

k[∆n]

φn−1(∂σ)

φn(σ)
,
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where the existence of such a lift is an assumption.

Then the maps φn : Xn −→ Yn are simplicial.

The proof of the Lemma is straightforward if one takes the statements [Hir03, Lemma 15.8.3&4] on dege-
neracy operators into account.

Before we prove Proposition 4.3, we need to introduce some notation: Fix a set-theoretic section s : H −→ G
of π. The deviation of s from being a group morphism is described by the classifying cocycle α ∈ Z2(H;Z) of
the central extension 0 −→ Z −→ G −→ H −→ 0; i.e.

sh1sh2 = τα(h1,h2)s(h1h2) for h1, h2 ∈ H .

For three elements in H, for example, we have

sh1sh2sh3 = τα(h1,h2)s(h1h2)sh3 = τα(h1,h2)+α(h1h2,h3)s(h1h2h3)

by applying the cocycle first to h1 and h2 and then to h1h2 and h3. Alternatively, we could have applied it to
h2 and h3 and then to h1 and h2h3. The cocycle condition

α(h1, h2) + α(h1h2, h3) = α(h2, h3) + α(h1, h2h3) (4.1)

tells us that both ways yield the same result. We will therefore denote any of the sides of (4.1) by α(h1, h2, h3).
More generally, we can define α(h1, . . . , hn) for n elements in H such that

sh1 . . . shn = τα(h1,...,hn)s(h1 . . . hn) . (4.2)

Such a multi-element notation will also be used for the cocycle ξ ∈ Z2(H; k×) describing the projectivity.

Proof of Proposition 4.3. Following Definition 4.1 we have to build a map ϕ : Bar kξ[H] −→ [C,C] of differential
graded algebras. We will equivalently describe it as a map of simplicial algebras and construct the underlying
simplicial map following Lemma 4.4. Additionally, we will make sure that in every degree the algebra structure
is respected such that we actually obtain a map of simplicial algebras.

First we set ϕ(h) = %(sh) for h ∈ H and our fixed set-theoretic section s : H −→ G (up to homotopy, the
construction will not depend on the choice of the section). This assignment extends to an algebra map

Bar0 kξ[H] = Fk[H] −→ Chk(C,C)

because Bar0 kξ[H] is freely generated as an algebra by the elements of H. This way, we obtain the definition
of ϕ on 0-simplices.

Next, we consider a 1-simplex σ ∈ Bar1 kξ[H] = F 2k[H] of the form σ = ((h1) . . . (hn)), where we use the
bracket notation explained on page 15. These freely generate F 2k[H] as an algebra. We can see σ as a path in
the bar construction Bar kξ[H] from ∂0σ = (h1) . . . (hn) to ∂1σ = ξ(h1, . . . , hn)(h1 . . . hr), where ξ(h1, . . . , hn)
is the multi-element notation for the cocycle ξ just introduced. Therefore, we depict the 1-simplex σ by

ξ(h1; : : : ; hn) (h1 : : : hn)

(h1) : : : (hn)

σ

1

1

0

.

If σ is degenerate, then Lemma 4.4 tells us how to define ϕ on it. Suppose now that σ is non-degenerate. By
definition of ϕ on 0-simplices, we have

ϕ(∂0σ) = ϕ(h1) . . . ϕ(hn) = %(sh1) . . . %(shn)

= ξ(h1, . . . , hn)%(sh1 . . . shn)

= ξ(h1, . . . , hn)%(τ)α(h1,...,hn)%(s(h1 . . . hn)) , see (4.2) ;

ϕ(∂1σ) = ξ(h1, . . . , hn)%(s(h1 . . . hn)) .

In summary, we arrive at

ϕ(∂0σ) = %(τ)α(h1,...,hn)ϕ(∂1σ) .
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Now we can assign to σ the homotopy Lα(h1,...,hn)%(∂1σ), i.e. the α(h1, . . . , hn)-th power of L combined with
the identity homotopy of %(∂1σ). Since Lα(h1,...,hn)%(∂1σ) = %(∂1σ)Lα(h1,...,hn) by assumption, we will suppress
the identity homotopy in the notation. This assignment extends to an algebra map

Bar1 kξ[H] = F 2k[H] −→ Chk(C ⊗N∗(∆1; k), C)

because the 1-simplices that we considered freely generate Bar1 kξ[H] as an algebra. This concludes the definition
of ϕ on 1-simplices.

Consider now a 2-simplex σ ∈ Bar2 kξ[H] = F 3k[H] of the form

σ = (((h1,1) . . . (h1,m1
)) . . . ((hn,1) . . . (hn,mn

))) ;

again these freely generate Bar2 kξ[H] as an algebra. We will now prove that the homotopies that we obtain
by evaluation of ϕ on the boundary of σ provide a strictly commuting triangle. This allows us to define ϕ
on σ as the identity 2-homotopy. Then we extend multiplicatively and hence obtain the definition of ϕ on
2-simplices. This way we still follow the construction principle from Lemma 4.4 and make sure that ϕ respects
the multiplicative structure. Since to the 2-simplices we have just assigned the identity, the definition on higher
simplices can be completed trivially by assigning again identities, thereby completing the definition of ϕ as a
map of simplicial algebras.

It still remains to show that the homotopies assigned by ϕ to the boundary of σ form a strictly commuting
triangle. To this end, we depict the faces and vertices of σ as follows:

(h1;1 : : : h1;m1
: : : hn;1 : : : hn;mn

)

(h1;1) : : : (h1;m1
) : : : (hn;1) : : : (hn;mn

)

(h1;1 : : : h1;m1
) : : : (hn;1 : : : hn;mn

)

((h1;1 : : : h1;m1
) : : : (hn;1 : : : hn;mn

))

((h1;1) : : : (h1;m1
)) : : : ((hn;1) : : : (hn;mn

))((h1;1) : : : (h1;m1
) : : : (hn;1) : : : (hn;mn

))

σ

1

2

0
ξ(h1;1; : : : ; h1;m1

) : : : ξ(hn;1; : : : ; hn;mn
)ξ(h1;1; : : : ; h1;m1

; : : : ; hn;1; : : : ; hn;mn
)

