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Abstract

We classify invertible 2-dimensional framed and r-spin topological field theories

by computing the homotopy groups and the k-invariant of the corresponding bor-

dism categories. By a recent result of Kreck, Stolz and Teichner the first homotopy

groups are given by the so called SKK groups. We compute them explicitly using the

combinatorial model of framed and r-spin surfaces of Novak, Runkel and the author.

1 Introduction

Invertible topological field theories (TFTs) have recently gained attention as they are pre-
dicted to describe short range entangled topological phases of matter [Kap, FH]. The latter
are defined as deformation classes of gapped Hamiltonians while the former are symmetric
monoidal functors from the category of d-dimensional bordisms with G-tangential structure
BordG

d to the category of super vector spaces, (or to any other symmetric monoidal cate-
gory), which land in the category of super lines (or respectively in the Picard subgroupoid
of the target category).

A G-tangential structure on an oriented d-dimensional manifold is given by a group ho-
momorphism G → SOd and a map from the manifold into BG which factors the classifying
map of the tangent bundle. A G-structure is called stable if it extends in an appropriate
way to a G′-tangential structure in one dimensional higher after stabilising the tangent
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bundle (Definition 2.7). In [FH] fully extended TFTs with stable tangential structures and
with values in the category of super lines have been identified by maps of spectra and these
have been classified using the computational power of stable homotopy theory.

Non-extended invertible TFTs factor through the fundamental groupoid ||BordG
d || of

the classifying space of the bordism category. Hence the classification of non-extended
invertible TFTs can be formulated into understanding Picard groupoids and functors be-
tween them. By a result of [Śın, JS, JO], Picard groupoids are classified by their zeroth and
first homotopy groups and their k-invariant, i.e. two abelian groups and a group homomor-
phism between them. Functors of Picard groupoids are classified by group homomorphisms
between the homotopy groups which commute with the k-invariants and extensions of the
zeroth homotopy group of the source category by the first homotopy group of the target
category.

In [KST] the zeroth and first homotopy groups of ||BordG
d || in arbitrary dimensions and

with arbitrary tangential structure have been identified with the bordism group ΩG
d−1 one

dimension lower and with the so called SKK group SKKG
d [KKNO] respectively. The latter

is defined as the group completion of closed d-dimensional manifolds with G-structures with
disjoint union as addition modulo the four-term SKK relation.

In case the tangential structure is stable there exists a surjective group homomorphism
SKKG

d ։ ΩG′

d to the bordism group in the same dimension [KST], which allows for a
computation of the SKK group. If the tangential structure in question is not stable, e.g.
framings in dimension not equal to 1 or 3, to our knowledge there is no general method of
computing the SKK groups.

In the present work we consider 2-dimensional invertible TFTs with framings and r-spin
structures. The latter are tangential structures corresponding to the r-fold cover of SO2

which are not stable unless r = 1 (which correspond to orientations) or r = 2. Our main
result in Theorem 3.8 lists the corresponding bordism groups and SKK groups explicitly
and it is proven using the SKK relations and the combinatorial model of framed and r-spin
surfaces of [Nov, RS].

This provides a full classification of invertible 2-dimensional framed and r-spin TFTs
with arbitrary target (Theorem 3.9). If we consider super lines as the target category this
result can be interpreted as follows.

Theorem 1.1.

1. The group of isomorphism classes of invertible 2-dimensional framed TFTs with
target super lines is Z/2 generated by the TFT computing the Arf invariant.

2. The group of isomorphism classes of invertible 2-dimensional r-spin TFTs with target
super lines is

• C× generated by the TFT computing the Euler characteristic, if r is odd,

• Z/2 × C× generated by the Euler and the Arf TFT, if r is even.

The the rest of the paper is organised as follows. In Section 2 we review the notion
of invertible TFTs with tangential structures, the classification of Picard groupoids and
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functors of them, and finally we introduce the SKK groups. In Section 3 we turn to
dimension 2 and after a brief recollection of notions on framed and r-spin surfaces we
compute the corresponding bordism and SKK groups. In Appendix A we give the proof
of Lemma 3.5 which is central for our computation of the SKK groups.
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2 Invertible topological field theories

In this section we review the notion of invertible topological field theories with tangential
structure. We then turn to the classification of them which by a result of [KST] boils down
to computing bordism groups and the so called SKK groups [KKNO].

