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Abstract

Covariant Lyapunov vectors (CLVs) are intrinsic modes that describe
long-term linear perturbations of solutions of dynamical systems. With re-
cent advances in the context of semi-invertible multiplicative ergodic the-
orems, existence of CLVs has been proved for various infinite-dimensional
scenarios. Possible applications include the derivation of coherent struc-
tures via transfer operators or the stability analysis of linear perturbations
in models of increasingly higher resolutions.

We generalize the concept of Ginelli’s algorithm to compute CLVs in
Hilbert spaces. Our main result is a convergence theorem in the setting of
[González-Tokman, C. and Quas, A., A semi-invertible operator Oseledets

theorem, Ergodic Theory and Dynamical Systems, 34.4 (2014), pp. 1230-
1272]. The theorem relates the speed of convergence to the spectral gap
between Lyapunov exponents. While the theorem is restricted to the
above setting, our proof requires only basic properties that are given in
many other versions of the multiplicative ergodic theorem.

Keywords: covariant Lyapunov vectors (CLVs); multiplicative ergodic
theorem, Ginelli algorithm; Hilbert spaces
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1 Introduction

Covariant Lyapunov vectors (CLVs) characterize the asymptotically most ex-
panding directions in tangent space along trajectories in dynamical systems.
They have been described as the “physically relevant” modes in dissipative sys-
tems [24] and have been used to detect coherent structures, i.e., slow mixing sets,
via the Perron-Frobenius operator [7, 8, 12], the dual of the Koopman operator.
Recent research on coherent structures includes the analysis of large scale fea-
tures of the ocean and atmosphere relevant for climate [12, chapter 6]. Apart
from techniques involving transfer operators, CLVs have been used directly to
analyze instabilities in coupled models. Two examples are the assessment of
long-term predictability in an ocean-atmosphere model [25] and the decoupling
of instabilities into modes associated to different time-scales to analyze mixing
in a two-scale Lorenz 96 model [4].

In this article, we generalize the concept of Ginelli’s algorithm [11] to com-
pute CLVs for even infinite-dimensional settings. Our main contribution is a
convergence result in the context of Hilbert spaces.

To prove convergence and to guarantee existence of CLVs, we need the mul-
tiplicative ergodic theorem (MET). While the original MET from 1968 is due to
Oseledets [20], until today various other versions emerged (e.g., see [1–3, 5, 7, 8,
13, 14, 17, 23]). Their application ranges from deterministic to stochastic sys-
tems in finite and infinite dimensions. Moreover, there is a distinction between
non-invertible and invertible versions. Noninvertible versions only derive an Os-
eledets filtration, whereas invertible versions yield an Oseledets splitting. The
corresponding spaces of the splitting are called Oseledets spaces and give rise
to the CLVs. Aside from non-invertible and invertible versions, there is a third,
more recent class of semi-invertible METs. Versions of this class still provide
an Oseledets splitting and, for instance, can be applied to transfer operators.
Several semi-invertible METs were proved for infinite-dimensional scenarios [8,
13, 14]. Here, we follow the semi-invertible MET from [13]. For an overview
of the history of METs and applications to transfer operators in the context of
non-autonomous systems, we highly recommend reading [12].

To prove existence of an Oseledets splitting, [13] pushes forward a set of
special complements of the Oseledets filtration from the far past to the present
state along trajectories. Indeed, it turns out that complements of the Oseledets
filtration will align with sums of the first Oseledets spaces in forward-time gener-
ically. This idea was used by Ginelli et al. to compute CLVs [10, 11] or, more
generally, Oseledets spaces. The first part of their algorithm approximates sums
of Oseledets spaces through past data, while the second part uses future data
to extract an approximation of CLVs from the former approximations. Its dy-
namical description distinguishes Ginelli’s algorithm from other approaches [9,
16, 26] and makes it applicable to a wide range of scenarios.

We generalize an existing convergence result for invertible systems in finite
dimensions [18] to a broader setting on Hilbert spaces. While [18] heavily focuses
on a singular value decomposition of the linear propagator, as it appears in the
proof of the MET from [1], we use a purely dynamical approach. With the help
of well-separating common complements [19] of the Oseledets filtration, we are
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able to prove the following:

Theorem. In the setting of [13] for Hilbert spaces, Ginelli’s algorithm conver-
gence for almost every initial configuration. The convergence is exponentially
fast with a rate given by the spectral gap between corresponding Lyapunov expo-
nents.

Even though the theorem is proved for Hilbert spaces, many arguments of
the proof hold for Banach spaces. In fact, we formulate the majority of the
theory and tools for Banach spaces. Moreover, we only require basic properties
stated in the MET. Hence, our results may be translated to other scenarios
apart from [13].

We begin the article by laying foundations. Section 2.1 introduces Grass-
mannians. They naturally appear in the MET and are essential for our conver-
gence proof later on. In Section 2.2 we state the MET from [13]. We extract
basic asymptotic properties found in the proof of the MET. Those properties
are not unique to [13], but can also be found in other versions of the MET.

Section 3 presents our new research. After defining Ginelli’s algorithm in
Section 3.1, we devote the remaining subsections to prove our convergence the-
orem. Section 3.2 treats forward propagation, whereas Section 3.3 adds back-
ward propagation along certain subspaces to the forward propagation. Both
subsections are formulated in the context of maps on Banach spaces. Hence,
they can be applied to a potentially larger class of systems than given by [13]. In
Section 3.4 we combine the derived tools to come up with a convergence proof
of Ginelli’s algorithm on Hilbert spaces.

2 Setting

Before introducing Ginelli’s algorithm, we need to derive Oseledets spaces
and their asymptotic properties from the MET. Oseledets spaces are finite-
dimensional subspaces complemented by closed subspaces of the Oseledets
filtration. In particular, they are elements of the Grassmannian of X . Under-
standing pairs of complementary subspaces from the MET is fundamental for
our convergence proof, since they encode the different asymptotic growth rates
of linear perturbations.

Let us start by introducing Grassmannians.

2.1 Grassmannians

Definition 2.1. Let X be a Banach space. The Grassmannian G(X) is the
set of closed complemented subspaces of X, i.e., closed subspaces V ⊂ X such
that there is a closed subspace W ⊂ X with X = V ⊕ W . It contains Gk(X),
the set of k-dimensional subspaces, and Gk(X), the set of closed subspaces of
codimension k.

The Grassmannian G(X) can be equipped with a metric dG(V, W ) via the
Hausdorff distance between V ∩ B and W ∩ B, where B denotes the closed unit
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ball in X [13, appendix B]:

dG(V, W ) := dH(V ∩ B, W ∩ B)

= max

(

sup
v∈V ∩B

d(v, W ∩ B), sup
w∈W ∩B

d(w, V ∩ B)

)

= max

(

sup
v∈V ∩B

inf
w∈W ∩B

‖v − w‖, sup
w∈W ∩B

inf
v∈V ∩B

‖w − v‖

)

for V, W ∈ G(X). Another possible metric is given by exchanging B with the
unit sphere S in the above definition [15, chapter IV, §2.1]. As our definition
of dG lies between the “gap” and the metric from [15], both metrics induce the
same topology and make G(X) into a complete metric space.

The symmetry of dG is an immediate consequence of the symmetric definition
of dH . This kind of definition is necessary, since supv∈V ∩B d(v, W ∩ B) and
supw∈W ∩B d(w, V ∩ B) are different in general. However, if one term is small,
then so is the other [13, lemma B.7].

Lemma 2.2. If V, W ∈ Gk(X) are subspaces of dimension k, then

sup
v∈V ∩B

d(v, W ∩ B) =: r < 3−k/4 =⇒ dG(V, W ) < 4 · 3kr.