ξ(h1;1; : : : ; h1;m1
) : : : ξ(hn;1; : : : ; hn;mn

)

By the definition of ϕ on 0- and 1-simplices the image of the boundary of σ under ϕ is given by:

'(h1;1 : : : h1;m1
: : : hn;1 : : : hn;mn

)

'(h1;1) : : : '(h1;m1
) : : : '(hn;1) : : : '(hn;mn

)

'(h1;1 : : : h1;m1
) : : : '(hn;1 : : : hn;mn

)

Lα(h1;1:::h1;m1
;:::;hn;1:::hn;mn)

Lα(h1;1;:::;h1;m1
) : : : Lα(hn;1:::hn;mn)Lα(h1;1;:::;h1;m1

;:::;hn;1;:::;hn;mn)

1

2

0
ξ(h1;1; : : : ; h1;m1

; : : : ; hn;1; : : : ; hn;mn
)

ξ(h1;1; : : : ; h1;m1
) : : : ξ(hn;1; : : : ; hn;mn

)

(4.3)

Since L commutes with ϕ by assumption, we are allowed to omit the identity homotopies in the notation. By
the cocycle condition on α, we have

α(h1,1, . . . , h1,m1 , . . . , hn,1, . . . , hn,mn) =α(h1,1 . . . h1,m1 , . . . , hn,1 . . . hn,mn)

+ α(h1,1, . . . , h1,m1) + · · ·+ α(hn,1, . . . , hn,mn) ,

which allows us to conclude that (4.3) forms a strictly commutative triangle. This finishes the proof.
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4.3 Homotopy coherent projective SL(2,Z)-action on the Hochschild complex of a
modular category

Having discussed the notion of a homotopy coherent projective action and some tools for its construction,
we now finally exhibit a homotopy coherent projective action of the mapping class group of the torus on the
Hochschild complex of a modular category.

The central non-homotopical ingredient will be the Lyubashenko-Majid action on the canonical coend: Let
C be a modular category and F the canonical (underived) coend. As one of the main results of [LM94, Lyu95a,
Lyu95b], Lyubashenko and Majid construct a projective action of the mapping class group of the punctured
torus, i.e. the braid group on three strands B3 = 〈s, t, r | (st)3 = s2, s4 = r〉, on F. These authors give explicit
automorphisms of F for each generator such that r is sent to the inverse twist θ−1

F of F. The B3-action on F
descends to an action of the mapping class group of the torus SL(2,Z) = 〈s, t | (st)3 = s2, s4 = 1〉 on C(I,F), as
follows from the naturality of the twist and θI = idI .

Remark 4.5. The projective B3-action on F can be turned into a linear one since H2(B3; k×) = 0. However,
then the generator r might not be sent to the inverse twist any longer. Therefore, we refrain from getting rid
of the projectivity.

Using the following Lemma the cocycle description of the projectivity of the representation of B3 on F can
be simplified.

Lemma 4.6. Let π : G −→ H an epimorphism of groups and X and Y objects in a k-linear category such that
C(Y,X) 6= 0. Then any projective representation ϕ : G −→ P AutX of G on X for which the composition

G
−→
ϕ P AutX −→ P Aut C(Y,X)

is trivial on kerπ can be described by a family of automorphisms %(g) for g ∈ G such that the cocycle controlling
the projectivity with respect to these maps is the pullback π∗ξ of a cocycle ξ ∈ Z2(H; k×) along π.

Proof. The projective representation of G on X is a group morphism ϕ : G −→ P AutX. Its concatenation
ψ := C(Y,−) ◦ ϕ : G −→ P Aut C(Y,X) with C(Y,−) sends kerπ to 1. Now we choose a lift for each element in

P Aut C(Y,X) that sends the unit to the identity of C(Y,X) and denote the lift of ψ(g) for g ∈ G by ψ̃(g). If

ϕ̂(g) is any lift of ϕ(g), then C(Y,−) maps ϕ̂(g) to cgψ̃(g) for a unique invertible scalar cg ∈ k×. We now set

ϕ̃(g) := ϕ̂(g)/cg and thereby ensure that C(Y,−) maps ϕ̃(g) to ψ̃(g). If we let ν ∈ Z2(G; k×) be the cocycle
describing the projectivity of ϕ with respect to the representatives ϕ̃(g), we find by definition

ϕ̃(g)ϕ̃(g′) = ν(g, g′)ϕ̃(gg′)

for g, g′ ∈ G. When applying the functor C(Y,−) in the special case g′ ∈ kerπ, we obtain

ψ̃(g) = ψ̃(g)ψ̃(g′) = ν(g, g′)ψ̃(gg′) = ν(g, g′)ψ̃(g)

by the choice of our lifts and the assumption that ψ sends kerπ to the unit. Since C(Y,X) 6= 0, we conclude
ν(g, g′) = 1. Hence, ν is trivial on G× kerπ and similarly on kerπ ×G. Now a direct computation shows that
ξ(h, h′) := ν(s(h), s(h′)) for h, h′ ∈ H and any set-theoretic section s : H −→ G of π defines a 2-cocycle ξ on H
with such π∗ξ = ν.

If we apply this Lemma to the epimorphism B3 −→ SL(2,Z), X = F and Y = I, then thanks to C(I,F) 6= 0
and the fact that the B3-action descends to an SL(2,Z)-action on C(I,F), we conclude that the projectivity of
the B3-action on F can be described by the pullback of a cocycle ξ ∈ Z2(SL(2,Z); k×). By looking at the proof of
Lemma 4.6 we see that we can still arrange that the generator r of the kernel of the projection B3 −→ SL(2,Z)
is sent to θ−1

F .
Let us now state the main Theorem:

Theorem 4.7. The Hochschild complex
∫X∈Proj C
L C(X,X) of a modular category C over an algebraically closed

field carries a homotopy coherent projective action of the mapping class group SL(2,Z) of the torus which is
induced in a canonical way by the action of the braid group on three strands on the canonical coend of C.

Remark 4.8. We may actually include a statement about the concrete nature of the projectivity of this action:
Using Lemma 4.6 we have established that the projectivity B3-action on F is controlled by the pullback of a
cocycle ξ ∈ Z2(SL(2,Z); k×). The homotopy coherent projective SL(2,Z)-action that we construct will be an
action of the bar resolution of the ξ-twisted group algebra of SL(2,Z).

