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Abstract

The understanding of extreme events is important for several fields of research. From a
practical point of view, the prediction of extreme events is necessary in order to allow for
adaptation and damage reduction. From a theoretical point of view, extreme fluctuations
of the system under study provide valuable information about the system itself, thus
revealing processes behind these events.

In this thesis we adopt the theoretical point of view. We study extremes of atmospheric
observables (total energy and near-surface temperature) in two numerical models, a
quasi-geostrophic (QG) two-layer atmospheric model and a simplified general circula-
tion model of the atmosphere (PUMA - Portable University Model of the Atmosphere).
Our general aim is to provide a mathematical background for the study of extreme
events in atmospheric flows. To achieve this we use two rigorous mathematical frame-
works: Extreme Value Theory (EVT) and Large Deviation Theory (LDT). In both cases,
we connect properties of extreme or rare events to general properties of the system (or
of the system state) producing these events, by taking perspectives based on dynamical
systems theory and statistical mechanics.

In case the of energy extremes in the QG model, we search for the universality of ex-
treme events, and find a connection between statistical properties of extremes of dif-
ferent energy observables and general dynamical properties of the system. This is in
accordance with theoretical results developed for chaotic dynamical systems. In the
case of extremes of temperature averages in the PUMA model, we aim at analysing per-
sistent temperature extreme events (heat waves or cold spells) based on LDT. Here, we
also find universal characteristics in form of a connection between temporal and spatial
(or spatio-temporal) averages, while the spatial averaging is performed along latitudes.
However, we are able to explore universality in both cases only if the asymptotic limit
demanded by the theories is valid, i.e. on large temporal and/or spatial scales.

On smaller scales, the effect of correlations prevents universal results, producing pre-
asymptotic deviations. Additionally, if the system state is not chaotic enough, asymp-
totic levels cannot be reached, at least on realistic finite scales. Furthermore, we realise
that analysing persistent events based on asymptotic theories is far from being a trivial
task, however, it can be done by averaging in two dimensions: first, on intermediate
scales in space and, second, obtaining a LD limit in time.
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Zusammenfassung

Die wissenschaftliche Untersuchung von Extremwerten ist wichtig für zahlreiche For-
schungsgebiete. Aus praktischer Sicht ist die Vorhersage von Extremwerten für Anpas-
sungsmaßnahmen und Schadensreduzierung unerlässlich. Aus theoretischer Sicht lie-
fern extreme Fluktuationen des untersuchten Systems wertvolle Informationen über das
System selbst und offenbaren dadurch die Prozesse hinter diesen Fluktuationen.

In dieser Doktorarbeit wählen wir die theoretische Herangehensweise. Wir analysieren
Extremwerte von atmosphärischen Variablen (totale Energie und oberflächennahe Tem-
peratur) in zwei numerischen Modellen, ein quasi-geostrophisches (QG) Zwei-
Schichten-Modell und ein vereinfachtes, globales Zirkulationsmodell der Atmosphäre
(PUMA - Portable University Model of the Atmosphere). Unser Hauptziel ist die Er-
stellung eines mathematischen Rahmens für die Untersuchung von Extremwerten in
atmosphärischen Strömungen. Um dies zu erreichen verwenden wir zwei rigorose, ma-
thematische Theorien: Extremwertstatistik (EWS) und die Theorie der großen Abwei-
chungen (TGA). In beiden Fällen untersuchen wir - aus der Perspektive der Theorie
dynamischer Systeme und der statistischen Mechanik - die Verbindung zwischen den
Eigenschaften von extremen und seltenen Ereignissen und allgemeinen Systemeigen-
schaften (oder Systemzustandseigenschaften), die diese Ergebnisse hervorrufen.

Im Rahmen der Untersuchung der Energieextreme im QG-Modell forschen wir nach
der Universalität von Extremwerten, und wir finden eine Verbindung zwischen den sta-
tistischen Eigenschaften von Extremwerten und generellen, dynamischen Eigenschaften
des Systems. Dies entspricht theoretischen Ergebnissen die für chaotische dynamische
Systeme hergeleitet wurden. Im Falle der Extremereignisse von gemittelten Tempera-
turwerten im PUMA-Modell untersuchen wir andauernde Extremereignisse (wie Hitze-
oder Kältewellen) basierend auf TGA. Auch in diesem Fall entdecken wir universa-
le Eigenschaften in Form einer Verknüpfung zwischen zeitlich und räumlich (oder in
beiden Dimensionen) gemittelten Größen entlang eines Breitengrades. Nichtsdestotrotz
können wir in beiden Fällen die Universalität nur dann beobachten, wenn die theore-
tisch vorgeschriebene, asymptotische Annäherung gilt, d.h. für große Zeit- und/oder
Raumskalen.

Allerdings verhindert die Wirkung der Korrelationen universale Ergebnisse auf klei-
neren Skalen und verursacht präasymptotische Abweichungen. Außerdem kann die
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asymptotische Annäherung nicht erreicht werden, zumindest auf realistischen, endli-
chen Skalen, wenn das System nicht chaotisch genug ist. Darüber hinaus merken wir,
dass die Untersuchung der andauernden Extremereignissen alles andere als einfach ist.
Wir zeigen dennoch dass es möglich ist, wenn man in zwei Dimensionen mittelt: erstens
im Raum über mittleren Skalen, und zweitens in der Zeit, wobei eine Annäherung für
große Abweichungen erreicht werden soll.
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1 Introduction

Extreme values of a certain observable are usually defined as values that lie in the tail of
the probability density function (pdf). This has two major consequences: first, extreme
values have a low probability of occurrence meaning that they are rare and, second, their
magnitude is unusually large or low. Due to these two major properties, extreme events
affecting different areas of human life are perceived as “unexpected” events. Climate or
weather extremes - like storms, tropical cyclones, floods, forest fires - can have a huge
impact, producing severe financial, human, biological damages (Easterling et al., 2000;
IPCC, 2012; Lobell et al., 2011). However, these negative effects can become even more
serious if the extreme event is persistent. During a persistent extreme event - like a heat
wave, cold spell, or drought - the extraordinary circumstances continue to exist over
a prolonged period. This long-lasting stress created by a persistent extreme event can
push whole societies, ecosystems, infrastructures to the limit (Robinson, 2001; WHO,
2004; IPCC, 2012).

The present uncertainty in the future projections of climate extremes makes their study
even more urgent and crucial. According to IPCC (2013), the changes in temperature
extremes over most land areas since the mid-20th century are consistent between nu-
merical models and observations, but models perform worse in simulating changes of
other extremes, like precipitation extremes, droughts, as well as tropical cyclone tracks
and intensity.

The investigation of extreme events is extremely relevant for a range of disciplines in
mathematical, natural, social sciences and engineering. Understanding the large fluctu-
ations of the system of interest is of great importance from a practical point of view -
when it comes to assess the risk associated to low probability and high impact events
in order to prevent from or prepare for damages - but also from a theoretical point of
view when one tries to explore the connection between “unexpected” events and the
properties of the system generating them. In this thesis we adopt the theoretical point
of view, the system of interest being represented by numerical atmospheric models. We
seek answers for questions like the following ones. Which general dynamical properties
represent the system producing the extreme events? Or the other way around: What can
extreme, i.e. “extraordinary”, events reveal about general dynamical properties of the
system under investigation? What are the main characteristics of system states leading
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1.1 Some properties of chaotic dynamical systems

to persistent extreme events?

This introduction is meant to prepare the ground for the relatively complex mathemati-
cal and physical theories and concepts used to obtain the results of the thesis. We start
with introducing the basic concepts of dynamical systems theory applied in this work,
after which we describe general notions of the atmospheric circulation, and argue that
the atmosphere can be considered a high dimensional dynamical system. We define the
main objectives and the structure of the thesis at the end of this chapter, after discussing
the connection between extreme events and general properties of the dynamical system,
as well as, between persistent extreme events and large deviations from the mean system
state. These two relationships represent at the same time the two main topics around
which the thesis is built.

1.1 Some properties of chaotic dynamical systems

Before discussing the arguments according to which the atmosphere can be interpreted
as a high dimensional chaotic dynamical system, we introduce the basic concepts of
dynamical systems theory necessary to understand the applied methods and theories.
This section is mostly based on the work of Ott (1993). We wish to remark that we do not
strive for mathematical rigour nor for completeness, our aim being to provide a concise
and general overview of the relevant concepts.

The state of a dynamical system evolving forward in time t in anN-dimensional Euclidean
space, called the phase space Γ , from an initial condition x0 at t = 0 can be described as
x(t, x0) = Πt(x0), where Πt is the evolution operator. If time is a continuous variable,
the system is called a flow, and can be described by a set of N ordinary differential
equations:

dx(t)
dt

= F(x(t)). (1.1)

Whereas if time is a discrete variable, the system is a map, and evolves based on the
following set of N equations:

xn+1 = M(xn), (1.2)

with n denoting the discrete time variable n = 0, 1, 2, .... Dynamical systems can exhibit
different types of behaviour, such as stationary, periodic, and chaotic. A chaotic dynam-
ical system is sensitive against arbitrarily small perturbations of the initial conditions,
exhibiting a significantly different temporal evolution for different initial conditions.

In the N-dimensional phase space Γ , a specific state of the system is represented by a
single point, and a state varying in accordance with the evolution equation is described
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1 Introduction

by a trajectory. Hence, the dynamics of the system is connected to geometry in a mul-
tidimensional space (Lorenz, 1984). Some dynamical systems are characterised by the
presence of attracting invariant sets, i.e. bounded subsets of Γ representing a state of
permanent regime to which regions of initial conditions of nonzero phase space vol-
ume converge asymptotically as time increases (Ott, 1993). We refer to these invariant
sets as attractors, since trajectories become “trapped” after reaching them. The existence
of an attractor is characteristic for dissipative systems, in which the phase space volume
contracts as time evolves, i.e. ∇ · F < 0.

The geometry of the attractor is related to the dynamical behaviour of the system: the
attractor of a stationary system is a fixed point, the attractor of a periodic system is a
closed curve, called limit cycle, whereas the attractor of a chaotic dynamical system is
an object with fractal geometry, called strange attractor. Fig. 1.1 represents schematically
the three attractor types.

Figure 1.1: Schematic representation of a) a fixed point, b) a limit cycle, and c) a strange
attractor, reproduced from Prokofiev (2010). In a) and b) the red point and
the red line represent the attractors, and the black curves illustrate possible
trajectories.

Another important concept in dynamical systems theory is the measure µ correspond-
ing to a probability density. A probability measure can be defined, even if a density
cannot, thus it is a more general concept (Ott, 1993). In the context of invariant sets
one deals with invariant measures as well. The probability measure µ is invariant if sat-
isfies µ[f−t(E)] = µ(E), t > 0, where E is a subset of points of RN, and f−t(E) is the set
obtained by evolving these points backwards in time (Eckmann and Ruelle, 1985).

A dynamical system is ergodic with respect to an invariant measure if and only if all
invariant sets have either full measure or none (Ott, 1993). This statement basically
prohibits that the attractor consists of two or more disjoint sets, i.e. that trajectories with
different initial conditions get attracted by different disjoint regions of the attractor.
Analogously, an invariant measure µ is ergodic, if it is indecomposable. According to
the ergodic theorem, long-term integrals in time and integrals in phase space are equal
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1.1 Some properties of chaotic dynamical systems

for almost all initial conditions x0 with respect to an ergodic measure µ (Eckmann and
Ruelle, 1985):

lim
T→∞ 1

T

∫T
0
ϕ[ftx0]dt =

∫
ϕ(x)µ(dx), (1.3)

where ϕ represents a continuous function, and ft is the time operator. The above equa-
tion considers flows. In the case of maps, the temporal integral can be replaced by a
long-term average in time.

We can study properties of dynamical systems by analysing geometrical properties of
their attractors or by focusing on characteristics of their dynamics. To describe the
dynamics of the system, one often uses the so-called Lyapunov exponent, which, in the
one dimensional case, describes the average exponential divergence rate of trajectories
due to an infinitesimally small perturbation of the initial condition. Now, let us consider
an N-dimensional map M where x0 represents the initial condition and xn(n = 0, 1, 2, ...)
the corresponding orbit. If the initial displacement from x0 is in the direction of a tangent
vector y0, the Lyapunov exponent can be defined as (Ott, 1993):

λ(x0, u0) = lim
n→∞ 1

n
ln(|yn|/|y0|) = lim

n→∞ 1
n

ln |JnM(x0) · u0|, (1.4)

where |yn|/|y0| represents the factor by which the initial displacement grows, and u0 =

y0/|y0| is the initial orientation of the displacement. JnM(x0) = JM(xn−1) · JM(xn−2) · ... ·
JM(x0), with JM(x) :=

(
∂Mi

∂xj

)
i=1,...,N,j=1,...,N

denoting the Jacobian matrix of M at x.

Oseledets’ multiplicative ergodic theorem guarantees the existence ofN Lyapunov expo-
nents in anN-dimensional ergodic system, under very general circumstances (Oseledets,
1968). If the system is ergodic, the set of values is the same for almost every x0 (Ruelle,
1989). Each exponent describes the stretching or contracting properties of the attractor
in the respective dimension. The Lyapunov exponents are usually sorted in an increas-
ing order λ1 > λ2 > λ3 > ... > λN, so that for a chaotic system λ1 > 0. The value of λ1

and the number of positive exponents are important indicators for the chaoticity of the
dynamical system.

An intuitive way to describe a geometrical object embedded in an N-dimensional space
is to specify its dimension. To achieve this, one usually covers the object of interest,
in this case the attractor, with a number n of N-dimensional cubes with side length
ε, and looks at the change in n by reducing ε. One usually obtains that the number
of cubes n scales as n ∼ εD0 if ε is small enough. For ε → 0, D0 is called the box-
counting dimension. However, this is a purely geometrical indicator, and in case of chaotic
dynamical systems we are not only interested in the number of cubes needed to cover
the attractor, but additionally we would like to know how often and for how much time
each cube is visited by trajectories. Therefore, it is reasonable to weight each cube based
on a probability measure.

4



1 Introduction

To express the change of information amount contained in the cubes as ε is reduced, we
define the information dimension:

D1 = lim
ε→0

−Hε
ln ε

. (1.5)

Hε = −
∑n(ε)
i=1 µi lnµi is the Shannon entropy and measures the amount of information

needed to describe the system state with a certain accuracy 1/ε. µi is referred to as the
natural probability measure, representing the fraction of time a long orbit spends in a
given region of the attractor, in this case inside an N-dimensional cube (Ott, 1993).

The above dimensions are global characteristics of the attractor. However, one might be
interested in local attractor properties at a certain point ζ. We define the local information
dimension, also called point-wise dimension, of a probability measure µ:

Dζ = lim
ε→0

lnµ(Bε(ζ))
ln ε

. (1.6)

where Bε(ζ) is a ball with radius ε centred at ζ (Ott, 1993).

A further important and more complex concept of dimension is the so-called Kaplan-
York (or Lyapunov) dimension, which expresses dynamical properties of the system. It is
obtained based on the already introduced Lyapunov exponents λ:

DKY = m+

∑n
i=1 λi

|λm+1|
(1.7)

where m is such that
∑n
i=1 λk is positive and

∑n+1
i=1 λi is negative (Ott, 1993). DKY

measures the dimension of volume elements, which neither grow nor shrink as they
evolve in phase space, thus estimating the dimension of the invariant set in a dynamical
way.

We notice that although the above quantities are all called dimensions, they are different
definitions of this notion. Whereas D0 characterises the attractor from a purely geomet-
rical perspective, D1 considers additionally the probability measure of recurrences on
the attractor. Dζ is a local version of D1, and DKY is defined based on the dynamics.
However, one intuitively feels that they should be somehow connected. In some cases,
as we see below, some of the dimensions are equal.