Let d ≥ 1 be an integer, G a topological group and ξ : G → SOd a continuous group
homomorphism. A G-tangential structure (or G-structure) on a d-dimensional oriented
manifold Σ is a homotopy class of maps ϕ : Σ → BG such that the diagram

BG

Σ BSOd

Bξ
ϕ

TΣ

(2.1)

commutes up to homotopy, where the map TΣ is the one corresponding to the tangent
bundle of Σ. Similarly, we define a G-structure on a (d − 1)-dimensional manifold S as a
G-structure on S × R.

Consider two (d−1)-dimensional closed oriented manifolds S0 and S1. A d-dimensional
bordism Σ : S0 → S1 is a compact oriented d-dimensional manifold together with ori-
entation preserving embeddings ιi : Si → Σ which identify the disjoint union of S0

and S1 with reversed orientation with the boundary of Σ. A d-dimensional G-bordism
(Σ, ϕ) : (S0, ϕ0) → (S1, ϕ1) is a bordism together with a G-structure ϕ on Σ and G-
structures ϕi on Si, so that ϕi|Si

= ϕ ◦ ιi. The category of d-dimensional G-bordisms
BordG

d has objects closed (d− 1)-dimensional oriented G-manifolds and morphisms diffeo-
morphism classes of d-dimensional G-bordisms. For more details on this definition see e.g.
[Tur, ST, KST]. The category BordG

d is symmetric monoidal with the disjoint union as
tensor product.

Let C = (C,⊗, 1C, σ) be a symmetric monoidal category with tensor product ⊗, tensor
unit 1C and symmetry σ. A d-dimensional topological field theory with G-structure (TFT)
is a symmetric monoidal functor Z : BordG

d → C [Ati, Seg1, Seg2]. A Picard groupoid is
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a symmetric monoidal groupoid in which every object has an inverse with respect to the
tensor product. A TFT is invertible if its image lies in the Picard subgroupoid C× of C.
We write Funinv

⊗ (BordG
d , C) for the category of invertible TFTs.

Denote with ||C|| the groupoid completion of C, i.e. the fundamental groupoid of the
classifying space of C. We have an essentially surjective functor C → ||C||. If C has duals
then ||C|| is in fact a Picard groupoid.

Proposition 2.1. For an invertible TFT Z : BordG
d → C there is a unique symmetric

monoidal functor Z̃ : ||BordG
d || → C× so that

BordG
d C

‖BordG
d ‖ C×

Z

Z

Z̃

(2.2)

commutes.

Recall that for an object X in a Picard groupoid C its inverse X−1 is its dual X∨.
We write evX : X ⊗ X−1 → 1C and coevX : 1C → X−1 ⊗ X for the evaluation and the
coevaluation.

Let C be a Picard groupoid. The zeroth homotopy group of C is the abelian group π0(C)
of isomorphism classes of objects. The first homotopy group of C is the abelian group π1(C)
of automorphisms of the tensor unit of C. The k-invariant of C is the group homomorphism
kC : π0(C)⊗ Z/2 → π1(C) given by kC(X) := evX ◦ σX−1,X ◦ coevX .

Theorem 2.2 ([Śın, JS, JO]). 1. Picard groupoids are classified by the zeroth and first
homotopy groups π0 and π1 and the k-invariant κ : π0 ⊗ Z/2 → π1.

2. The set of isomorphism classes of functors C → D of Picard groupoids is in bijection
with the set of triples (f0, f1, α), where fi ∈ Hom(πi(C), πi(D)) i = 0, 1 are group
homomorphisms, which make the diagram

π0(C)⊗ Z/2 π0(D)⊗ Z/2

π1(C) π1(D)

f0

kC kD

f1

(2.3)

commute and α ∈ Ext(π0(C), π1(D)).

We note that the triple (f0, f1, α = 0) determines a strict symmetric monoidal functor.
The different choices of α ∈ Ext(π0(C), π1(D)) parametrise different monoidal structures
for the same underlying functor.

Example 2.3. There are 2 symmetric braidings on the monoidal category of Z/2-graded
vector spaces over C, one with the usual flip map and one which is −1 times the flip on
purely odd components. The corresponding Picard groupoids are
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• Line×
Z/2: π0 = Z/2, π1 = C×, k([C0|1]) = +1,

• SLine×
Z/2: π0 = Z/2, π1 = C

×, k([C0|1]) = −1,

where π0 is generated by the 1-dimensional odd vector space C0|1.