Before going into the proof of Theorem 4.7, we discuss one immediate consequence following from the fact
that taking finite-dimensional modules over a ribbon factorizable Hopf algebra provides an example of a modular
category:
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Corollary 4.9. There is a canonical homotopy coherent projective SL(2,Z)-action on the Hochschild complex
of a ribbon factorizable Hopf algebra.

When stated in this form, our result is a direct homotopy coherent extension of [LMSS18].

For the proof of Theorem 4.7 we will need a few further technical results. One key step will be to replace
the Hochschild complex by an equivalent complex.

Proposition 4.10. For any pivotal finite tensor category C over an algebraically closed field, the Hochschild

complex of C is canonically equivalent to the derived coend
∫ P∈Proj C
L C(I, P )⊗ C(P,F).

The proof of this Proposition will need the following Lemma:

Lemma 4.11. Let C be a finite category. Then for any X,Y ∈ C there is a natural equivalence∫ P∈Proj C

L
C(Y, P )⊗ C(P,X) ' C(Y,QX) .

Proof. Since C(P,X) ' C(P,QX) for any P ∈ Proj C, it suffices to prove that the natural map∫ P∈Proj C

L
C(Y, P )⊗ C(P,QX) −→ C(Y,QX) (4.4)

is an equivalence. For this we realize that the left hand side is the total complex of the first quadrant double
complex given in degree (m,n) by⊕

P0,...,Pm∈Proj C

C(P1, P0)⊗ · · · ⊗ C(Pm, Pm−1)⊗ C(P0,QnX)⊗ C(Y, Pm) . (4.5)

Hence, the n-th row is
∫ P∈Proj C
L C(P,QnX)⊗C(Y, P ); and since QnX is projective, this is equivalent to C(Y,QnX)

by the Yoneda Lemma 2.6 applied to Proj C. Now the spectral sequence associated to the filtration of the double
complex (4.5) by rows shows that (4.4) is an equivalence.

Proof of Proposition 4.10. We have established in Theorem 3.9 that the Hochschild complex of C is canonically
equivalent to C(I,QF), where QF is a projective resolution of F. Now the assertion follows from Lemma 4.11.

The idea for the proof of Theorem 4.7 is to apply Proposition 4.3 to the B3-action on the complex∫ P∈Proj C
L C(I, P )⊗C(P,F) induced by the B3-action on F. The following statement asserts that the assumptions

of Proposition 4.3 are met:

Proposition 4.12. Let C be a finite ribbon category and X ∈ C. Consider the action of the ribbon twist

θX of X via postcomposition on the complex
∫ P∈Proj C
L C(I, P ) ⊗ C(P,X). The corresponding chain map θX∗

is homotopic to the identity via a canonical homotopy h. If f : X −→ X is any endomorphism of X, then
f∗h = hf∗ for the chain map f∗ that f gives rise to.

Proof. We treat
∫ P∈Proj C
L C(I, P )⊗C(P,X) as a simplicial vector space and construct h as a simplicial homotopy.

An n-simplex of
∫ P∈Proj C
L C(I, P )⊗ C(P,X) is a string

f =
(
I

fn−−−→ Pn
fn−1−−−−→ Pn−1

fn−2−−−−→ . . .
f0−−→ P0

f−1−−−→ X
)

of morphisms in C, where the objects Pj for 0 ≤ j ≤ n are projective (it lives in the summand indexed by
P0, . . . , Pn). For 0 ≤ j ≤ n we define hjf as the n+ 1-simplex

I
fn−−−→ Pn

fn−1−−−−→ Pn−1
fn−2−−−−→ . . .

fj−−→ Pj
θPj−−−→ Pj

fj−1−−−−→ . . .
f0−−→ P0

f−1−−−→ X ,

i.e. hj inserts the ribbon twist of Pj . A direct computation using the naturality of the twist and θI = idI shows
that the maps

hj :

(∫ P∈Proj C

L
C(I, P )⊗ C(P,X)

)
n

−→

(∫ P∈Proj C

L
C(I, P )⊗ C(P,X)

)
n+1

form a simplicial homotopy [Wei94, Definition 8.3.11] between θX∗ and the identity of
∫ P∈Proj C
L C(I, P )⊗C(P,X).

For any endomorphism f : X −→ X we see hjf∗ = f∗hj . The same is true for the chain homotopy that the hj
give rise to.
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We can now tie all the technical results together:

Proof of Theorem 4.7. Recall that we can describe the ordinary projective action of B3 on F as a π∗ξ-projective
action for a cocycle ξ ∈ Z2(SL(2,Z); k×), where π : B3 −→ SL(2,Z) is the canonical projection (this was a

consequence of Lemma 4.6). By Proposition 4.10 we know that the Hochschild complex
∫X∈Proj C
L C(X,X) of

C is equivalent to the derived coend
∫ P∈Proj C
L C(I, P ) ⊗ C(P,F). Hence, we may as well exhibit a homotopy

coherent projective SL(2,Z)-action on
∫ P∈Proj C
L C(I, P )⊗ C(P,F).

To this end, we note that by postcomposition we obtain a π∗ξ-projective action of B3 on
∫ P∈Proj C
L C(I, P )⊗

C(P,F). The strategy is now to apply Proposition 4.3 to this projective B3-action and the central extension

0 −→ Z −→ B3
π−→ SL(2,Z) −→ 0 to conclude that the projective B3-action descends to a homotopy coherent

projective SL(2,Z)-action. Then from the proof of Proposition 4.3 we can read off that this will be constructed
as an action of the bar resolution the π∗ξ-twisted group algebra of SL(2,Z), which justifies the additional
statement on the projectivity of the action that we have included in Remark 4.8.

In order to apply Proposition 4.3, it remains to prove the generator r of B3 acts by a map which is homotopic
to the identity by a chain homotopy that commutes with all chain maps that constitute the projective B3-action

on
∫ P∈Proj C
L C(I, P ) ⊗ C(P,F). But r acts on

∫ P∈Proj C
L C(I, P ) ⊗ C(P,F) by postcomposition with the inverse

ribbon twist of F, as follows from the properties of the Lyubashenko action recalled on page 18. Hence, the
desired statement can be deduced from Proposition 4.12.