Considering that an ergodic measure µ is indecomposable, it also means that µ is the
same at almost every point of the attractor (Ott, 1993). Therefore, in ergodic systems,
locally defined invariant measures are equal to global ones, thus D1 = Dζ. Showing the
connection between the differently defined dimensions D1 and DKY is a little bit more
complicated, however, it has been conjectured that D1 = DKY in “typical systems”.
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1.2 The atmosphere as a chaotic dynamical system

In search for a mathematically more justified framework instead of “typical systems”,
one finds the concept of SRB (Sinai, Ruelle, Bowen) measures. These are measures with
smooth density in the stretching or unstable direction of the dynamical system, pro-
viding an equivalence between the rate of creation of information and the mean rate
of expansion of volume elements (Gallavotti and Cohen, 1995; Eckmann and Ruelle,
1985). In a system where all the information is contained by the unstable manifold
already, where, at the same time, the dynamics takes place, one obtains the equality
D1 = DKY . For other systems, D1 6 DKY . Additionally, SRB measures are stable against
weak stochastic perturbations (Eckmann and Ruelle, 1985; Ruelle, 1989). As a results of
this stability, SRB measures can actually be observed, and thus are also called “physical
measures”.

Axiom A systems are a special class of dynamical systems that possess an SRB measure.
They are uniformly hyperbolic on their attractor, so that stable and unstable directions
are well separated. Due to these convenient characteristics, one of the great merits of Ax-
iom A dynamical systems is that they represent the perfect framework for deriving rig-
orous and robust statistical mechanical properties for purely deterministic background
dynamics. Despite having deterministic dynamics, when looking at their observables,
they behave just like generators of stochastic processes.

While Axiom A systems are rather special and indeed not generic, they have great rel-
evance for applications if one takes into account the chaotic hypothesis, which indicates
that high-dimensional chaotic systems behave at all practical purposes as if they were
Axiom A (Gallavotti and Cohen, 1995; Gallavotti, 2014). Thus, Axiom A systems repre-
sent good effective models for chaotic systems with many degrees of freedom. Lucarini
et al. (2014b) point out that, whenever we perform numerical simulations, we implicitly
assume that the system is Axiom A-equivalent.

1.2 The atmosphere as a chaotic dynamical system

The object of study in this thesis is the Earth’s atmosphere, which we consider to be a very
high dimensional chaotic dynamical system. Besides the hydrosphere, cryosphere, the
land surface and the biosphere, the atmosphere is part of an even more complex system,
the climate system. The processes in the atmosphere are extremely complex due to the
non-trivial interactions with other system components, however, its intrinsic motions
are already difficult to describe precisely, as we show in the following.

The source of potential energy necessary for atmospheric motions comes from the Sun:
the net radiation at the Equator is higher than the one at the Poles, thus creating zonal
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1 Introduction

mean available potential energy. According to basic physical laws, the atmosphere tries
to compensate this meridional difference in radiative forcing. Thus, hot air rises at the
Equator and flows polewards. During this process it is directed to the west by the Cori-
olis force, cools down and sinks at around latitude 30◦, and flows again equatorwards
near to the surface. The Coriolis force, which is an apparent force acting an motion due
to a rotating frame of reference, deviates the equatorward flow to the east, creating the
so-called trade winds. These are the basic features of the so-called Hadley cell, which
represents atmospheric motions averaged along latitudes and over a long time period.
An equator-to-pole Hadley cell is mathematically possible, and can be encountered for
example on slowly rotating planets, like the Venus, on Earth, however, it represents a
baroclinically unstable circulation.

Baroclinic instability evolves in rotating stratified fluids with a horizontal temperature
gradient, and is responsible for generating the dominant weather systems of the mid-
latitudes, the cyclones and anticyclones, also called eddies. Baroclinic instability grows by
converting available potential energy maintained by the horizontal temperature gradi-
ent, which is associated to the vertical shear of the zonal mean wind trough the thermal
wind balance. Hence, it is responsible for the existence of the strong wind band, the jet
stream, near to the tropopause (Holton, 2004). The vertically sheared zonal mean wind
in the mid-latitude becomes unstable generating baroclinic waves, which transport heat
against the horizontal temperature gradient, i.e. polewards. Baroclinic waves convert
the available potential energy into kinetic energy, and, thus, maintain the atmospheric
circulation against dissipation. On the one hand, baroclinic instability leads to a nega-
tive feedback assuring the overall stability of the atmospheric circulation, on the other
hand, it is also the main reason for the error growth in the short-term weather forecast
for the mid-latitudes (Lucarini et al., 2014a). Figure 1.2 illustrates the main components
of the global atmospheric circulation in an idealised form (Stull, 2015-2016). For an ex-
tensive treatment of baroclinic instability and the global circulation of the atmosphere
the reader is referred to Holton (2004).

From a mathematical point of view, atmospheric motions are described by a set of non-
linear partial differential equations. The basic atmospheric equations express the temporal
and spatial evolution of the three-dimensional wind vector U = (u, v,w), density ρ, and
potential temperature θ1. They guarantee for the conservation of momentum, mass, and
energy (Ott, 1993):

DU
Dt

= −2Ω×U −
1
ρ
∇p+ g + Fr, (1.8)

∂ρ

∂t
+∇ · (ρU) = 0, (1.9)

1θ = T(ps/p)
(R/cp) is the temperature that a parcel of dry air at pressure p and temperature T would have

if it would be brought adiabatically, i.e. without any heat exchange with the surroundings, to standard
pressure ps. R is the gas constant for air and cp the specific heat capacity at a constant pressure.

7



1.2 The atmosphere as a chaotic dynamical system

Figure 1.2: Idealised global circulation for Northern Hemisphere winter. The bulls-eye
symbol indicates the jet stream coming out of the page toward the reader,
and the ”X” with a circle around represents the jet-stream flowing into the
page. Reproduced from Stull (2015-2016).

Dθ

Dt
= Fθ, (1.10)

with Ω: angular velocity of the Earth, p: pressure, g: gravitational acceleration, Fr:
frictional force, Fθ: diabatic force. D

Dt = ∂
∂t + u

∂
∂x + v ∂∂y +w ∂

∂z represents the total
derivative. The terms on the right hand side of the equation of motion (1.8) express
the forces acting in a rotating frame of reference: Coriolis force, pressure-gradient force,
gravity, and friction. Eq. (1.9) is called the continuity equation, and states that the net
rate of mass inflow in a fixed control volume must equal the rate of mass accumulation
within the volume. According to the thermodynamic energy equation (1.10), changes in
the potential temperature are caused by diabatic forces. In numerical models, Fr and Fθ
represent unresolved processes and are parameterized.

These equations cannot be solved analytically, thus numerical models are needed to pre-
dict the weather and climate. Such models require the replacement of the original con-
tinuous equations by a finite size of ordinary differential equations, which can be solved
numerically. Lorenz (1963) was the first one to show that a low order truncated model
of an atmospheric process (Rayleigh-Bénard convection) based on ordinary differential
equations exhibits irregular or chaotic behaviour under specific configurations, even if the

8



1 Introduction

forcing is constant. Thus he demonstrated that irregularity is not necessarily externally
prescribed to the system, but it is rather an inherent characteristic coming from non-
linearity. Several years later, Lorenz (1984) presented another simplified model meant to
represent some basic features of a zonally symmetric circulation, the Hadley circulation.
This model consists of only three equations, representing the temporal evolution of a
symmetric globe-encircling westerly flow X and sine and cosine phases of a chain of
large-scale eddies, Y and Z respectively:

dX

dt
= −Y2 −Z2 − aX+ aF, (1.11)

dY

dt
= XY − bXZ− Y +G, (1.12)

dZ

dt
= bXY +XZ−Z, (1.13)

where F and G represent zonally symmetric and asymmetric thermal forcings, the non-
linear mixed terms express interactions of the eddies with the zonal mean current, the
linear terms stand for mechanical and thermal damping, and a and b are constants.
Lorenz shows in his paper that, if one varies G starting with a value near 0 and increas-
ing it gradually, the system goes over from a stable periodic behaviour to an unstable
non-periodic behaviour which settles on a strange attractor. He also found multiple
equilibria for certain values of G, representing, for example, a Hadley circulation and
a blocking situation. Fig. 1.3 illustrates the Lorenz-84 attractor for G = 1 and for two
different forcings F = 6 and F = 8. We see that, while in case of F = 6 the attractor is a
closed curve in the phase space indicating a periodic behaviour, for F = 8 the attractor
is a complex manifold according to the chaotic behaviour of the system.

Regarding the evolution of the atmosphere, we talk very often about “weather” and “cli-
mate”. The usual way to differentiate between them is to define the weather as the short
term evolution of the atmosphere, i.e. starting from a specific point on the attractor and
following the trajectory in phase space for a relatively short time, whereas “climate”
represents the long term evolution of the atmosphere, in which case the starting point
does not matter anymore, because the trajectory is supposed to be so long that it pop-
ulates the whole attractor. What matters, however, are the boundary conditions under
which we let the system evolve. In the case of climate, it is assumed that the systems can
be described statistically, since the exact temporal evolution is not relevant anymore.

We analyse the atmosphere in this work from the point of view of dynamical systems
theory. However, we wish to mention that, in the case of the atmosphere, we do not
certainly know whether the real system is a complex quasi-periodic or a chaotic dynam-
ical system, since we do not have infinitely long observations about its evolution. What
we can say, however, is that on realistic finite time scales it does exhibit an irregular

9



1.2 The atmosphere as a chaotic dynamical system

Figure 1.3: Attractors of the Lorenz-84 model for F = 6 and F = 8, with G = 1, a = 0.25,
and b = 4. The integration consists of 146 model time units correspond-
ing to two years, and is performed by using the MATLAB-function ode45

(MATLAB, 2015).

behaviour.

From a statistical-mechanical perspective, the atmosphere can be interpreted as a high
dimensional forced-dissipative chaotic system in an out-of-equilibrium state. It is possible
to find a system in a non-equilibrium steady state if the forcing acting on it is constant, and,
at the same time, the system features some regulatory mechanisms between processes
driving it towards equilibrium and processes pushing it away from equilibrium. In the
case of the atmosphere, for example, the previous ones are represented by emission
of radiation and frictional dissipation, whereas the later ones by absorption of radiation
emitted at a higher temperature and meridional temperature as well as density gradients
(Kleidon, 2010). Main characteristics of these kind of systems are contraction of the
phase space, generation of entropy, and a finite predictability horizon (Lucarini et al.,
2014a).

The complexity of the dynamics of the atmosphere is reflected in the fact that its variabil-
ity is characterised by the peculiar co-existence of waves, turbulence, and particle-like
features (e.g. cyclones) (Ghil and Roberston, 2002). Additionally, it is well known that in
the climate system there is a non-trivial relationship between spatial and temporal scales of
variability - with large spatial scales associated, in a nontrivial way, to longer time scales.
The existence of such relationships (which we will explore also in this thesis) comes form
the fact that one can loosely identify different dynamical regimes, each characterised by
specialised dynamical balances between the forces acting on the fluid components (Lu-

10



1 Introduction

carini et al., 2014a). Such balances can be rigorously derived via asymptotic analysis
applied on the Navier-Stokes equations on a rotating frame of reference (Klein, 2010). A
schematic representation of the approximation based on dynamical balances as function
of the considered temporal and spatial scales is given by Fig. 1.4 (Klein, 2010).

Figure 1.4: Atmospheric scaling regimes and the related model equations. WTG: weak
temperature gradient, QG: quasi-geostrophic, PG: planetary geostrophic,
HPE: hydrostatic primitive equation. hsc represents the density scale height
(∼ 11 km) and uref the thermal wind velocity (∼ 12 m/s). ε ∼ 1/9 ∼ uref/cint,
where cint is the internal wave speed (∼ 110 m/s). Reproduced from Klein
(2010), copyright c© 2010 by Annual Reviews.

We have seen in this section that the atmosphere is a highly complex system described
by a set of non-linear differential equations, and can be studied based on different inter-
pretations, for example, as a chaotic dynamical system or as a forced-dissipative system
in an out-of-equilibrium state. In the next two sections, we describe how can we analyse
atmospheric extreme events based on these two perspectives.

1.3 Extreme events and general system properties

A robust theoretical framework for analysing extreme events is provided by Extreme
Value Theory (EVT). After the early contributions by Fisher and Tippett (1928), EVT was
introduced by Gnedenko (1943) who discovered that under rather general conditions the
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1.3 Extreme events and general system properties

extreme events associated to stochastic variables can be described by a family of para-
metric distributions. As a result, the problem of studying the extremes of a stochastic
variable can be reduced to estimating the parameters of a known probability distribu-
tion. The most important parameter of such a distribution is called the shape param-
eter, which determines the qualitative properties of the distribution, and, in particular,
whether it has a finite or infinite upper point, or, more concretely, whether extremes are
bounded by an absolute finite maximum or not. Two of the most widely used methods
of EVT are the Block Maxima (BM) (Fisher and Tippett, 1928; Gnedenko, 1943) and the
Peak Over Threshold (POT) (Pickands, 1975; Balkema and de Haan, 1974) approaches,
which differ mostly in the selection procedure of extreme events. Whereas the BM
method identifies extremes as maximaMm of independent identically distributed (i.i.d.)
random variables (r.v.) separated into sufficiently large blocks of size m as m→∞, the
POT approach detects extremes considering exceedances of a stochastic variable X above
a given threshold u as u → x∗, where x∗ represents the upper end point of the distri-
bution of X. Figure 1.5 illustrates the different selection procedures of extreme events
in case of the BM and POT approaches. Both methods are formulated in form of limit
laws, and rely on the convergence in distribution of the selected extreme values to one
limiting family of distributions, as one considers more and more extreme levels (i.e. for
increasing m or u). Thus EVT is often interpreted as an analogy to the Central Limit
Theorem (CLT).
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Figure 1.5: Selection of extreme events (red dots). a) BM method, vertical dashed lines
separate the blocks; b) POT method, horizontal dashed line represents the
threshold.

The limiting family of distributions is the Generalized Extreme Value (GEV) distribution
in case of the BM method, and the Generalized Pareto distribution (GPD) in case of the
POT approach. It is remarkable that these two points of view on extremes (based on
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1 Introduction

different selection procedures and different choice of the events classified as extremes)
are, in fact, equivalent. The existence of well-defined functional forms of distributions
describing extreme events provides predictive power: one can in principle compute the
return time of yet unobserved events. In other words: if the limit law applies, predictive
power emerges (in a statistical sense), and is directed towards events with decreasing
probability.

The setting behind the construction of EVT can be extended by relaxing the hypothesis
of independence of the random variables, as long as correlations are decaying suffi-
ciently fast. This is of clear relevance when trying to use EVT for studying observables
of deterministic dynamical systems. In this case, in fact, the underlying dynamics deter-
mines the existence of correlations between the values of observables at different times,
and one can easily guess that, when the dynamical system is chaotic, there is good hope
of deriving EVT for its observables (Lucarini et al., 2016). Consequently, it is possible
to establish an EVT for observables of chaotic dynamical systems when one consid-
ers Axiom A dynamical systems, due to the convenient characteristics of these systems
discussed in Sec. 1.1.