Definition 2.4 ([KKNO, KST]). Let S ∈ BordG
d , Mi : S → ∅ and Ni : ∅ → S for i = 1, 2

be morphisms in BordG
d . The SKK group SKKG

d is the group completion of the monoid
of closed d-dimensional manifolds with disjoint union as product modulo diffeomorphisms
and the SKK relations which are of the form

M1 ◦N1 ⊔M2 ◦N2 ∼ M1 ◦N2 ⊔M2 ◦N1 . (2.4)

We write [Σ] ∈ SKKG
d for the class of the closed d-dimensional G-manifold Σ.

Theorem 2.5 ([KST]). For ||BordG
d || the zeroth and first homotopy groups are given by

the bordism group and the SKK group:

π0

(

||BordG
d ||

)

= ΩG
d−1 and π1(||Bord

G
d ||) = SKKG

d . (2.5)

As a corollary we get that isomorphism classes of invertible TFTs with target SLine are
in bijection with SKK-invariants, i.e. with Hom(SKKG

d ,C
×). This can be seen by noticing

that since the k-invariant of SLine is injective, f1 completely determines f0 and that by
the divisibility of C× the group Ext(ΩG

d−1,C
×) vanishes.

An important example of an SKK invariant is the Euler characteristic:

Lemma 2.6 ([KST]). The Euler characteristic is a group homomorphism:

χ : SKKG
d → Z . (2.6)

Stable tangential structures

In the rest of this section we will consider stable tangential structures which we define now.

Definition 2.7. We call tangential structures corresponding to ξ : G → SOd stable if
there is a topological group G′ containing G as a subgroup and a continuous group homo-
morphism ξ′ : G′ → SOd+1 such that the diagram

G G′

SOd SOd+1

ξ ξ′

(2.7)

commutes and the action ofG′ on Sd = SOd+1/SOd induces a homeomorphism G′/G → Sd.
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For a stable tangential structure there is a bijection between G-structures on a d-
dimensional oriented manifold Σ and G′-structures on Σ × R. In this case we can also
define the bordism group of d-dimensional G-manifolds ΩG′

d , where the equivalence relation
is being G′-bordant.

Remark 2.8. Note that if G is the trivial group then the corresponding tangential struc-
ture is a framing which is only stable in dimension 1 or 3.

Theorem 2.9 ([KST]). If a tangential structure is stable then there is a surjective group
homomorphism

SKKG
d ։ ΩG′

d . (2.8)

So in the stable case one can go on and study the map (2.8) to compute SKKG
d as in

[KST]. In the next section we will consider tangential structures which are not stable and
where we need to do something different.

3 Two-dimensional framed and r-spin TFTs

In this section we introduce the notion of framed and r-spin surfaces and recall some
properties of the respective bordism categories. Then we compute the corresponding SKK
groups explicitly and give the classification of 2-dimensional framed and r-spin TFTs.

We start by sketching some definitions from [RS, Sec. 2]. Let r ∈ Z≥0. The r-spin
group Spinr

2 is the r-fold cover for r > 0 and the universal cover for r = 0 of SO2. We
write ξ : Spinr

2 → SO2 for the covering map. An r-spin structure on a surface Σ is the
tangential structure on Σ with respect to ξ : Spinr

2 → SO2.
We will work with a skeletal version of the r-spin bordism category, which we also denote

with Bord
Spinr

2

2 . It has objects r-spin circles, i.e. disjoint unions of pairs (S1, x) = S1
x, where

x ∈ Z/r. The morphisms are diffeomorphism classes of bordisms with r-spin structure.
Every r-spin bordism Σ comes with two maps κin/out : π0(∂in/outΣ) → Z/r giving the types
of the in- and outgoing boundary components. (In [RS] the map λ : π0(∂inΣ) → Z/r is
related to κin : π0(∂inΣ) → Z/r via λ = 1− κin and similarly the map µ : π0(∂outΣ) → Z/r
is related to κout via µ = 1− κout.)

Remark 3.1. By [RS, Prop. 2.2] 0-spin structures correspond to framings, i.e. Bord
Spin0

2

2

is equivalent to the framed 2-dimensional bordism category. Recall from Remark 2.8 that
framings are not stable in dimension 2.