Remark 4.13. The fact that in the proof of Theorem 4.7 we use the complex
∫ P∈Proj C
L C(I, P )⊗C(P,F), exhibit

a projective B3-action on it and prove that it descends up to coherent homotopy to SL(2,Z) is not by accident:
In the language of conformal field theory, C(P,F) is the conformal block for torus with one boundary disk labeled

by P . If we think of the Hochschild complex
∫X∈Proj C
L C(X,X) as derived conformal block for the torus, then

one can formulate a derived factorization property for the gluing of a disk to the torus with one boundary circle
(it is crucial that the gluing is implemented via a derived coend over projective objects). In this process, the
B3-action descends up to coherent homotopy to a SL(2,Z)-action, i.e. from the mapping class group of the torus
with one boundary circle to the mapping class group of the closed torus – just as one would expect. We will not
make precise the idea of derived conformal blocks here, but still the heuristics just presented makes the strategy
in the proof of Theorem 4.7 more transparent. A version of this reasoning without homotopy coherence, i.e. on
the level of homology, is used in [LMSS19].

Remark 4.14 (Modular homology). It is natural to ask about the homotopy orbits of the homotopy
coherent projective mapping class group action on the Hochschild complex of a modular category that we
obtain from Theorem 4.7. This leads to a complex whose homology one might call the modular homology
of a modular category. Unlike Hochschild homology, this new algebraic invariant should be sensitive to more
structure of the modular category than just the underlying linear category, e.g. the braiding and the ribbon
twist. For Drinfeld doubles, the modular homology relates to mapping class group orbits of bundles. A detailed
investigation is beyond the scope of this paper and will be subject of future work.

5 The derived Verlinde algebra

For a semisimple modular category C, we obtain an algebra structure on the conformal block
∫X∈C C(X,X) on

the torus. This can be seen most conceptually by constructing the (anomalous) 3-2-1-dimensional topological

field theory associated to C. Then the multiplication on
∫X∈C C(X,X) comes from the evaluation of this

topological field theory on the bordism P × S1 : T2 t T2 −→ T2, where P : S1 t S1 −→ S1 is the pair of pants.
We depict P × S1 suggestively as:

This multiplication is easily seen to be commutative thanks to the braiding on C. The resulting algebra is
sometimes called the Verlinde algebra of C.

When considering the complex
∫X∈Proj C
L C(X,X) in the non-semisimple case, we cannot argue via topological

field theory to obtain the multiplication. Still, we will make
∫X∈Proj C
L C(X,X) into a differential graded algebra
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below and prove that it is a non-unital algebra over the little disk operad E2, i.e. a homotopy commutative
algebra whose commutativity behavior is controlled by the braid group. We will refer to this E2-algebra as the
derived Verlinde algebra.

For an introduction to the homotopy theory of operads that we will need in the sequel and in particular to
little disk operads we refer to [Fre17].

5.1 The loop operator

The construction of the multiplicative structure on the derived Verlinde algebra will rely on a more general

construction that we will explain in this subsection: For a k-linear category D, the derived coend
∫X∈D
L D(X,X)

is the realization of the simplicial vector space LD which in degree n is given by

LnD =
⊕

X0,...,Xn∈D
D(X1, X0)⊗ · · · ⊗ D(Xn, Xn−1)⊗D(X0, Xn) , (5.1)

i.e. by the space of loops of morphisms in D through n+ 1 objects (as one finds by specializing Definition 2.1 to

the case of a hom functor). In other words,
∫X∈D
L D(X,X) is given by normalized chains on LD; in formulae∫ X∈D

L
D(X,X) ∼= N∗(LD) . (5.2)

The assignment D 7−→ LD yields a symmetric monoidal functor Catk −→ sVectk from k-linear categories to
simplicial k-vector spaces that we will refer to as the loop operator. Before proving the next statement, let us
introduce some notation: For a groupoid-valued operad O, we denote by BO the simplicial operad obtained by
taking the nerve of O and by k[BO] the corresponding operad in simplicial vector spaces.

Theorem 5.1. Let O be an operad in groupoids. Then any k[O]-algebra structure on a k-linear category D
induces an k[BO]-algebra structure on the simplicial vector space LD.

Remark 5.2. The above Theorem does not just follow from the fact that L is a symmetric monoidal functor.
This would only tell us that for a k[O]-algebra D, the simplicial vector space LD is a Lk[O]-algebra, but in
general, Lk[O] 6' k[BO].

Proof. 1. The structure of a k[BO]-algebra on LD consists of maps

k[BO](n)⊗ (LD)⊗n −→ LD (5.3)

of simplicial vector spaces for n ≥ 0 which, in turn, consist of linear maps

k[BpO](n)⊗ (LpD)⊗n −→ LpD (5.4)

in level p ≥ 0. In the first step, we define these maps. A canonical basis of k[BpO](n) is, of course, given
by the set BpO(n). We denote by

g :=
(
ϕ0

c0−→ ϕ1
c1−→ . . .

cp−1−−−→ ϕp

)
. (5.5)

an element of the set BpO(n). Here the ϕj for 0 ≤ j ≤ p are objects in the groupoid O(n). By assumption
they act by k-linear functors ϕj : D⊗n −→ D (denoted by the same symbol by a slight abuse of notation).
The cj for 0 ≤ j ≤ p − 1 are morphisms in O(n), and by assumption they act by natural isomorphisms

ϕj
cj∼= ϕj+1 of k-linear functors D⊗n −→ D. We define the additional natural isomorphism cp := cp−1 . . . c0

from ϕ0 to ϕp. A pure tensor of (LpD)⊗n is a family of n loops of length p + 1 in D. We write such a
pure tensor by

X :=


X1,p

f1,p−−→ X1,p−1
f1,p−1−−−−→ . . .

f1,1−−→ X1,0
f1,0−−→ X1,p

...
. . .

...