If V, W ∈ Gk(X) are closed subspaces of codimension k, then

sup
v∈V ∩B

d(v, W ∩ B) =: r < 3−k/8 =⇒ dG(V, W ) < 8 · 3kr.

Thus, when investigating convergence inside Gk(X) or Gk(X), it is enough
to estimate only one of the two terms in the definition of dH .

Ultimately, we want to approximate Oseledets spaces, which are special
finite-dimensional complements of spaces of the Oseledets filtration. Hence,
we will be working with tuples of the set

Compk(X) := {(Y, Z) ∈ Gk(X) × Gk(X) | X = Y ⊕ Z}

for k ∈ N. Given such a tuple, each x ∈ X can be written uniquely as x = y + z
according to the associated splitting. In particular, we get two projections
ΠY ||Z : X → Y and ΠZ||Y : X → Z, which are bounded linear operators by
the closed graph theorem. It can be shown that they are stable with respect to
perturbations of the tuple (Y, Z) [13, lemma B.18].

Lemma 2.3. The mapping Compk(X) → L(X) given by (Y, Z) 7→ ΠY ||Z is
continuous, where Compk(X) has the product topology induced by G(X) and the
space L(X) of bounded linear operators on X is equipped with the norm topology.

Finally, we need one more concept for Grassmannians. Given a sequence of
subspaces (Vn)n∈N ⊂ Gk(X), we ask for common complements, i.e., subspaces
W ⊂ X with (W, Vn) ∈ Compk(X) for all n. Natural questions are the existence
and quantity of common complements. A recent paper links these questions to
quality assumptions [19]. A complement is called well-separating if the degree
of transversality1 infx∈W, ‖x‖=1 d(x, Vn) of the tuple (W, Vn) decays at most

1Our notion of the degree of transversality coincides with the sine of the minimal angle
between two subspaces of a Banach space from [3].
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subexponentially with n. Well-separating common complements can be used
without interfering on exponential scales that are important for our convergence
proof later on.

Definition 2.4. Let (Vn)n∈N ⊂ Gk(X) be given. A common complement W ∈
Gk(X) of (Vn)n∈N is called well-separating w.r.t. (Vn)n∈N if

lim
n→∞

1

n
log inf

x∈W ∩S
d(x, Vn) = 0. (1)

Using the concept of prevalence [21], [19] proves that almost every tuple of
vectors induces a well-separating common complement if there exists at least
one such complement. Since existence is guaranteed in Hilbert spaces, we have
the following theorem.

Theorem 2.5. Let H be a Hilbert space and let (Vn)n∈N ⊂ Gk(H). Almost
every tuple (x1, . . . , xk) ∈ Hk induces a well-separating common complement of
(Vn)n∈N via span(x1, . . . , xk).

This theorem plays a crucial role in our convergence proof. In fact, existence
of well-separating common complements in Banach spaces would suffice to prove
a version of Theorem 2.5 for Banach spaces. Hence, we formulate our results
in Section 3 at the level of Banach spaces while leaving open the question of
generality until Section 3.4, where we restrict ourselves to Hilbert spaces.

2.2 Multiplicative ergodic theorem

METs describe asymptotic behavior of linear perturbations of trajectories in dy-
namical systems in terms of an Oseledets filtration or in terms of an Oseledets
splitting. We state the semi-invertible MET from [13] to extract basic asymp-
totic properties that are needed to compute Oseledets spaces. Prior to that, let
us recall a few preliminary facts from [13, section 2.1].

Our choice of MET requires a strongly measurable random dynamical system
R = (Ω, F ,P, σ, X, L). It consists of a base (flow) and a cocycle describing
the tangent linear dynamics. The base σ : Ω → Ω is a probability-preserving
transformation of a Lebesgue space (Ω, F ,P). It is linked to the cocycle via the
generator, which is a strongly measurable map L : Ω → L(X), i.e., L(.)x : Ω →
X is (F , BX)-measurable for every x ∈ X . Iterative applications of L along

trajectories yield the cocycle L
(n)
ω := L(σn−1ω) ◦ · · · ◦ L(ω). Moreover, we call

the random dynamical system separable if the Banach space X is separable.
Given a bounded linear operator A ∈ L(X), we define the index of compact-

ness of A as

‖A‖ic(X) :=

inf{r > 0 | A(B) can be covered by finitely many balls of radius r}.

Proposition 2.6. Let R = (Ω, F ,P, σ, X, L) be a separable strongly measur-
able random dynamical system such that log+ ‖L(ω)‖ ∈ L1(Ω, F ,P), where
log+(t) := max(0, log t).

For P-a.e. ω ∈ Ω, the maximal Lyapunov exponent

λ(ω) := lim
n→∞

1

n
log ‖L(n)

ω ‖ (2)
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and the index of compactness

κ(ω) := lim
n→∞

1

n
log ‖L(n)

ω ‖ic(X) (3)

exist. Furthermore, λ and κ are measurable and σ-invariant.
If σ is ergodic, then λ and κ are constant P-almost everywhere. Denote those

constants by λ∗ and κ∗. It holds κ∗ ≤ λ∗ < ∞.

We call a separable strongly measurable random dynamical system with
ergodic base quasi compact if κ∗ < λ∗. For such systems, [5] derived the ex-
istence of an Oseledets filtration as a corollary of the two-sided MET by Lian
and Lu [17]. If we additionally assume that the base is invertible, [13] proves a
semi-invertible MET with a splitting that is similar to the Oseledets splitting
obtained in fully invertible METs.

Theorem 2.7. Let R = (Ω, F ,P, σ, X, L) be a separable strongly measur-
able random dynamical system over an ergodic invertible base such that
log+ ‖L(ω)‖ ∈ L1(Ω, F ,P). Furthermore, assume that R is quasi-compact.

There exist 1 ≤ l ≤ ∞ exceptional Lyapunov exponents λ∗ = λ1 > · · · >
λl > κ∗ (or if l = ∞: λ1 > λ2 > · · · > κ∗ and limn→∞ λn = κ∗), multiplicities
m1, . . . , ml ∈ N, and a unique, measurable splitting of X into closed subspaces

X =
l
⊕

j=1

Yj(ω) ⊕ V (ω)

defined on a σ-invariant subset Ω′ ⊂ Ω of full P-measure such that the following
hold for ω ∈ Ω′:

1. the splitting is equivariant, i.e., L(ω)V (ω) ⊂ V (σω) and L(ω)Yj(ω) =
Yj(σω),

2. dim Yj(ω) = mj,

3. limn→∞(1/n) log ‖L
(n)
ω y‖ = λj for y ∈ Yj(ω) \ {0},

4. lim supn→∞(1/n) log ‖L
(n)
ω v‖ ≤ κ∗ for v ∈ V (ω),

5. the norms of the projections associated to the splitting are tempered
with respect to σ, where a function f : Ω → R is called tempered if
limn→±∞(1/n) log |f(σnω)| = 0 for P-a.e. ω.

