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Abstract. We show that if a graph admits a packing and a covering both consisting of
λ many spanning trees, where λ is some infinite cardinal, then the graph also admits a
decomposition into λ many spanning trees. For finite λ the analogous question remains open,
however, a slightly weaker statement is proved.

1. Introduction

The graphs in this paper may have parallel edges but not loops. A spanning tree of a
graph G is a connected, acyclic subgraph T ⊆ G containing all vertices of G. Given a
cardinal λ, a λ-packing (of G) is a collection of λ many edge-disjoint spanning trees in G, a
λ-covering (of G) is a collection of λ many spanning trees whose union covers the edge set
of G, and a λ-decomposition (of G) is a collection of λ many spanning trees whose edge sets
partition the edge set of G.

The purpose of this note is to establish the following Cantor-Bernstein-type theorem for
decomposing infinite graphs into spanning trees:

Theorem 1.1. Let λ be an infinite cardinal. Then a graph admits a λ-decomposition if and
only if it admits both a λ-packing and a λ-covering.

Perhaps interestingly, the λ in Theorem 1.1 does not need to be unique: For example, it is
not hard to show directly that Kℵ1 , the complete graph on ℵ1 vertices, admits decompositions
both into ℵ0 or ℵ1 many spanning trees. This effect can get arbitrarily pronounced, see
Proposition 3.2 below.

Our proof of Theorem 1.1 relies on two well-known characterisations of when G admits
a λ-packing or λ-covering for an infinite cardinal λ. Firstly, for λ-packings, we have the
following characterisation in terms of the edge-connectivity of G.

Theorem 1.2 (Laviolette, [6, Corollary 14]). Let λ be an infinite cardinal. Then a graph
admits a λ-packing if and only if it has edge-connectivity at least λ.
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The analogous statement for finite λ fails dramatically: there are infinite graphs of arbitrarily
large finite edge-connectivity which do not even contain two edge-disjoint spanning trees,
see [1].

Theorem 1.2 was originally obtained by Laviolette as corollary to his theory on “bond-
faithful decompositions” which required the generalised continuum hypothesis (GCH). The use
of GCH to obtain these bond-faithful decompositions was subsequently removed by Soukup
[8, Theorem 6.3] using the technique of elementary submodels. In Section 2, we will give a
short direct proof of Theorem 1.2, not relying on the “bond-faithful decomposition” result.

The characterisation of the existence of λ-coverings relies on the following notion introduced
by Erdős and Hajnal [5], which we adapt here slightly to take parallel edges into account:
The colouring number col (G) of a graph G = (V,E) is the smallest cardinal µ such that there
exists a well-ordering <∗ of V such that for every v ∈ V the cardinality of the set of edges
between v and {w ∈ V : w <∗ v} is strictly less than µ. We call any well-ordering <∗ that
witnesses the colouring number of a graph good. The relation of the colouring number to
λ-coverings is the following:

Theorem 1.3 (Erdős and Hajnal, [5, Theorem 9]). Let λ be an infinite cardinal. Then a
graph admits a λ-covering if and only if it is connected and has colouring number at most λ+.

The original proof of Theorem 1.3, stated only for simple graphs, is quite oblique; it is
reduced to a claim in an earlier paper by the same authors [4], the proof of which in turn is
omitted, stating only that it follows from similar methods as a proof of Fodor, which itself is
not entirely elementary.

For this reason, we will also provide a short proof of Theorem 1.3 in Section 2. Our
proof has the additional feature that as a byproduct it yields that every graph has a good
well-order of the shortest possible order type, |V (G)|. Previously this had to be deduced from
Theorem 1.3 together with a result of Erdős and Hajnal in [4, Theorem 8.6], or by employing
the main theorem in [2] which characterises the colouring number of a simple graph in terms
of forbidden subgraphs.

The structure of the paper is then as follows. In Section 2 we provide short proofs of
Theorems 1.2 and 1.3. In Section 3 we prove Theorem 1.1, and finally in Section 4 we discuss
an open problem, namely whether Theorem 1.1 also holds for finite λ.

2. Elementary proofs of Laviolette and Erdős-Hajnal

In this section, we provide elementary proofs of Theorems 1.2 and 1.3.