Xn,p
fn,p−−−→ Xn,p−1

fn,p−1−−−−→ . . .
fn,1−−→ Xn,0

fn,0−−→ Xn,p

 . (5.6)

We use the shorthands Xj := (X1,j , . . . , Xn,j) ∈ D⊗n and f
j

:= f1,j ⊗ · · · ⊗ fn,j for 0 ≤ j ≤ p.

Using the established notation we obtain the map (5.4) by defining the image g.X of g ⊗ X under (5.4)
(where g is from (5.5) and X from (5.6)) as the loop

g.X :=

{
ϕp(Xp)

c−1
p−1ϕp(f

p
)

−−−−−−−−→ ϕp−1(Xp−1) −→ . . . −→ ϕ0(X0)
cpϕ0(f

0
)

−−−−−−−→ ϕp(Xp)

}
.

For readability, we suppress the objects that the natural isomorphisms are evaluated on. They are clear
from the context.
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2. In the next step, we show that for fixed n the maps (5.4) actually define a simplicial map (5.3). First we
show the compatibility with the face maps:

• We observe

∂0(g.X ) =

{
. . . −→ ϕ1(X1)

cpϕ0(f
0
)c−1

0 ϕ1(f
1
)

−−−−−−−−−−−−−→ ϕp(Xp)

}
,

where we only display those parts of the loop affected by ∂0. Using functoriality and naturality we
find

cpϕ0(f
0
)c−1

0 ϕ1(f
1
) = cp−1 . . . c1ϕ1(f

0
f

1
) ,

which allows us to conclude ∂0(g.X ) = (∂0g).(∂0X ).

• For 0 < j < p we obtain

∂j(g.X ) =

{
. . . −→ ϕj+1(Xj+1)

c−1
j−1ϕj(f

j
)c−1

j ϕj+1(f
j+1

)

−−−−−−−−−−−−−−−−−−−→ ϕj−1(Xj−1) −→ . . .

}
.

Again, by functoriality and naturality we have

c−1
j−1ϕj(f j)c

−1
j ϕj+1(f

j+1
) = (cjcj−1)−1ϕj+1(f

j
f
j+1

)

and hence ∂j(g.X ) = (∂jg).(∂jX ).

• Similarly,

∂p(g.X ) =

{
ϕp−1(Xp−1) −→ . . . −→ ϕ0(X0)

c−1
p−1ϕp(f

p
)cpϕ0(f

0
)

−−−−−−−−−−−−−−−→ ϕp−1(Xp−1)

}
.

From

c−1
p−1ϕp(fp)cpϕ0(f

0
) = cp−2 . . . c0ϕ0(f

p
f

0
)

we deduce ∂p(g.X ) = (∂pg).∂pX .

The compatibility with the degeneracy maps also holds because sj(g.X ) for 1 ≤ j ≤ n arises from g.X by
adding an identity at ϕj(Xj), which we can write as the image of the identity of the object Xj under ϕj
combined with the identity transformation. This shows (sjg).(sjX ) = sj(g.X ) and concludes the proof
that the maps (5.3) are simplicial.

3. Finally, we have to prove that the simplicial maps (5.3) form an operad action. While unitality and
equivariance follow directly from the construction, the preservation of composition requires a small com-
putation: For

g` :=

(
ϕ`0

c`0−→ ϕ`1
c`1−→ . . .

c`p−1−−−→ ϕ`p

)
∈ BpO(n`) , 1 ≤ ` ≤ m ,

g :=
(
ϕ0

c0−→ ϕ1
c1−→ . . .

cp−1−−−→ ϕp

)
∈ BpO(m)

and pure tensors X` = (f `
0
, . . . , f `

p
) in (LpD)⊗n` for 1 ≤ ` ≤ m (notation as in (5.6)) we need to prove

g.(g1.X1 ⊗ · · · ⊗ gm.Xm) = (g(g1 ⊗ · · · ⊗ gm)).(X1 ⊗ · · · ⊗ Xm) , (5.7)

where (g(g1 ⊗ · · · ⊗ gm)) is the composition in BO, which is explicitly given by

(g(g1 ⊗ · · · ⊗ gm))

=

{
ϕ0(ϕ1

0 ⊗ · · · ⊗ ϕm0 )
c0ϕ0(c10⊗···⊗c

m
0 )

−−−−−−−−−−−→ ϕ1(ϕ1
1 ⊗ · · · ⊗ ϕm1 ) −→ . . . −→ ϕp(ϕ

1
p ⊗ · · · ⊗ ϕmp )

}
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Indeed, using that D is an O-algebra we arrive at

g.(g1.X1 ⊗ · · · ⊗ gm.Xm)

=

{
ϕp(ϕ

1
p(X

1
p), . . . , ϕ

m
p (Xm

p ))
c−1
p−1ϕp((c1p−1)−1ϕ1

p(f1
p
)⊗···⊗(cmp−1)−1ϕm

p (fm
p

))

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

ϕp−1(ϕ1
p−1(X1

p−1), . . . , ϕmp−1(Xm
p−1)) −→ . . . −→ ϕ0(ϕ1

0(X1
0), . . . , ϕm0 (Xm

0 ))

cpϕ0(c1pϕ
1
0(f1

0
)⊗···⊗cmp ϕ

m
0 (fm

0
))

−−−−−−−−−−−−−−−−−−−−−−→ ϕp(ϕ
1
p(X

1
p), . . . , ϕ

m
p (Xm

p ))

}
=

{
ϕp(ϕ

1
p ⊗ · · · ⊗ ϕmp )(X1

p, . . . , X
m
p )

(cp−1ϕp−1(c1p−1⊗···⊗c
m
p−1))−1ϕp(ϕ1

p⊗···⊗ϕ
m
p )(f1

p
⊗···⊗fm

p
)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

ϕp−1(ϕ1
p−1 ⊗ · · · ⊗ ϕmp−1)(X1

p−1, . . . , X
m
p−1) −→ . . . −→ ϕ0(ϕ1

0 ⊗ · · · ⊗ ϕm0 )(X1
0, . . . , X

m
0 )

cp−1ϕp−1(c1p−1⊗···⊗c
m
p−1)...c0ϕ0(c10⊗···⊗c

m
0 )ϕ0(ϕ1

0⊗···⊗ϕ
m
0 )(f1

0
⊗···⊗fm

0
)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ ϕp(ϕ
1
p ⊗ · · · ⊗ ϕmp )(X1

p, . . . , X
m
p )

}
= (g(g1 ⊗ · · · ⊗ gm)).(X1 ⊗ · · · ⊗ Xm) .