Several studies dealing with EVT for dynamical systems reveal a link between the statis-
tical properties of the extremes and geometric (and possibly in turn global dynamical)
characteristics of the system producing these extremes (Faranda et al., 2011; Lucarini
et al., 2012a,b; Holland et al., 2012; Lucarini et al., 2014b). The main findings are that
when suitable observables are chosen for the dynamical system of interest, it is possible
to relate the GEV or GPD parameters describing the extremes to basic properties of the
dynamics, and especially to the geometry of the attractor. In particular, depending on
the choice of the observable, one can associate the most important parameter of the GEV
or GPD distribution to the information dimension of the attractor or to the partial infor-
mation dimension along the stable and unstable directions of the flow (Lucarini et al.,
2014b). These partial dimensions are well-defined everywhere on the chaotic attractor,
also for non-uniformly hyperbolic systems (Barreira et al., 1999), beside Axiom A sys-
tems. However, Axiom A systems possess an ergodic SRB measure which lends itself to
a universality of the shape parameter for all sufficiently smooth observables; the local
or point-wise (partial) dimensions taking the same value almost everywhere (Ott, 1993).
In this case the uniform shape parameter can be related to the (partial) Kaplan-Yorke
dimension(s), defined by the global dynamical characteristic numbers, the Lyapunov
exponents. Clearly, this is an asymptotic result, and one must expect that differences
emerge on pre-asymptotic level when different observables are studied. Via the con-
nection with fractal dimensions, it can be said that the analysis of extremes acts as a
microscope able to assess the fine scale properties of the invariant measures. The reader
is referred to Lucarini et al. (2016) for a detailed overview of the field of EVT for dy-
namical systems.
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1.4 Large deviations and persistent extreme events

Some preliminary numerical tests show that the convergence to the asymptotic shape
parameter is slow in low-dimensional cases, in systems well known not to be Axiom A
(Lucarini et al., 2014b). Bódai (2017) examined the convergence to the GEV distribution
in the case of extremes of site variables in the Lorenz 96 model (Lorenz, 1996), inves-
tigating separately a range of cases extending from weak to strong chaos. He found
that, when considering configurations supporting weak chaos with a low-dimensional
attractor, the theoretical results obtained in the context of the Axiom A hypothesis are
hard to verify. For lower dimensions, up to a dimension of about 5, shape parameter
estimates fluctuate greatly rather than converge, while block maxima data can be shown
not to conform to a GEV model; and for somewhat larger dimensions, up to 9 in the
study, estimates could diverge from the predicted value while data already conform to
a GEV model. Good agreement with the theory was found only in the highly turbulent
case possessing a higher-dimensional attractor, about 30, supporting the basic idea be-
hind the chaotic hypothesis. Also in this case, nonetheless, very slow convergence was
found.

In previous analysis performed on higher dimensional, intermediate complexity models
with O(102 − 103) degrees of freedom, very slow (if any) convergence to EVT distribu-
tions could be found in the case of extremes of local temperature observables (Vannit-
sem, 2007). In another analysis of a similar model (Felici et al., 2007a), the agreement of
the distribution of global energy extremes with a member of the GEV family was indeed
good, yet large uncertainty remained on the value of the shape parameter, and no strin-
gent test was used to make sure that the estimate was stable against changes in the block
size considered in the BM analysis. Clearly, the specific choice of the observable and the
degree of chaoticity of the underlying dynamics is of primary relevance regarding the
convergence to the limiting GEV or GPD distribution.

Findings of EVT for dynamical systems have been shown to be applicable not only to
simple systems but, recently, even to reanalysis data sets. Although, one has to be
aware that, by considering a few observables of reanalysis data, one is far away from
obtaining general properties of the very-high dimensional attractor. However, it has
been shown that extremes of some dynamical system metrics can be used as proxies
for certain atmospheric patterns which can favour extreme weather conditions (Faranda
et al., 2017; Messori et al., 2017).

1.4 Large deviations and persistent extreme events

As discussed in Sec. 1.2, there is a non-trivial relationship between temporal and spatial
scales of variability in the atmosphere, as well as in the climate system. As a result,
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1 Introduction

one can guess that persistent climatic extremes, are generally both persistent in time
and persistent, i.e. extended, in space. A heat wave or a cold spell, for example, is not
only lasting for a long time (from several days to several weeks, even months) but has
also a considerable spatial extension. They are primarily caused by anomalous synop-
tic conditions, mostly by atmospheric blocking situations, so we talk about space-time
persistence on large synoptic scales (Vautard et al., 2011; Sillmann et al., 2011; Stefanon
et al., 2012). For example, the 2003 and 2010 European heat waves had a temporal and
spatial extent of the order of weeks to months and 106 km2 respectively. (Barriopedro
et al., 2011).

As explained above, EVT is mathematically very powerful, but in the usual setting is
not well suited for studying, in the case of spatio-temporal chaos, anomalously large
or small events that are persistent in time and extended in space. This is unfortunate
because persistent climatic extreme events - like heat waves or cold spells - can have a huge
impact: they do not affect only human health, but also ecosystems; they can be a danger
for our infrastructures and crops, and have a destabilising effect over entire societies
(Easterling et al., 2000; Robinson, 2001; WHO, 2004; IPCC, 2012). Among the most
relevant historical examples we would like to mention the mega-drought that played a
major role in the collapse of the Maya empire (Kennett et al., 2012), and the recurrent
extreme cold spell episodes referred to as Dzud that led to various waves of migration
of the nomadic Mongolian populations (Fang and Liu, 1992; Hvistendahl, 2012).

One can analyse persistent events generally in two ways: first, by treating them as
a concatenation of successive extreme events and study the properties of clusters of
extremes (Ferro and Segers, 2003a; Segers, 2005), or, second, by looking at pdf’s of time-
averaged observables. In this study we follow the second route. Following intuition, if
we look at the pdf of finite-size averages of an observable, one expects that the tails of
the distribution are mainly populated by averages coming from persistent extremes. A
rationale for this is that the averaging window acts like a low-pass filter on the length of
the considered persistent event, leading to a connection between extremes of averages
and persistent events with a certain length (greater or approximately equal to the chosen
averaging window). This will roughly be, in fact, the scenario we will explore below.
However, the link between persistence and extremes of finite-size averages is not always
true: in case of heavy-tailed r.v., for example, the extremes of averages are dominated by
a single very large extreme event within the averaging window (Mikosch and Nagaev,
1998). We remark that, generally, the methods of EVT can be applied the same way also
to study extremes of averaged observables. However, the averaging process reduces the
number of available data, so that these methods can become more difficult to apply.

A mathematical framework describing properties of pdf’s of averaged observables is
provided by Large Deviation Theory (LDT), introduced by Cramer (1938) and further
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1.4 Large deviations and persistent extreme events

developed by other mathematicians, like Donsker and Varadhan (1975a,b, 1976, 1983),
Gärtner (1977), and Ellis (1984). The central result of LDT consists of writing the proba-
bility of averaged random variables An = 1

n

∑n
i=1 Xi as function of the variables Xi: for

n → ∞, the probability of averages decays exponentially with n, p(An = a) ≈ e−nI(a).
This is called a large deviation principle (LDP). The speed of decay is described by the
so called rate function I(a) > 0. The probability p(An = a) decays everywhere with
increasing n, except when I(a) = 0. Here, e−nI(a) = 1. For an i.i.d. r.v. one would
have that E[An] = a∗, where a∗ is such that I(a∗) = 0. If the rate function exists, one
can estimate the probability of averages for every n. Similarly to EVT, if the limit law
applies, we gain predictive power, with the difference that in this case it is directed to-
wards averages with increasing n. This means that one does not have to deal anymore
with the problem of decreasing amount of data as n increases. Figure 1.6 shows the first
step in the application of LDT, which is obtaining averaged observables over equidistant
averaging blocks. For increasing averaging block lengths, the rate function estimates are
expected to converge, if a LDP exists.
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Figure 1.6: First step in the application of LDT: obtaining averages over blocks of equal
lengths. a) Normal and b) exponential r.v. (black circles) and their averages
over finite blocks (red lines). The vertical dashed lines separate the averaging
blocks. The horizontal grey line represents the long-term average.

LDT is used very extensively in physics, mostly in the context of thermodynamics and
statistical mechanics. In the case of an equilibrium system, the global minimum of
I(a) represents the system state with maximum entropy, which is at the same time
the most probable state, according to the maximum entropy principle. In the case of
a non-equilibrium system, under suitable assumptions, rate functions are computed
taking into account the time evolution and for each observable the minimum of the rate
function defines its expectation value.
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1 Introduction

While they have recently been applied in the context of geophysical flows (see e.g.
Bouchet and Venaille 2012; Bouchet et al. 2014; Herbert 2015), techniques of LDT have
been used sporadically until now in climate studies, despite the fact that they can be
useful whenever the connection between macroscopic or long term observables and mi-
croscopic or instantaneous observables is important, and one is interested in persistent
and/or extended fluctuations of a climatic field.

One area of climate modelling where techniques of LDT are just beginning to be applied
is the sampling of rare events. Rare event computation techniques based on elements
of LDT have been developed with the aim to produce reliable statistics of specific rare
events of a given model, as an alternative to long direct numerical simulations (Giardina
et al., 2016; Wouters and Bouchet, 2016; Lestang et al., 2018). Ragone et al. (2017) describe
how model trajectories can be selected, based on a rare event algorithm, by keeping an
ensemble realisation of the system in states that are preferentially close to those leading
to heat waves. Therefore, one can exponentially oversample events that have ultra long
return periods, and thus construct a richer statistics of heat waves than one would get by
standard Monte Carlo techniques. The described method provides also the possibility to
investigate dynamical properties of the system state (like global circulation patterns and
jet stream position) supporting the occurrence of the studied extremes (heat waves).

1.5 This thesis

In this thesis, we analyse extreme or rare events in two atmospheric models based on
Extreme Value Theory (EVT) and Large Deviation Theory (LDT). Beyond the statistical anal-
ysis of extremes, we mainly aim at finding out general properties of our dynamical
systems (i.e. the numerical models) and characteristics of the system state producing
these extremes. The thesis is built up around two main topics. First, we study extreme
events of energy observables in a two-layer quasi-geostrophic atmospheric model based
on EVT. The main objective here is to see whether we can detect universal properties of
extreme events, which can then be related to properties of the attractor of the system,
according to a theory developed within EVT for dynamical systems (Holland et al., 2012;
Lucarini et al., 2014b). Second, we look at large deviations of surface temperature in a
simplified general circulation model of the atmosphere based on LDT. The main objec-
tive is to study persistent space-time extreme events of temperature, i.e. heat waves or
cold spells, based on their connection to extremes of temperature averages on specific
scales.

In practical terms, the main goal behind the study of the extreme events is to understand
the properties of the highest quantiles of the variable of interest. A fundamental draw-
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1.5 This thesis

back comes from the fact that it is difficult to collect satisfactory statistics from a time
series of finite length because, as we know, extreme events are rare. Additionally, in the
absence of a strong mathematical framework, it is virtually impossible to make quan-
titative statements about the probability of occurrence of events larger than observed.
Therefore, the analysis in this thesis is based on two rigorous mathematical theories,
EVT and LDT, both based on limit laws, which provide a predictive power to the obtained
results, in a statistical sense. Note that statistical inference based on empirical models
tends to suffer from the lack of this predictive power. However the predictive power
can act only if one is able to approach the theoretical limit. We use here deliberately the
expression “approach” instead of “reach”, because the theoretical limit can, of course,
never be reached based on finite-size time series. However, in case of applications, one
can reach an empirical limit which means that the empirical results are indistinguishable
from what the theory predicts considering the uncertainty due to the finite size of our
data. If we succeed to attain such an empirical limit in this work, we consider to have
reached the “asymptotic level”, whereas if the empirical limit exists but is not realised
yet, it means that we are on a “pre-asymptotic level”.

Besides the very important common advantage of having predictive power, we also en-
counter similar problems - with similar solutions - when we try to apply these methods.
These problems, into which we bump several times in this thesis, are mostly related
to serial correlations, finite-size of the data, or convergence behaviour of the analysed
observables. Although the mentioned similarities between the two methods are very
interesting and indeed very important, one should not overlook that the object and the
background of the two theories are completely different. While EVT focuses on tails
of pdf’s by selecting extreme values according to a certain procedure (as maxima over
blocks of equal length or as exceedances above a high threshold), by applying LDT, one
actually transforms the original observable and finds a limit law for the newly obtained
observable. In other words, whereas EVT acts as a magnifying glass able to assess the
fine scale properties of the attractor (Lucarini et al., 2016) without changing its structure,
when we apply LDT we perform a kind of coarse-graining of the original system.

The atmospheric models considered in this thesis can be seen as being quite simple and
not very realistic. However, they are very effective tools for producing long simulations
in a relatively short time, which is of utmost importance if one aims to test the applica-
bility of limit laws, as we proceed in this work. Furthermore, they are realistic enough to
simulate Earth-like atmospheric processes on, mainly, synoptic scales (order of 106 m),
and allow also for computing with feasible computational costs some dynamical sys-
tem properties, like Lyapunov Exponents or Kaplan-Yorke dimensions (Schubert and
Lucarini, 2015; De Cruz et al., 2018).

In case of sufficiently high forcing levels, both models exhibit a chaotic behaviour as
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1 Introduction

described by the chaotic hypothesis, stating that high dimensional chaotic systems be-
have at all practical purposes as so-called Axiom A systems (Gallavotti and Cohen, 1995;
Gallavotti, 2014). These are special chaotic dynamical systems that exhibit an apparently
random dynamics, even though they are completely deterministic. They are also stable
against weak stochastic perturbations. Lucarini et al. (2014b) discuss that whenever one
performs numerical simulations, one implicitly assumes that the systems is Axiom A
or, at least, Axiom A-equivalent. This property of being Axiom A-equivalent is very
important for the applicability of the theories considered in this thesis. The connection
between statistical properties of extremes and general properties of the system or the ex-
istence of large deviation laws holds in the framework of the chaotic hypothesis, which
guaranties a strong enough mixing associated with a fast enough decay of correlations -
so that two events far away from each other are approximately uncorrelated - necessary
for the applicability of these limit laws. In these kind of mixing systems one often en-
counters on several levels a property of universality, which we explore in this thesis from
two different perspectives: by searching for universal properties of extremes of energy
observables and exploring the universality of temperature values averaged in time and
in space (as well as in space-time).

We believe that the concept of universality, as it is studied in this thesis, is relevant for
more realistic systems as well, considering that atmospheric or climatic time series based
on observations or complex model simulations often exhibit chaotic characteristics and
a fast decay of correlations, i.e. they behave on certain scales as Axiom A systems. Thus,
the non-universality of extreme value statistics, for example, indicates that asymptotic
levels are not reached yet, thus one has to be careful with the estimation of long return
periods of extremes based on the available data. The universal property relating tempo-
ral to spatial averages, should be also valid in case of realistic data sets satisfying certain
conditions (for example considering stationary time series over homogeneous surfaces),
and is, in fact, extremely useful because it allows for obtaining characteristics of spatial
averages from temporal series and vice-versa.

The structure of the thesis is as follows.

• In Chapter 2 we provide a theoretical overview of the elements of EVT and LDT
used in this thesis.

• Chapter 3 contains a detailed description of the model physics and methods.

• In Chapter 4 we present and discuss our results related to extreme events of energy
observables in the two-layer quasi-geostrophic model.

• In Chapter 5 we show and discuss the results regarding large deviations of temper-
ature in the simplified general circulation model PUMA.
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1.5 This thesis

• At the end, we provide some general discussion and common conclusions for the
two main topics in Chapter 6.