We call the above splitting Oseledets splitting and the spaces Yj(ω) Oseledets
spaces. The Oseledets filtration X = V1(ω) ⊃ · · · ⊃ Vl(ω) ⊃ Vl+1(ω) from
Doan’s theorem can be reconstructed via Vl+1(ω) = V (ω) and

Vk(ω) =

l
⊕

j=k

Yj(ω) ⊕ V (ω) (4)

for 1 ≤ k ≤ l.
In Section 3.1 we provide a method to compute the first p ≤ l, p < ∞, Os-

eledets spaces for fixed ω. The method requires cocycle data along the trajectory
{σnω | n ∈ Z} and basic asymptotic properties that appear in the proofs of the
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METs from [5] and [13]. That is, we need uniform upper bounds for asymptotics
of the Oseledets filtration and uniform lower bounds for asymptotics of the Os-
eledets splitting. While bounds for the Oseledets filtration can be recovered
from Doan’s work [5]:

lim
n→∞

1

n
log ‖L(n)

ω |Vj (ω)‖ = λj (5)

for 1 ≤ j ≤ l and

lim sup
n→∞

1

n
log ‖L(n)

ω |V (ω)‖ ≤ κ∗, (6)

bounds for the Oseledets splitting are due to [13]. By choosing a suitable basis,
González-Tokman and Quas reduce the cocycle along Yj to a cocycle of matrices
(similar to [8, lemma 19]) for which uniform estimates are known. They arrive
at [13, lemma 2.14] showing that, for every ǫ > 0 and for P-a.e. ω, there is a
constant cj(ω) > 0 such that

‖L(n)
ω y‖ ≥ cj(ω)en(λj−ǫ)

holds for every n ≥ 0 and y ∈ Yj(ω) ∩ S. By applying the same arguments to
the sum of Oseledets spaces Y1(ω) ⊕ · · · ⊕ Yj(ω), we get uniform lower bounds
of growth rates inside sums of Oseledets spaces

lim inf
n→∞

inf
y∈Y1(ω)⊕···⊕Yj(ω)∩S

1

n
log ‖L(n)

ω y‖ ≥ λj . (7)

In addition to the bounds for L
(n)
ω , we need similar bounds for L

(n)
σ−nω

.
Those can be obtained by applying [7, lemma 8.2] to the sequences of func-

tions (log ‖L
(n)
ω |Vj(ω)‖)n∈N and (log ‖L

(n)
ω |V (ω)‖)n∈N. We obtain

lim
n→∞

1

n
log ‖L

(n)

σ−nω
|Vj(σ−nω)‖ = λj (8)

for 1 ≤ j ≤ l and

lim sup
n→∞

1

n
log ‖L

(n)
σ−nω

|V (σ−nω)‖ ≤ κ∗ (9)

for P-a.e. ω. Uniform lower bounds for the Oseledets splitting are again obtained
from reduced systems via matrix cocycles (e.g., see proof of [8, lemma 20]). We
have

lim inf
n→∞

inf
y∈Y1(σ−nω)⊕···⊕Yj(σ−nω)∩S

1

n
log ‖L

(n)
σ−nω

y‖ ≥ λj . (10)

The uniform estimates for L
(n)
ω and L

(n)
σ−nω

are then used in [13] to prove tem-
peredness of projections from Theorem 2.7.

Observe that ker L
(n)
ω ⊂ V (ω) and ker L

(n)
σ−nω

⊂ V (σ−nω) for every n ∈ N.

Indeed, ker L
(n)
ω ⊂ V (ω) follows from the different growth rates of the Oseledets

splitting. Since ker L
(n)
ω ⊂ V (ω) holds on a σ-invariant subset of Ω, we get

ker L
(n)
σ−nω

⊂ V (σ−nω).
Besides the uniform estimates, our convergence proof only needs the proper-

ties stated in Theorem 2.7. We remark that these properties are present in most
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versions of the MET that derive an Oseledets splitting. Hence, by adjusting the
notation, Section 3 can be generalized to various MET-scenarios. In particu-
lar, it generalizes the convergence proof from [18], which assumes the invertible
two-sided MET found in [1].

3 Computing covariant Lyapunov vectors

In this section we provide a method to compute covariant Lyapunov vectors
(CLVs). CLVs are a choice of basis vectors for Oseledets spaces that are nor-
malized and covariant, meaning that CLVs at ω are mapped to CLVs at σnω

by L
(n)
ω up to normalizing factors. According to the MET those factors have an

exponential growth rate given by the associated Lyapunov exponents. Hence,
CLVs describe asymptotic behavior of linear perturbations along trajectories.
Using covariance and using that L is invertible on Oseledets spaces, we may
push forward and backward CLVs at ω to obtain CLVs along the whole trajec-
tory. Thus, the goal is to compute normalized basis vectors of Oseledets spaces
at ω.

Our method of choice is the Ginelli algorithm described in Section 3.1. It

can be divided into two steps: one using L
(n)
σ−nω

to get an approximation of

Y1(ω) ⊕ · · · ⊕ Yj(ω) and one using L
(n)
ω and (L

(n)
ω )−1 (where it is defined) to

extract an approximation of Yj(ω) from the former approximation. We derive es-

timates involving forward propagation via L
(n)
σ−nω

and L
(n)
ω in Section 3.2 and es-

timates involving backward propagation via (L
(n)
ω )−1 in Section 3.3. Section 3.4

combines those estimates to prove convergence of Ginelli’s algorithm.

3.1 Ginelli algorithm

There are various algorithms to compute CLVs (see [10, 11, 16, 26] or see [9] for
a comparison). While they differ in their implementation, from an analytical
point of view they rely either on computing a singular value decomposition of
the cocycle (or its adjoint) or on pushing forward/backward a set of randomly
chosen vectors. The first kind of methods can be analyzed directly using a
technique due to Raghunathan [22] (or see [1]) that proves Oseledets’ MET via
a singular value decomposition of the cocycle. The second kind of methods
can be analyzed using the different asymptotic growth rates associated to the
Oseledets splitting. In particular, the latter may be used for METs on Banach
spaces, like Theorem 2.7, where we may not have a singular value decomposition.
Ginelli’s algorithm [11] is part of the second class of methods.

The fundamental idea behind Ginelli’s algorithm is that almost every vector
has a non-vanishing projection (subject to the Oseledets splitting) onto the first
Oseledets space. Since vectors inside the first Oseledets space have the highest
exponential growth rate, almost every vector will align with the first Oseledets
space asymptotically in forward-time. Similarly, we expect the linear span of
k = m1 + · · · + mj randomly chosen vectors to align with the fastest expanding
k-dimensional subspace, the sum of the first j Oseledets spaces, in forward-time.
Reversing time, the fastest growing direction inside Y1 ⊕ · · · ⊕ Yj is the slowest
growing direction in forward-time, i.e., the subspace Yj . Thus, we have a means
to compute Oseledets spaces.
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Figure 1: Ginelli’s algorithm at the level of Grassmannians

L L

L−1

σ−n1 ω ω σn2 ω

W L
(n1)

σ−n1 ω
W L

(n1+n2)

σ−n1 ω
W

W̃

(

L
(n2)
ω |

L
(n1)

σ−n1 ω
W

)−1

W̃

At the level of Grassmannians, Ginelli’s algorithm starts with a randomly
chosen subspace W ∈ Gm1+···+mj

(X), which is propagated from the far past

to the present via L
(n1)

σ−n1 ω
to get an approximation of Y1(ω) ⊕ · · · ⊕ Yj(ω) for

large n1. Then, L
(n1)

σ−n1 ω
W is propagated further via L

(n2)
ω to approximate Y1 ⊕

· · · ⊕ Yj in the far future. Next, the algorithm randomly chooses a subspace

W̃ ∈ Gmj
(L

(n1+n2)

σ−n1 ω
W ). This subspace is propagated backward to approximate

Yj(ω) for large n1, n2. (see Fig. 3.1)
In practice we express W in terms of a basis (x1, . . . , xk). By propagating

these vectors, we can track the evolution of W . Similarly, we express W̃ in
terms of a basis. The corresponding vectors can be described as coefficients of
the propagated vectors of W . Hence, the backward propagation can be done
solely inside a finite-dimensional coefficient space.

