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Abstract

We formulate a six dimensional U(1) gauge theory compactified on a (two dimensional)
sphere S2 with flux and localized brane sources. Profiles of the lowest Kaluza–Klein
(KK) wavefunctions and their masses are derived analytically. In contrast to ordinary
sphere compactifications, the above setup can lead to the degeneracy of and the sharp
localizations of the linearly independent lowest KK modes, depending on the number
of branes and their tensions. Moreover, it can naturally accommodate CP violation in
Yukawa interactions.
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1 Introduction

Flux compactifications play an important role in phenomenological and cosmological models
based on (super)string theories as well as higher dimensional theories. These may explain
underlying structures in the Standard Model (SM) of particle physics, such as chiral matters,
multiplicities in the SM fermions, Yukawa couplings, the wine-bottle potential of the Higgs
boson and so forth. Often, higher dimensional theories are non-chiral, so a mechanism
has to be invoked to produce chirality in four-dimensional (4d) spacetime. One powerful
way to achieve this is a flux compactification. Supposing that higher dimensional space is
compactified on some compact manifold X with a non-vanishing flux background, the vector-
like matter is reduced to a chiral matter in the low energy theory. Also, Kaluza–Klein (KK)
zero modes of chiral matters are multiply degenerated due to the index theorem [1, 2, 3].
In the low energy effective theory of such models, it is justified to identify degenerated zero
modes as family multiplicities. Various phenomenological models of particle physics and
cosmology have been constructed by use of such a “family generating” mechanism [4, 5, 6,
7, 8].

Once the zero mode wavefunctions of a chiral family are known, it is straightforward
to calculate coupling constants of the low energy effective theory, in particular, Yukawa
couplings by integrating

yijk ∼ g

∫

X

(ψi)†ψjφk vol(X), (1.1)
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where g is a coupling constant of the higher dimensional theory. The Yukawa couplings are
given by overlap integrals of zero modes. Examples are the two-dimensional (2d) torus [2],
the 2d (pure) sphere [3] or higher genus Riemann surfaces.

A particularly interesting case is that zero mode wavefunctions of three species of matter
are localized at different positions in the manifold. In such a situation, as proposed by
Arkani-Hamed and Schmaltz [9] in 1999 and in subsequent investigations [10, 11], this can
lead to considerably small elements in the Yukawa matrix. This would explain the hierarchical
structure of the SM Yukawa matrices from a simple higher dimensional point of view. For
those reasons, flux compactifications have received much attention in the context of string
phenomenology as well as in usual bottom-up model building. Even today, it is one of the key
issues to solve the flavor problem using extra dimensions. Indeed, numerous approaches were
followed, for example, [12, 13, 14]. As well as the family generating mechanism, the (bulk)
Yukawa couplings have been utilized to construct phenomenological models, for example,
non-abelian discrete flavor symmetry in leptons [15, 16] and for inflation [17].

A previous study [3], carried out by Conlon, Maharana and Quevedo in 2008, marvelously
described a setup of flux compactification on a two dimensional sphere S2, almost 30 years
after Wu and Yang originally proposed a magnetic monopole on S2 [18, 19]. The two di-
mensional sphere is one of the simplest manifolds with known higher dimensional metric and
non-trivial curvature. One of the main motivations in Ref. [3] was to explore and formulate
sphere compactifications with non zero flux as local models in string compactifications. In
contrast to global models, which are for example compactified on a torus or toroidal orbifolds,
local models only reflect the property of singularities independently of bulk properties. In
particular, it is concretely described that the profile of KK zero mode wavefunctions is deter-
mined only by properties of singularity. Also, since the sphere metric is treated as a solution
of the gravitational equation (the Liouville equation), we can take into account backreaction
in the presence of flux and branes. Thus, the sphere compactification with non zero flux and
curvature has been expected to be a promising setup for phenomenological model building
which can give rise to family replication and realistic flavor patterns. Moreover, it is clearly
described that massless zero modes of U(1) charged matter can be expressed analytically after
an appropriate U(1) charge quantization is imposed, that is, the Dirac charge quantization.
However, using the analytic expressions of zero modes, it was also argued that Yukawa cou-
pling elements derived from overlapping wavefunctions are not hierarchical enough in order
to explain the observed hierarchies in the quark and charged lepton sectors.

In this paper, we reformulate a U(1) gauge theory on S2 with magnetic flux background
in the presence of geometrical singularities (called “branes” in this paper). The S2 metric G
obeys the Liouville equation

− 4

G2
∂∂̄ logG = k + 2π

N
∑

a=1

αaδ
2(z − za), (1.2)

where N denotes the number of branes, localized at positions za and tensions αa. This can
be solved analytically up to N = 3 [20, 21, 22, 23]. By use of such results, we demonstrate
that forms of KK zero mode wavefunctions are strongly peaked in the vicinity of the brane
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positions, argued in Ref. [3]. In addition, we analytically derive zero mode wavefunctions
and comment on their Yukawa couplings via overlap integrals. Thus, the reformulation
of S2 with flux and branes is well motivated as the first step to explore (realistic) model
building. The formulation in this paper is expected to reveal potential possibilities of sphere
compactification and also to extend to more general manifolds or orbifolds possessing more
complicated geometries.

This paper is organized as follows. In the next section, we review the formulation of KK
wavefunctions in Ref. [3]. In Sec. 3, we derive analytically KK zero mode wavefunctions in
the presence of multiple branes on the 2d sphere, and then depict profiles of wavefunctions,
and discuss modifications of KK masses due to branes. In Sec. 4, an example of Yukawa
couplings is presented and we explain a strategy to realize (semi-)realistic flavor patterns.
Section 5 is devoted to conclusion and discussion. In Appx.A, we explain patches and gauge
transformations on overlaps in the flux compactification on S2, following [3]. In Appx.B, we
show a way to count the number of zero modes, based on the index theorem. In Appx.C, we
comment on the isometries of the sphere with flux and branes.

2 Short review of wavefunctions and Yukawa couplings

on S2 with flux

Higher dimensional gauge theories compactified on projective spaces CP1 (≃ S2), CP1×CP
1

and CP
2, with (abelian) magnetic flux are formulated in Ref. [3]. The authors analytically

derived zero mode wavefunctions and calculated Yukawa couplings given by overlap integrals
as Eq. (1.1). This section is devoted to providing a short review for the case of 2d sphere
S2 = C ∪ {∞}. 1)

The Fubini–Study metric of S2 reads

ds2 =
2

k(1 + |z|2)2 (dz ⊗ dz̄ + dz̄ ⊗ dz) (2.1)

with a constant Gaussian curvature k > 0. Here, z is a complex coordinate parameterizing
the “south hemisphere” of S2 and then z ∈ C = S2\{∞}. The northern patch takes the same
form, with w = −1/z on the overlap between patches. Lorentz invariance in 4d prohibits
non-vanishing vacuum expectation values (VEVs) of gauge fields along 4d spacetime. On
the other hand, it is still possible for gauge fields to have non-vanishing VEVs along extra
dimensions z and z̄. When an abelian gauge field A develops its VEV, its field strength
F = dA as flux background should satisfy the Maxwell equation and F reads

F =
iM

(1 + |z|2)2dz ∧ dz̄, (2.2)

where M denotes a magnitude of magnetic flux and should be quantized appropriately as
explained later and in Appx.A. We call M “flux” in what follows. The covariant derivative

1) Note that 2d sphere S2 is diffeomorphic to the complex plane C once a point on S2 is removed, and
C ∪ {∞} is also called the Riemann sphere.
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s
qM > 0 qM < 0

imax m2
KK imax m2

KK

Scalar
φ (D̄φ = 0) qM

2
|qM |+ 1 k|qM |

2
— —

φ (Dφ = 0) −qM
2

— — |qM |+ 1 k|qM |
2

Spinor ψ =

(

ψ−

ψ+

)

qM−1
2

|qM | 0 — —

−qM−1
2

— — |qM | 0

Vector
Bz

qM
2

|qM | − 1 −k|qM |
2

— —

Bz̄
−qM
2

— — |qM | − 1 −k|qM |
2

Table 1: The power s, the degeneracy imax and the KK mass m2
KK for the lowest wavefunc-

tions whose U(1) charge is q (see [3] for more details).