Proof of Theorem 1.2. The forward implication is trivial. For the converse, consider a
graph G of infinite edge-connectivity λ. Let V (G) = {vj : j < κ}. We will construct a
family T = (Ti : i < λ) of edge-disjoint spanning subgraphs (which will then contain the
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desired trees) in κ many steps as follows: for each t < κ, we find families Tt = (Ti(t) : i < λ)
of edge-disjoint connected subgraphs of G, all on the same vertex set Vt ⊂ V which satis-
fies {vj : j < t} ⊆ Vt. Moreover, we make sure that for every i < λ we have Ti(t) ⊆ Ti(t′)
whenever t < t′. Taking Ti = ⋃

t<κ Ti(t) yields the desired family T .
It remains to describe the construction. Initially we let V0 = ∅. In a limit step we may

simply take unions. At a successor step, suppose that in some step t < κ the family Tt
is already defined. If vt ∈ Vt, let Tt+1 = Tt. Otherwise, consider the graph Gt where we
contract Vt to a single vertex xt and delete all resulting loops. Since G has edge-connectivity λ,
so does Gt. Hence, by greedily adding new paths, we can find a sequence (Sk : k < λ) of
edge-disjoint, connected subgraphs of Gt, all of size strictly less than λ, such that xt, vt ∈ S0

and V (Sk) ⊆ V (Sk′) whenever k < k′. Let V ′t := ⋃
k<λ V (Sk). Next, partition λ into λ many

subsets (Oi : i < λ) each of cardinality λ, and define Hi = ⋃
k∈Oi

Sk, a connected subgraph
of Gt with vertex set V ′t . If for each i < λ we let Ti(t+ 1) be the subgraph of G with vertex
set Vt+1 := Vt ∪ (V ′t \ {xt}) and edge set E(Ti(t)) ∪ E(Hi), then Tt+1 is as desired. �

Proof of Theorem 1.3. If the colouring number of G is less than λ+, then, following Erdős
and Hajnal, we can decompose G into forests in the following manner: Let (vi : i < κ) be a
good well-order of V (G), i.e. one where for each i the set Ei of ‘backwards edges’ from vi
(edges between vi and some vj where j < i) has cardinality at most λ. For each i < κ let us
pick an arbitrary injection fi : Ei → λ and for each k < λ let Tk = ⋃

i<λ f
−1
i (k). In words, for

each i we pick an arbitrary rainbow colouring of Ei with (at most) λ many colours, and then
consider the monochromatic edge sets. Since ⋃

i<κEi = E(G), the family (Tk : k < λ) covers
all edges of G. To see that each Tk is a forest, note that every cycle C in G has a vertex
vi ∈ V (C) of maximal index i. This, however, implies |C ∩ Ei| = 2, and so C 6⊆ Tk for any k.
Finally, since G is connected, each forest can be extended to a spanning tree, and hence G
admits a λ-covering.

For the converse implication, suppose there exists a family of λ many spanning trees
(Ti : i < λ) which covers E(G). First we note that there are at most λ many parallel edges
between any two vertices of G, since at most one such edge is in each Ti. If |E(G)| ≤ λ

then any well-ordering of V (G) witnesses that col (G) ≤ λ+. Hence we may assume that
|E(G)| > λ which, by the previous comment, implies |V (G)| > λ. Let us root each Ti
arbitrarily and let ≤i be the corresponding tree order on V (G), cf. [3, §1.5]. For a vertex x,
recall that dxei = {v : v ≤i x} denotes the vertex set of the path from the root to x in Ti.
Consider the following closure operation of a given vertex set X ⊆ V (G): Let X0 = X and
for each n ∈ N put Xn+1 := ⋃ {dxei : x ∈ Xn, i < λ}.

Let cl(X) = ⋃
n∈NXn be the closure of X. We say a set Y ⊆ V (G) is closed if cl(Y ) = Y ,

and it is clear that cl(X) is closed for every X ⊆ V . Since there are only λ many trees Ti,
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and dxei is finite for each i, it follows that whenever X is closed and Y ⊇ X is such that
|Y \X| ≤ λ then there is a closed set Z ⊇ Y with |Z \X| ≤ λ.

Now let (vi : i < κ) be a well-ordering of V (G) of length κ = |V (G)| and define an
increasing sequence of closed sets (Vi : i < κ) by V0 = ∅, Vi+1 = cl{Vi ∪ {minj{vj : vj 6∈ Vi}}}
for each i < κ, and Vi = ⋃

j<i Vj for i < κ a limit. In particular, we have ⋃
i<κ Vi = V (G) and

|Vi+1 \ Vi| ≤ λ for each i < κ. Let us well-order each set Vi+1 \ Vi arbitrarily, and concatenate
these orderings to form a well-order <∗ of V . We claim that this well-ordering of order
type |V (G)| witnesses col(G) ≤ λ+. Indeed, let v ∈ V be arbitrary. There is a unique i such
that v ∈ Vi+1 \ Vi, and hence every ‘backwards edge’ (with respect to <∗) from v has both
endpoints in Vi+1. We will show that there at at most λ many such edges.