Let X = H be a Hilbert space. To avoid that all vectors x1, . . . , xk collapse
onto the first Oseledets space, which renders them numerically indistinguish-
able, Ginelli et al. suggest to orthonormalize them between smaller propagation
steps. While this procedure does not change the outcome of Ginelli’s algorithm
analytically, as the involved spaces remain the same, it helps with numerical
stability. In particular, they use a QR-decomposition to store orthonormalized
vectors in a matrix Q and the cocycle on coefficient space in a matrix R for
each propagation step. The upper diagonal R-matrices can easily be inverted to
perform the backward propagation in coefficient space. Using the identification,
we substitute initial vectors for the backward propagation by an upper diagonal
matrix representing their coefficients. For a more detailed description of the
implementation in finite dimensions and examples see [10, 11].

Taking the above into account, we define (the analytical kernel2 of) Ginelli’s
algorithm on Hilbert spaces as

Gn1,n2

ω,k : Hk × R
k×k
ru → Hk, (11)

where ω ∈ Ω defines the trajectory, k ≤ m1 + · · · + mp < ∞ is the number
of CLVs we wish to compute, n1, n2 ∈ N is the amount of steps needed along
the past and the future of the trajectory, and R

k×k
ru denotes the set of upper

2We leave out numerical details of the implementation from [11], since they do not affect
the output of Ginelli’s algorithm analytically.
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diagonal k × k-matrices. Gn1,n2

ω,k operates on ((x1, . . . , xk), (rij)k
i,j=1) via the

following steps:

1. forward propagation from σ−n1 ω to ω:

(

x1
1, . . . , x1

k

)

:=
(

L
(n1)

σ−n1 ω
x1, . . . , L

(n1)

σ−n1 ω
xk

)

.

2. forward propagation from ω to σn2 ω:

(

x2
1, . . . , x2

k

)

:=
(

L(n2)
ω x1

1, . . . , L(n2)
ω x1

k

)

.

3. orthonormalizing (e.g., via Gram-Schmidt GS):

(

x3
1, . . . , x3

k

)

:= GS
(

x2
1, . . . , x2

k

)

.

4. initializing vectors for backward propagation:

(

y1
1 , y1

2 , . . . , y1
k

)

:=

(

r11x3
1, r12x3

1 + r22x3
2, . . . ,

k
∑

i=1

rikx3
i

)

.

5. backward propagation from σn2 ω to ω:

(

y2
1 , . . . , y2

k

)

:=

(

(

L(n2)
ω |W 1

)−1

y1
1, . . . ,

(

L(n2)
ω |W 1

)−1

y1
k

)

,

where W 1 := span
(

x1
1, . . . , x1

k

)

.

6. normalizing:
(

y3
1 , . . . , y3

k

)

:=

(

y2
1

‖y2
1‖

, . . . ,
y2

k

‖y2
k‖

)

.

We set Gn1,n2

ω,k ((x1, . . . , xk), (rij)k
i,j=1) :=

(

y3
1 , . . . , y3

k

)

as our approximation of

the first k CLVs at ω. The steps in computing Gn1,n2

ω,k are not tailored to the
setting of Theorem 2.7, but rather can be performed using a sequence of oper-
ators describing forward and backward propagation. Therefore, the upcoming
convergence theorem may be generalized to various MET-scenarios.

Before formulating the convergence theorem, we remark that whenever
Gn1,n2

ω,k+1 ((x1, . . . , xk+1), (rij)k+1
i,j=1) is well-defined, its first k components coin-

cide with Gn1,n2

ω,k ((x1, . . . , xk), (rij)k
i,j=1). Thus, it suffices to investigate the

case k = m1 + · · · + mp for finite p ≤ l.
We group indices according to the multiplicities of Lyapunov exponents to

simplify notation:

(

x11 , x12 , . . . , x1m1
, x21 , . . . , x2m2

, x31 , . . . , xpmp

)

. (12)

Theorem 3.1 (Convergence a.e. of Ginelli’s algorithm). Let R = (Ω, F ,P, σ, H,
L) satisfy the assumptions of Theorem 2.7 and let k = m1 + · · · + mp for some
finite p ≤ l. Moreover, set λ0 := ∞ and λl+1 := κ∗.
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On a subset Ω′ ⊂ Ω of full P-measure, Ginelli’s algorithm converges for
almost every input. That is, fixing ω ∈ Ω′, for a.e. tuple (x1, . . . , xk) ∈ Hk, for
a.e. R ∈ R

k×k
ru , and for all j ≤ p, it holds

lim sup
N→∞

sup
n1,n2≥N

1

min(n1, n2)
log dG

(

span
{

(

G
n1,n2
ω,k

)

ji

∣

∣

∣
i = 1, . . . , mj

}

, Yj(ω)
)

≤ − min(|λj − λj−1|, |λj − λj+1|) (13)

at ((x1, . . . , xk), R).3

Theorem 3.1 tells us that, generically, output vectors of Ginelli’s algorithm,
after grouping them according to the multiplicities of Lyapunov exponents, span
subspaces that are exponentially close to the Oseledets spaces. Hence, the
algorithm approximates CLVs. To get a good approximation, it is necessary to
increase n1 and n2 simultaneously. In other words, the algorithm needs sufficient
data along the past and the future of the trajectory. Moreover, Theorem 3.1
reveals that the speed of convergence to the j-th Oseledets space Yj(ω) is at
least exponentially fast in proportion to the spectral gap between the associated
Lyapunov exponent λj and neighboring exponents.

3.2 Forward-time estimates

During the next two subsections we assume that X is a Banach space. Our first
result investigates how certain subspaces evolve in the presence of an equivari-
ant splitting under a given map. The estimates consist of terms that are well
understood when the splitting is the Oseledets splitting.

Lemma 3.2. Let (Y, V ), (Y ′, V ′) ∈ Compk(X) be two pairs of closed comple-
mented subspaces. Assume we have a bounded linear map L ∈ L(X) respecting
the splittings, i.e., LY ⊂ Y ′ and LV ⊂ V ′, such that ker L ⊂ V .

If W ∈ Gk(X) is a complement of V such that the degree of transversality
satisfies

inf
w∈W ∩S

d(w, V ) ≥ 2‖ΠV ||Y ‖
‖L|V ‖

infy∈Y ∩S ‖Ly‖
, (14)

then

sup
w′∈LW ∩B

d(w′, Y ′ ∩ B) ≤ 4
‖ΠV ||Y ‖

infw∈W ∩S d(w, V )

‖L|V ‖

infy∈Y ∩S ‖Ly‖
. (15)

Proof. If L|V = 0, then ker L = V . Thus, L restricts to an isomorphism between
any complement W of V and Y ′. In this case the claim is trivially satisfies.

Now, assume L|V 6= 0. Let W be a complement as in the claim. For
w ∈ W ∩ S, it holds

‖LΠV ||Y w‖ ≤ ‖L|V ‖ ‖ΠV ||Y ‖

3There are three concepts of “almost every”. Firstly, the algorithm fixes ω from a set of
full P-measure to determine the trajectory along which Ginelli’s algorithm shall be executed.
Secondly and thirdly, the algorithm requires a tuple (x1, . . . , xk) ∈ Hk and an upper diagonal

matrix R ∈ R
k×k
ru as inputs. “A.e.” with respect to the tuple is understood in terms of

prevalence [21], whereas “a.e.” with respect to the matrix is meant in the usual Lebesgue
sense. If H is finite-dimensional, the two previous notions coincide.

11



and

‖LΠY ||V w‖ ≥ inf
y∈Y ∩S

‖Ly‖ ‖ΠY ||V w‖

= inf
y∈Y ∩S

‖Ly‖ ‖w − ΠV ||Y w‖

≥ inf
y∈Y ∩S

‖Ly‖ d(w, V )

≥ 2‖ΠV ||Y ‖ ‖L|V ‖ > 0.