D = d − ωE − iAQ on S2 with flux background is characterized by the spin connection ω
and the vector potential A associated with the flux background F , where E is a generator
of SO(2) along the extra dimensions, Q is a generator of U(1) gauge symmetry and d is an
ordinary derivative with respect to z and z̄.

Zero mode wavefunctions of the 6d Weyl spinor field are obtained by solving the massless
Dirac equation on S2. 2) For U(1) charge Q = q of ψ, the Dirac operator /D = σiDi in terms
of the Pauli matrices σi (i = 1, 2) is given as

/D ∝
(

D
D̄

)

=

(

∂ + z̄(−qM−1)
2(1+|z|2)

∂̄ + z(qM−1)
2(1+|z|2)

)

(2.3)

up to an overall (positive) function. Here, ∂ and ∂̄ are derivatives with respect to z and z̄,
respectively. The general solution of the corresponding zero mode equation /Dψ = 0 is given
by

ψ =

(

(1 + |z|2) 1−qM

2 u−
(1 + |z|2) 1+qM

2 ū+

)

, (2.4)

where u∓ are holomorphic functions of z on C ⊆ S2. Since ψ must be well-defined and regular
on the northern patch, the Dirac quantization condition for flux qM ∈ Z is necessary in terms
of two patches covering the south and north hemispheres of S2, as reviewed in Appx.A. In
addition, to lead to a physically meaningful low energy effective theory, the wavefunction ψ
must be normalizable, so the norm of ψ must be finite,

〈ψ|ψ〉≡
∫

S2

ψ̄ψ vol(S2) <∞, (2.5)

2) The Pauli matrices σi (i = 1, 2) satisfy the 2d Clifford algebra {σi, σj} = 2δij . To define 6d spinor fields,
as 6d gamma matrices, we use tensor products of the Pauli matrices and 4d gamma matrices γµ satisfying
{γµ, γν} = 2ηµν .
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otherwise, the kinetic term in the low energy effective theory diverges. Due to this normal-
izability of wavefunctions, the vector space spanned by the solutions is required to be finite
dimensional, and we obtain the following as an orthonormal basis

qM > 0 : ψi = Ni(1 + |z|2) 1−qM

2

(

zi−1

0

)

(i = 1, . . . , qM),

qM < 0 : ψi = Ni(1 + |z|2) 1+qM

2

(

0
z̄i−1

)

(i = 1, . . . , |qM |).
(2.6)

The normalization factor Ni (> 0) is determined so that 〈ψi|ψi〉 = 1. When the spinor field
is neutral under U(1) associated with flux, i.e., Q = 0, there is no zero mode because of the
positive curvature of S2. It can be observed that there are only zero modes for 4d Weyl or
anti-Weyl depending on the sign of qM . This can be considered as an origin of the chiral
spectrum and we can relate the degeneracy |qM | of zero modes to the family structure in the
SM fermions.

Similar results are obtained for a complex scalar φ and a complex vector (1-form) B =
Bzdz + Bz̄dz̄. All of the zero mode wavefunctions on the magnetized S2 consist of a metric
factor (1 + |z|2)−s and a holomorphic (or anti-holomorphic) part zi−1 (or z̄i−1):

φ, ψ∓, Bz,z̄ ∝ (1 + |z|2)−szi−1 or (1 + |z|2)−sz̄i−1 (i = 1, . . . , imax), (2.7)

where ψ∓ are components of the 2d spinor field ψ = (ψ−, ψ+). The power s and the degen-
eracy imax are determined by the spin of fields and U(1) charge q. The holomorphic part
zi−1 (the anti-holomorphic part z̄i−1) appears when qM > 0 (qM < 0). There is no zero
mode for ψ+ and Bz̄ when qM ≥ 0 and, while there is no zero mode for ψ− and Bz when
qM ≤ 0 due to the normalizability of zero modes. For the complex scalar field, we have two
possibilities for the zero mode equation, Dφ = 0 or D̄φ = 0, but non-trivial solutions exist
only for one of them if qM 6= 0. Note that the lowest KK mass is not always zero for scalars
and vectors once the flux is introduced (see Table. 1). 3) The power s, the degeneracy imax

and the KK mass m2
KK of the lowest wavefunctions for each representation are summarized in

Tab. 1. In Ref. [3], the complex vector field B is considered as a part of a higher dimensional
Yang–Mills (YM) field based on a compact Lie group. When the Cartan directions of the
YM field develops their VEVs, the kinetic term of the YM field contains a quadratic coupling
of B proportional to the abelian flux, and the tachyonic KK mass −k|qM |/2 of the complex
vector B comes from the quadratic coupling. In this paper, we also suppose that B is a
part of some YM field, and the KK mass originating from the YM kinetic term is taken into
consideration.

At the end of this section, we qualitatively outline a hierarchy of Yukawa couplings given
in Eq. (1.1) which are proportional to overlap integrals

yijk ∝
∫ ∞

0

rdr

∫ 2π

0

dθ
4

k(1 + r2)2
(ψi)†ψjφk, (2.8)

3)Such situations can be seen also on the magnetized torus [2], for instance.
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Figure 1: Profiles of absolute values of spinor wavefunctions in l-coordinate with k = 1 and
qM = 3

where ψi and ψj are zero mode wavefunctions of spinor fields such as the SM fermions and
φk is the lowest mode wavefunction of a boson such as the Higgs boson. The integration
is performed in a polar coordinate z = reiθ ∈ C ⊆ S2, and an additional weight factor
4/(k(1 + r2)2) comes from the volume form of S2. To evaluate the integration above, it is
useful to introduce a coordinate

l = 1− 1

1 + r2
, (2.9)

so that l = 0, 1/2 and 1 correspond to the “south pole”, the “equator” and the “north pole”,
respectively. It can be seen that dl absorbs the weight factor and the non-vanishing overlap
integral (2.8) reduces to

yijk ∝
4π

k

∫ 1

0

dl |ψiψjφk|
∣

∣

∣

∣

θ=0

. (2.10)

Wavefunction profiles of ψi with |qM | = 3, which would correspond to three generation
matters in the SM, are depicted in Fig. 1. This figure shows that |ψi| spreads gently and
entirely on S2 and accordingly the overlap integral (2.8) tends to give sizable values not
suitable for large hierarchies among the SM quarks and charged leptons. 4) Therefore, it is
fair to say that unless the profiles of bosonic wavefunctions φk are strongly localized, the
Yukawa couplings can not have a sufficiently hierarchical structure to reproduce the SM
flavor pattern.

4)The same profiles appear in the bosonic wavefunctions also and spread gently and entirely on S2 in a
similar manner.
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3 Zero mode wavefunctions on S2 with flux and branes

3.1 Two branes

In this subsection, we derive zero mode wavefunctions in the presence of additional singu-
larities on S2 such as orbifold fixed points. We call such an additional singularity a brane
in the following. Branes are supposed to be 4d objects, fill up the 4d spacetime and couple
only to the gravity. Then, the action reads

S ≡ Smatter + Sgravity + Sbranes, (3.1)

where Smatter describes 6d matter fields’ dynamics and Sgravity is the Einstein–Hilbert action
with a 6d cosmological constant. Although some discussions in the cosmological constant
have been done in Refs. [24, 25], we do not touch the issue in this paper. The last term
describing field theories on N branes is given as

Sbranes = −2πM4
6

N
∑

a=1

αa

∫

R1,3×{za}

vol(R1,3 × {za}), (3.2)

whereM6 is the 6d Planck mass, za (∈ S2) denotes a position at which the a-th brane locates
and a real constant αa is a dimensionless brane tension which the a-th brane possesses. Since
the dimensionless tension can restore its mass dimension as M4