After having discussed the general aim of this thesis, we wish to outline the objec-
tives of the two major topics discussed in this work, presented later in Chapters 4 and
5, including their scientific relevance. In Chapter 4, we use a quasi-geostrophic (QG)
atmospheric model of intermediate complexity featuring 1056 degrees of freedom, to
analyse extremes of different types of observables: local energy (defined at each grid
point), zonally-averaged energy, and the average value of energy over the mid-latitudes.
Our main objective is to compare the estimated GEV and GPD shape parameters with
a shape parameter derived, based on the theory referred to above, from the properties
of the attractor along the stable, unstable, and neutral directions. We refer to this as
the “theoretical shape parameter”. Thus we explore numerically the link between the
purely statistical properties of extreme events based on EVT and the dynamical prop-
erties of the system producing these extremes. We perform simulations applying two
different levels of forcing: a strong forcing, producing a highly chaotic behaviour of
the system, and a weak forcing, producing a less pronounced chaotic behaviour. The
dimensionality of the attractor is much larger in the former than in the latter case.

The work presented in Chapter 4 goes beyond the previously mentioned studies based
on more simple dynamical systems (Sec. 1.3), in a sense that with our model we can
study the convergence for observables being different physical quantities, or, represent-
ing different spatial scales/characteristics of the same physical quantity. Additionally,
compared to previous studies also performed on intermediate complexity models, we
consider longer time series and a variety of observables. Our model is simple compared
to a GCM (General Circulation Model), but contains two of the main processes rele-
vant for mid-latitude atmospheric dynamics, i.e. baroclinic and barotropic instabilities.
Hence, we contribute to bridging the gap between the analysis of extremes in simple
and very high dimensional dynamical systems, as in the case of the GCMs used for at-
mospheric and climate simulations. The properties of the model have been extensively
studied by Schubert and Lucarini (2015, 2016).

Although we use an idealised model, our results are transferable to time series obtained
from more realistic model simulations or from measurements. By understanding the
differences among the analysed observables, we gain insight into the statistical proper-
ties of extremes of geophysical observables with different spatial scales. By using two
forcings, we are able to study the convergence to theoretical shape parameters related
to different chaotic systems: one exhibiting fast decaying correlations and another one
characterised by slower decaying correlations. These aspects are relevant in the case of
geophysical applications, where one deals also with time series on several spatial scales
and with different degrees of correlations.
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1 Introduction

In Chapter 5 we adopt LDT to analyse the properties of temporally and/or spatially
persistent surface temperature extremes - heat waves or cold spells - generated through
simulation performed with the Portable University Model of the Atmosphere (PUMA)
(Lunkeit et al., 1998; Fraedrich et al., 2005b). We investigate temperature averages com-
puted in time and/or in space, the spatial averaging being performed along the zonal
direction for reasons of symmetry.

PUMA - details given in Sec. 3.2 - describes with a good level of precision the dynamics
of the three-dimensional atmosphere as an out-of-equilibrium forced-dissipative system.
We analyse the properties of the steady state achieved as a result of time-independent
forcing after transient dynamics has been discarded. For a wide range of parameter
values, PUMA features high-dimensional chaotic dynamics (De Cruz et al., 2018). By
considering the connection between the averaged values and persistent events on suit-
ably defined scales (as explained above), large deviations of temperature can possibly
be related to persistent extreme events of temperature.

Following the discussion above, we expect to find a link between spatially extended and
temporally persistent events. In order to achieve a large deviation when considering
spatial averages in a turbulent system, we need to have occurrence of a spatially ex-
tended structure of length say L. In a system possessing a characteristic velocity scale
U, one expects such a structure to persist for a typical time of the order L/U. Because
persistent events are space-time events, we explore the connection between temporal
and spatial large deviations, and we also analyse spatio-temporal large deviations. We
seek answers to two main questions:

1. How well does LDT describe persistent in space and/or time temperature fluctu-
ations in PUMA?

2. What is the link between temporal, spatial, and spatio-temporal large deviations?

These questions are potentially relevant, because, if we find experimental proofs that
the LDP does hold in the case of our numerical simulations, there is a good chance to
calculate the probability of occurrence of arbitrarily long in time and/or extended in
space (within the limits allowed by the geometry of the Earth, as seen later) heat waves
and cold spells.

In the case we find a link between temporal and spatial large deviations, we can deduce
the probability of spatial (or spatio-temporal) averages from the one of temporal aver-
ages and vice-versa. This can be very useful in case of applications, when for example
only temporal or only spatial series are available. In order to test the quality of predic-
tions of return times based on LDT, we compare the results with what can be obtained
using EVT (we use here the POT method).
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1.5 This thesis

The common points of the objectives of Chapters 4 and 5 might be not totally clear
when formulated in detail. Therefore, we wish to point out again that in both cases
we study extreme or rare atmospheric events in numerical models from a theoretical
point of view, based on limit laws which allow, under certain conditions, a connection
between properties of extremes and general properties dynamical system.
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2 Extreme events in chaotic dynamical

systems

As discussed already in Chapter 1, we apply for the study of extreme or rare events two
asymptotic theories: Extreme Value Theory (EVT) and Large Deviation Theory (LDT),
which are described in the following. Both theories are derived in an independent r.v.
framework, thus we also discuss the conditions under which they can be applied in
case of deterministic dynamical systems. These conditions are generally related to a
fast enough decay of correlations, this being usually the case in systems satisfying the
chaotic hypotheses. The fact that they rely on limit laws provides predictive power for
the obtained results, and represents a clear advantage compared to statistical inference
based on empirical models. However, it also requires a rigorous verification of the
convergence behaviour from an empirical point of view, under consideration of the
uncertainty resulting from the finite data size. This will be discussed in detail also later
in Chapters 4 and 5 based on our numerical results .

2.1 Extreme Value Theory for dynamical systems

Let us consider Mm = max{X1, ...,Xm}, where X1, ...,Xm is a sequence of i.i.d. r.v. with
common distribution function F(x). The extremal types theorem (Fisher and Tippett,
1928; Gnedenko, 1943) states that if there exist sequences of constants {am > 0} and
{bm}, so that the distribution of normalised Mm, i.e., Pr{(Mm − bm)/am 6 z}, con-
verges for m → ∞ to a non-degenerate distribution function G(z), then G(z) is one
of three possible types of so-called extreme value distributions, having the cumulative
distribution function

G(z) =

exp
{
−
[
1 + ξ

(
z−µ
σ

)]−1/ξ
}

for ξ 6= 0,

exp
{
− exp

[
−
(
z−µ
σ

)]}
for ξ = 0,

(2.1)

where −∞ < µ < ∞, σ > 0, 1 + ξ(z− µ)/σ > 0 for ξ 6= 0 and −∞ < z < ∞ for ξ = 0
(Coles, 2001).
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2.1 Extreme Value Theory for dynamical systems

G(z) represents the GEV family of distributions with three parameters: the location pa-
rameter µ, scale parameter σ, and shape parameter ξ. The shape parameter ξ describes
the tail behaviour, and determines to which one of the three types of extreme value dis-
tributions G(z) belongs. If ξ = 0, the tail decays exponentially, G(z) is a type I extreme
value distribution or Gumbel distribution. If ξ > 0, the tail decays polynomially, and
G(z) belongs to the type II or Fréchet distribution. If ξ < 0, the domain of the distribu-
tion has an upper limit, and is referred to as a type III or Weibull distribution. The three
types of GEV distributions are illustrated in Fig. 2.1a.

Under the same conditions, for which the distribution of Mm converges to the GEV
distribution, the exceedances y = X− u of a threshold u reaching the upper right point
of the distribution of X, given that X > u, are asymptotically distributed according to
the Generalized Pareto distribution (GPD) family (Coles, 2001)

H(y) =

1 −
(

1 + ξ̃y
σ̃

)−1/ξ̃
for ξ̃ 6= 0,

1 − exp
(
−yσ̃
)

for ξ̃ = 0,
(2.2)

where 1 + ξ̃y/σ̃ > 0 for ξ̃ 6= 0, y > 0, and σ̃ > 0. H(y) has two parameters: the scale
parameter σ̃ and the shape parameter ξ̃. The shape parameter ξ̃ describes again the tail
behaviour (shown in Fig. 2.1b), and determines to which one of the three types of GPD
distributions H(y) belongs. If ξ̃ = 0, the tail of the distribution decays exponentially; if
ξ̃ > 0, the tail decays polynomially; and if ξ̃ < 0 the distribution is bounded (Pickands,
1975; Balkema and de Haan, 1974; Davison and Smith, 1990). If convergence to the GEV
and GPD distributions is realised, ξ̃ = ξ and σ̃ = σ+ ξ(u− µ). As a result, once we
estimate the parameters for the GEV, we can derive the corresponding GPD parameters,
and vice versa (Coles, 2001).

From the values of the GEV parameters, which can be inferred using usual proven
estimation methods, like maximum likelihood estimation (Coles, 2001) or L-moments
(Hosking, 1990), it is possible to infer the expected return levels or extreme quantiles.
Return levels zp are obtained from the GEV distribution by inverting equation (2.1):

zp =

µ− σ
ξ

[
1 −w−ξ

p

]
for ξ 6= 0,

µ− σ log wp for ξ = 0,
(2.3)

where wp = − log(1 −G(zp)), and 1/wp represents the return period. The expected
return levels or extreme quantiles are obtained similarly from the values of the GPD
parameters. In this case, the level ym that is exceeded on average once every m-
observations is called the m-observation return level and is the solution of P(Y > y) =
1
m . One obtains P(Y > y) from H(y) − 1 = P(Y > y|Y > u) =

P(Y>y)
P(Y>u) , and consequently
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Figure 2.1: a) GEV and b) GPD probability densities for zero (black), positive (red) and
negative (blue) shape parameters.

(Coles, 2001):

ym =

u− σ̃
ξ̃

[
1 − ( 1

mP(Y>u))
−ξ̃
]

for ξ̃ 6= 0,

u− σ̃log( 1
mP(Y>u)) for ξ̃ = 0.

(2.4)

By plotting the GEV (GPD) return level zp (ym) against the return period 1/wp (mP(Y >
u)) on a logarithmic scale, the plot is linear if ξ = 0 (ξ̃ = 0), is convex if ξ > 0 (ξ̃ > 0),
and is concave if ξ < 0 (ξ̃ < 0).

Problems in applying EVT to actual time series result from the fact that, typically, the ob-
served data feature a certain degree of serial correlations (Ghil et al., 2011). In the case of
a correlated stationary stochastic process, the same GEV limit laws apply as for i.i.d. r.v.
if certain conditions, regarding the decay of serial correlation, are fulfilled (Leadbetter,
1974; Leadbetter et al., 1989; Lucarini et al., 2016). By stationary, we refer to a sequence
of correlated variables whose joint probability distribution is time-invariant. However,
an important restriction is that, as an effect of serial correlation, an effective block size
can be defined, which is smaller than the number of observations in a block. This can
enhance the bias in the parameter estimation, appearing as a slower or delayed conver-
gence of the block maxima distribution to the limiting GEV distribution (Coles, 2001;
Rust, 2009). Another possible effect of serial correlation is the appearance of extremes
at consecutive time steps (clusters). If an extreme value law does exist in this case, then
G∗(z) = G(z)θ, where θ is called the extremal index and 0 < θ < 1 (G∗(z) denotes
the limiting distribution of BM from the correlated sequence and G(z) the one from an
uncorrelated sequence, having the same marginal distribution). Clusters of extremes
represent a problem especially when applying the POT approach. A widely-adopted
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2.1 Extreme Value Theory for dynamical systems

method to get rid of the correlated extremes is declustering, which basically consists of
identifying the maximum excess within each cluster, and fitting the GPD distribution to
the cluster maxima (Leadbetter et al., 1989; Smith, 1989; Ferro and Segers, 2003b).

Obtaining the true limiting EVT can be extremely hard in case of applications. When
analysing finite time series, the convergence of the estimated GEV or GPD shape param-
eters to the asymptotic values can be very slow. The speed of convergence depends on
the type of parent distribution (Leadbetter et al., 1983), and can be additionally slowed
down by correlations (Rust, 2009; Coles, 2001). Due to the fact that the data size is always
limited, there is typically a difference between the asymptotic GEV or GPD parameters
and the estimated ones; finite-size estimates are generally biased. For example, the GEV
shape parameter of a simple Gaussian process is 0, but, for any finite time series, we
would estimate typically a negative shape parameter (Fisher and Tippett, 1928).

When performing statistical inference using the BM or POT method (fitting the GEV
or GPD model, respectively, to data), it is crucial to have an appropriate protocol of
selection of “good” candidates for extremes (Coles, 2001). On the one hand, if the chosen
blocks (for the BM method) are too short or the threshold (for the POT method) is too
low, the approximation of the limit model is likely to be inappropriate, leading to false
parameter estimates. Hence, the verification of the agreement between the statistical
model and the available data is essential. This is often done based on goodness-of-fit
tests, like the Kolmogorov-Smirnov (Massey, 1951), Anderson-Darling (Anderson and
Darling, 1954) or Pearson’s chi-squared tests (Agresti, 2007). On the other hand, if
the blocks are too large or the threshold is too high, the number of extremes may be
insufficient for a reliable estimation of the parameters, and uncertainty becomes very
high. Coles (2001) shows how to derive an optimal choice for the value of the block
size or the threshold, in such a way as to verify that we are close to the asymptotic level
as required by EVT but we use the available data as efficiently as possible. We will
describe how to do this empirically, when the asymptotic shape parameter is known,
later in Chapter 4.

It is possible to establish an EVT also for observables of dynamical systems. However,
we wish to remark that this is not trivial at all considering the deterministic nature of
dynamical systems, and is reasonable only in case the system and its measure fulfil
certain requirements. An ideal framework for a rigorous mathematical derivation of
the theoretical results presented below is given by systems with uniformly hyperbolic
attractor. This means that every point of the attractor comes with a stable and unstable
manifold, which are well separated. The stretching and folding along these manifolds
generates a complicated long-term behaviour, leading to apparently random dynamics,
similar to a stochastic process, even though the system is completely deterministic. Ad-
ditionally, the invariant set of these systems and its dynamics are structurally stable,
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2 Extreme events in chaotic dynamical systems

in the sense that small perturbations preserve the dynamics. Furthermore, the equilib-
rium measure of a hyperbolic attractor is the SRB measure (Sec. 1.1). As discussed in
Sec. 1.1, Axiom A systems satisfy all of these geometrical and dynamical requirements.
Despite the very rigorous mathematical conditions necessary for deriving theoretical
results, in case of applications, the requirements can be relaxed based on the chaotic hy-
potheses, stating that high dimensional dynamical systems can be regarded as Axiom
A systems for the purpose of computing macroscopic properties (Gallavotti and Cohen,
1995; Gallavotti, 2014). The most important condition for the application of the theory
is that the dynamical system is ergodic and chaotic enough.

As mentioned before, several studies on EVT for observables of dynamical systems relate
the GEV and GPD shape parameters to certain properties of the attractor. In the case of
so-called “distance” observables, one can relate the GEV and GPD parameters to local
geometrical properties of the attractor (Faranda et al., 2011; Lucarini et al., 2012a,b). The
distance observables gi(r), with r = dist(x(t), ζ), are functions of the Euclidean distance
between one point on the attractor ζ and the orbit x(t) (Lucarini et al., 2016):

g1(r) = − log(r), (2.5)

g2(r) = r
−1/α, (2.6)

g3(r) = −r1/α, (2.7)

where α is a positive constant. The function gi(r) is chosen in a way to have a global
maximum for r = 0, so that large values of gi correspond to recurrences of the orbit
near ζ. Depending on the choice of the function gi(r), the extremes of the distance
observables can have positive, negative, or vanishing values for the shape parameter
(Lucarini et al., 2016):

• g1-type observable:

σ̃ =
1
Dζ

, ξ̃ = 0, (2.8)

• g2-type observable:

σ̃ =
u

αDζ
, ξ̃ =

1
αDζ

, (2.9)

• g3-type observable:

σ̃ =
C− u

αDζ
, ξ̃ = −

1
αDζ

, (2.10)

where C is a constant. In particular, when gi(r) is chosen to be a power law, the shape
parameter is non-zero, and it is proportional to the inverse of the local information
dimension of the attractor. For the relationship between Dζ and other attractor dimen-
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2.1 Extreme Value Theory for dynamical systems

sions, especially the Kaplan-York dimension, see Sec. 1.1. For a detailed treatment of
the topic, please consult Lucarini et al. (2016). Note that the above equations are derived
for the GPD parameters, however, one can obtain similar - in case of the shape parame-
ters identical - relationships by considering the GEV distribution as well (Faranda et al.,
2011; Lucarini et al., 2012a).