This yields the proof of (5.7) and hence the proof of the Theorem.

5.2 The multiplicative structure on the derived Verlinde algebra

We will obtain the multiplicative structure on the derived Verlinde algebra by applying Theorem 5.1 to the
little disk operad E2 whose space E2(n) of arity n operations is given by the space of affine embeddings from
n disks into another disk, see [Fre17, Chapter 4] for details. This operad describes algebraic structures with a
homotopy associative multiplication whose commutativity behavior is controlled by the braid group.

Definition 5.3. Denote by E2 the little disk operad in the category of simplicial sets (or spaces). By ΠE2 we
denote the operad in groupoids resulting from application of the fundamental groupoid functor Π to E2.

The space E2(n) is an Eilenberg-MacLane space K(Pn, 1), where Pn is the pure braid group on n strands
[Fre17, Chapter 5]. In particular, the unit

E2
'−−→ BΠE2 (5.8)

of the adjunction Π a B between fundamental groupoid Π and the nerve B is a weak equivalence when evaluated
arity-wise on E2. We can also use an alternative description of E2(n) based on the short exact sequence

0 −→ Pn −→ Bn −→ Σn −→ 0

featuring besides the pure braid group Pn also the braid group Bn on n strands and the permutation group Σn
on n letters. The projection Bn −→ Σn defines a transitive action of Bn on Σn, and ΠE2(n) is equivalent to
the corresponding action groupoid,

ΠE2(n) ' Σn//Bn . (5.9)

A permutation σ ∈ Σn describes the affine embedding which aligns n disks next to each other on the equator
of a bigger disk with the order prescribed by σ.

As explained in [Fre17, Chapter 5 and 6], algebras over ΠE2 are equivalent to braided monoidal categories;
and in the description (5.9) of ΠE2(2) we have the correspondences

identity permutation ←−−→ tensor product,

transposition of two letters ←−−→ opposite tensor product,

generator of B2 braiding the two strands ←−−→ braiding.

 (5.10)

Using the free functor k[−] from sets to k-vector spaces we obtain from ΠE2 an operad k[ΠE2] in k-linear
categories. Algebras over this operad are equivalent to k-linear braided monoidal categories.

There is a non-unital version of the E2-operad that we call Ē2. It has the same arity n operations as E2 for
n ≥ 1, but in arity zero, Ē2 is empty unlike E2 which is given by a point in arity zero. Categorical Ē2-algebras
are non-unital braided monoidal categories, i.e. they do not necessarily have a monoidal unit. This leads to the
following elementary observation:

Lemma 5.4. For a finite braided tensor category C over k, the subcategory Proj C ⊂ C of projective objects is a
k[ΠĒ2]-algebra in k-linear categories.
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Proof. Duality and exactness of the monoidal product ensure that the tensor product of two projective objects
is again projective making Proj C a k-linear non-unital monoidal category. If C is additionally braided, Proj C is
a k-linear non-unital braided monoidal category, which proves the assertion.

With these preparations, we may now state the main result on the multiplicative structure of the derived
Verlinde algebra:

Theorem 5.5. For every finite braided category C, the derived coend VC =
∫X∈Proj C
L C(X,X) is naturally a

differential graded non-unital E2-algebra that we refer to as derived Verlinde algebra.

Proof. Since C is a finite braided category over k, Proj C is a k[ΠĒ2]-algebra in k-linear categories by Lemma 5.4.
By Theorem 5.1 applied to the groupoid-valued operad ΠĒ2 we obtain a k[BΠĒ2]-algebra structure on LProj C.
By taking the operadic pullback along the equivalence k[Ē2]

'−→ k[BΠĒ2] induced by (5.8), we obtain a k[Ē2]-
algebra structure on LProj C. Finally, we apply the symmetric lax monoidal functor N∗ and use (5.2) to see

that
∫X∈Proj C
L C(X,X) is an algebra over the chains on Ē2. This proves the claim.

In order to write down the product of the homotopy associative differential graded algebra underlying the
derived Verlinde algebra, we need to establish some notation: Recall from (5.1) that elements f, g ∈ Ln Proj C
are loops of n+ 1 morphisms between projective objects in C. Using the monoidal product • of C we can tensor
the morphisms of f and g together to obtain an element in Ln Proj C that we denote by f • g. Next recall that
for 0 ≤ j ≤ n the degeneracy map sj : Ln Proj C −→ Ln+1 Proj C inserts the identity of the j-th object. For a
(p, q)-shuffle (µ, ν) = (µ1, . . . , µp, ν1, . . . , νq), i.e. a permutation of {1, . . . , p + q} such that µ1 < µ2 < · · · < µp
and ν1 < ν2 < · · · < νq, we define the compositions

sµ := sµp−1 ◦ · · · ◦ sµ1−1 , sν := sνq−1 ◦ · · · ◦ sν1−1

of degeneracy maps.

Corollary 5.6. The multiplication ∗ of the derived Verlinde algebra VC from Theorem 5.5 is explicitly given
by the formula

f ∗ g =
∑

(p,q)-shuffles (µ,ν)
of p+ q

sign(µ, ν) sν(f) • sµ(g) for f ∈ VCp , g ∈ VCq . (5.11)

Proof. From (5.10) and the construction of the operadic action in the proof of Theorem 5.1 it follows that the
E2-multiplication on LProj C comes from tensoring loops of morphisms together using the monoidal product of

C. In order to obtain a formula for this multiplication on
∫X∈Proj C
L C(X,X), we use the structure maps of the

symmetric lax monoidal functor N∗, namely the Eilenberg-Zilber maps [Wei94, 8.5.4], and arrive at (5.11).

Remark 5.7 (Gerstenhaber bracket). By [Co76] the homology of an E2-algebra is a Gerstenhaber algebra.
Invoking the non-unital version of this result, we find on the homology of the derived Verlinde algebra the
structure of a non-unital Gerstenhaber algebra, particular a Gerstenhaber bracket. A further investigation of
this bracket is beyond the scope of this article.