6αa, αa is assumed to be
positive because negative tension branes would be physically unstable. We also assume that
αa < 1 because the conical singularity induced by the a-th brane has deficit angle 2παa < 2π.
In this subsection, we focus on a situation with two branes (N = 2) totally, where branes are
located at z1 = 0 and z2 = ∞. 5) Thus, we treat the following setup :

ds2 = ηµνdx
µ ⊗ dxν +

1

2
G(z)2(dz ⊗ dz̄ + dz̄ ⊗ dz),

F i =
i

2
f iG(z)2dz ∧ dz̄,

(3.3)

where F i is an extra dimensional component of an abelian field strength, or more generally a
Cartan direction of non-abelian field strength, a real constant f i is a flux density of flux back-
ground and ηµν is the 4d Minkowski metric. The second equation is a solution of the Maxwell
equation in the vacuum. By substituting these expressions into the Einstein equation, we
obtain the Liouville equation which the extra dimensional metric G should satisfy :

− 4

G2
∂∂̄ logG = k + 2π

2
∑

a=1

αaδ
2(z − za). (3.4)

A real constant k denotes a curvature characterized by the flux density f i and the 6d cosmo-
logical constant. In the whole of this paper, we assume that k is positive. Also, δ2(z − za) is

5) Two dimensional sphere has SL(2,C) symmetry. This fixes two branes on z = 0, ∞ without loss of
generality.
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Figure 2: “Football”-shaped sphere with two branes at z = 0,∞ and the l-coordinate.

a delta function on S2 normalized as
∫

S2 δ
2(z − za)ϕ(z) vol(S

2) = ϕ(za). From a geometrical
point of view, the left hand side corresponds to the Gaussian curvature of G2dzdz̄. Thus, the
Liouville equation above tells that the Gaussian curvature of this setup is constant except on
brane positions z = za. The solution of the Liouville equation is investigated in Refs. [26, 22].
It exists if α1 = α2 = α, given as

G =
1− α√

k

2|z|−α

1 + |z|2−2α
. (3.5)

This metric diverges at z = z1 = 0 and it can be observed that the metric also diverges at
z = z2 = ∞ after changing a patch with w = −1/z (see Appx.A). These metric singularities
are called conical singularities. They can be seemingly removed by introducing a (singular)
new coordinate z′ = z1−α. In the coordinate, there is no region of {z′ ∈ C | 2π(1 − α) ≤
arg z′ < 2π}. Schematically the lack of the region leads to deficit angle 2πα from a full
domain of S2. Thus a shape of the sphere with two branes seems “football”, as depicted in
Fig. 2. Note that a constant curvature k on S2 with two branes is given as

k = 1− α (3.6)

when the volume of sphere is normalized as
∫

vol(S2) = 4π(1− α)/k = 4π.
Our goal in this subsection is to derive zero mode wavefunctions analytically. Hence, we

need to specify the background of gauge fields at first. Hereafter, we focus on a single abelian
gauge field A for simplicity. If S2 has a smooth metric, S2 is a Kähler manifold and a solution
of the Maxwell equation is realized as a Chern connection of some holomorphic line bundle.
Thus, it is natural to assume that the solution A is given as

A = i∂ log h dz − i∂̄ log h dz̄ (3.7)
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for some real function h, even when the metric has singularities at z = 0 and z = ∞. 6) Then
the Maxwell equation F = f vol(S2) reduces to the Poisson equation of h :

−4∂∂̄ log h = fG2. (3.8)

This equation is similar to the Liouville equation. Comparing these two equations, we obtain

log h =
f

k
logG+ ReΩ (3.9)

as a general solution of the Poisson equation, where Ω is some holomorphic function. Since
Ω can be gauged away so that we set Ω = 0, the gauge field A under consideration reads

A =
M

2

(

i∂ logGdz − i∂̄ logGdz̄
)

. (3.10)

Here we defineM ≡ 2f/k. This solution is consistent with results in supergravity formulation
[27, 28]. The spin connection ω is expressed as

ω = i∂ logGdz − i∂̄ logGdz̄. (3.11)

Accordingly, the gauge covariant derivative is D = d− ωE − iAQ with plugging Eqs. (3.10)
and (3.11), where E is the generator of SO(2) along the extra dimensions and Q is the
generator of U(1). Due to the Dirac quantization condition, the product of U(1) charge q
and M must be an integer, qM ∈ Z.

First, let us consider a complex scalar field φ. The lowest mode equation for φ is given by
either of Dφ = 0 or D̄φ = 0. Their solutions and the lowest bulk KK masses are obtained as

D̄φ = 0 ⇒ φ = G
qM

2 u, m2
KK, bulk =

kqM

2

Dφ = 0 ⇒ φ = G− qM

2 ū, m2
KK, bulk = −kqM

2
,

(3.12)

where u is a holomorphic function of z. Note that KK masses consist of bulk and brane
induced KK masses, which are generated due to branes. The bulk KK masses are common
between the lowest modes of complex scalar and vector fields respectively. On another hand,
the vector field acquires an additional mass due to the presence of branes, as discussed in
the subsection 3.4. In normalizing scalar wavefunctions, the norm is given by

〈φ|φ〉 =
∫

GqM |u|2vol(S2) or 〈φ|φ〉 =
∫

G−qM |u|2vol(S2) (3.13)

6) Although we can always add the Wilson line on the bulk to the solution A without changing F , there
is no constant Wilson line because S2 is simply connected. On another hand, it is possible to introduce the
singular Wilson line, such as dz/z + dz̄/z̄, because z = 0 and z = ∞ are punctures due to the presence of
branes effectively. However, we do not take into account the singular Wilson lines in this paper and leave
such extensions for next projects.
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for each case and must be finite for normalizable wavefunctions. The normalizability condi-
tion 〈φ|φ〉 <∞ can hold for either of Dφ = 0 or D̄φ = 0 if qM 6= 0.

To discuss a spinor wavefunction, we need to look at the Dirac operator on S2 with two
branes. The Dirac operator /D = σiDi is written down as

/D =
2

G

(

∂ − ∂ logG
−qM−1

2

∂̄ − ∂̄ logG
qM−1

2

)

(3.14)

and the general solution of the zero mode equation /Dψ = 0 is obtained as

ψ =

(

ψ−

ψ+

)

=

(

G
qM−1

2 u−

G
−qM−1

2 ū+

)

, (3.15)

where u∓ are holomorphic functions. Its norm 〈ψ|ψ〉 is computed as

〈ψ|ψ〉 =
∫

(

GqM−1|u−|2 +G−qM−1|u+|2
)

vol(S2), (3.16)

which has to be finite in order to obtain a normalizable wavefunction.
Although abelian gauge fields are not charged under other U(1) gauge group, a part of a

non-abelian gauge field can be charged under the Cartan direction out of YM gauge group.
The lowest mode equations are expressed as DBz̄ = D̄Bz = 0 and the solutions and bulk KK
masses are derived in the same manner as the previous subsection as

Bz = G
qM

2 uz, m2
KK,bulk = −kqM

2
,

Bz̄ = G− qM

2 ūz̄, m2
KK,bulk =

kqM

2
,

(3.17)

where uz, z̄ are holomorphic functions. Either of Bz and Bz̄ must vanish due to the normal-
izability. The norm of B is

〈B|B〉 = 2

∫

(GqM−2|uz|2 +G−qM−2|uz̄|2)vol(S2), (3.18)

which has to be finite for a normalizable mode. Norms of scalars (spinors and vectors) contain
G±qM (G±qM−1 and G±qM−2). This difference of powers of G is due to the difference of spin
among the fields.