Firstly, since |Vi+1 \ Vi| ≤ λ, there are at most λ · λ = λ many edges between Vi+1 \ Vi
and v. Furthermore, suppose e = (x, v) is an edge between Vi and v. There is some j such
that e ∈ E(Tj) and, since Vi is closed under the tree-order generated by any Tj and v 6∈ Vi,
it follows that x ≤j v. However, there is a unique edge (x, v) ∈ E(Tj) such that x ≤j v. It
follows that there are at most λ many edges between Vi and v �

We remark that only the backwards implication used that λ is infinite.

Corollary 2.1. Every graph has a good well-ordering of order-type |V (G)|. �

3. A Cantor-Bernstein theorem for spanning trees in infinite graphs

Theorem 3.1. Let λ be a cardinal (finite or infinite) and let G be a graph with col(G) ≤ λ+

which admits λ-packing. Then G admits a λ-decomposition.

Proof. Let (vi : i < κ) be a good well-ordering of V (G). For each i < κ let Ei be the set
{(vj, vi) ∈ E(G) : j < i} of ‘backwards edges’ in this ordering at vi. Then (Ei : i < κ) is a
partition of E(G) and |Ei| ≤ λ for each i < κ. Let us well-order each of the sets Ei arbitrarily
in order type |Ei| and concatenate these orderings to form a well-order ≺ of E.

By assumption, there exists a family (Ti : i < λ) of λ many edge-disjoint spanning trees
of G. If ⋃

i<λ Ti = E(G), then (Ti : i < λ) is a λ-decomposition. Our aim will be to exchange
a yet uncovered edge f ∈ E(G) \ ⋃

i<λ Ti with some later edge e � f from some Ti such that
at each stage in our process we maintain the property that (Ti : i < λ) is a λ-packing. By an
appropriate book-keeping procedure, we guarantee that each edge is eventually covered.

Let us initialise by setting Ti(0) = Ti for each i < λ. Suppose that we have already
constructed a λ-packing Tt = (Ti(t) : i < λ) where t < κ. In step t we consider et. If
et ∈

⋃
i<λE(Ti(t)), then we set Ti(t + 1) = Ti(t) for each i < λ. Otherwise, et 6∈

⋃
i<λ Ti(t).

Then et ∈ Ei for some i and by construction there are fewer than λ many edges e ∈ Ei
such that e ≺ et, and hence there is some k < λ such that Tk(t) contains no edges e ∈ Ei
with e ≺ et. Since Tk(t) is a spanning tree, there is a unique cycle C ⊆ Tk(t) + et. Since C is
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finite, it contains a ≺-maximal edge f . Moreover, since Tk(t) contains no edges e ∈ Ei with
e ≺ et it follows that f 6= et: if j is maximal such that C ∩Ej 6= ∅ then |C ∩Ej| = 2, since C
is a cycle. Then, if j = i it follows that et ≺ f by our choice of Tk(t) and if j > i then clearly
et ≺ f since all of Ei precedes Ej.

Now let Tk(t+ 1) = Tk(t)− f + et, which is again a spanning tree, and Ti(t+ 1) := Ti(t)
for all k 6= i < λ. Finally for each limit ordinal τ < κ we let

Ti(τ) = {e : there exists t0 < τ such that e ∈ Ti(t) for all t0 < t < τ}

We claim that for every t ≤ κ the family Tt is indeed a λ-packing. Since this property is
clearly preserved at successor steps, it remains to check that it holds at limit steps.

As it is clear that if each Tt is a family of edge-disjoint subgraphs for t < τ , then Tτ is a
family of edge-disjoint subgraphs, it is sufficient to show that each Ti(τ) is in fact a spanning
tree. That each Ti(τ) is acyclic is clear, as any finite cycle would have to appear at some
successor step. To see that Ti(τ) is connected and spanning, it suffices to show that it contains
an edge from each bond of G.

Given a bond F ⊂ E(G) let us consider the set of edges Fi(t) := E(Ti(t)) ∩ F . We claim
that the sequence fi(t) := min≺ Fi(t) is ≺-non-increasing in t. Indeed, suppose we delete
the ≺-minimal edge f of Fi(t) from Ti(t) at step t. Note that by the construction there is
a cycle C with ≺-maximal edge f such that C − f ⊂ Ti(t + 1). Then C ∩ F is non-empty
because it contains f and therefore, since |C ∩ F | must be even, there is some e 6= f in C ∩ F .
It follows from the ≺-maximality of f in C that e ≺ f . Furthermore, e ∈ Fi(t + 1) since
C − f ⊂ Ti(t + 1), from which fi(t + 1) ≺ fi(t) follows. Hence for each bond F and each
limit ordinal τ , the sequence (fi(t) : t < τ) is constant after some t0 < τ , and therefore
fi(t0) ∈ F ∩ Ti(τ).