While recurrence properties are indeed important for characterising a system, distance
observables are not well suited for studying some basic physical properties, such as,
in the the case of fluids, energy or enstrophy. Hence, Holland et al. (2012) studied the
extremes of smooth functions S = S(x), which take their maximum on the attractor in a
point where the corresponding level surface of S(x) is tangential to the unstable mani-
fold, referring to them as “physical” observables. They found a relationship between the
GEV shape parameter and some geometrical properties of the attractor dealing with the
properties of the unstable and stable directions in the tangent space. The results of Hol-
land et al. (2012) were re-examined by Lucarini et al. (2014b), using the POT approach
for physical observables of Axiom A systems. They considered the time-continuous
time series of physical observables, and found that for all non-pathological physical
observables S the shape parameter can be written as:

ξδ = −
1
δ

, (2.11)

with δ defined as
δ = ds + (du + dn)/2, (2.12)

where ds, du, and dn are the partial dimensions of the attractor restricted to the stable,
unstable, and neutral (i.e., central) directions. As mentioned above in Sec. 1.1, these local
or point-wise dimensions take the same value almost everywhere on the attractor if one
considers smooth observables of Axiom A systems. du is equal to the number of positive
Lyapunov exponents (Ott, 1993), dn is equal to the number of zero Lyapunov exponents,
and ds = DKY −du−dn, whereDKY is the Kaplan-Yorke dimension obtained according
to Eq. (1.7). Figure 2.2 provides a general illustration of the selection of above threshold
(vertical lines) events (blow-ups) in phase space, by the example of the two-dimensional
Hénon map according to Lucarini et al. (2014b). We remark that a more general point
of view, taking into consideration possible geometrical degeneracies in phase space,
suggests that −1/ξδ < dKY < −2/ξδ, and, additionally, dKY/2 = (ds + du + dn)/2 6

δ 6 ds + (du + dn)/2 (Lucarini et al., 2016).

According to Eq. (2.11) the shape parameter is always negative (due to the compactness
of the attractor), and it is close to zero in the case of systems having large Kaplan-Yorke
dimension. Furthermore, it shows a universal property of extremes, which does not
depend on the chosen observable but only on the geometry of the attractor. In Chapter 4
we will focus on comparing Eq. (2.11) with statistically inferred GEV and GPD shape
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2 Extreme events in chaotic dynamical systems

Figure 2.2: Selection of extreme events in phase space, based on the example of the
Hénon map. The vertical lines indicate the thresholds, and the blow ups
show the portions of the invariant measure corresponding to the extremes.
Reproduced from Lucarini et al. (2014b).

parameters in the case of energy extremes in the two-layer QG model.

2.2 Large Deviation Theory

The large deviation theoretical framework can be formulated on three different levels,
corresponding to the complexity of the statistical description of the dynamical system.
These are, as described by Oono (1989), based on: sample means of observables (level-
1), probability distributions on the state space of observables (level-2), and probability
distributions on the path or history space, i.e. the entire set of possible orbits or histories
of the system (level-3). The below description follows the level-1 approach, according
to the scientific purpose of Chapter 5, and is mostly based on the works of Touchette
(2009) and Oono (1989). We do not pursue at all a rigorous mathematical formulation
here; our aim is rather to recapitulate the main concepts and results, and to introduce
our notation. We also give some physical interpretations of the main mathematical
concepts.

We say that the r.v. An = 1
n

∑n
i=1 Xi, where Xi are identically distributed r.v., satisfies a
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2.2 Large Deviation Theory

large deviation principle (LDP) if the limit

lim
n→∞−

1
n

lnp(An = a) = I(a) (2.13)

exists. I(a) > 0 is the so-called rate function, representing the rate of exponential decay
of probabilities. The probability density p(An = a) decays exponentially with n for
every value of a except the ones for which I(a) = 0, where limn→∞ p(An = a∗) = 1,
and a∗ = E[An]. Whenever this limit holds and I(a) has a unique global minimum, An
converges in probability to its mean a∗ and obeys the Law of Large Numbers. If then
additionally I(a) is quadratic (i.e. twice differentiable) around a∗, the Central Limit
Theorem (CLT) holds, meaning that small fluctuations around the mean are normally
distributed. The expression “small fluctuations” is very important here, because large
fluctuations around the mean are not necessarily normally distributed. Since the rate
function describes both small and large deviations, LDT can be considered as a gen-
eralisation of CLT. Figure 2.3 shows, as an example, pdf’s of averages for increasing
averaging windows and the corresponding rate functions in case of normally and expo-
nentially distributed r.v. (Touchette, 2009).

a) b)

Figure 2.3: Pdf’s of averages (black) for increasing averaging windows and correspond-
ing rate functions (red) for a) normal and b) exponential r.v. (Touchette,
2009).

Now let’s consider, instead of r.v., observables produced by a deterministic dynamical
system. If the system is Axiom A, all of its observables obey a LDP (Eckmann and Ruelle,
1985). If we consider a system whose dynamics is characterised by high-dimensional
chaos, by invoking the chaotic hypothesis (Gallavotti and Cohen, 1995), one can expect
to find large deviation laws, even in systems which are not Axiom A.

The dynamical nature of out-of-equilibrium steady state systems requires, however, a
slight modification of our theoretical approach, which mainly implies that time has to
be considered in the formulation of the LDP, replacing the parameter n. Due to tempo-
ral correlations in these systems the computation of the rate function requires level-2 or
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2 Extreme events in chaotic dynamical systems

level-3 theory. This has been done for Markov chains and r.v. with a specific form of
dependence, and involves mostly the computation of transition matrices or joint pdf’s
(den Hollander, 2000; Touchette, 2009). In the case of non-Markovian processes and
high dimensional systems the computation of analytical rate functions is a hopeless en-
deavour. Thus, in this work, we adopt another (very simple) strategy in dealing with
temporal correlations. Considering weakly correlated observables (i.e. Xj and Xl have
an exponentially decreasing correlation if |j− l| is large enough), one can take advantage
of the fact that for large enough n the averages An become almost uncorrelated. This
represents the basis for the block averaging method (Rohwer et al., 2015). We transform
the variables Xi into variables Yi = 1

b

∑b
i=1 Xi, where b represents the size of the aver-

aging block, i.e. b = n/k with the number of blocks k. If Yi are almost independent
and identically distributed (ergodic Markov chain), a large deviation principle can be
obtained for:

An =
1
k

k∑
i=1

Yi =
1
n

n∑
i=1

Xi. (2.14)

Intuitively, one can argue that b has to be at least so large that Xi+1 and Xi+b are
almost uncorrelated, i.e. b > ρ where ρ is a metric of persistence expressed in terms
of number of successive correlated data. One usually quantifies persistence in terms
of the auto-correlation function. Considering our scientific goal, which is the study of
probabilities of averages, it makes sense to choose the integrated auto-correlation as a
general measure of patterns in time and space, since this quantity plays a central role in
the formulation of the CLT for Markov chains, as described below.

According to a formulation of CLT in case of dependent variables based on Billingsley
(1995), suppose that X1,X2, ... is a stationary Markov chain with E[Xn] = 0 and satisfies
appropriate mixing conditions, then the variance of the sample mean An is

nE[A2
n]→ E[X2

1](1 + 2
∞∑
k=1

c(k)) (2.15)

where c(k) = C(k)
C(0) is the auto-correlation, and C(k) denotes the auto-covariance at lag k,

C(k) = E[XiXi+k]. Eq. (2.15) shows that the rescaled variance of the sample mean of the
Markov chain converges to the variance of X1 times the integrated auto-correlation.

Based on the LDP, we can estimate the cumulative distribution function P(An 6 a), and
obtain the return periods of events exceeding the value a as 1

1−P(An6a)
.
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3 Atmospheric models

We use for the analysis of extremes two numerical models which simulate atmospheric
motions on large scales: the quasi-geostrophic two-layer (QG) model and the simplified
global circulation model PUMA. The later one is based on primitive atmospheric equa-
tions obtained by adapting the Navier-Stokes equations to a rotating frame of reference
where the vertical acceleration of the fluid is constrained to be small with respect to grav-
ity (Klein, 2010; Holton, 2004). These equations constitute a good approximation of the
atmospheric dynamics on horizontal spatial scales larger then a few tens of kilometres.
The evolution equations of the QG model follow from the primitive equations based on
the quasi-geostrophic approximation for the mid-latitudes β-plane. Thus, in this later
case, a further approximation is performed valid on even larger horizontal spatial scales
of O(103) km, and allowing for only small departures from the geostrophic balance.
Nonetheless, this model is still able to represent characteristic processes of the mid-
latitude atmospheric dynamics, like baroclinic conversion and barotropic stabilisation.
Fig. 1.4 (Klein, 2010) above shows the position of the QG and PUMA (corresponding to
HPE and HPE+Coriolis in the figure) models embedded in a hierarchy of atmospheric
models based on different scaling regimes. The reader is referred to Holton (2004) for a
detailed physical and mathematical description of the primitive atmospheric equations
and the quasi-geostrophic approximation.

In both models, moist processes are omitted and simple parametrisations are used to
account for the effect of friction, diabatic heating, and diffusion, as discussed in details
below. However, if the forcing is strong enough, both models represent chaotic dynam-
ical systems that satisfy the chaotic hypothesis and, thus, can be considered as Axiom
A-equivalent. This is a very important property for the applicability of the asymptotic
theories used in this thesis, as we see later in Chapters 4 and 5. Considering the cor-
responding temporal and spatial scales, both models simulate atmospheric circulations
similar to the real atmosphere, as shown by Fig. 3.2 and Fig. 3.3 below.
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3.1 The quasi-geostrophic two-layer atmospheric model

3.1 The quasi-geostrophic two-layer atmospheric

model

We consider a spectral quasi-geostrophic (QG) 2-layer atmospheric model similar to the
one introduced by Phillips (1956). Specifically, our model, including the simulation
code, is the same as in Schubert and Lucarini (2015), and is a modified version of the
one presented by Frisius (1998). The model represents synoptic scale mid-latitude atmo-
spheric dynamics based on the quasi-geostrophic approximation, which assumes hydro-
static balance and allows only small departures from the geostrophic balance (Holton,
2004). The model features baroclinic conversion and barotropic stabilisation processes,
and simulates a turbulent jet-like zonal flow when suitable values are chosen for the
parameters of the system.

3.1.1 Model description

The model domain is a rectangular channel with latitudinal and longitudinal coordi-
nates (x,y) ∈ [0 Lx]× [0 Ly]. y = 0 represents the Equator, and y = Ly corresponds
to the North Pole. We assume periodicity along the x-direction, so that Lx corresponds
to the length of the parallel at 45◦ N. The vertical structure of the model atmosphere
consists of only two discrete layers: this is the minimal vertical resolution needed to
represent baroclinic processes (Holton, 2004). As shown in Fig. 3.1, five vertical pres-
sure levels define the two layers with boundaries at: p2.5 = 1000 hPa (surface level),
p2 = 750 hPa, p1.5 = 500 hPa, p1 = 250 hPa, p0.5 = 0 hPa (top level). The geostrophic
stream function ψ is defined at levels p1 and p2, ψ(p1) = ψ1 and ψ(p2) = ψ2, where the
quasi-geostrophic vorticity equation for the mid-latitude β-plane (3.1) - (3.2) is applied,
while the vertical velocity ω is specified at level p1.5, where the thermodynamic energy
equation (3.3) is valid.

The model is described by the following equations in terms of the barotropic stream
function ψM = (ψ1 +ψ2)/2, baroclinic stream function ψT = (ψ1 −ψ2)/2, and temper-
ature T :

∂

∂t
(∇2ψM) = −J(ψM,∇2ψM +βy) − J(ψT ,∇2ψT ) − r∇2(ψM −ψT ) + kh∇4ψM, (3.1)

∂

∂t
(∇2ψT ) = −J(ψT ,∇2ψM +βy) − J(ψM,∇2ψT ) + r∇2(ψM −ψT ) + kh∇4ψT +

f0

∆p
ω,

(3.2)
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3 Atmospheric models

Figure 3.1: Vertical pressure levels of the two-layer QG model. The continuous lines
represent model layers, and the dashed lines illustrate their boundaries. ψ
represents the geostrophic stream function, and ω is the vertical velocity.

∂

∂t
(T) = −J(ψM, T) + Spω+ rR(Te − T) + κ∇2T (3.3)

In the above, we expressed the advection in terms of the Jacobian operator defined as
J(A,B) = ∂A

∂x
∂B
∂y − ∂A

∂y
∂B
∂x . Sp represents the static stability parameter (Holton, 2004).

We define the stability parameter S =
RSp∆p

2f2
0

= L2
D, where LD is the Rossby radius of

deformation. The name and values of model parameters are listed in Table 3.2.

The vertical velocity is set to 0 at the top level, ω0 = 0, and is defined through Ekman
pumping at the surface level, ω2.5 = ∆p

f0
2r∇2ψ2, which parameterises the dissipative

processes occurring in the boundary layer. Subgrid-scale processes are represented by
momentum and heat diffusion terms. The system is driven by a Newtonian cooling
term that involves the restoration temperature field:

Te =
∆T

2
cos

πy

Ly
. (3.4)

∆T denotes the forced meridional temperature difference, and quantifies the external
forcing in the model. In the performed simulations, no time-dependence of ∆T is as-
sumed, with the aim of creating time series of a deterministic equivalent of a stationary
process. If ∆T is sufficiently large, the system reaches a steady state featuring a turbu-
lent atmospheric flow with sensitive dependence on initial conditions. The physical pro-
cesses responsible for limited predictability are in general the baroclinic and barotropic
instability. The Newtonian cooling provides the so-called baroclinic forcing to the sys-
tem, and activates a set of energy exchanges and transformations summarised by the
framework of the Lorenz energy cycle. See discussion in Holton (2004).
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3.1 The quasi-geostrophic two-layer atmospheric model

According to Fig. 3.2, the QG model captures the basic features of the large scale atmo-
spheric dynamics at mid-latitudes. In the upper layer, the model simulates a baroclinic
westerly jet, while, in the lower layer, we find westerly zonal winds in the middle of
the channel and easterly winds in boundary regions (Fig. 3.2a). We also notice that
by decreasing the forcing level, the strength of the jet decreases considerably (as an ef-
fect of the lower meridional temperature difference), and the system becomes weakly
chaotic, which can be seen by comparing the snapshots of the stream functions for the
two forcing levels (Fig. 3.2b and Fig. 3.2c).
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Figure 3.2: Zonal mean wind and stream function in the QG model. a) Zonal mean
wind in the upper (continuous lines) and lower (dashed lines) layers for
two different levels of forcing: ∆T = 133 K (red lines) and ∆T = 40 K (blue
lines). Stream function snapshots in the upper (upper figures) and lower
(lower figures) layers for b) ∆T = 133 K and c) ∆T = 40 K. The quantities are
displayed in non-dimensional form (see Table 3.2 for scaling factors).
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We obtain for our vertical discretization T = 2f0
R ψT using hydrostatic approximation

(Holton, 2004). Thus, the three model equations (3.1) - (3.3) can be reduced to two
equations with two variables ψM and ψT . The model equations can be transformed
(Schubert and Lucarini, 2015) into a non-dimensional form using the scaling factors in
Table 3.2. In the following, we use non-dimensional quantities, if not indicated oth-
erwise. As mentioned, the channel is periodic in the x-direction. At the meridional
boundaries, we set the meridional velocity and the zonally-integrated zonal velocity to
0, v = ∂ψ

∂x = 0 and
∫2π/a

0 dx∂ψ∂y
∣∣∣
y=0,π

= 0. For these boundary conditions, the solution

of the model equations is

ψ(x,y, t) =
Nx,Ny∑
k,l=1

(
ψr(k, l, t)cos(akx) +ψi(k, l, t)sin(akx)

)
sin(ly)+

Ny∑
l=1

ψr(0, l, t)cos(ly),

(3.5)
with ψ denoting the non-dimensional stream function, index r represents the real and i
the imaginary coefficients. We apply a spectral cut-off at Nx = Ny = 16 in both x and
y directions. Hence, the total dimension of the model phase space is 2Ny(2Nx + 1) =

1056.