In any case, the normalizability conditions seem equivalent up to the power of G. Hence,
it is sufficient to discuss a simplified condition for a holomorphic function u whose norm is
defined by

〈u|u〉hol ≡
∫

Gw|u|2vol(S2) (3.19)
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for some integer w. The wavefunction that we derived so far is not u itself, but Gsu or Gsū
for some (half-)integers s. Substituting the explicit form of G into the above, we obtain

〈u|u〉hol =
(

2− 2α√
k

)w+2 ∫ 2π

0

dθ

∫ ∞

0

rdr

(

r−α

1 + r2−2α

)w+2

|u|2. (3.20)

When u has a pole on C\{0} ⊆ S2, this integration diverges so that u can not have poles on
C\{0}. If the integration diverges, the divergence originates from r = 0 or r = ∞. Then,
contributions from z = 0 and z = ∞ are evaluated as

∫

0

dr r−α(w+2)+1|u|2 and

∫ ∞

dr r(w+2)(α−2)+1|u|2. (3.21)

Obviously, 〈u|u〉hol is finite if and only if these two terms are finite. This condition strongly
restricts the possible power of z in u, and when we take an ansatz u = zi with an integer i,
the possible values of i is turned out to be

⌊

α
w + 2

2

⌋

≤ i ≤ w −
⌊

α
w + 2

2

⌋

, (3.22)

where ⌊t⌋ denotes an integer part in a real number t. In fact, we can evaluate 〈u|u〉hol for
u = zi analytically as

〈zi|zi〉hol =
4π(1− α)

k

(

2− 2α√
k

)w

B

(

2i+ 2− α(2 + w)

2− 2α ,

2w + 2− 2i− α(w + 2)

2− 2α

)

.

(3.23)

Here B(t, t′) is the beta function, and this is finite if and only if i satisfies Eq. (3.22). Since
it is easy to show 〈zi|zj〉hol = 0 for i 6= j, polynomials of z

zi−1+⌊αw+2
2 ⌋ (i = 1, . . . , imax) (3.24)

provide linearly independent normalizable wavefunctions, where we define imax by

imax = w + 1− 2

⌊

α
w + 2

2

⌋

. (3.25)

In Appx.B, we show counting formulae (B.20) for the number of the linearly independent
lowest modes. Moreover, the number of modes coincides with imax on two branes background.
Therefore, we conclude that polynomials in Eq. (3.24) give the orthonormal linearly indepen-
dent basis of wavefunctions, and summarize weights s and w, the degeneracy imax and the
square of the lowest KK mass in Tab. 2. Note that in general, the lowest states of vector fields
do not have the same masses due to brane induced ones. In other words, for vector fields,
imax is not necessarily equal to the number of modes appearing in the low energy effective
theory. This is because some modes of the vector field get additional mass contributions,
depending on their wavefunction property, as discussed in detail in the subsection 3.4.
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s w
qM > 0 qM < 0

imax m2
KK,bulk imax m2

KK,bulk

Scalar
D̄φ = 0 qM

2 qM |qM |+1− 2
⌊

α |qM|+2
2

⌋

k|qM|
2 — —

Dφ = 0 −qM
2 −qM — — |qM |+1− 2

⌊

α |qM|+2
2

⌋

k|qM|
2

Spinor

(

ψ−

ψ+

)

qM−1
2 qM − 1 |qM | − 2

⌊

α |qM|+1
2

⌋

0 — —

−qM−1
2 −qM−1 — — |qM | − 2

⌊

α |qM|+1
2

⌋

0

Vector
Bz

qM

2 qM − 2 |qM | − 1− 2
⌊

α |qM|
2

⌋

−k|qM|
2 — —

Bz̄
−qM

2 −qM−2 — — |qM | − 1− 2
⌊

α |qM|
2

⌋

−k|qM|
2

Table 2: Possible combinations of the weights s and w, the degeneracy imax and the square
of the lowest bulk KK mass spectrum for normalizable wavefunctions.

3.2 Three or more branes

When there exist N branes, the Einstein equation reduces to

− 4

G2
∂∂̄ logG = k + 2π

N
∑

a=1

αaδ
2(z − za). (3.26)

The existence of solutions for the equation is discussed in Ref. [29] for generic N . There is no
solution for N = 1 and an explicit solution for N = 3 is investigated in Ref. [22]. Although
an explicit solution for N > 3 has not been known, we proceed our discussion generically.

It is easy to extend our previous discussion for the case with N branes. Indeed, when the
metric G satisfies Eq. (3.26), a vector potential given as Eq. (3.10) satisfies again the Maxwell
equation even for the arbitrary number of branes N and their positions za. It is also quite
straightforward to derive the lowest mode wavefunctions analytically, this is because what to
do here is to replace the metric G on S2 with two branes with the solution G of Eq. (3.26).
The general solutions of the lowest mode equations given in Eqs. (3.12), (3.15) and (3.17)
are still valid as formal expressions. Hence all we have to do is to discuss the normalizable
condition.

Let us consider a holomorphic function u whose norm is defined by

〈u|u〉hol ≡
∫

Gw|u|2vol(S2) (3.27)

for some integer w. When the Liouville equation is satisfied, for each brane on za ( 6= ∞),
there is a positive continuous function Ha such that Ha(za) 6= 0 and G is expressed as

G(z) = Ha(z)|z − za|−αa (3.28)

around za (see Appx.B in more details). Then, the normalizable condition 〈u|u〉hol < ∞ is
satisfied if and only if u does not have poles except on branes, and the integration around

12



z = ∞ is finite and also in the vicinity of z = za,

i

2

∫

|z−za|<ǫa

|z − za|−α(w+2)|u|2 dzdz̄ <∞ (3.29)

is satisfied for small ǫa > 0. When the Laurent expansion of u around za starts from (z−za)na,
this finiteness is equivalent to

na ≥
⌊

αa
w + 2

2

⌋

. (3.30)

Defining u0 as

u0(z) = z−1
N
∏

a=1

(z − za)
⌊αa

w+2
2 ⌋, (3.31)

the integration of 〈ziu0|ziu0〉hol for a positive integer i around z = ∞ is finite if and only if

i ≤ imax = w + 1−
N
∑

a=1

⌊

αa
w + 2

2

⌋

. (3.32)

Since polynomials zi are linearly independent, ziu0 are also linearly independent. Moreover,
imax is equal to the number of normalizable wavefunctions (see Eq. (B.20)). Therefore, we
conclude that

ziu0 (i = 1, . . . , imax) (3.33)

spans a basis of normalizable wavefunctions. When the N -th brane is placed at zN = ∞, all
we have to do is to change u0 by

u0 = z−1
N−1
∏

a=1

(z − za)
⌊αa

w+2
2 ⌋. (3.34)

Although an effect of the N -th brane on wavefunctions seems to disappear, the normalizable
condition around z = ∞ is modified because of the existing brane. In the next subsection,
we show profiles of the lowest modes which are obtained in this manner.

3.3 Wavefunction profiles

When there are two or three branes, we analytically have the solution of G so that we can
see explicit profiles of wavefunctions in those cases.

First of all, we show a case with two branes. As slightly shown in the introduction,
(bulk) U(1) symmetric Yukawa couplings in the low energy effective theory are proportional
to overlap integrals,

∫

(ψi)†ψjφk vol(S2) =
4(1− α)2

k

∫ ∞

0

rdr

∫ 2π

0

dθ
r−2α

(1 + r2−2α)2
(ψi)†ψjφk. (3.35)
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An additional weight function related to r in the right hand side originates from the volume
form vol(S2). To evaluate this integral, it is useful to utilize a modified l-coordinate :

l = 1− 1

1 + r2−2α
. (3.36)

In fact, its differential dl is obtained as

dl =
2(1− α)r1−2α

(1 + r2−2α)2
dr (3.37)

and hence this absorbs the weight function appearing in the overlap integrals. As we will
explain later in the section 4, due to the backgrounds’ invariance under rotations around the
axis of S2, non-vanishing contributions depend on only θ = 0,

4π(1− α)

k

∫ 1

0

dl
∣

∣ψiψjφk
∣

∣

∣

∣

∣

∣

θ=0

. (3.38)