Example 5.8 (Boundary conditions and the Swiss-Cheese operad). Theorem 5.1 has also applications
to topological field theories with boundary conditions: Consider a braided finite tensor category C and a finite
tensor category W together with a braided monoidal functor F : C −→ Z(W). Such a structure appears in
the description of boundary condition in three-dimensional topological field theory [FSV12]. By one of the
main results of [Idr17], this structure precisely amounts to (C,W, F ) being a categorical algebra over the Swiss-
Cheese operad introduced by Voronov [Vor99]. Now we can conclude from Theorem 5.1 (strictly speaking,

from a colored version thereof) that the Hochschild chains
∫X∈Proj C
L C(X,X) and

∫ Y ∈ProjW
L W(Y, Y ) of C and

W and the map between those induced by F form a differential graded Swiss-Cheese algebra. By [Hoe09] the
corresponding homology yields an algebraic structure closely related to the homotopy algebras used by Kajiura
and Stasheff [KS06] for the description of open-closed string field theories.

Remark 5.9 (Application to finite ribbon categories). If we are given a finite ribbon category C,
then its projective objects form a non-unital framed E2-algebra in k-linear categories. Using Theorem 5.1 and

arguments similar to those in the proof of Theorem 5.5 we can conclude that
∫X∈Proj C
L C(X,X) is a non-unital

framed E2-algebra making its homology a non-unital Batalin-Vilkovisky algebra. For the framed little disk
operad, its categorical algebras and its homology we refer to [SW03].
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5.3 The equivariant case: Differential graded little bundles algebras

Based on the discussion of the derived Verlinde algebra and its motivation by topological field theory, we can
suggest, for a given finite group G, a reasonable candidate for a Hochschild complex of a braided G-crossed
monoidal category in the sense of Turaev and exhibit an interesting multiplicative structure on it. We will first
write down the candidate for the Hochschild complex and guess a multiplicative structure based on the ties of
braided crossed monoidal categories to equivariant field theories. Then, we will turn this intuition into a precise
statement using the little bundles operad defined in [MW19] motivated by its relation to (∞, 1)-G-equivariant
topological field theories [MW20].

The notion of a braided G-crossed monoidal category is based on [Tur00, Tur10-II]. In the semisimple case,
these categories are well-studied objects in equivariant representation theory [Müg04, Kir04, GNN09]. We follow
the definition of [Gal17], where in comparison to [Tur10-II] more general coherence conditions are considered:
For a finite group G, a braided G-crossed category is a k-linear category C that comes with a decomposition
C =

⊕
g∈G Cg and is equipped with the following data:

• A homotopy coherent action of G on C making h ∈ G act as an equivalence Cg −→ Chgh−1 , X 7−→ h.X.

• A k-linear monoidal product sending Cg ⊗ Ch to Cgh.

• A G-braiding consisting of natural isomorphisms

X ⊗ Y ∼= g.Y ⊗X

for X ∈ Cg and Y ∈ Ch (this does not yield a braiding on C).

For the details on the compatibilities and coherence requirements we refer to [Gal17], see also [MNS12] and,
additionally, [MW19] for a description of braided G-crossed categories as algebras over the G-colored operad of
parenthesized G-braids. We define a finite braided G-crossed tensor category as a k-linear braided G-crossed
monoidal category whose underlying k-linear monoidal category is a finite tensor category.

Categories of this type are intimately related to three-dimensional G-equivariant topological field theory
[Tur10-II], a flavor of topological field theory in which all manifolds are equipped with principal G-bundles. The
decoration with G-bundles leads to interesting phenomena which are not present in the non-equivariant case.

Semisimple G-modular categories (a special type of finite braided G-crossed tensor categories) are used
in [TV14] to construct a three-dimensional topological field theory. Conversely, given an extended three-
dimensional G-equivariant topological field theory, its evaluation on the circle is a semisimple G-(multi)modular
category [SW19]. In the non-semisimple case, this interpretation of braided G-crossed tensor categories in terms
of topological field theory breaks down as in the non-equivariant case.

Still, the perspective of topological field theory yields some tools for the study of non-semisimple finite
braided G-crossed tensor categories: If C =

⊕
g∈G Cg is a semisimple G-modular category, then the evaluation

of the three-dimensional topological field theory built from C on the torus decorated with the bundle specified

by the two commuting holonomies g, z ∈ G is given by the coend
∫X∈Cg Cg(z.X,X) as explained in a different

language in [Tur10-II, Section VII.3] and worked out in terms of coends in [SW19, Section 4.6]. This suggests
that in the non-semisimple case the collection of derived coends∫ X∈Proj Cg

L
Cg(z.X,X) (5.12)

provide a reasonable generalization of Hochschild chains to the equivariant case. More importantly, the topo-
logical intuition gives us an idea of the multiplicative structure that we should discover: Following the ideas laid
out at the beginning of Section 5, crossing the pair of pants with a circle yields a bordism T2tT2 −→ T2. In the
equivariant case, this bordism has to be decorated with G-bundles. Upon fixing a central element z ∈ Z(H),
each pair of group elements g1, g2 ∈ G will provide the holonomies for a G-bundle on the bordism T2tT2 −→ T2

(for this we need z to commute with g1 and g2); i.e. when denoting the bundle specified by the holonomies z
and some g by (z, g), we obtain a decorated bordism(

T2, (z, g1)
)
t
(
T2, (z, g2)

)
−→ (T2, (z, g1g2)) . (5.13)

Note that we treat here the two S1-factors of the torus differently. The fact that the holonomies g1 and g2

multiply is a consequence of the fundamental group of the pair of pants. The decorated bordism (5.13) should
give us a multiplication∫ X∈Proj Cg1