3.1.2 Methods

We substitute Eq. (3.5) into the evolution equations, perform a Galerkin projection, and
eventually integrate numerically the non-dimensional model equations in spectral space
using the fourth-order Runge-Kutta scheme. We perform simulations with two different
forced meridional temperature differences, ∆T = 133 K and ∆T = 40 K. In the case of
strong forcing (∆T = 133 K), the system has a Kaplan-Yorke dimension DKY = 585.95
with 222 positive Lyapunov exponents, so that du = 222, dn = 2, and ds = 361.95. The
computation of these dimensions is explained above in Sec. 2.1. Note that the presence
of a second neutral direction is related to the existence of a rotational symmetry in the
system and to the fact that we consider a spectral model. This feature is of little relevance
for the analysis below. We produce stationary time series of 96,576 years with a time step
of 0.7 hours. In the case of weak forcing (∆T = 40 K), the DKY = 39.31 with 17 positive
Lyapunov exponents, so that du = 17, dn = 2, and ds = 20.31. We produce stationary
time series of 485,760 years with a time step of 2.8 hours. The spectral coefficients ψr/i

of the stream functions are recorded every 5.5 hours with either forcings. The Lyapunov
exponents are obtained by the same simulation code as the one used by Schubert and
Lucarini (2015), based on the method of Benettin et al. (1980).

The spectral output of the model is transformed into the grid point space using Fast
Fourier Transform resulting nx × ny grid points with nx = ny = 36 in the x and y

directions. We refer to the grid points by indices (ix, iy) where ix = iy = 0, ..., 35. We
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3.1 The quasi-geostrophic two-layer atmospheric model

Table 3.1: List of symbols and parameter values for the QG model, Eq. (3.1) – (3.5).
Variable Symbol Unit Scaling factor

Stream function ψ m2s−1 L2f0
Temperature T K 2f20L

2/R

Velocity v ms−1 Lf0
Energy e Jkg−1 L2f20

Parameter Symbol Dimensional Value Non-dimensional value Scaling Factor

Forced meridional temperature difference ∆T 133 & 40 K 0.188 & 0.0564 2f20L
2/R

Ekman friction r 2.2016× 10−6 s−1 0.022 f0
Eddy-momentum diffusivity kh 105 m2s−1 9.8696× 10−5 L2f0
Eddy-heat diffusivity κ 105 m2s−1 9.8696× 10−5 L2f0
Thermal damping rR 1.157× 10−6 s−1 0.011 f0
Stability parameter S 3.33× 1011 & 2.52× 1011 m2 0.0329 & 0.0247 L2

Coriolis parameter f0 10−4 s−1 1 f0
Beta (df/dt) β 1.599× 10−11 m−1s−1 0.509 f0/L
Aspect ratio a 0.6896 0.6896 -
Meridional length Ly 107 m π L

Zonal length Lx 2.9× 107 m 2π/a L

Specific gas constant R 287.06 Jkg−1K−1 2 R/2
Vertical pressure difference ∆p 500 hPa 1 ∆p

Time scale t 104 s 1 1/f0
Length scale L 107/π m 1 107/π

analyse extremes of total energy observables defined in non-dimensional form below.
For our extreme value analysis we consider only the “mid-latitudes” of the QG model,
which we define as the region between the latitudes iy = 9 and iy = 26, i.e. the
latitudinally central 0.5 fraction of the whole domain. The total energy is the sum of the
kinetic energy of the lower and upper layers and of the available potential energy:

e(ix, iy, it) = ek1(ix, iy, it) + ek2(ix, iy, it) + ep(ix, iy, it), (3.6)

where it represents the discrete time coordinate. The components of the right side of
(3.6) are defined for each grid point as:

ek1(ix, iy, it) =
1
2
(
u1(ix, iy, it)2 + v1(ix, iy, it)2) , (3.7)

ek2(ix, iy, it) =
1
2
(
u2(ix, iy, it)2 + v2(ix, iy, it)2) , (3.8)

ep(ix, iy, it) = 2λ2ψT (ix, iy, it)2, (3.9)

with the zonal component of the horizontal velocity u1 = −∂ψ1
∂y , u2 = −∂ψ2

∂y , the merid-
ional component of the horizontal velocity v1 = ∂ψ1

∂x , v2 = ∂ψ2
∂x , and λ2 = 1/(2S).

We obtain the zonally-averaged energy by taking the zonal average of the local energy
(Eq. (3.6)):

ez(iy, it) =
1
nx

nx−1∑
ix=0

e(ix, iy, it), (3.10)

and the average mid-latitude energy by averaging the local energy over the area corre-
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sponding to the mid-latitudes:

eml(it) =
2

nxny

nx−1∑
ix=0

26∑
iy=9

e(ix, iy, it). (3.11)

The energy observables are analysed in their non-dimensional form. The physical values
expressed in units of J/Kg (J/m2) can be obtained by multiplying the non-dimensional
values by the factor L2f2

0 = 1.013× 105 (L2f2
0∆p/g = 5.164× 109).

Although we record the model output, as stated above, every 5.5 hours, we save only the
maximum values over one month in the case of strong forcing and over three months
in the case of weak forcing. We estimate the GEV and GPD parameters based on block
maxima and threshold exceedances obtained from the monthly, respectively 3-monthly,
maxima series. Such an operation has no effect on the subsequent GEV analysis. Instead,
it might modestly impact the GPD analysis, as some above threshold events might be
lost because they could be masked by a larger event occurring within the same 1-month
or 3-months period. Nonetheless, since we consider very high thresholds and an ex-
tremely low fraction of events, the risk of losing information is negligible. The GEV and
GPD parameters are inferred by maximum likelihood estimation (MLE), as described
by Coles (2001). We estimate the GEV and GPD parameters, as well as the confidence
intervals, using the MATLAB functions gevfit and gpfit (MATLAB, 2015). The com-
puted confidence intervals contain the true value of the parameters with a probability of
95%. The auto-correlation coefficients and histograms are obtained based on 1000 years
of the “raw” simulated time series.

3.2 The simplified global circulation model PUMA

The Portable University Model of the Atmosphere (PUMA) is a simplified spectral gen-
eral circulation model (GCM) developed at the University of Hamburg. PUMA has been
used for the investigation of several atmospheric phenomena, like storm track dynam-
ics or low frequency variability (Lunkeit et al., 1998; Fraedrich et al., 2005b), and has
been even adapted to extra-terrestrial atmospheres (Grieger et al., 2004). A recent study
investigates the properties of the Lyapunov spectrum in PUMA, including large devia-
tions of finite time Lyapunov Exponents (De Cruz et al., 2018). PUMA is the dry core
of the Planet Simulator (PlaSim), which is a climate model of intermediate complexity
(Fraedrich et al., 2005a; Lucarini et al., 2010).

In the following, we summarise the model equations and the applied parametrisations.
For a more detailed description of the model, please consult Fraedrich et al. (2009). The
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3.2 The simplified global circulation model PUMA

physics of the model is fundamentally described by the primitive equations for the at-
mosphere, which amount to a modification of the Navier-Stokes equation in a rotating
frame of reference where the vertical acceleration of the fluid is constrained to be small
compared to gravity (Klein, 2010). These equations provide a good representation of the
dynamics of the atmosphere for horizontal spatial scales larger than few tens of kilome-
tres (Holton, 2004). Compared to a full atmospheric GCM, moist processes are omitted,
and simple parametrisations are used to account for the effect of friction (Rayleigh fric-
tion), diabatic heating (Newtonian cooling), and diffusion. The Newtonian cooling and
Rayleigh friction terms are such as that proposed by Held and Suarez (1994) for the
comparison of dynamical cores of GCMs. The model equations allow for the conserva-
tion of momentum, mass, and energy. The prognostic equations for absolute vorticity
(ζ+ f), where ζ = ∂v

∂x − ∂u
∂y represents the relative vorticity (u and v are the zonal and

meridional wind components) and f = 2Ω sinφ the planetary vorticity (Ω: angular ve-
locity of the Earth, φ: latitude), divergence D = ∂u

∂x + ∂v
∂y , temperature T , and surface

pressure ps can be written by using spherical coordinates and the vertical σ-system as
follows:

∂(ζ+ f)

∂t
=

1
1 − µ2

∂Fv

∂λ
−
∂Fu

∂µ
−
ζ

τF
−K∇8ζ (3.12)

∂D

∂t
=

1
1 − µ2

∂Fu

∂λ
+
∂Fv

∂µ
−∇2

(
U2 + V2

2(1 − µ2)
+Φ+ T0 lnps

)
−
D

τF
−K∇8D (3.13)

∂T ′

∂t
= −

1
1 − µ2

∂(UT ′)

∂λ
−
∂(VT ′)

∂µ
+DT ′ − σ̇

∂T

∂σ
+ κ

T

p
ω+

TR − T

τR
−K∇8T (3.14)

∂ lnps
∂t

= −

∫ 1

0
D+ ~V · ∇ lnpsdσ (3.15)

with
Fu = V(ζ+ f) − σ̇

∂U

∂σ
− T ′

∂ lnps
∂λ

Fv = −U(ζ+ f) − σ̇
∂V

∂σ
− T ′(1 − µ2)

∂ lnps
∂µ

.

The variables and parameters used in Eq. (3.12) – (3.15) are listed in Table 3.2.

The horizontal representation of the prognostic model variables is given by a series of
spherical harmonics, which are integrated in time by a semi-implicit time differencing
scheme (Hoskins and Simons, 1975). The linear contributions in the prognostic equa-
tions are computed in spectral space, the non-linear contributions in grid point space.
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Table 3.2: List of variables and parameters in PUMA, eq. (3.12) – (3.15).
symbol value description

ζ = ∂v
∂x − ∂u

∂y relative vorticity
f = 2Ω sinφ Coriolis parameter
Ω 7.292 · 105 s−1 angular velocity of the Earth
D = ∂u

∂x + ∂v
∂y horizontal divergence

T temperature
T0 250 K reference temperature
T ′ = T − T0 temperature deviation from T0
p pressure
ps surface pressure
σ = p/ps vertical coordinate
U = u cosφ zonal velocity in spherical coordinates
V = v cosφ meridional velocity in spherical coordinates
~V horizontal velocity with components U and V
t time
φ latitude
µ sinφ
λ longitude
Φ geopotential
ω = dp/dt vertical velocity in p-system
σ̇ = dσ/dt vertical velocity in σ-system
τF time scale for Rayleigh friction
K hyperdiffusion coefficient
τR time scale for Newtonian cooling
TR restoration temperature
κ 0.286 adiabatic coefficient

The horizontal resolution is defined by triangular truncation. The vertical discretization
is based on finite differences on equally spaced σ-levels. The vertical velocity is set to 0
at the upper (σ = 0) and lower (σ = 1) boundaries.

A Rayleigh damping of horizontal velocities with time scale τF accounts for the effect
of boundary layer friction in the lowest levels. τF = 0.6 days at σ = 0.95 (the vertical
level nearest to the surface), and τF = 1.65 days at σ = 0.85. No friction is considered
for higher levels , i.e τF = ∞. The effect of non resolved processes on the energy
and enstrophy cascade is represented by hyperdiffusion (∼ ∇2h). The hyperdiffusion
coefficient K is such that provides a maximal damping of the shortest waves and has
no effect on the mean state (wave number 0). The integer exponent h = 4 leads to an
additional damping of short waves. The diffusion time scale for the shortest wave is
1/4 days. The diabatic heating (cooling) is parameterized by a Newtonian cooling term.
This forces the relaxation of the model temperature to a so-called radiative-convective
equilibrium state specified by the restoration temperature TR, which depends only on
vertical level and latitude.

TR(φ,σ) = TR(σ) + f(σ)TR(φ) (3.16)

TR(φ) describes the meridional form of the restoration temperature, whereas f(σ) ac-
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3.2 The simplified global circulation model PUMA

counts for the vertical changes in this meridional profile:

TR(φ) = (∆TR)NS
sinφ

2
− (∆TR)EP(sin2φ−

1
3
), (3.17)

where (∆TR)NS is the temperature difference between the North and South poles, and
(∆TR)EP represents the equator-to-pole temperature difference. The meridional temper-
ature gradient decreases with height in the troposphere, f(σ) = sin(0.5 π(σ− σtp)/(1 −

σtp)) for σ > σtp, and vanishes at the tropopause, f(σ) = 0 for σ < σtp, where σtp
is the height of the tropopause. TR(σ) describes the vertical changes in the restoration
temperature, representing a radiative-convective profile, i.e. accounts for the vertical
effects of radiation and convection, in a general and simplified way, by connecting the
vertical temperature profile to the moist adiabatic lapse rate:

TR(σ) = (TR)s − Lztp +

√[
L

2
(
ztp − z(σ)

)]2

+ S2 +
L

2
(
ztp − z(σ)

)
, (3.18)

with: restoration temperature at the surface, (TR)s = 288 K; moist adiabatic lapse rate,
L = 6.5 K/km; global constant height of the tropopause, ztp = 12 km; geometric height
z. S allows for a smoothing of the temperature profile at the tropopause. In case of 10
vertical levels l, the time scale of the Newtonian cooling τR is 2.5 days in the lowest level
at l = 10, and 7.5 days at l = 9. τR continues to increase monotonically with height until
the upper 3 levels, where it is set to 30 days.

We run the model in a simple symmetric setting (usually referred to as aqua-planet),
i.e without orography. We remove the annual and diurnal cycle, and use a symmetric
forcing with respect to the Equator, (∆TR)NS = 0. We set the equator-to-pole tempera-
ture difference (∆T)EP to 90 K, thus creating a baroclinically more unstable atmospheric
state than in the standard setting with (∆T)EP = 70 K. We run the model with constant
forcing in time using a time step of 30 minutes. The horizontal resolution is T42 (trian-
gular spectral truncation with 42 zonal waves), and the vertical resolution consists of 10
levels. The length of the simulations is 104 years, not counting the first 5 years, which
are discarded to reach steady state. We consider for our analysis the air temperature in
the lowest vertical level at 960 hPa, with daily output. The spectral temperature variable
is transformed during the post-processing into grid point space consisting of a 65× 128
equidistant latitude-longitude grid.