Proposition 3.2 ([RS, Prop. 2.19]). Let Σ be a connected bordism of genus g with bin
ingoing and bout outgoing boundary components and κin/out : π0(∂Σ)

in/out → Z/r. There
exist r-spin structures on Σ if and only if

χ(Σ) = 2− 2g − bin − bout ≡
bout
∑

j=1

κout(j)−
bin
∑

l=1

κin(l) (mod r) . (3.1)
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Let us write Σin
g,b (resp. Σ

out
g,b ) for a connected bordism of genus g with b ingoing (resp.

outgoing) boundary components only and Σg for b = 0.

Theorem 3.3 ([RS, Thm. 1.1]). If r is even then there is an invertible r-spin TFT ZCℓ

which computes the Arf invariant. For Σg with g satisfying (3.1) and an r-spin structure
ϕ on Σg we have

ZCℓ(Σg, ϕ) = 2χ(Σg)/2(−1)Arf(ϕ) . (3.2)

Example 3.4.

1. There exist r-spin structures on the sphere if and only if r = 1 or r = 2.

2. There exist r-spin structures on the torus for every value of r. The isomorphism
classes of r-spin structures on a fixed torus are in bijection with Z/r2 and we write
T (s, t) for an r-spin torus corresponding to (s, t) ∈ Z/r2. The mapping class group
of the torus SL(2,Z) acts on Z/r2 via the standard action and the orbits, i.e. diffeo-
morphism classes of r-spin tori are in bijection with the divisors of r.

3. Let r̃ := r/gcd(r, 2). There exist r-spin structures on Σg if and only if

g ≡ 1 (mod r̃) . (3.3)

We will write Ul = Σ1+lr̃. If 1 + lr̃ ≥ 2, there is one mapping class group orbit of
r-spin surfaces with underlying surface Ul for r odd and two for r even. The latter
two are distinguished by the Arf invariant and we denote these r-spin surfaces by
U

(+)
l (Arf invariant +1) and U

(−)
l (Arf invariant −1).

4. The disc Σ0,1 has a unique r-spin structure up to isomorphism. In case the boundary
is outgoing then it is of type +1, if it is ingoing then it is of type −1.

After this recollection of notions we turn to the computation of the group SKK
Spinr

2

2 .
For this we will look at some SKK-relations. The following lemma will be proved in
Appendix A using the combinatorial model of r-spin surfaces of [RS].

Lemma 3.5. In SKK
Spinr

2

2 we have the relations

[T (κ, u1)] + [T (κ, u2)] + [T (κ, u3)] + [T (κ, u4)] = [T (κ, u1 + u2)] + [T (κ, u3 + u4)] , (3.4)

[T (1, u)] = 0 , (3.5)

for every κ, u, ui ∈ Z/r (i = 1, . . . , 4). The k-invariant of S1
κ is T (κ, 0).

Lemma 3.6. The subgroup T (r) ⊂ SKK
Spinr

2

2 generated by r-spin tori is Z/2 for r even
and trivial for r odd.

Proof. By (3.4) in Lemma 3.5 for u1 = u3 = 0 we get

2[T (κ, 0)] = 0 (3.6)
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for every κ ∈ Z/r. Since for arbitrary s, t ∈ Z/r we have [T (s, t)]=[T (gcd(s, t), 0)], every

r-spin torus has 2-torsion in SKK
Spinr

2

2 .
Again by (3.4), now for u1 = 0, u3 = 1 and using (3.5) we get

[T (κ, 0)] + [T (κ, u)] = [T (κ, u+ 1)] . (3.7)

Combining the latter with (3.6) we get

[T (κ, u)] = [T (κ, u+ 2)] . (3.8)

Therefore every r-spin torus is equal to [T (0, 0)] or [T (1, 0)], the latter being zero by (3.5)
of Lemma 3.5.

If r is odd then [T (0, 0)] = [T (1, 0)] and hence T (r) = {0}.

For r even Theorem 3.3 gives an SKK-invariant SKK
Spinr

2

2 → /Cb× computing the
Euler characteristic and the Arf invariant. It has value −1 ∈ C× on [T (0, 0)], which shows

that in SKK
Spinr

2

2 the element [T (0, 0)] is non-trivial and hence T (r) ≃ Z/2.

The following lemma can be proven using the SKK-relations, Lemma 3.5 and Theo-
rem 3.3, i.e. the fact that the Arf invariant is compatible with glueing.

Lemma 3.7. Recall the r-spin surfaces Ul (r odd) and U
(±)
l (r even) from Example 3.4.