The profiles of absolute values of spinor wavefunctions |ψi| with U(1) charge qM = 27
and two branes of tensions α1 = α2 = 0.9 are shown in Fig. 3 in terms of the modified l-
coordinate. In Fig. 3, absolute values for only θ = 0 are shown because such absolute values
of the wavefunctions on S2 with two branes do not depend on θ. It is interesting to note
that some normalizable wavefunctions on the pure sphere become non-normalizable due to
the singularities produced by branes. This effect is captured by the negative contribution of
the degeneracy given in Eq. (3.25), which vanishes when we set α = 0. For illustration, we
show wavefunction profiles in Fig. 3 for the brane tension α = 0.9 and flux qM = 27, where
there are only three spinor zero modes correspondingly to three generations. This means that
branes make 24 zero modes non-normalizable, compared with the pure sphere setup where
there are originally 27 normalizable zero modes due to qM = 27. Not only the degeneracy,
the profiles of holomorphic part of wavefunctions are also affected by branes. The SM of
particle physics has three generation matters, so that we focus on the flux patterns which
give imax = 3. When there is no additional brane (equivalent to the pure sphere in the section
2), holomorphic parts of spinor wavefunctions are zi−1 (i = 1, 2, 3). On the other hand, when
there are two branes with brane tensions α1 = α2 = 0.9 and flux qM = 27, holomorphic
parts of spinor wavefunctions are zi+11 (i = 1, 2, 3). Comparing no brane setup with two-
brane setup, we can observe that an additional power z12 appears in two-brane setup. This
additional power makes wavefunction profiles more localized on some points, as shown in
Fig. 3. It is expectable that overlap integrals

∫

(ψi)†ψjφk vol(S2) can become sufficiently
hierarchical reproducing quark and charged lepton masses, for instance. By comparing Fig. 3
with Fig. 1, we can see that the wavefunctions are peaked at different positions due to the
presence of the branes. In particular, for fixed φk, overlap integrals can become much more
hierarchical because of strong localizations of wavefunctions, and then an overlap integral
of the mode functions localized around the north pole and around the south pole becomes
much smaller due to the branes. 7)

7) We can check that the bosonic wavefunction |φk| is also localized at some point due to branes.
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Figure 3: Profiles of absolute values of spinor wavefunctions on the S2 with two branes in
terms of the modified l-coordinate. We set α = 0.9 and qM = 27. The constant curvature is
given as k = 1− α so that the volume is normalized as

∫

vol(S2) = 4π.

Next, we would like to discuss a dependence of brane tensions in Fig. 4. In the left and
right panels, we set α = 0.2, qM = 3 and α = 0.8, qM = 11, respectively. These setups
can be compared with the result of Ref. [3], as in Fig. 1. It is found that the three peaks of
mode functions get closer to l = 0, 1/2, 1, as the brane tensions become large. This is because
we can expand the zero mode wavefunctions around z = 0,∞, i.e., l = 0, 1 with the brane
tension appeared in powers of z, and also the mode peaked around l = 1/2 tends to get far
from the north and south poles with large brane tensions.

Note that, in addition to the rotational symmetry around an axis which penetrates
z = 0,∞, the two brane background has Z2 symmetry generated by z → 1/z. Then the
lowest mode equation is invariant under this transformation and wavefunctions obey some
representations of Z2. In Fig. 3 and Fig. 4, the first mode ψ1 and the third mode ψ3 form a
doublet and the second mode ψ2 is a singlet. 8) These are the reasons why |ψ1| and |ψ2| are
mirror images of each other and |ψ2| is symmetric with respect to l = 1/2.

In the rest of this subsection, we discuss the wavefunctions on S2 with three branes. The
solution G of Eq. (3.26) for N = 3 is obtained in Ref. [22] as

G =
2√
k

|Φ′|
1 + |Φ|2 , (3.39)

where Φ is a multivalued holomorphic function

Φ(z) = C
2F1[a1, b1, c1 : z]

2F1[a2, b2, c2 : z]
z1−α1 . (3.40)

Although Φ itself is multivalued, it is easy to confirm that G is single-valued. 2F1[a, b, c : z]
is the hypergeometric function normalized as 2F1[a, b, c : 0] = 1. Real constants ai, bi and ci

8) The rotational and the Z2 symmetry do not commute each other. Now we use a basis of wavefunctions
which diagonalize the rotational symmetry, and we can not diagonalize the Z2 symmetry simultaneously.
Therefore ψ1 and ψ3 form an irreducible Z2 doublet even though a pure Z2 doublet is reducible.
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Figure 4: Profiles of absolute values of spinor wavefunctions on the S2 with two branes in
terms of the modified l-coordinate. In the left and right panels, we set α = 0.2, qM = 3 and
α = 0.8, qM = 11, respectively. It can be seen that different combinations of flux density
and brane tension give different localization profiles of the mode functions.

in the hypergeometric function are given by

a1 =
2− α1 + α2 − α3

2
, a2 =

α1 + α2 − α3

2
,

b1 =
−α1 + α2 + α3

2
, b2 =

−2 + α1 + α2 + α3

2
,

c1 = 2− α1, c2 = α1,

(3.41)

where α1 (α2 and α3) denotes a brane tension of the brane at z = 0 (z = 1 and z = ∞).
As shown in Ref. [26], these three brane tensions give a constant curvature on S2 with three
branes as

k =
1

2
(2− α1 − α2 − α3), (3.42)

when the 2d volume is fixed as
∫

vol(S2) = 4π. Here we fix positions of three branes on
z = 0, 1 and ∞ by using SL(2,C) symmetry of S2. 9) The overall constant C in Φ is given
as

C =
Γ(a1)Γ(b1)Γ(c2)

Γ(a2)Γ(b2)Γ(c1)

√

−cos π(α1 − α2)− cosπα3

cos π(α1 + α2)− cos πα3

. (3.43)

Note that C becomes imaginary number for some values of α1, 2, 3. In such a case, the solution
G is invalid as pointed out in Ref. [22].

9)In general, arbitrary distinct three points of S2 can be moved to other arbitrary distinct three points
by an SL(2,C) transformation, called an Möbius transformation. The positions of three branes are uniquely
fixed by this transformation. If we try to introduce the forth brane, we can not fix its position, and hence
the position of the forth brane becomes a model parameter.
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Figure 5: Phase-dependences of the wavefunctions |ψi| at l = 0.9 on S2 with three branes.
Since we set α1 = α3 = 0.4, α2 = 0.1 and qM = 4, there appear two mode functions (i = 1, 2)
where non-trivial θ-dependences are observed and those can give complex-valued entries in
Yukawa couplings.

Similarly to the setup of two branes, we find (quasi-)localization profiles of zero mode
wavefunctions in l-coordinate direction. It is also confirmed that stronger brane tensions give
more localizing shapes of zero modes on S2 with three branes. Interestingly, in contrast to
N = 2, it turns out that the wavefunctions possess a phase-dependence in a polar coordinate
z = reiθ. In Fig. 5 where we set α1 = α3 = 0.4, α2 = 0.1 and qM = 4, the norms of
wavefunctions shows their θ-dependence at l = 0.9. In principle, this θ-dependence can be
understood as a breakdown of an isometry on S2, due to the presence of three branes. It is no
longer possible to evaluate the Yukawa couplings only at θ = 0, and it is expectable that the
θ-dependence would lead to the CP violation in the low energy effective Yukawa couplings.
We will discuss a relation between the isometry of S2 with branes and the CP violation in
Appx.C from a mathematical point of view.

3.4 Brane induced mass

Before closing this section, we need to discuss the KK masses of the lowest states in complex
scalar and vector fields. While spinor fields have massless modes as the lowest states, i.e., the
zero modes in any case, the complex scalars and vectors are likely to acquire non-vanishing
contributions from the bulk flux (as in the magnetized torus/orbifold [2]). In particular,
the lowest mode wavefunctions of vector fields receive brane induced masses coming from
Yang–Mills kinetic terms.

Let φ be a wavefunction of a complex scalar field, normalized as
∫

S2 φ̄φ vol(S
2) = 1. 10)

10) Our discussion in this subsection can be easily extended for a general 2d compact manifold if the manifold
is not a torus and its metric satisfies the Liouville equation.
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The KK mass m2
KK of the mode is given by

m2
KK =

∫

S2

dAφ̄ ∧ ⋆ dAφ ≡ lim
ǫ→0

∫

S2\∪aDa,ǫ

dAφ̄ ∧ ⋆ dAφ, (3.44)

where dA = d−iqA is the covariant exterior derivative on flux background and ⋆ is the Hodge
dual on S2. Da,ǫ denotes an open disc around a singularity za with a small radius ǫ > 0.
Without any assumption, we can rewrite the integrand as

dAφ̄ ∧ ⋆dAφ =
1

2
d ⋆ d(φ̄φ) + qF φ̄φ, (3.45)

where we use ∂̄Aφ = 0. Here, F = dA = 1
2
kMvol(S2) is a field strength associated with flux

background. The second term in Eq. (3.45) clearly gives bulk mass m2
KK,bulk = kqM/2. In

short, the total KK mass of the mode is given as

m2
KK = m2

KK,bulk − lim
ǫ→0

1

2

∑

a

∮

∂Da,ǫ

⋆d(φ̄φ). (3.46)

Note that the second term may correspond to a contribution of singular curvature around
branes and possibly give an infinite value which we regularize or neglect in usual schemes.