Combining both estimates, we get

‖LΠV ||Y w‖

‖LΠY ||V w‖
≤

1

2
. (16)

To derive Eq. (15), it is enough to estimate d(Lw/‖Lw‖, Y ′ ∩B) for w ∈ W ∩S.
Write w = y + v according to the decomposition X = Y ⊕ V . We have

d

(

Lw

‖Lw‖
, Y ′ ∩ B

)

≤

∥

∥

∥

∥

Lw

‖Lw‖
−

Ly

‖Ly‖

∥

∥

∥

∥

=

∥

∥

∥

∥

Lv

‖Lw‖
−

(

1

‖Ly‖
−

1

‖Lw‖

)

Ly

∥

∥

∥

∥

≤
‖Lv‖

‖Lw‖
+

∣

∣

∣

∣

1 −
‖Ly‖

‖Lw‖

∣

∣

∣

∣

.

Since y 6= 0 and by Eq. (16), we can estimate the first term:

‖Lv‖

‖Lw‖
≤

‖Lv‖

‖Ly‖ − ‖Lv‖
=

‖Lv‖

‖Ly‖

(

1 −
‖Lv‖

‖Ly‖

)−1

≤ 2
‖Lv‖

‖Ly‖
.

For the other term, we distinguish between two cases. If ‖Ly‖/‖Lw‖ ≤ 1, then

1 −
‖Ly‖

‖Lw‖
≤ 1 −

‖Ly‖

‖Ly‖ + ‖Lv‖
=

‖Lv‖

‖Ly‖ + ‖Lv‖
≤

‖Lv‖

‖Ly‖
.

If ‖Ly‖/‖Lw‖ ≥ 1, then

‖Ly‖

‖Lw‖
− 1 =

‖Ly‖ − ‖Lw‖

‖Lw‖
≤

‖Lv‖

‖Lw‖
≤ 2

‖Lv‖

‖Ly‖
.

In total, we get

d

(

Lw

‖Lw‖
, Y ′ ∩ B

)

≤ 4
‖Lv‖

‖Ly‖
.

Since v = ΠV ||Y w and y = ΠY ||V w, the claim follows from the estimates in the
beginning.

Corollary 3.3. In the setting of Lemma 3.2, it holds

‖ΠV ′||Y ′ |LW ‖ ≤ 2
‖ΠV ||Y ‖

infw∈W ∩S d(w, V )

‖L|V ‖

infy∈Y ∩S ‖Ly‖
. (17)

12



Proof. The corollary follows from

‖ΠV ′||Y ′ |LW ‖ = sup
w∈W ∩S

∥

∥

∥

∥

ΠV ′||Y ′

Lw

‖Lw‖

∥

∥

∥

∥

= sup
w∈W ∩S

‖LΠV ||Y w‖

‖Lw‖

and the estimate of ‖Lv‖/‖Lw‖ in the proof of Lemma 3.2.

Next, we derive two lemmata that handle sequences of maps acting on equiv-
ariant splittings with different asymptotic growth rates. The first lemma is
concerned with propagation from present to future states, whereas the second
lemma treats propagation from the past to the present.

Lemma 3.4. Let (Y, V ) ∈ Compk(X) and (Y (n), V (n)) ∈ Compk(X) for n ∈
N. Assume we have bounded linear maps L(n) ∈ L(X) respecting the splittings,
i.e., L(n)Y ⊂ Y (n) and L(n)V ⊂ V (n), such that ker L(n) ⊂ V . Furthermore,
assume there are numbers ∞ > λY > λV ≥ −∞ such that

lim sup
n→∞

1

n
log ‖L(n)|V ‖ ≤ λV

and

lim inf
n→∞

inf
y∈Y ∩S

1

n
log ‖L(n)y‖ ≥ λY .

Then, we have

lim sup
n→∞

1

n
log dG(L(n)W, Y (n)) ≤ −|λY − λV | (18)

for any complement W of V .

Proof. According to the assumptions we have

lim sup
n→∞

1

n
log

‖L(n)|V ‖

infy∈Y ∩S ‖L(n)y‖
≤ −|λY − λV | < 0,

i.e., the quotient ‖L(n)|V ‖/(infy∈Y ∩S ‖L(n)y‖) decays exponentially fast with
n. Thus, for any complement W of V , there is N > 0 such that Eq. (14) of
Lemma 3.2 is satisfied for all n ≥ N . Applying the lemma, we get

lim sup
n→∞

1

n
log sup

w′∈L(n)W ∩B

d(w′, Y (n) ∩ B) ≤ −|λY − λV |.

The claim follows from Lemma 2.2.

Lemma 3.4 implies that complements of spaces of the Oseledets filtration will
align with Oseledets spaces asymptotically (at an exponential speed). Moreover,
the lemma tells us that any two complements of V will align asymptotically if
they have a uniformly higher growth rate than V . Interestingly, we do not need
the existence of an Oseledets splitting. In fact, the lemma may be applied to
systems with a possibly non-invertible base (e.g, see [2, theorem 2] or [3]).
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Lemma 3.5. Let (Y, V ) ∈ Compk(X) and (Y (−n), V (−n)) ∈ Compk(X)
for n ∈ N. Assume we have bounded linear maps L(−n) ∈ L(X) respect-
ing the splittings, i.e., L(−n)Y (−n) ⊂ Y and L(−n)V (−n) ⊂ V , such that
ker L(−n) ⊂ V (−n). Furthermore, assume that

lim
n→∞

1

n
log ‖ΠV (−n)||Y (−n)‖ = 0

and that there are numbers ∞ > λY > λV ≥ −∞ such that

lim sup
n→∞

1

n
log ‖L(−n)|V (−n)‖ ≤ λV

and

lim inf
n→∞

inf
y∈Y (−n)∩S

1

n
log ‖L(−n)y‖ ≥ λY .

Then, we have

lim sup
n→∞

1

n
log dG(L(−n)W, Y ) ≤ −|λY − λV | (19)

for any well-separated common complement W of (V (−n))n∈N.

Proof. As in Lemma 3.4, we see that

lim sup
n→∞

1

n
log

‖L(−n)|V (−n)‖

infy∈Y (−n)∩S ‖L(−n)y‖
≤ −|λY − λV |.

By our assumption on the growth rates of the associated projections, we get

lim sup
n→∞

1

n
log

(

2‖ΠV (−n)||Y (−n)‖
‖L(−n)|V (−n)‖

infy∈Y (−n)∩S ‖L(−n)y‖

)

≤ −|λY − λV | < 0.

In particular, by Definition 2.4 any well-separated common complement of
(V (−n))n∈N fulfills Eq. (14) for n large enough. The claim may be derived as
in the proof of Lemma 3.4.

Corollary 3.6. In the setting of Lemma 3.5, we have

lim sup
n→∞

1

n
log ‖ΠV ||Y |L(−n)W ‖ ≤ −|λY − λV | (20)

for any well-separated common complement W of (V (−n))n∈N.

Proof. Since Lemma 3.2 and Corollary 3.3 give the same estimate up to a factor
of 2, the proof of Corollary 3.6 is the same as for Lemma 3.5.

Remark 3.7. With additional assumptions on growth rates, the requirement on
ΠV (−n)||Y (−n) in Lemma 3.5 may be derived from growth rates as in the proof
of Theorem 2.7 in [13].

14



The following theorem gives us convergence of certain subspaces in Banach
spaces to the sum of the first Oseledets spaces in forward-time.

Theorem 3.8. Let R be as in Theorem 2.7 and ω ∈ Ω such that the Oseledets
splitting exists. Write λl+1 := κ∗ and fix some finite j ≤ l.