We have

[U
(+)
l ] + [T (0, 0)] = [U

(−)
l ] , (3.9)

[Ul] + [Uj] = [Ul+j] and [U
(+)
l ] + [U

(+)
j ] = [U

(+)
l+j ] , (3.10)

for every l, j ∈ Z≥0. If r ≤ 2 we furthermore have

[Σg+1] + [S2] = [Σg] and [Σ
(+)
g+1] + [S2] = [Σ(+)

g ] , (3.11)

for every g ∈ Z≥0.

Theorem 3.8. The zeroth and first homotopy groups and the k-invariant of ||Bord
Spinr

2

2 ||
are the following:

r π0 π1 k : π0 → π1

0 Z/2 Z/2 id

> 0, even Z/2 Z× Z/2 x 7→ (0, x)

> 0, odd {0} Z 0

Proof. We start with π1, which by Theorem 2.5 is SKK
Spinr

2

2 . Note that the cases r = 1
and r = 2 could be treated using Theorem 2.9. Here we present a computation which
applies for arbitrary values of r.
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By Lemma 2.6 the Euler characteristic is a group homomorphism χ : SKK
Spinr

2

2 → Z.
We claim that the kernel of χ is T (r) the subgroup generated by r-spin tori. This can be
seen by observing that any element in SKK

Spinr
2

2 can be brought to the form [U
(ε)
l ]− [U

(ε)
l′ ]

(or [Ul] − [Ul′ ]) for l, l′ ∈ Z≥1 if r > 2 or to a multiple of [S2] if r ≤ 2 up to r-spin tori
using Lemma 3.7.

If r = 0 then χ = 0 (cf. Example 3.4) and by Lemma 3.6 we have SKK
Spin0

2

2 = Z/2.
If r > 0 then by Proposition 3.2 the values of χ are divisible by 2r̃, where r̃ = r/gcd(2, r)

and χ/(2r̃) is surjective so we have a short exact sequence

T (r) −֒−−→ SKK
Spinr

2

2

χ/(2r̃)
−−−−−։ Z . (3.12)

We can define a section of χ/(2r̃) as follows. Let j = ε|j| ∈ Z and let us define

ϕ : Z → SKK
Spinr

2

2

j 7→



















j[S2] ; if r = 1, 2,

ε[U|j|] ; if r > 2 is odd,

ε[U
(+)
|j| ] ; if r > 2 is even.

(3.13)

By Lemma 3.7 ϕ is a group homomorphism and it is clearly a section of χ/(2r̃), so (3.12)
splits which together with Lemma 3.6 proves the first part of the theorem.

We continue with computing π0 = Ω
Spinr

2

1 . Let κi ∈ Z/r be fixed for i = 1, . . . , n. By
(3.1) it is possible to choose g such that

2− 2g − (n+ 1) +
n

∑

i=1

κi ≡







1 (mod r) ; if r is odd,

0 or 1 (mod r) ; if r is even,
(3.14)

so that there exists an r-spin bordism

n
⊔

i=1

S1
κi
→ S1

κ (3.15)

with underlying surface Σg,n+1 with n ingoing and one outgoing boundary component and

where κ = 1 for r odd or κ ∈ {0, 1} for r even. That is, in Ω
Spinr

2

1 every element is equal to
[S1

0 ] or to [S1
1 ].

Recall that the disc gives an r-spin bordism S1
1 → ∅, so if r is odd then Ω

Spinr
2

1 = {0}

and if r is even then Ω
Spinr

2

1 is generated by [S1
0 ].

It is easy to see from the previous discussion that [S1
0 ] has 2-torsion. For the rest of the

proof let us assume that r is even. By Lemma 3.5 the k-invariant of [S1
0 ] is [T (0, 0)] ∈ π1,

which is non-zero showing that [S1
0 ] is non-zero. Altogether we get that Ω

Spinr
2

1 = Z/2 for
r even.

9



Theorem 3.9. The group of isomorphism classes of invertible r-spin TFTs with values in
C is given by

r π0(Fun
inv
⊗ (Bord

Spinr
2

2 , C))

0 Hom(Z/2, π0(C
×))× Ext(Z/2, π1(C

×))

> 0, even Hom(Z/2, π0(C
×))× Ext(Z/2, π1(C

×))× π1(C
×)

> 0, odd π1(C
×)

Proof. We use Theorem 2.2 to compute π0(Fun
inv
⊗ (Bord

Spinr
2

2 , C)). If r = 0 then f0 ∈
Hom(Z/2, π0(C

×)) determines f1. If r > 0 is even then by (2.3) we can write f1 : Z ×
Z/2 → π1(C

×) as f1(x, y) = kC× ◦ f0(y) + f1(x, 0). So f1 is completely determined by
f0 ∈ Hom(Z/2, π0(C

×)) and by f1(1, 0) ∈ π1(C
×). If r > 0 is odd then f0 = 0 and

f1 ∈ Hom(Z, π1(C
×)) ≃ π1(C

×). In this case Ext({0} , π1(C
×)) = {0}.