Next, we discuss the KK mass in vector fields. When a vector field is a part of a Yang–
Mills field and also some Cartan directions develop their VEVs, the Yang–Mills kinetic term
contains

iq

∫

S2

F ∧ ⋆(B̄ ∧ B). (3.47)

This term becomes the KK mass m2
KK. Recalling that the underlying gauge potential is given

by A = −1
2
M ⋆d logG and also the metric G satisfies the Liouville equation (3.26), it can be

observed that F = dA includes localized (geometric) flux on brane positions,

F = dA =

(

kM

2
+ πM

N
∑

a=1

αaδ
2(z − za)

)

vol(S2). (3.48)

Substituting Eq. (3.48) into Eq. (3.47), we obtain

m2
KK = m2

KK,bulk + iπqM

∫

S2

(

N
∑

a=1

αaδ
2(z − za)

)

B̄ ∧B. (3.49)

When for qM > 0, the z̄ component Bz̄ of B = Bzdz + Bz̄dz̄ vanishes and B is normalized
as
∫

B̄ ∧ ⋆B = 1, the bulk mass reads

m2
KK, bulk = −kqM

2
, (3.50)
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as shown in the previous subsections. Recalling the expressions of vector wavefunctions, let

Bz = G
qM

2 (z− za)navz,a be a local expression of Bz around z = za. Here vz,a is a holomorphic
function with taking a finite value at za, i.e., vz,a(za) 6= 0 and na is the order of zero of the
holomorphic part of the wavefunction Bz. Then, the brane induced mass is computed as

m2
KK, brane ≡ iπqM

∫

S2

(

N
∑

a=1

αaδ
2(z − za)

)

B̄ ∧B

= −2πqM
N
∑

a=1

αaHa(za)
qM−2|vz,a(za)|2 lim

z→za
|z − za|2na−(qM−2)αa ,

(3.51)

where G = Ha|z − za|−αa is a local expression of the metric around za. If some na satisfies
na < (qM−2)αa/2, the brane induced mass gives a negative infinity and should be regularized
in appropriate manners. For na = (qM − 2)αa/2, the brane induced mass takes a finite non-
vanishing values. By repeating the above discussion also for non-vanishing Bz̄ and qM < 0,
the brane induced mass generically reads

m2
KK,brane = −2π|qM |

N
∑

a=1

αaHa(za)
|qM |−2|vz,a(za)|2δ2na−(|qM |−2)αa,0, (3.52)

and this gives non-zero mass only for na = (|qM | − 2)αa/2.

4 Yukawa couplings on S2 with flux and branes

In this section, we comment on the effective Yukawa couplings by overlap integrals and their
property related to a non-vanishing CP phase.

Let us consider S2 with two branes whose dimensionless tensions are given by α (= α1 =
α2). We derived wavefunctions analytically in the subsection 3.1 and overlap integrals are
expressed as

∫

(ψi)†ψjφk vol(S2) =
i

2
N
∫

Gw+2z̄nzm dzdz̄, (4.1)

for some weight w, which is determined by U(1) charges and spins of matter fields, and for
integers n and m, which are determined by the mode labels i, j and k among wavefunctions.
N (> 0) is a product of normalization factors for each wavefunction. Since G is independent
on an angular coordinate θ, one can find

∫

(ψi)†ψjφk vol(S2) = N
(
∫ ∞

0

dr Gw+2rn+m+1

)(
∫ 2π

0

dθ ei(m−n)θ

)

(4.2)

vanishes when m 6= n. By inserting the explicit form (3.5) of G into the first factor and
introducing the modified l-coordinate (3.36), we obtain
∫ ∞

0

dr Gw+2r2n+1 =
2− 2α

k

(

2− 2α√
k

)w

B

(

2n+ 2− α(w + 2)

2− 2α ,

2w + 2− 2n− α(w + 2)

2− 2α

)

,

(4.3)
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where B(t, t′) is the beta function. The products of normalization factors N is also written
by the beta function, so that we can analytically write down the Yukawa couplings.

Although the analytic forms of the Yukawa couplings are realizable in principle, the result
may be phenomenologically unfavorable. Recall that holomorphic parts of wavefunctions in
Eq. (4.1) are written as

ψi ∝ z
i−1+

⌊

α
(qM)1+1

2

⌋

, ψj ∝ z
j−1+

⌊

α
(qM)2+1

2

⌋

, φk ∝ z
k−1+

⌊

α
(qM)3

2

⌋

, (4.4)

where (qM)1, 2, 3 are the numbers of flux which three matters feel. These expressions and
∫

ei(m−n)θ dθ in Eq. (4.2) imply that non-vanishing Yukawa couplings for fixed φk appear only
when

i− j = (const). (4.5)

The full rank Yukawa matrix is phenomenologically desired to reproduce massive matters,
however, the above Yukawa matrix to φk can be full rank only when the right hand side
vanishes. Then, a possible full rank Yukawa matrix is a diagonal one at most, and hence
there is no mixing between matters and it is not suitable for reproducing the SM quark
mixing angles, for instance. In addition, overlap integrals given in Eq. (4.1) take only real
values, so that the Yukawa matrix does not break CP symmetry. This is again not suitable
for realizing realistic quark flavor structures.

The origin of these phenomenologically unsatisfactory points is a symmetry of the back-
ground. In fact, the background metric G2dzdz̄ and the magnetic flux F are invariant under
rotations around an axis which penetrates two points z = 0,∞. 11) Therefore a finite dimen-
sional vector space V of wavefunctions, for example, spinor wavefunctions which feel the flux
qM , is closed under the isometry group U(1)isom and V becomes a unitary representation of
U(1)isom. Then we have an orthogonal decomposition

V =
⊕

i∈Z

Vi (4.6)

in terms of U(1)isom charges i. If two wavefunctions carry different U(1)isom charges, they are
orthogonal. Since different modes have different powers of z, the dimension of Vi is at most
one and the only possible full rank Yukawa matrix is diagonal. We can also understand the
reality of the matrix as a consequence of U(1)isom, because the total U(1)isom charge of the
integrand in Eq. (4.1) must vanish, and hence the integrand can not depend on the angular
coordinate.

Thus it is phenomenologically important to break the isometry of the pure S2, and this is
performed by introducing additional branes. In other words, S2 with three branes described in
the subsection 3.3 is promising in concrete model constructions. Unfortunately, it is difficult

11) Although the background metric has isometry, it is not necessarily symmetry of magnetized models. For
example, translations on the flat torus are isometries, however, any translations can not keep magnetic fluxes
invariant and magnetic fluxes break the symmetry of the torus. On the other hand, isometry of S2 becomes
symmetry of the extra dimensional model even when magnetic fluxes are turned on (see Appx.C).
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to compute such Yukawa couplings analytically once three or more branes are introduced.
Nevertheless, we can observe that the U(1)isom isometry of S2 with two branes are broken
down partly by the third brane because wavefunctions acquire the angular dependence. Some
brane configuration breaks the isometry SO(3) of the pure sphere into a finite subgroup of
the SO(3). Although magnetic flux is turned on, the finite subgroup becomes symmetry of
the model (see Appx.C). Therefore, such a brane configuration can be thought as an origin of
(semi-)realistic flavor structures in the low energy effective theory. For instance, some finite
subgroups of SO(3) are isomorphic to symmetric group S4 and alternative groups A4, A5,
and these groups are extensively studied as flavor symmetries. We will revisit this topic in
future projects.