Figure 3.3a shows the long-term average of the zonal wind at 960 hPa (near-surface) and
at 450 hPa. Near to the surface, we observe a westerly zonal flow at mid-latitudes as well
as easterly winds in the subtropics (suggesting the existence of the Hadley cell) and near
to the Poles. At 450 hPa, a westerly jet stream is dominant. Figure 3.3b and Fig. 3.3c
present snapshots of the zonal and meridional wind components. One can identify
the effect of eddies at mid-latitudes, which cause the main zonal and meridional wind
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3 Atmospheric models

activity. These are responsible also for the meridional heat transport directed from
the Equator to the Poles, acting against the mean meridional temperature gradient.
Figure 3.3 suggests that the model simulates an atmospheric flow similar to the real
atmosphere at large scales. Furthermore, the snapshots confirm the high level of chaos
in the system.
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Figure 3.3: Zonal mean wind and wind components in the PUMA model (horizontal
resolution: T42, vertical resolution: 10 levels, (∆T)EP = 90 K). a) Zonal mean
wind at 960 hPa (black) and at 450 hPa (red). Snapshots of b) zonal and c)
meridional wind components at 960 hPa.

Using the same model settings as above, but with a lower equator-to-pole temperature
difference, De Cruz et al. (2018) estimate a Kaplan-York dimension DKY of 187 and a
number of positive Lyapunov exponents of 68 for (∆T)EP = 60 K. In this study, (∆T)EP =

90 K, hence the model atmosphere is baroclinically substantially more unstable than in
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3.2 The simplified global circulation model PUMA

the mentioned study. Thus, to provide a rough estimation, DKY > 200 and the number
of positive Lyapunov exponents > 80 in our system. Consequently, we expect for this
set-up a very high dimensional chaos, which fulfils the chaotic hypothesis, as shown
also by the fast decay of auto-correlations in Fig. 5.1c,d below. As a result, we expect
that the outputs of our model can be analysed using EVT and LDT, as discussed above.
Nonetheless, it is a priori unclear whether the asymptotic result can be clearly detected
at finite size given the length of our numerical integrations. Note that in De Cruz et al.
(2018) it was shown that the finite time Lyapunov exponents obey a large deviation
law1.

1This is not always fulfilled in models which incorporate multiscale phenomena, as in the case of coupling
atmospheric and oceanic dynamics. In the same study, the authors could not detect large deviation laws
in case of a quasi-geostrophic coupled ocean-atmosphere model. Vannitsem and Lucarini (2016) anal-
ysed the large deviations of finite time Lyapunov exponents as well in a low-order version of the above
mentioned coupled model, and found a LDP only in case of nonzero Lyapunov exponents, whereas the
convergence was considerably slower or even absent in case of near-zero Lyapunov exponents.
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4 Extreme events of energy observables in

the two-layer quasi-geostrophic

atmospheric model

As mentioned before, the simulations with the QG model are performed using two
different configurations, where the value of the parameter ∆T describing the baroclinic
forcing, is set to 133 K and 40 K respectively. As we see below, in the case of strong
forcing we find good agreement between the results of the statistical inference based on
the GEV or GPD distribution and the theory presented in Sec. 2.1, for local observables at
least, even if the speed of convergence of the estimated shape parameters (not predicted
by the theory), to the value that is predicted by the theory is rather diverse among the
considered observables. In the case of weak forcing and the resulting weakly turbulent
behaviour, the results of the statistical inference analysis are in worse agreement with
the theory, and we find that for the different observables the shape parameter estimates
have various non-monotonic dependence on the block size. We will investigate possible
reasons for such a behaviour.

4.1 Strong forcing

Before presenting the results related to the statistics of extreme events, we outline some
general statistical properties of the analysed observables. As emphasised in Sec. 2.1, cor-
relations have an effect on the convergence of the distribution of block maxima (thresh-
old exceedances) to the GEV (GPD) distribution.

By taking the ergodic hypothesis, we estimate the auto-correlation coefficients for the
local energy, as explained in Sec. 2.2, by taking the ratio between the auto-covariance
C(l) at lag l and the variance C(0), ρe = C(l)/C(0), and obtain an estimate for each
grid point ρe = ρe(ix, iy, l). We calculate the integrated auto-correlation time scale
(Franzke et al., 2005) τe = τe(ix, iy) according to τe =

∑nl
l=0 |ρe|

1. We set nl = 604

1If the decay of the auto-correlation is exponential, the integrated auto-correlation time scale is equal to
the e-folding time.
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4.1 Strong forcing

(corresponding to about 140 days) as an upper limit for the integration in order to
avoid the noisy tail of the auto-correlation coefficient. We proceed the same way in
the case of the zonally-averaged and average mid-latitude energy to obtain τez(iy) =∑nl
l=0 |ρez(iy, l)| and τeml =

∑nl
l=0 |ρeml(l)|. The integrated auto-correlation time scales,

expressed in days, are shown in Fig. 4.1a. As expected, the weakest auto-correlations are
recorded for the local observables, yielding about 1-2 days. Because of the information
propagation along parallels due to the prevailing zonal winds, the zonal average time
series are impacted by a low-pass filtering as result of averaging along a latitudinal
band, thus the correlations become stronger. For these zonally-averaged observables,
as opposed to the local ones, the integrated auto-correlation changes substantially with
latitude. We observe a minimum in the middle of the channel (≈ 3.5 days) and an
increase outwards to the boundaries (≈ 15 days). Through averaging over the area
of mid-latitudes, the zonally-averaged time series with different properties are merged
together. The resulting time series has an integrated auto-correlation time scale of about
3.6 days. Note that if in a time series of length N with reasonably fast (e.g. similar to
exponential) decay of correlations the integrated auto-correlation time scale is τ, then
one can deduce that the time series has approximately N×∆t/τ effectively independent
entries, where ∆t is the time interval. This can have important effects in determining
when the asymptotic behaviour of the EVT statistics is valid.

Figures 4.1b,c,d illustrate the histograms and the approximated probability density func-
tions (pdf’s) of our observables. Although, the dynamical properties of the flow as a
function of latitudes are not exactly symmetric with respect to the meridional middle
of the channel due to the β-effect, our estimations of statistical quantities and density
functions exhibit approximate meridional symmetries. Therefore, only half of the chan-
nel’s meridional extension (at every second latitude) is shown in the case of local and
zonally-averaged observables. The strongest skewness and the longest right tails are
observed in the case of pdf’s of local observables. After spatial averaging, the pdf’s be-
come more symmetric and almost similar to a Gaussian distribution (which would look
like a parabola on a semi-logarithmic scale), according to the central limit theorem.

In what follows, we present the results of the extreme value analysis starting with the
local observables. We first discuss the convergence of the shape parameter for GEV
and GPD, then the convergence of the GPD modified scale parameter (to be introduced
below), and, at the end, the convergence of return levels. Taking advantage of the fact
that statistics are uniform in the zonal direction, we concatenate the monthly maxima
series for every second longitude one after the other in the x-direction, thus increasing
the data length to about 1.7×106 (from about 9.6×104) years. Therefore, we can estimate
the GEV and GPD shape parameters for larger block sizes and higher thresholds than
in the case of zonally-averaged or average mid-latitude observables. Although the time
series at every second longitude are correlated with each other, the correlation almost

46



4 Extreme events of energy observables in the QG model

9 11 13 15 17 19 21 23 25
0

5

10

15

20

In
t. 

au
to

-c
or

r.
 [d

ay
s]

a) b)

0 0.1 0.2 0.3 0.4
e

0

5

10

D
en

si
ty

lat 9 lat 11 lat 13 lat 15 lat 17

c)

0.02 0.04 0.06 0.08 0.1 0.12
e

z

0

10

20

30

D
en

si
ty

d)

0.04 0.05 0.06 0.07 0.08
e

ml

10 0

10 1

D
en

si
ty

 +
 1

Figure 4.1: Statistical properties of the total energy for ∆T = 133 K. a) Integrated auto-
correlation time scales: zonal average of τe (dashed line with star markers),
τez (dotted line with circle markers), τeml (continuous line); histograms of
the b) local, c) zonally-averaged, and d) average mid-latitude observables.
In the case of b) – d), the continuous lines show the approximation of the
pdf’s by kernel smoothing (ksdensity function in MATLAB), the colours mark
different latitudes according to the legend.

vanishes at the block size of 8 years, being below 0.15 at every latitude. In other words,
correlations are very weak at extreme levels, which is according to Coles (2001) the only
important condition for the GEV limit laws to apply in the case of a stationary process.
Block sizes smaller than 8 years are not relevant for our analysis, since (as presented
below) much larger ones are needed to approach the theoretical shape parameter. In the
case of the POT approach, we use the same argument of choosing very high thresholds,
above which the correlations are extremely weak.

The theory discussed in Sec. 2.1 indicates that the true (asymptotic) GEV shape parame-
ter is given by ξδ, as expressed by Eq. (2.11), which corresponds to approximately -0.002,
and is indicated by the straight line in Fig. 4.2. Note that the range of the theoretical
values derived taking into consideration possible geometrical degeneracies, according to
what is described in Sec. 2.1, is too small to be visible in this case. We define the precision
P(m) of estimation by considering half of the width of the 95 % maximum likelihood
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4.1 Strong forcing

confidence interval. Additionally to the precision, we define the trueness of a single es-
timate by the distance between ξδ and ξ(m): T(m) = |ξδ − ξ(m)|. Note that the latter
is different from the usual definition in that the reference from which we measure the
distance is ξδ, not the true value of the distribution from which the BM data is drawn. In
fact, strictly, the BM data is not drawn from a GEV distribution that we are fitting, and
hence we cannot even talk about the true value of an underlying GEV distribution. We
emphasise that our interest is the convergence to the asymptotic value, which is why we
take a reference value in our definition other than customary. Accordingly, we shall refer
to the ‘bias’ of the estimator, again different from customary, as the expected trueness.
We remark that, since our estimates are obtained based on one realisation instead of
several realisations yielding a distribution of estimates, our trueness T approximates the
bias of the estimates as long as T � P. We emphasise that we are able to calculate T here
because we know the true ξδ; this is not the case in practice when facing just a measured
time series. Obviously, we aim at obtaining a joint optimisation by having a bias and a
precision as small as possible. Clearly, optimality requires a compromise between these
two requirements. When we apply the BM method and increase the block size m, the
number of blocks and of BM decreases, thus the estimation of ξ(m) becomes more and
more uncertain, and P increases monotonically. At the same time, for increasing m we
expect a (not necessarily monotonic) convergence of our estimated shape parameter to
the true value, so that the actual bias should (on the long run) decrease with m. Clearly,
instead, our approximation T decreases only until a certain block size, above which it
becomes more uncertain with increasing values of m, because less BM are available. We
choose as optimal block size m = m∗ the smallest block size for which the estimate of
the bias is lower than the estimate of the precision m∗ = min(m; T(m) < P(m)). On
the scale of variation ranges of P(m) and T(m) we have T(m∗) ≈ P(m∗). With this
we obtain a single number that can quantify the accuracy of estimation. This measure
of accuracy provides here a basis for comparing different observables with regard to
the speed of convergence, or a basis for assessing the degree of non-uniformity of esti-
mates of various observables of interest (in terms of the range of accuracy values), as a
finite-data-size deviation form the uniformity predicted by theory. We have verified that
the optimal choice for m∗ is virtually unchanged when we use an alternative definition
of the accuracy such as T 2 + P2, borrowing an idea concerning the optimality of MLE
estimators (not shown).

First we assess the uniformity for the local observables. Figure 4.2a shows the GEV
shape parameter estimates against exponentially increasing block sizes of m = 2i years
(i = −2,−1, ..., 13), for different latitudes. The estimated GEV shape parameters ξ(m)

seem to converge monotonically for every latitude to ξδ. The monotonic convergence
is pointed out also in Fig. 4.2b in terms of T(m). In this diagram we display P(m) too,
by which we can determine the optimal m∗ and the accuracies of estimation. These
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accuracies, depending on the latitude, have a range of 5 × 10−3 − 2 × 10−2. At the
same time, the value of m∗ ranges from several tens of years to a few hundreds of
years depending on the latitude we are considering. This is unsurprising, because the
speed of convergence to the asymptotic level is not universal. As a consequence, when
finite block sizes are considered, extremes of different observables can feature rather
distinct properties. The slow convergence suggests that customary choices like yearly
maxima are not always good enough for an accurate modelling of extremes. Figure 4.2c,
giving a different view of the same data seen in Fig. 4.2a, illustrates the estimated GEV
shape parameter as a function of latitudes for various block sizes. For small block sizes,
we observe a slight latitudinal dependence of the shape parameter. This latitudinal
structure flattens as one increases the block size, and the estimated shape parameters
get closer to the theoretical value. According to Fig. 4.2c, universality emerges as we
approach the asymptotic level.

To assess the goodness of fit, we perform a one-sample Kolmogorov-Smirnov-test (KS-
test) (Massey, 1951) at 5 % significance level using the MATLAB function kstest (MAT-
LAB, 2015). We remark that the KS-test is performed in case of each block size based
on the whole BM data, meaning that this amount of data decreases as we increase the
block size. The shape parameter values for which the KS-test p-value p is above 0.05
(i.e. the hypothesis that the distribution of BM is a GEV distribution cannot be rejected)
are marked by circle markers in Fig. 4.2a. We define mKS as the smallest block size for
which p > 0.05, mKS = min(m;p > 0.05), and ξKS = ξ(mKS). Figure 4.2 points out that
the KS-test suggests a good fit already at smaller block sizes than the optimal block size,
mKS < m

∗, and for lower shape parameter values than the best estimate, ξKS < ξ(m∗).
Thus, a very important conclusion is that the p-value of the KS-test is not an appropri-
ate measure for the convergence to the limiting distribution. More precisely, it indicates
that we have indeed agreement with a member of the GEV family of distributions, but
we cannot say what is the error from the asymptotic value of the parameters. We em-
phasise that mKS, just like m∗, depends on the time series length, and it would be even
smaller if shorter time series were considered. This implies that in the case of appli-
cations with less data, the results of the KS-test are even less reliable. The misleading
property of p-values was also shown by Bódai (2017), who studied the convergence to
the GEV distribution of extremes of site variables in the Lorenz 96 model, and found
p-values above the significance level in cases where the theoretical prediction did not
even apply, and the shape parameter did not converge. The goodness-of-fit test was in
the mentioned study a Pearson’s chi-squared test. Misleading p-values based on the
KS-test were pointed out also by Faranda et al. (2011) in the case of the BM approach
in simple systems. A slow convergence of the estimated GEV shape parameters and a
poor quality of diagnostic tools (return level and quantile plots) in case of small block
sizes were also found by Vannitsem (2007) in case of local temperature extremes in a
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three-layer QG model with orography.

Figure 4.2d illustrates the GPD shape parameter estimates as a function of decreasing
exceedance ratio (the fraction of above-threshold data) r, which is equivalent with an in-
creasing threshold. To ensure direct comparability between the BM and POT approaches
of EVT, sample values of the threshold are chosen corresponding to the sample values
of the block size, in such a way that r = 1

m×my
, where my is the data amount in a year.

Thus the number of threshold exceedances is equal to the number of block maxima.
By comparing the GPD shape parameter (Fig. 4.2d,e,f) with the GEV shape parameter
(Fig. 4.2a,b,c) we generally observe the same characteristics. More precisely, the changes
of the GPD shape parameter as a function of exponentially decreasing exceedance ratio
are very similar to the variation of the GEV shape parameter according to an exponen-
tially increasing block size. Both GEV and GPD shape parameters seem to converge to
ξδ. This is also consistent with theoretical results according to which the two distribu-
tions are asymptotically equivalent (Coles, 2001; Lucarini et al., 2014b). However, we
expect that in case of finite block sizes (i.e. in case of every practical application) differ-
ences might emerge in the estimates of the GEV and GPD shape parameters. Although,
in the case of consistent estimations one would expect that at large block sizes, corre-
sponding to low exceedance ratios, the difference between them should be small, as it is
the case for our estimators. Besides the mentioned similarities, we observe some differ-
ences between the estimates of the GEV and GPD shape parameters. These differences
concern, for example, their latitudinal dependence (less pronounced in case of the GPD
shape parameter) or the width of the confidence intervals (larger in case of the GPD
shape parameter, indicating larger estimation uncertainty). The most relevant difference
is, however, that the GPD shape parameter seems to converge faster to ξδ. This is un-
surprising as in many applications it is usually suggested to use the POT over the BM
method as the former is less data-hungry and provides (usually) a faster convergence
(Lucarini et al., 2016).