If Eqs. (5) to (7) hold4, then

lim sup
n→∞

1

n
log dG

(

L(n)
ω W, Y1(σnω) ⊕ · · · ⊕ Yj(σnω)

)

≤ −|λj − λj+1| (21)

for any complement W of Vj+1(ω).
If Eqs. (8) to (10) hold, then

lim sup
n→∞

1

n
log dG

(

L
(n)
σ−nω

W, Y1(ω) ⊕ · · · ⊕ Yj(ω)
)

≤ −|λj − λj+1| (22)

for any well-separating common complement W of (Vj+1(σ−nω))n∈N.

Proof. The proof is a direct application of Lemma 3.4 and Lemma 3.5 to the
splittings (Y, V ) = (Y1(ω) ⊕ · · · ⊕ Yj(ω), Vj+1(ω)), (Y (n), V (n)) := (Y1(σnω) ⊕

· · ·⊕Yj(σnω), Vj+1(σnω)) for n ∈ Z, and to the maps L(n) := L
(n)
ω and L(−n) :=

L
(n)
σ−nω

for n ∈ N.

In view of Theorem 2.5, Theorem 3.8 for Hilbert spaces implies that we can
compute the sum of the first Oseledets spaces Y1⊕· · ·⊕Yj at ω or asymptotically
by pushing forward a set of m1 + · · · + mj randomly chosen vectors. The
convergence is exponentially fast with a rate given by the gap between the
consecutive Lyapunov exponents λj and λj+1.

3.3 Backward-time estimates

In this subsection we investigate backward propagation of certain subspaces.
Since we did not assume an invertible cocycle, we cannot simply apply our
results from Section 3.2 to an inverted system, as it is done in [18]. Instead, we
use growth rates in forward-time to deduce properties for backward propagation
along sequences of subspaces obtained in Theorem 3.8.

Lemma 3.9. Let (Y1, V1) ∈ Compk1
(X) and (Y2, V2) ∈ Compk2

(V1), so that
X = Y1 ⊕ V1 and V1 = Y2 ⊕ V2. Moreover, let Wi be a complement of Vi in
X for i = 1, 2 such that W1 ⊂ W2. Assume we have a map L ∈ L(X) with
ker L ⊂ V2.

If W̃ ∈ Gk2 (W2) is a complement of W1 in W2 and if w̃ ∈ W̃ ∩ S such that

d(w̃, Y2) ≥

(2‖ΠV1||W1
‖ + ‖ΠV1||Y1

‖ ‖ΠW1||V1
‖)

‖L|V1 ‖

infy∈Y1∩S ‖Ly‖
+ ‖ΠV2||Y1⊕Y2

|W2 ‖, (23)

4We remark that Eqs. (5) to (7) and Eqs. (8) to (10) hold for P-a.e. ω ∈ Ω.
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then

d

(

Lw̃

‖Lw̃‖
, LW1

)

≤

2‖L|V1‖ ‖ΠV1||W1
‖

(infy∈Y1∩S ‖Ly‖)
(

d(w̃, Y2) − ‖ΠV2||Y1⊕Y2
|W2 ‖

)

− ‖L|V1 ‖ ‖ΠV1||Y1
‖ ‖ΠW1||V1

‖
.

(24)

Proof. Since V1 = Y2 ⊕ V2 is a splitting with Y2 6= {0} and ker L ⊂ V2, it holds
L|V1 6= 0.

Let w̃ ∈ W̃ ∩ S be as in the claim, so that Eq. (23) is satisfied. We estimate

‖LΠV1||W1
w̃‖ ≤ ‖L|V1 ‖ ‖ΠV1||W1

‖

and

‖LΠW1||V1
w̃‖ = ‖L(ΠY1||V1

+ ΠV1||Y1
)ΠW1||V1

w̃‖

≥ ‖LΠY1||V1
ΠW1||V1

w̃‖ − ‖LΠV1||Y1
ΠW1||V1

w̃‖

≥

(

inf
y∈Y1∩S

‖Ly‖

)

‖ΠY1||V1
ΠW1||V1

w̃‖ − ‖L|V1 ‖ ‖ΠV1||Y1
‖ ‖ΠW1||V1

‖.

The term with two consecutive projections applied to w̃ can be estimates further
via

‖ΠY1||V1
ΠW1||V1

w̃‖ = ‖ΠW1||V1
w̃ − ΠV1||Y1

ΠW1||V1
w̃‖

= ‖w̃ − ΠV1||W1
w̃ − ΠV1||Y1

ΠW1||V1
w̃‖

= ‖w̃ − ΠV1||Y1
(ΠV1||W1

+ ΠW1||V1
)w̃‖

= ‖w̃ − ΠV1||Y1
w̃‖

= ‖w̃ − ΠY2||V2
ΠV1||Y1

w̃ − ΠV2||Y2
ΠV1||Y1

w̃‖

≥ ‖w̃ − ΠY2||V2
ΠV1||Y1

w̃‖ − ‖ΠV2||Y2
ΠV1||Y1

w̃‖

≥ d(w̃, Y2) − ‖ΠV2||Y2
ΠV1||Y1

w̃‖

= d(w̃, Y2) − ‖ΠV2||Y1⊕Y2
w̃‖

≥ d(w̃, Y2) − ‖ΠV2||Y1⊕Y2
|W2 ‖.

Note that ΠV2||Y2
and ΠY2||V2

are projections defined on V1. By Eq. (23) we
have

‖ΠY1||V1
ΠW1||V1

w̃‖ ≥ (2‖ΠV1||W1
‖ + ‖ΠV1||Y1

‖ ‖ΠW1||V1
‖)

‖L|V1 ‖

infy∈Y1∩S ‖Ly‖
.

Hence, we get
‖LΠW1||V1

w̃‖ ≥ 2‖ΠV1||W1
‖ ‖L|V1‖ > 0

and
‖LΠV1||W1

w̃‖

‖LΠW1||V1
w̃‖

≤
1

2
.
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Finally, it holds

d

(

Lw̃

‖Lw̃‖
, LW1

)

≤

∥

∥

∥

∥

Lw̃

‖Lw̃‖
−

LΠW1||V1
w̃

‖Lw̃‖

∥

∥

∥

∥

=
‖LΠV1||W1

w̃‖

‖Lw̃‖

≤
‖LΠV1||W1

w̃‖

‖LΠW1||V1
w̃‖ − ‖LΠV1||W1

w̃‖

=
‖LΠV1||W1

w̃‖

‖LΠW1||V1
w̃‖

(

1 −
‖LΠV1||W1

w̃‖

‖LΠW1||V1
w̃‖

)−1

≤ 2
‖LΠV1||W1

w̃‖

‖LΠW1||V1
w̃‖

.

Estimating the numerator and denominator as in the beginning of the proof, we
arrive at Eq. (24).

Corollary 3.10. Let Yi, Vi, Wi for i = 1, 2 and L be as in Lemma 3.9.
If W̃ ⊂ W2 is a complement of W1 in W2 satisfying

inf
w̃′∈LW̃ ∩S

d(w̃′, LW1) ≥ δ (25)

for some 0 < δ ≤ 1, then

sup
w̃∈W̃ ∩B

d(w̃, Y2 ∩ B) ≤

2

(

2

δ
‖ΠV1||W1

‖ + ‖ΠV1||Y1
‖ ‖ΠW1||V1

‖

)

‖L|V1‖

infy∈Y1∩S ‖Ly‖
+ 2‖ΠV2||Y1⊕Y2

|W2 ‖.

(26)

Proof. Assume w̃ ∈ W̃ ∩ S fulfills

d(w̃, Y2) >
(

2

δ
‖ΠV1||W1

‖ + ‖ΠV1||Y1
‖ ‖ΠW1||V1

‖

)

‖L|V1 ‖

infy∈Y1∩S ‖Ly‖
+ ‖ΠV2||Y1⊕Y2

|W2 ‖,

then by Lemma 3.9

δ ≤ d

(

Lw̃

‖Lw̃‖
, LW1

)

≤

2‖L|V1‖ ‖ΠV1||W1
‖

(infy∈Y1∩S ‖Ly‖)
(

d(w̃, Y2) − ‖ΠV2||Y1⊕Y2
|W2 ‖

)

− ‖L|V1 ‖ ‖ΠV1||Y1
‖ ‖ΠW1||V1

‖
.