L
Cg1(z.X,X)⊗

∫ X∈Proj Cg1

L
Cg2(z.X,X) −→

∫ X∈Proj Cg1g2

L
Cg1g2(z.X,X) (5.14)
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compatible with the group multiplication. The commutativity behavior should be determined by the braid group
action on the groupoid of G-bundles over the complement of little disk embeddings. For instance, consider an
embedding of two disks into a bigger disk and a bundle on the complement of this embedding. Such a bundle
is determined by the holonomies g and h around the boundaries of the two embedded disks. When moving the
disks past each other, these holonomies transform to ghg−1 and h:

gghg−1

g−→

g h

On the left disk we have indicated the homotopy of classifying maps that acts as a gauge transformation

h
g−−→ ghg−1. The multiplication (5.14) should have a symmetry behavior reflecting the topological situation.
As the main result of this section, we prove that indeed this topological intuition describes the multiplicative

structure (5.14) accurately. We do this by showing that for a fixed central element z ∈ Z(G) the assignment

g 7−→
∫X∈Proj Cg
L Cg(z.X,X) provides a (non-unital) algebra over the differential graded little bundles operad

EG2 introduced in [MW19].
The little bundles operad is an aspherical topological operad whose colors are the bundles over the circle

(modeled as loops in BG) and whose operations EG2
(
ψ
ϕ

)
from a family ϕ = (ϕ1, . . . , ϕn) to ψ are given by affine

embeddings f ∈ E2(n) equipped with a bundle on the complement of the image of f restricting to the bundle
(ϕ1, . . . , ϕn) on the n inner boundary circles and to ψ on the outer boundary circle. The little bundles operad
can be seen as an operad built from Hurwitz spaces, i.e. from the homotopy quotient of the braid group action
on the moduli space of G-bundles over a punctured plane.

In [MW19, Theorem 4.11 and 4.13] ΠEG2 is shown to be equivalent to the G-colored operad PBrG of
parenthesized G-braids whose categorical algebras are precisely braided G-crossed monoidal categories. This
turns the latter into a ‘topological object’. In the following we will suppress the difference between ΠEG2 and
PBrG in the notation.

Using the little bundles operad we can now make a precise statement about the family of complexes (5.12):

Theorem 5.10. Let G be a finite group and z ∈ Z(G) a fixed element in its center. Then for any finite braided
G-crossed tensor category C, the assignment

g 7−→ VC,zg :=

∫ X∈Proj Cg

L
Cg(z.X,X)

defines a non-unital EG2 -algebra in differential graded vector spaces, i.e. a non-unital differential graded little
bundles algebra. We refer to (VC,zg )g∈G as the G-equivariant derived Verlinde algebra of C and the central
element z ∈ Z(G).

Remark 5.11. The homology H∗(VC,z) =
⊕

g∈GH∗(VC,zg ) of the G-equivariant Verlinde algebra is a differential
graded algebra, but in contrast to the non-equivariant case it is not graded commutative. Instead, for x ∈
Hp(VC,zg ) and y ∈ Hq(VC,zh )

xy = (−1)pq(g.y)x .

Proof of Theorem 5.10. In analogy to (5.1), we define Lz Proj Cg as the simplicial vector space given by

Lzn Proj Cg =
⊕

X0,...,Xn∈Proj Cg

Cg(X1, X0)⊗ · · · ⊗ Cg(Xn, Xn−1)⊗ Cg(z.X0, Xn) .
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in degree n.
As in the proof of Theorem 5.5, it is now sufficient to prove that G 3 g 7−→ Lzn Proj Cg is a k[BΠĒG2 ]-algebra

in simplicial vector spaces, where ĒG2 is the non-unital little bundles operad.
The action needed to establish this consists of maps

k
[
BΠĒG2

](h
g

)
⊗ Lz Proj Cg −→ Lz Proj Ch ,

where Lz Proj Cg := Lz Proj Cg1 ⊗ · · · ⊗ Lz Proj Cgn , g = (g1, . . . , gn)

of simplicial vector spaces for n ≥ 0 which are formed by linear maps

k
[
BpΠĒ

G
2

](h
g

)
⊗ Lzp Proj Cg −→ Lzp Proj Ch (5.15)

for any simplicial degree p ≥ 0.
When combining [MW19, Theorem 4.13] with duality and the exactness of the tensor product, we see that

Proj C is a k[ΠĒG2 ]-algebra (compare to Lemma 5.4). This fact will be used to construct the maps (5.15): For
an element

g :=
(
ϕ0

c0−→ ϕ1
c1−→ . . .

cp−1−−−→ ϕp

)
∈ BpΠĒG2

(
h

g

)
the object ϕj will act as a linear functor ϕj : Cg −→ Ch (denoted by the same symbol), where Cg := Cg1⊗· · ·⊗Cgn
and 0 ≤ j ≤ p, and the cj will yield natural isomorphisms ϕj

cj∼= ϕj+1 for 0 ≤ j ≤ p− 1. We write a pure tensor
X of Lzp Proj Cg as a family

X :=


X1,p

f1,p−−→ X1,p−1
f1,p−1−−−−→ . . .

f1,1−−→ X0,0 z.X1,0
f1,0−−→ X1,p

...
. . .

...
...

...

Xn,p
fn,p−−−→ Xn,p−1

fn,p−1−−−−→ . . .
fn,1−−→ Xn,0 z.Xn,0

fn,0−−→ Xn,p


where the morphisms in the `-th row live in Cg` , 1 ≤ ` ≤ n. Note that unlike in the non-equivariant case,
these are not loops (not even strings), and we have indicated the ‘interruption’ by a vertical line. It is now a
crucial observation that z commutes with every little bundles operation o : Cg −→ Ch in the sense that there

is a canonical natural isomorphism z.o(−) ∼= o.(z.−). This follows from the fact that G acts by monoidal
functors on C and that z lies in the center of G. Using again the shorthands Xj := (X1,j , . . . , Xn,j) ∈ D⊗n,
f
j

:= f1,j ⊗ · · · ⊗ fn,j for 0 ≤ j ≤ p and cp := cp−1 . . . c0, we define the image g.X of g ⊗X under (5.15) by

g.X :=

{
ϕp(Xp)

c−1
p−1ϕp(f

p
)

−−−−−−−−−→ ϕp−1(Xp−1) −→ . . . −→ ϕ0(X0)

∣∣∣∣∣ z.ϕ0(X0) ∼= ϕ0(z.X0)
cpϕ0(f

0
)

−−−−−−−→ ϕp(Xp)

}
.

Direct, but tedious computations similar to those in the proof of Theorem 5.1 show that these maps are simplicial
and form an operad action.
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