5 Conclusion and discussion

In this paper, we have formulated the 6d U(1) gauge theory whose 2d extra dimensions
are compactified on the sphere with flux background and multiple branes, and derived the
wavefunctions of the zero modes of scalar, spinor and vector fields after KK decomposition. In
counting the number of independent KK zero modes, we have focused on their normalizability
and given mathematical formulae based on the index theorem (as mentioned in appendices).
Then, it has been found that such wavefunctions on the sphere with flux and branes possess
stronger localization profiles than those on the pure sphere, and also that the profiles on
the sphere with three branes are dependent on θ in expressing a polar coordinate z = reiθ.
From the viewpoint of overlap integrals in dimensional reduction, the Yukawa couplings can
potentially break CP symmetry due to the presence of flux background and three branes.

Before closing this paper, we would like to comment on several applications of our wave-
functions. Although in this paper, we have not constructed phenomenological models, it is
fair to say that our setup, namely the sphere with branes, can have adequate possibilities
to construct phenomenologically promising models. In general, the singularity such as orb-
ifold fixpoints plays an important role on which we put ingredient terms, for instance, the
(localized) Yukawa couplings, the localized mass terms and Higgs potential, as investigated
in toroidal/orbifold flux compactifications [30, 31, 32, 33, 34].

Another possibility is to introduce localized fluxes at singularities (similarly to the second
term in Eq. (3.48), but they should have quantized coefficients). In the same manner as Refs.
[35, 36, 37], it is possible in principle to formulate localized fluxes in terms of the Green
function. It gives non-trivial Wilson-loop around the singularity, which can contribute to
total flux density and an appropriate way of the Dirac charge quantization in full setup. In
particular, it is interesting as an application to utilize such generic backgrounds of localized
fluxes for Gauge-Higgs unification scenario in which extra dimensional components of vector
potential break the electroweak symmetry [38]. As discussed in Ref. [39], Wilson-loops control
the one-loop induced effective potential and its concrete form. 12) It can be expected that the
non-trivial Wilson-loop around the brane singularity would give some correction to effective
potential at loop level. We will leave it for one of the future projects.

12)See Refs. [40, 41, 42] for magnetized torus case.
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Figure 6: Image of two patches covering north and south hemispheres A,B and necessary
gauge transformation OAB. Coordinates z on A and w on B are connected by w = −1/z on
A∩ B.
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A Patches and flux quantization on S2 with flux

We summarize patches and the Dirac quantization of magnetic flux on a pure S2 discussed in
Ref. [3]. S2 = C ∪ {∞} is covered by two complex planes C (which are diffeomorphic to two
2d real planes). The first one, patch A, covers the lower part of S2 and another one, patch
B, does the upper one of S2. Coordinates on these two patches are connected by w = −1/z
on a common region A ∩ B (see Fig. 6), where z is a coordinate on A and w is one on B.
Unlike Refs. [18, 19] and usual manners, note that the authors in Ref. [3] take the notation
that patches A (B) describe z ∈ C \ {∞} (z ∈ C \ {0}, i.e., w ∈ C \ {∞}), respectively. At
first, we solve the Maxwell equation on the patch A. 13) The solution AA is given as

AA = − iMz̄

2(1 + |z|2)dz +
iMz

2(1 + |z|2)dz. (A.1)

13) We would like to point out that a collection of real 1-forms {Ai : Ui → T ∗
R
S2}i, where {Ui} is an open

covering of S2 and T ∗
R
S2 is the (real) cotangent bundle, is a gauge potential of a globally defined real 2-form

F , called a field strength, if dAi = F holds for each i.
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This solution is defined on the patch A and ill-defined only on the north pole (z = ∞). To
see how to extend AA on entire S2, we represent AA in terms of the coordinate w of B :

AA =
iM

2(1 + |w|2)
dw

w
− iM

2(1 + |w|2)
dw̄

w̄
(w 6= 0). (A.2)

As one can see directly from this gauge potential, it tells that AA is not defined on w = 0
due to divergence. Then, we need to prepare another gauge field AB defined on the patch B
in order for the solution to be globally well-defined. Since field strengths of AA and AB must
match consistently, their difference must be connected by a gauge transformation OAB. We
define AB by

AB = AA − id logOAB = − iMw̄

2(1 + |w|2)dw +
iMw

2(1 + |w|2)dw̄, (A.3)

where OAB is a transition function :

OAB =
(w

w̄

)M/2

(w 6= 0). (A.4)

Although AA diverges at w = 0, AB does not and thus we can introduce AB on the entire
B. If a matter field is charged with U(1) charge q, it receives a gauge transformation (OAB)

q

when we move from the patch A to the patch B. Due to single-valuedness of the gauge
transformation (A.4), qM must be an integer under the Dirac quantization [3].

B Counting normalizable zero modes

The number of independent zero modes in 6d models is counted by the Riemann–Roch
theorem. In this appendix, we extend counting formulae in the presence of branes. We do
not assume that our extra dimensions are compactified on S2, but on a more general 2d
compact surface X , which is not a torus. The line element ds2 that we want to discuss is no
longer smooth on brane positions, however, the bulk part away from the brane positions can
be smooth. It is assumed that we have a complex coordinate z on X , at each point including
a brane position, of X such that the metric ds2 is expressed as

ds2 =
1

2
G(z)2(dz ⊗ dz̄ + dz̄ ⊗ dz). (B.1)

First of all, we mention a singular behavior of the metric around a brane. We take a
sufficiently small open set U around the brane which does not contain any other brane. Let
z be a complex coordinate on U such that the metric is expressed as in Eq. (B.1). When we
place a brane at z = 0, the Liouville equation reads

− 4

G2
∂∂̄ logG = k + 2παδ2(z), (B.2)
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where α is a dimensionless brane tension, k is non-vanishing constant curvature of X and
δ2(z) is a delta function normalized as

∫

U
δ2(z)ϕ(z) vol(X) = ϕ(0) for any smooth function ϕ

on U whose support is compact. Note that the above equation is not an ordinary differential
equation but should be considered as an integral equation because the equation contains the
delta function. Hence, a precise meaning of the Liouville equation on U should be

∫

U\{0}

dϕ ∧ ⋆d logG = k

∫

U\{0}

ϕ vol(X) + 2παϕ(0), (B.3)

where d is an exterior derivative and ⋆ is the Hodge dual. By a straightforward calculation,
it reduces to the non-singular Liouville equation

− 4

G2
∂∂̄ logG = k (z ∈ U \ {0}) (B.4)

and

lim
ǫ→0

∫ 2π

0

dθ (−ϕ r∂r logG)
∣

∣

∣

r=ǫ
= 2παϕ(0), (B.5)

where we use z = reiθ and its derivative ∂r ≡ ∂/∂r. When we define a function H on U \ {0}
as G = Hr−α, the above equation leads to

−4∂∂̄ logH = kG2 (on U \ {0}),
∫ 2π

0

dθ r∂r logH → 0 (r → 0).
(B.6)

If the volume of X diverges, the divergence comes from brane positions because X is compact
and the metric is smooth except on brane positions. Let R be a positive real number such
that {z ∈ C | |z| < R} is contained in U . Then, a contribution of the metric around z = 0
to the volume

∫

X
vol(X) is evaluated by

lim
ǫ→0

∫ R

ǫ

rdr

∫ 2π

0

dθ G2, (B.7)

and also turned out to be finite. In fact, by using Eq. (B.6), we have

lim
ǫ→0

∫ R

ǫ

rdr

∫ 2π

0

dθG2 = −1

k
lim
ǫ→0

∫ R

ǫ

dr

∫ 2π

0

dθ

(

∂r(r∂r) +
1

r
∂2θ

)

logH

= −1

k
lim
ǫ→0

[
∫ 2π

0

dθ r∂r logH

]r=R

r=ǫ

= −1

k

∫ 2π

0

dθ r∂r logH
∣

∣

∣

r=R

< ∞.