However, the former would be strictly smaller than δ by our assumption on
d(w̃, Y2). Hence, we must have

sup
w̃∈W̃ ∩S

d(w̃, Y2) ≤

(

2

δ
‖ΠV1||W1

‖ + ‖ΠV1||Y1
‖ ‖ΠW1||V1

‖

)

‖L|V1 ‖

infy∈Y1∩S ‖Ly‖
+ ‖ΠV2||Y1⊕Y2

|W2 ‖.
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By [15, chapter IV, §2.1] it holds

sup
w̃∈W̃ ∩S

d(w̃, Y2 ∩ S) ≤ 2 sup
w̃∈W̃ ∩S

d(w̃, Y2).

Since
sup

w̃∈W̃ ∩B

d(w̃, Y2 ∩ B) ≤ sup
w̃∈W̃ ∩S

d(w̃, Y2 ∩ S),

the claim follows.

From Corollary 3.10 we can derive an upper bound on the distance between
W̃ and Y2 from a lower bound on the degree of transversality of (LW̃ , LW1). In
that sense, the corollary is similar to Lemma 3.2 but with backward propagation.

Next, we use the spaces W1, W2 to connect estimates from Section 3.2 to
backward propagation, ultimately giving us an understanding of Ginelli’s algo-
rithm at the level of maps.

Lemma 3.11. Let (Y1, V1) ∈ Compk1
(X), (Y2, V2) ∈ Compk2

(V1), and ∞ >
λY1 > λV1 = λY2 > λV2 ≥ −∞.

For the past data, let (Y1(−n), V1(−n)) ∈ Compk1
(X) and (Y2(−n), V2(−n))

∈ Compk2
(V1(−n)) for n ∈ N. Assume we have bounded linear maps L(−n) ∈

L(X) respecting the splittings , i.e., L(−n)Yi(−n) ⊂ Yi for i = 1, 2 and L(−n)
V2(−n) ⊂ V2, such that ker L(−n) ⊂ V2(−n) for n ∈ N. Moreover, assume that

1. limn→∞(1/n) log ‖ΠV1(−n)||Y1(−n)‖ = 0,

2. limn→∞(1/n) log ‖ΠV2(−n)||Y1(−n)⊕Y2(−n)‖ = 0,

3. lim supn→∞(1/n) log ‖L(−n)|Vi(−n)‖ ≤ λVi
for i = 1, 2,

4. lim infn→∞ infy∈Y1(−n)∩S(1/n) log ‖L(−n)y‖ ≥ λY1 , and

5. lim infn→∞ infy∈Y1(−n)⊕Y2(−n)∩S(1/n) log ‖L(−n)y‖ ≥ λY2 .

For the future data, let (Y1(n), V1(n)) ∈ Compk1
(X) and (Y2(n), V2(n)) ∈

Compk2
(V1(n)) for n ∈ N. Assume we have bounded linear maps L(n) ∈ L(X)

respecting the splittings , i.e., L(n)Yi ⊂ Yi(n) for i = 1, 2 and L(n)V2 ⊂ V2(n),
such that ker L(n) ⊂ V2 for n ∈ N. Moreover, assume that

6. lim supn→∞(1/n) log ‖L(n)|V1 ‖ ≤ λV1 and

7. lim infn→∞ infy∈Y1∩S(1/n) log ‖L(n)y‖ ≥ λY1 .

Let Wi be a well-separating common complement of (Vi(−n))n∈N for i = 1, 2
such that W1 ⊂ W2. If (W̃ (n1, n2))n1,n2∈N is a family of subspaces such that
L(n2)L(−n1)W1 ⊕ W̃ (n1, n2) = L(n2)L(−n1)W2, and if

inf
w̃∈W̃ (n1,n2)∩S

d(w̃, L(n2)L(−n1)W1) ≥ δ (27)

for some constant 0 < δ ≤ 1, then

lim sup
N→∞

sup
n1,n2≥N

1

min(n1, n2)
log dG

(

(

L(n2)|L(−n1)W2

)−1
W̃ (n1, n2), Y2

)

≤ − min(|λY2 − λY1 |, |λY2 − λV2 |). (28)
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Proof. Let W1 and W2 be as in the claim. We apply Lemma 3.5 to (Y, V ) =
(Y1, V1) for W = W1 and to (Y, V ) = (Y1 ⊕ Y2, V2) for W = W2 with their
respective spaces and mappings at −n. It follows that

lim sup
n→∞

1

n
log dG(L(−n)W1, Y1) ≤ −|λY1 − λV1 |

and

lim sup
n→∞

1

n
log dG(L(−n)W2, Y1 ⊕ Y2) ≤ −|λY2 − λV2 |.

Thus, we have good approximations of Y1 and Y1 ⊕ Y2 from the past data.
Moreover, by Corollary 3.6 we have

lim sup
n→∞

1

n
log ‖ΠV2||Y1⊕Y2

|L(−n)W2
‖ ≤ −|λY2 − λV2 |.

Since L(−n)W1 converges to Y1, the projections ΠL(−n)W1||V1
converge to ΠY1||V1

by Lemma 2.3. In particular, ‖ΠL(−n)W1||V1
‖ and ‖ΠV1||L(−n)W1

‖ are bounded
from above by a constant independent of n.

The growth rate assumptions for future data imply

lim sup
n→∞

1

n
log

‖L(n)|V1 ‖

infy∈Y1∩S ‖L(n)y‖
≤ −|λY1 − λV1 |.

Now, apply Corollary 3.10 to (Y1, V1), (Y2, V2), the complements L(−n1)W1 of

V1 and L(−n1)W2 of V2, L = L(n2), and W̃ =
(

L(n2)|L(−n1)W2

)−1
W̃ (n1, n2).

We get

sup
w̃∈(L(n2)|L(−n1)W2 )

−1
W̃ (n1,n2)∩B

d(w̃, Y2 ∩ B) ≤

2

(

2

δ
‖ΠV1||L(−n1)W1

‖ + ‖ΠV1||Y1
‖ ‖ΠL(−n1)W1||V1

‖

)

‖L(n2)|V1 ‖

infy∈Y1∩S ‖L(n2)y‖

+ 2‖ΠV2||Y1⊕Y2
|L(−n1)W2

‖. (29)

In view of Lemma 2.2, all that remains to prove Eq. (28) is to insert respec-
tive asymptotics into the terms of Eq. (29). Indeed, the terms inside the large
brackets are bounded from above by a constant, and the other terms can be
estimated as above.

Lemma 3.11 provides an appropriate tool to investigate convergence of the
Ginelli algorithm. Since Ginelli’s algorithm initiates vectors for the backward
propagation inside spaces from the forward propagation, which vary with the
chosen runtime, the domain for initial vectors is not constant. This poses a
problem when talking about convergence with respect to initial conditions. One
way to solve this problem is to express the initial vectors of the backward prop-
agation in terms of runtime-independent coefficients. In other words, we want
to find a family of isomorphisms identifying L(n1)L(−n2)W2 with R

k1+k2 .
If X = H is a Hilbert space, then we may identify an orthonormal basis of

L(n1)L(−n2)W2 with the standard basis of (Rk1+k2 , ‖.‖2). The identification
defines an isometry leaving distances and angles invariant. In particular, we
may check Eq. (27) on the coefficient space.
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3.4 Convergence proof

In this subsection we combine our tools to prove Theorem 3.1.

proof of Theorem 3.1. First, we set Ω′ ⊂ Ω to be the subset of full P-measure
on which the Oseledets splitting is defined and on which Eqs. (5) to (10) hold.
Fix some ω ∈ Ω′.