A Proof of Lemma 3.5

In this section we will use the combinatorial model of r-spin surfaces of [Nov, RS] to prove
Lemma 3.5. We do not wish to present all details of the combinatorial model, we just note
that it consists of a cell decomposition of the surface in question together with a marking,
and refer the reader to [RS, Sec. 2.3]. A marking consists of an edge orientation and an
element in Z/r for each edge and for each face a choice of an edge before glueing the faces
along the edges. There are certain moves between different marked cell decompositions
which describe isomorphic r-spin surfaces, these can be found in [RS, Fig. 4 and 5].

We continue by introducing some notation. Consider the r-spin cylinder C in(κ, u) (resp.
Cout(κ, u)) with two ingoing (resp. outgoing) boundary components with boundary type κ
and −κ given by the following marked cell decomposition:

t

u 0

S1
−κS1

κ

t

u 0

S1
−κS1

κ

C in(κ, u) = Cout(κ, u) =

∅

∅

. (A.1)

Let

T (κ, u) := C in(κ, 0) ◦ Cout(κ, u) (A.2)

be the r-spin torus obtained from the composition of the cylinders in (A.1).
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Proof of Lemma 3.5. We start by proving (3.4). Let us consider the equation in SKK
Spinr

2

2 :

−κ

0 0

−κ

u4 0

−κ

u3 0

−κ

0 0

κ

0 0

−κ

0 0

κ

0u2

−κ

0u1

−κ

−κ−κ

−κ κ

−κ

κ

−κ

0 0

u4 0u3 0

0 00 00 0

0u2 0u1

=

S1
−κS1

κ S1
−κS1

κ S1
−κS1

κ S1
−κS1

κ

S1
−κS1

κ S1
−κS1

κ S1
−κS1

κ S1
−κS1

κ (A.3)
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The first term on the right hand side of (A.3) is

−κ −κ

κ

−κ

0u2 0u1

−κ −κ

−κ− 1

−κ

−1u2 0u1

=

−κ −κ

−κ

−κ

0u2 0u1

= =

−κ

u2u1

−κ

=

−κ

0v

−κ

(A.4)

with v = u1 − u2, where we used the moves of [RS, Fig. 4 and 5]. The second term on the
right hand side of (A.3) is

−κ−κ

κ

−κ

u4 0u3 0

= · · · =
−κ

0w

−κ

(A.5)

with w = u3 + u4. Finally, using the SL(2,Z) action on the set of isomorphism classes of
r-spin structures on the torus, we have [T (−κ, u2)] = [T (κ,−u2)]. Putting all the above
together we obtain (3.4).

We continue with proving (3.5). Pick arbitrary r-spin structures on Σin
1,1 and on Σout

1,1 .

12



Now consider the equation in SKK
Spinr

2

2 :

(

Σin
0,1 ⊔ Σin

1,1 ⊔ C in(1, 0)
)

◦
(

Σout
1,1 ⊔ Σout

0,1 ⊔ Cout(1, u)
)

=
(

C in(1, 0) ⊔ Σin
0,1 ⊔ Σin

1,1

)

◦
(

Cout(1, u) ⊔ Σout
1,1 ⊔ Σout

0,1

)

,
(A.6)

where we cut along S1
−1 ⊔S1

1 ⊔S1
−1 ⊔S1

1 . Notice, since up to isomorphism there is a unique
r-spin structure on the disc the two leftmost r-spin tori of the left hand side are equal to
the two r-spin tori on the right hand side, giving (3.5) directly.

Finally we compute the k-invariant of the r-spin circle [S1
κ] for κ ∈ Z/r. The duality

morphisms for S1
κ are C in(κ, 0) and Cout(κ, 0) from (A.1). The composition

k([S1
κ]) = [C in(κ, 0) ◦ σS1

−κ,S
1
κ
◦ Cout(κ, 0)] (A.7)

is an r-spin torus [T (κ, 0)] after applying a Dehn-twist.
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