It remains to verify that Tκ is a λ-decomposition. Since it is a λ-packing by the above, it
suffices to show that ⋃

i<λE(Ti(κ)) = E(G). However for each t < λ we have et ∈ E(Tk(t+ 1))
for some k by construction. Furthermore, at any later stage s we only ever remove an edge f
with et ≺ es ≺ f . It follows that et ∈ E(Tk(s)) for all s > t and hence et ∈ E(Tk(κ)). �

Theorem 1.1 then follows from Theorems 3.1 and 1.3. We conclude this section by observing
that the effect of a graph having λ-decompositions for different λ’s can get arbitrarily
pronounced:

Proposition 3.2. For every infinite cardinal κ there is a graph that admits a λ-decomposition
for any choice of λ with 2 ≤ λ ≤ κ.

Construction. We construct the desired graphG as an increasing union of graphsGn = (Vn, En)
by recursion on n ∈ N as follows.

Let G0 = K2 be the complete graph on two vertices. We form Gn+1 by adding κ many new
u− v paths of length two to Gn for every u 6= v ∈ Vn, internally disjoint from each other and
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from Vn. Finally, we set G := ⋃
n∈NGn which by construction has (edge-)connectivity κ. If we

well-order each Vn+1 \ Vn arbitrarily and concatenate these orders, we obtain a well-ordering
witnessing col (G) = 3, as by construction, every newly added vertex in step n has degree two.
Since κ was infinite, it follows from Theorem 1.2 that G has a κ-packing, and hence a λ-packing
for all λ ≤ κ. Therefore, the assertion of the proposition follows from Theorem 3.1. �

4. An open problem

It remains an interesting question whether the assertion of our main theorem also holds
for finite λ. For finite graphs, a simple counting argument (every spanning tree has precisely
|G| − 1 edges) shows that Theorem 1.1 holds when both the graph and λ are finite. Hence,
the question remains what happens for infinite graphs and finite λ. We note that our main
technical result, Theorem 3.1, did not require that λ is infinite. However, in order to deduce
Theorem 1.1 from it we needed to apply Theorem 1.3, which only holds for infinite λ. When λ
is finite, only the following, slightly weaker version of Theorem 1.3 holds, which is best possible
as can be seen in the case of complete graphs.

Theorem 4.1 (Erdős and Hajnal, [5, Theorem 11]). If G is a graph (finite or infinite) with
a k-covering for some k ∈ N, then col(G) ≤ 2k.

The following is then a consequence of Theorems 3.1 and 4.1.

Corollary 4.2. For every k ≥ 1, every graph with a k-covering and a (2k − 1)-packing has a
(2k − 1)-decomposition.

Hence, if one were to seek a proof for Theorem 1.1 for finite k = λ, one would need to
use the assumption of the existence of a k-covering more efficiently than simply relying on
the rather weak consequence that col(G) ≤ 2k. One such possibility might be offered by
the following characterisation due to Nash-Williams (where the assertion for infinite graphs
follows from the finite version by a straightforward compactness argument):

Theorem 4.3 (Nash-Williams [7]). For every k ∈ N, a graph G admits a k-covering if and
only if for every non-empty finite U ⊆ V (G) the number of edges in G[U ] is at most k(|U |−1).

However, we did not succeed in proving a theorem in the vein of Theorem 3.1 using
Nash-Williams’s condition.

Finally, we remark that in order to prove the assertion of Theorem 1.1 for finite λ = k,
it suffices to consider countable graphs: Indeed, to see that the general case follows from
the countable case, consider some uncountable graph G with a k-packing {T1, . . . , Tk} and
a k-covering {Tk+1, . . . , T2k}. Starting with W0 = ∅, by greedily adding finite paths from
the different trees in turn for ω many substeps, we find an increasing, continuous collection
(Wi : i < |G|) of subsets of V with ⋃

iWi = V such thatWi+1\Wi is countable, and each Tj [Wi]
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is an induced subtree of Tj for all j ∈ [2k] and i < |G|. Then each minor Gi = G[Wi+1]/G[Wi]
has a k-packing and k-covering given by the trees Tj[Wi+1]/Tj[Wi]. Applying the countable
assertion to each Gi yields a k-decomposition {S1(i), . . . , Sk(i)} of Gi. Clearly, the subtrees Sj
of G for j ∈ [k] given by E(Sj) = ⋃

iE(Sj(i)) are as desired.
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