(B.8)
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Thus, when the metric on the compact surface X satisfies the Liouville equation with k 6= 0,
the volume of X is finite, i.e.,

∫

X
vol(X) <∞. In addition, according to Ref. [43], the above

finiteness implies that there is a holomorphic function Φ around z = 0 satisfying

G = Hr−α =
2√
k

|z∂Φ + (1− α)Φ|
1± |Φr1−α|2 r−α (Φ(0) 6= 0). (B.9)

Here the sign ± is a sign of k. In particular, since H is a continuous function defined around
z = 0 and H(0) 6= 0, for a sufficiently small real positive number R, H is bounded by real
positive constants from below and above on {z ∈ C | |z| < R} ⊆ U .

Let L → X be a holomorphic line bundle and h a hermitian metric on L. Although
there are branes on X , we assume L→ X is globally defined, and then impose the Maxwell
equation on the Chern connection induced by h. Since we have the Liouville equation, the
Maxwell equation is solved as

h =
2w

χ(X)
logG, (B.10)

where w ∈ Z is the Chern number of L → X and χ(X) 6= 0 is the Euler characteristic of
X . 14) Since the zero mode wavefunction is expressed as a holomorphic section u of L → X
(or its complex conjugate), its norm 〈u|u〉hol is locally expressed as

〈u|u〉hol =
∫

h|u|2 vol(X) =

∫

G
2w

χ(X)
+2|u|2 dzdz̄. (B.12)

This norm must be finite for a normalizable wavefunction. If G is smooth at z = 0, the above
normalizability condition claims that u does not have a pole at z = 0. If there is a brane
with tension α at z = 0, the above normalizability demands

∫

UR

G
2w

χ(X)
+2|u|2 dzdz̄ =

∫ R

0

rdr

∫ 2π

0

dθ H2α( w
χ(X)

+1)r−2α( w
χ(X)

+1)|u|2 <∞, (B.13)

14) We give a rough sketch of the proof. Let V be a sufficiently small open set on X which contains all
branes. At first, we prepare a smooth Kähler metric, which is explicitly constructed with a partition of unity
such that X coincides with our singular metric on X \V . The smooth metric makes X be a Kähler manifold
and the Hodge decomposition is available to prove the existence of a hermitian metric h̃ on L → X whose
Chern connection solves the Maxwell equation with respect to the smooth metric. The local expression of h̃
on X \ V is

h̃ =
2w

χ(X)
logG+Re Ω̃, (B.11)

because the smooth metric coincides with the original singular metric G2dzdz̄. A holomorphic function Ω̃,
which makes h̃ compatible with a transition function of L → X , can be gauged away by an automorphism
of the holomorphic line bundle L → X . Therefore we have h̃ = 2w

χ(X) logG. h̃ does not satisfy the Maxwell

equation around singularities with respect to the original singular metric, however, by replacing h̃ with
2w

χ(X) logG near the singularities, the result h solves the Maxwell equation on whole of X .
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where UR = {z ∈ C | |z| < R} is an open set around z = 0 and H is defined by G = Hr−α.
Since H is continuous and H(0) 6= 0 as we mentioned before, the finiteness of the above
integration is equivalent to

∫ R

0

rdr

∫ 2π

0

dθ r−2α( w
χ(X)

+1)|u|2 <∞. (B.14)

When the Laurent expansion of u around z = 0 starts from zn, this condition means that n
must satisfy

n ≥
⌊

α

(

w

χ(X)
+ 1

)⌋

, (B.15)

where ⌊t⌋ is an integer part in a real number t.
Let us consider N branes on za ∈ X (a = 1, . . . , N) with brane tensions αa respectively.

We define a divisor Dbr, w by

Dbr, w =

N
∑

a=1

⌊

αa

(

w

χ(X)
+ 1

)⌋

za. (B.16)

Eq. (B.15) implies that a holomorphic section u of L → X is normalizable if and only if its
divisor Du satisfies

Du ≥ Dbr, w. (B.17)

Therefore the vector space of normalizable wavefunctions is isomorphic to

{f 6= 0 : meromorphic function | div f +DL −Dbr, w ≥ 0} ∪ {0}, (B.18)

where div f is a divisor defined by poles of a meromorphic function f , and DL is the divisor
of L → X . The Riemann–Roch theorem counts the dimension ℓ(DL − Dbr,w) of this vector
space:

ℓ(DL −Dbr, w) = w +
1

2
χ(X)−

N
∑

a=1

⌊

αa

(

w

χ(X)
+ 1

)⌋

− ℓ(DT ∗X −DL +Dbr, w), (B.19)

where DT ∗X is a canonical divisor of X . Although it is difficult to compute the last term
in many cases, it is neglectable when X = S2 and the degree of DL −Dbr, w is non-negative
due to the negativity of degDT ∗X = −χ(S2) = −2. Then, we reach the normalizable mode
counting formula on S2 in the presence of branes :

ℓ(DL −Dbr, w) = w + 1−
N
∑

a=1

⌊

αa

(w

2
+ 1
)⌋

. (B.20)

Note that w is the total Chern number of L → X . In other words, w in this appendix is a
sum of the spin along the extra dimensions and U(1) charge.
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C Symmetry of magnetized S2

In general, it is not easy to identify a symmetry which magnetized extra dimensions possess
as an isometry. For example, the 2d torus has U(1)2 isometry group obviously, however,
this is broken once magnetic flux is turned on. In considering a symmetry of the magnetized
extra dimensions, we have to correctly treat a gauge sector. The following concept would be
good guidance for clarifying the symmetry on magnetized extra dimensions.

Definition. Let X be a complex manifold with a Riemannian metric and E → X be a
holomorphic vector bundle with a hermitian metric. When an automorphism ϕ : E → E
leaves the hermitian metric invariant and an induced map X → X does the metric invariant,
we call ϕ an isometry of E.

Indeed, when the magnetic flux is realized as the Chern connection of E → X , an isometry
of E leaves the Chern connection invariant. Namely, the isometry of E does not change a
background vector potential, and also by definition an isometry of E does not change the
metric of X . Hence, the total isometry of E reduces to a symmetry that the magnetized
extra dimensional models themselves possess. For example, the breaking of isometries of T 2

by magnetic flux can result from the non-existence of such an automorphism [44].
In this appendix, we realize S2 by a complex projective space CP

1 because it is useful
to understand a global structure of S2. A projective space CP

1 is a quotient (C2 \ {0})/ ∼,
where the equivalent relation ∼ is defined by

(x, y) ∼ (λx, λy) (x, y, λ ∈ C, λ 6= 0). (C.1)

In what follows, [x : y] denotes the equivalence class of (x, y). Any abelian magnetic fluxes
are realized as holomorphic line bundles on CP

1 and they are tensor products of a universal
line bundle L−1 → CP

1,

L−1 =
⋃

[x:y]∈CP1

spanC{(x, y)} ⊆ CP
1 × C

2. (C.2)

Since the Chern number of L−1 is −1, that of LqM := (L−1)⊗(−qM) is qM ∈ Z. A canonical
Kähler potential

K = log(|x|2 + |y|2) (C.3)

is invariant under this SU(2), and hence SU(2) is an isometry on the pure sphere. When
two branes are introduced, the Kähler potential is modified to

K = log(|x|2 + |y|2−2α|x|2α), (C.4)

and the original SU(2) isometry on the pure sphere is broken to diagonal U(1). We define a
hermitian metric on L−1 as

(λ~z, λ′~z) 7→ λ̄λ′eK(x,y), (C.5)
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where ~z = (x, y). By this definition, a field strength of its Chern connection is proportional
to the Kähler form and solves the Maxwell equation. In a physical language, the Chern
connection is exactly a flux on CP ≃ S2. When zero or two branes are introduced, we
have the Kähler potential (C.3) or (C.4) which is invariant under the isometry U(1). When
more branes than three are introduced, we have no continuous isometry group and only a
finite subgroup of SU(2) is realizable. Since the isometry group is finite, we can find an
invariant Kähler potential. For the invariant Kähler potential, the hermitian metric (C.5) on
L−1 → CP

1 is manifestly invariant under the isometry. 15) It is concluded that an isometry
is not only a symmetry of the metric, but also of the gauge sector L−1, or more general LqM

for an arbitrary integer qM ∈ Z.
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