Let Fj ⊂ Hm1+···+mj be the subset of all tuples inducing well-separating
common complements of (Vj+1(σ−nω))n∈N for j = 1, . . . , p. Then, the set

F :=
(

F1 × Hm2+···+mp
)

∩
(

F2 × Hm3+···+mp
)

∩ · · · ∩ Fp ⊂ Hk (30)

consists of tuples (x11 , . . . , xpmp
) such that span(x11 , . . . , xjmj

) is a well-separat-

ing common complement of (Vj+1(σ−nω))n∈N for each j = 1, . . . , p. In particu-
lar, since products and intersections of prevalent sets are prevalent, Theorem 2.5
implies that F is prevalent. We use elements of F as initial vectors for the for-
ward propagation in Ginelli’s algorithm.

Let B ⊂ R
k×k
ru be the subset of upper diagonal matrices with non-zero diag-

onal elements, i.e., the subset of invertible upper diagonal matrices. B has full
Lebesgue measure and is used for initial vectors for the backward propagation
in Ginelli’s algorithm.

Now, let ((x1, . . . , xk), R) ∈ F × B be an input for Ginelli’s algorithm. Ac-
cording to Theorem 3.8 the first set of vectors (x11 , . . . , x1m1

) gives an approx-
imation of Y1(ω) via the first step of Ginelli’s algorithm. The remaining steps
of Ginelli’s algorithm do not change this approximation. In fact, the first set of
output vectors (Gn1,n2

ω,k )1i
for i = 1, . . . , m1 at ((x1, . . . , xk), R) spans the same

space as
(

L
(n1)

σ−n1 ω
x1, . . . , L

(n1)

σ−n1 ω
xk

)

. Thus, we have

lim sup
N→∞

sup
n1,n2≥N

1

min(n1, n2)
log dG

(

span
{

(

G
n1,n2
ω,k

)

1i

∣

∣

∣
i = 1, . . . , m1

}

, Y1(ω)
)

≤ −|λ1 − λ2| = − min(|λ1 − λ0|, |λ1 − λ2|)

at ((x1, . . . , xk), R).
Convergence of the remaining spaces is due to Lemma 3.11. Indeed, fix

some 1 < j ≤ p. We set Y1 = Y1(ω) ⊕ · · · ⊕ Yj−1(ω), V1 = Vj(ω), Y2 =

Yj(ω), V2 = Vj+1(ω), L(−n) = L
(n)
σ−nω

, L(n) = L
(n)
ω , and spaces Yi(±n) and

Vi(±n) for i = 1, 2 accordingly. The growth rates in Lemma 3.11 are given by
Theorem 2.7 and its proof. Furthermore, let W1 = span(x11 , . . . , x(j−1)mj−1

)

and W2 = span(x11 , . . . , xjmj
) be the well-separating common complements,

which approximate Y1 and Y2 in the first step of Ginelli’s algorithm. The family
of spaces (W̃ (n1, n2))n1,n2∈N is given by span(y1

j1
, . . . , y1

jmj
) via vectors of the
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fourth step of the algorithm. Indeed, the jth
1 to jth

mj
column

[rj1 | . . . |rjmj
] :=



































∗ · · · ∗
...

...
∗ · · · ∗

rj1,j1 · · · rj1,jmj

. . .
...

0 rjmj
,jmj

0 · · · 0
...

...
0 · · · 0



































of R give us coefficients with which we may express y1
j1

, . . . , y1
jmj

in terms of the

orthonormalized vectors

GS(L(n2)L(−n1)x11 , . . . , L(n2)L(−n1)xjmj
)

= GS
(

L
(n1+n2)

σ−n1 ω
x11 , . . . , L

(n1+n2)

σ−n1 ω
xjmj

)

,

which emerge in the third step of Ginelli’s algorithm. Through the identification
via GS, Eq. (27) may be checked on coefficient space. Since L(n2)L(−n1)W1 is
mapped to R

m1+···+mj−1 ×{0} ⊂ R
k and L(n2)L(−n1)W2 to R

m1+···+mj ×{0} ⊂
R

k, we need to check if

inf
r∈span

(

rj1 ,...,rjmj

)

∩S

‖Πjr‖ > 0,

where Πj : Rk → {0} × R
mj × {0} is the projection onto the jth

1 to jth
mj

coordi-
nates. This is easily verified, since R is an upper diagonal matrix with non-zero
elements on the diagonal. Thus, we may apply Lemma 3.11 to see that the span
of the jth

1 to jth
mj

vector from the fifth step of Ginelli’s algorithm approximates

Yj(ω) at the desired speed. This concludes the proof.5

4 Conclusions

With the emergence of semi-invertible METs, the concept of CLVs has been
opened up to new settings. In particular, various infinite-dimensional versions
of the MET have been proved. In this article we followed the semi-invertible
MET from [13] to generalize Ginelli’s algorithm for CLVs. Our main result is a
convergence proof of the algorithm in the context of Hilbert spaces. The proof
not only generalizes previous analysis of Ginelli’s algorithm and its features
[6, 10, 18] to an infinite-dimensional setting, but also treats the case of non-
invertible linear propagators. We formulated most arguments in the context of

5The last step of Ginelli’s algorithm only normalizes computed vectors. It does not change
their linear span and, thus, plays no role in Eq. (13). However, the step is a necessary part of
the algorithm, since CLVs are defined as normalized basis vectors of Yj(ω).
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maps on Banach spaces before connecting them to basic asymptotic properties
of the Oseledets splitting. Since those properties appear in most versions of the
MET, our convergence proof may be translated to other settings as well.

We split the proof into estimates for forward and for backward propagation.
It turned out that, during forward propagation, almost every complement of
spaces of the Oseledets filtration asymptotically aligns with the Oseledets spaces.
The fact that complements generically align in forward-time even holds if we
only have an Oseledets filtration. For backward propagation, we had to restrict
the propagator to certain subspaces, since it may not be globally invertible in a
semi-invertible setting. Last but not least, we combined our estimates to form
the convergence proof.

Throughout the proof, we connected estimates to the Lyapunov exponents
that appear in the MET. Thus, we were able to relate Lyapunov exponents to
the speed of convergence. As for the finite-dimensional case in [18], Ginelli’s
algorithm converges exponentially fast with a rate given by the spectral gap
between associated Lyapunov exponents. However, note that the notation of
our convergence theorem excludes subexponential prefactors of the speed of con-
vergence. Especially in view of applications, those prefactors may very well be
important. However, they depend on the particular system, and their deriva-
tion requires an in-depth analysis of the proof of the MET. Since we aimed for
a dynamical approach that is not tailored to only one version of the MET, we
leave the analysis of subexponential prefactors to future research.

While we successfully generalized and proved Ginelli’s algorithm for infinite
dimensions, it is primarily an analytical tool. The numerical computation of
CLVs brings its own set of challenges. Indeed, our results may be seen as a
help to understand limit cases of applications of Ginelli’s algorithm for systems
of increasingly higher resolutions. The transition between finite and infinite
dimensions is still an open question and leads to the concept of stability of
CLVs. Additionally, numerical inaccuracies in computing the linear propagator
may result in a different output of Ginelli’s algorithm. In fact, the MET only
guarantees that CLVs depend measurably on the trajectory.

Despite the remaining challenges, we made a big step towards computing
CLVs in infinite dimensions. Through the connection to semi-invertible METs,
our research applies to recent developments in the context of CLVs and paves
the way for new advancements of both analytical and numerical aspects of CLV-
algorithms.
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