We perform another test to check whether the GPD distribution is a good approximation
for the distribution of threshold exceedances based on our data, and consider the GPD
modified scale parameter. The GPD scale parameter depends on the chosen threshold
according to σu = σu0 +ξ(u−u0) (Coles, 2001), where ξ = ξδ represents the asymptotic
shape parameter, u0 is the lowest threshold at which the GPD distribution is a reason-
able model for exceedances, and u represents any other threshold u > u0. The scale
parameter can be reparameterized yielding the modified scale σ̂ = σu0 − ξu0 = σu− ξu,
which should converge to a nonzero value. Figure 4.3 illustrates the modified scale
parameter estimates (calculated based on the finite-size GPD parameter estimates, i.e.,
taking threshold dependent GPD shape parameter estimates instead of ξδ) as a func-
tion of the exceedance ratio r. We observe estimates of σ̂ relatively stable to further
decreases of r (for r < r∗, r∗ = max(r; T(r) < P(r))), which supports the conclusions
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Figure 4.2: GEV and GPD shape parameters as well as bias and precision estimates in
case of the local observables, for ∆T = 133 K. a) GEV and d) GPD shape
parameter estimates as functions of the block size and exceedance ratio. The
circle markers point out shape parameter values, for which the p-value of the
KS-test is above 0.05. Lower y-axis: zonal mean of the maximum likelihood
95 % confidence interval widths. b) and e): Estimates for the bias (dot mark-
ers) and precision (star markers) of the shape parameter. c) GEV and f) GPD
shape parameter estimates as functions of the latitude. The grey, horizontal
line illustrates the theoretical shape parameter of -0.002. The range of the-
oretical values resulting from taking into consideration possible geometrical
degeneracies is invisible in this case. The error bars show the 95 % confi-
dence intervals of the MLE. Different colours represent different latitudes (a,
b, d, e) or different block sizes (c) or exceedance ratios (f).

drawn before that we are indeed close to asymptotic levels as required by EVT. Note
that in this case there is no universality in the value of the modified scale parameter, as
for stochastic variables one has that the upper right endpoint of the distribution is given
by Amax = −σu0/ξ+ u0 = −σ̂/ξ. Such an endpoint is clearly observable-specific.

Having practical applications in mind, the BM and POT methods aim at obtaining sta-
tistical estimates of either return levels or expected return periods, for even unobserved
extreme events. Figures 4.4a,b show GEV and GPD return level plots for the local ob-
servables based on a fixed block size, m = 128 years, and corresponding (as explained)
r = 5× 10−4 % respectively, at five different latitudes (every second latitude from the
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Figure 4.3: GPD modified scale parameter estimates in case of the local observables, for
∆T = 133 K. The error bars show the 95 % confidence intervals of the max-
imum likelihood estimation. Different colours represent different latitudes
according to Fig. 4.2.

southern meridional boundary to the channel centre). We compute the GEV return
levels according to Eq. (2.3), the GPD return levels based on Eq. (2.4), and estimate
the 95 % confidence intervals using the delta method described by Coles (2001). The
GEV and GPD return level plots look very similar, except two minor differences. One
emerges simply from the different equations for the GEV and GPD distributions, lead-
ing to slightly different definitions of return levels (as described in Sec. 2.1 and in more
details in Coles, 2001) and affects short return periods; and the other one comes from
the larger uncertainty in the estimation of the GPD parameters compared to the GEV
parameters, and results slightly wider confidence intervals in the case of GPD return
levels. The main message of Fig. 4.4a,b is, however, that the GEV and GPD return level
estimates using the chosen m and r fit the empirical data quite well, which is in agree-
ment with the results of the KS-test reported above. The 95 % confidence intervals of
the estimated return levels (continuous lines) contain the empirical return levels (dot
markers) or are very near to them, except a few very high extremes at some latitudes.
The return level is almost linear to the logarithm of the return period, showing the effect
of a shape parameter very close to 0 (see Eq. (2.3) and (2.4)).

If the GEV distribution is an adequate model for extreme events for a certain block size,
one expects return levels with a certain return period not to change much any more
with increasing block size. Figure 4.4c,d,e shows indeed that, above a certain block size,
the estimated return levels for three different return periods (103, 104, and 105 years)
are stable against further increase of m. But it also shows that the longer the return
period, the slower the convergence. While in the case of the 103-years return period
we obtain stable return level estimates already at mKS, in case of 105-years the return
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4 Extreme events of energy observables in the QG model

level estimates are still increasing for m > mKS. Here we experience the practical effect
of the issue mentioned above, namely, that the KS-test suggests a good fit even for
ξKS < ξ(m

∗). This implies that the estimation of return levels with long return periods
can be erroneous even if the KS-test does not reject the GEV distribution. We also
notice that the return levels are underestimated if the block size is too small, and this
underestimation is more severe in the case of return levels with longer return periods.
We come to the same conclusion by considering the convergence of the GPD return levels
(not shown), as suggested already by the similarity between Fig. 4.4a and Fig. 4.4b.

Figure 4.4: Return levels for ∆T = 133 K. a) Return levels vs. return periods based on
GEV parameters using a block size of 128 years and b) based on GPD param-
eters using an exceedance ratio of 5× 10−4 %. (Dotted lines: estimated return
levels; continuous lines: 95 % maximum likelihood confidence interval lim-
its of the return level estimates; dot markers: empirical return levels.) GEV
Return levels for c) 103-years, d) 104-years, and e) 105-years return periods as
functions of the block size. The error bars show the 95 % confidence intervals
of the MLE. The circle markers point out estimates for which the p-value of
the KS-test is above 0.05. The colours mark different latitudes according to
the legend.

After having discussed in detail the convergence in case of the local observables, we pro-
ceed with the results for the zonally-averaged observables. Figure 4.5 illustrates the GEV
and GPD shape parameters for the zonally-averaged observables (a, c, d, f) as well as
the estimated bias and precision of the inferred shape parameters (b, e). As mentioned
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above, in the case of zonally-averaged observables we have shorter time series (9.6× 104

instead of 1.7× 106 years). Because of this, results for the accuracies of estimates can-
not be ‘fairly’ compared to the accuracies found for local observables. Nevertheless, we
produce the same type of diagrams suitable to determine the accuracies and show it
in Fig. 4.5b,e. Clearly, the range of accuracy values depending on the latitude and the
maximal value of the accuracies (i.e of the bias at the optimal block size) are both consid-
erably larger than those for the local observables. What is fair to compare, however, is
the range of biases for a certain block size where the confidence of the estimates is high,
P � T , and the amount of data does not affect significantly the parameter estimate.
In this regard, the zonal observables display a much larger non-uniformity regarding
the shape parameter estimates. Otherwise, the estimates feature typically a monotonic
change towards the theoretical value (up to at least the optimal block size), what can be
seen as convergence.

Our observation that the estimated shape parameters depend strongly on the considered
latitude has to do with the effect of serial correlation on the convergence to the limiting
distribution. We obtain weak auto-correlations, fast convergence to ξδ, and low bias in
the middle of the channel, versus strong auto-correlations, slow convergence, and large
bias at the margins of the channel. As already mentioned in Sec. 2.1, the stronger the
serial correlation the less the number of uncorrelated data in a block, and the larger
block sizes are needed in order to approach asymptotic levels (see also Coles, 2001).
Thus the latitudinal structure of the GEV shape parameter estimates (Fig. 4.5c) is related
to the one of the integrated auto-correlation time scale (Fig. 4.1a, dotted line with circle
markers). By increasing the block size, this latitudinal structure flattens, the estimated
shape parameters seem to approach ξδ, and the confidence intervals contain ξδ in the
case of several latitudes, especially the central ones. Nonetheless, we note that, due
to the presence of (relatively) large statistical uncertainty on the shape parameter, we
cannot make more precise statements on the success of the analysis.

We present now the analysis of extremes of the average mid-latitude observable. Fig-
ure 4.6 shows the GEV and GPD shape parameter estimates for the average mid-latitude
observable and their estimated bias and precision as a function of the block size and ex-
ceedance ratio respectively. In the case of average mid-latitude energy, we have the
same amount of data as in the case of zonally-averaged energy. Similarly to the zonally-
averaged observables, the estimated GEV and GPD shape parameters seem to approach
the theoretical shape parameter, but, when more stringent definitions for selecting the
extremes are used, the bias is relatively large, being about 4× 10−2 at the optimal block
size in the case of the GEV and about 7× 10−2 at the optimal exceedance ratio in the
case of the GPD shape parameter. Again, also in this case, our analysis is limited by the
amount of available data.
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Figure 4.5: Same as Fig. 4.2, but for the zonally-averaged observables.

In short, our numerical results do allow for conclusions regarding the universality of
extremes, as predicted by the theory presented in Sec. 2.1. However, considering the
most various observables one would typically see a non-uniformity in the finite-size
shape parameter estimates simply because of their distinct convergence properties (not
predicted by the theory). The observables that we found in our study to have the fastest
converging shape parameter estimates are the the local observables at every latitude and
the zonally-averaged observables at central latitudes, where the auto-correlation has a
minimum. However, convergence is very slow, and is additionally slowed down by the
presence of serial correlations in the time series. Thus, the estimated shape parameters
are relatively far from the theoretical value in case of several latitudes of the zonally-
averaged observables (especially marginal latitude exhibiting strong auto-correlations)
and in case of the average mid-latitude observable. This slow convergence in combina-
tion with the finite size of the data makes the actual observation of the theoretical limit
extremely difficult.
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Figure 4.6: GEV and GPD shape parameter as well as bias and precision estimates in
case of the average mid-latitude observable, for ∆T = 133 K. a) GEV and c)
GPD shape parameters as functions of block size and exceedance ratio. The
circle markers point out shape parameter values for which the p-value of
the KS-test is above 0.05. The grey, horizontal line illustrates the theoretical
shape parameter of -0.002. The range of theoretical values resulting from
taking into consideration possible geometrical degeneracies is invisible in
this case. The error bars show the 95 % confidence intervals of the MLE.
b), d) Estimates of the bias (dot markers) and precision (star markers) of the
shape parameter.

4.2 Weak forcing

Before analysing the extreme events for weak forcing, we discuss some statistical (and
dynamical) properties of our observables, which influence directly the statistics of ex-
tremes. Figure 4.7a shows the integrated auto-correlation time scales for the three ob-
servables: local, zonally-averaged, and average mid-latitude energy. We compute the in-
tegrated auto-correlation time scale according to the method described in Sec. 4.1 for the
strong forcing. In the case of weak forcing, however, we set the time lag nl = 1728 (cor-
responding to about 400 days) as upper limit for the integration, according to the slow
decay of the auto-correlation (especially in the case of zonally-averaged and average
mid-latitude observables). The integrated auto-correlation time scales are substantially
higher than for strong forcing: around 10 days in the case of local, about 30 – 48 days
in the case of zonally-averaged observables, and approximately 45 days for the average
mid-latitude observable. Figure 4.7b shows the time series of the local observables at
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4 Extreme events of energy observables in the QG model

the central latitude iy = 17 (at two different longitudes ix = 4 and ix = 19) and suggests
two alternating states of our system: one with strong fluctuations and another one with
reduced fluctuations. Thus, it seems that our system exhibits a regime behaviour, which
definitely supports the presence of strong correlations.

In contrast to the case of strong forcing, the zonal averages of the local energy observ-
ables show remarkable deviations from a Gaussian behaviour, even more than the pdf’s
of the local energy observables (Fig. 4.7c,d,e). One has that the pdf’s of the zonally-
averaged observables typically have a marked skewness and very strong large kurtosis,
and often contain rather pronounced “shoulders”, where smoothness is basically lost.
The presence of large kurtosis indicates that there is significant positive spatial corre-
lation of the energy along a longitude. The presence of skewness indicates that there
is asymmetry between the occurrence of anomalies of either sign. Another particular
property of the spatial energy field for weak forcing is the strong anti-correlation (es-
pecially in the case of zonally-averaged observables) between time series at central and
marginal latitudes (not shown). Accordingly, the “shoulders” appear in different parts
of the pdf’s at different latitudes: on the left in the case of central latitudes and on
the right in the case of marginal latitudes. We conclude that the regime behaviour is
connected to non-trivial spatial structures, with the system living in a transitional range
where one can still distinguish long-lived unstable waves amidst chaos. We note that
such conditions are different from what is foreseen by the chaotic hypothesis, and, there-
fore, the statistics of extremes might not converge (according to our finite-sized data set)
to what is predicted by the theory developed for Axiom A systems.

For the analysis of extreme events, we use a similar procedure as in the case of strong
forcing (∆T = 133 K), and concatenate the three-monthly maxima series for every second
longitude one after the other in x-direction. Thus, we increase the length of available
data for the local observables to about 8.7× 106 (from about 4.8× 105) years. Although
the time series at every second longitude are correlated with each other, the correla-
tion almost vanishes at extreme levels, being below 0.1 for every latitude in the case of
the 8-years BM. We define the GPD exceedance ratios so that the number of threshold
exceedances corresponds to the number of block maxima, as described in Sec. 4.1.

In the case of weak forcing, the theoretical shape parameter is -0.03, shown by the grey
horizontal line in Fig. 4.8. The grey shading represents the range of theoretical values
resulting from taking into consideration possible geometrical degeneracies according to
the limits described in Sec. 2.1. We plot the GEV shape parameter against exponentially
increasing block sizes of m = 2i years, where i = 0, ..., 15 for the local observables and
i = 0, ..., 11 for the zonally-averaged and average mid-latitude observables. Focusing
first on the local observables, we notice a non-monotonic change of the shape parameter
according to increasing block sizes. For block sizes smaller than 30 years, the shape
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Figure 4.7: Statistical properties of the total energy for ∆T = 40 K. a) Integrated auto-
correlation time scales for the local (dotted lines with star markers), zonally-
averaged (dashed lines with circle markers), and average mid-latitude (con-
tinuous line) observables. b) Time series of the local energy at latitude
iy = 17 and at two different longitudes: ix = 4 (red line) and ix = 19
(black line). Histograms of the c) local, d) zonally-averaged, and e) average
mid-latitude observables. In the case of c) – e), the continuous lines show
the approximation of the pdf’s by kernel smoothing (ksdensity function in
MATLAB); the colours mark different latitudes according to the legend.

parameter even reaches non-physical, positive values for certain latitudes. This change
of sign of the estimated shape parameters is similar to what has been observed by Van-
nitsem (2007) in case of local temperature extremes in a more realistic QG model with
orography. The non-monotonic changes and the positive shape parameter estimates
have to do with the fact that, if the block size is not large enough, we select events
from both regimes (more and less fluctuating) thus “contaminating” the statistics of ex-
tremes; whereas if the block size is large enough, only extremes from the more unstable
regime are selected. Figure 4.8a also shows that the estimated shape parameter seems
to converge at almost every latitude to a value which is lower than the theoretical shape
parameter, yet near to the range of values obtained taking into consideration possible
geometrical degeneracies, see Sec. 2.1. As discussed above, this is in fact unsurprising
given the qualitative properties of the system in the low forcing regime.

In case of the zonally-averaged and average mid-latitude observables we cannot detect
any convergence. This is an expected result, considering the statistical and dynamical
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4 Extreme events of energy observables in the QG model

characteristics of our data and the fact that the length of the time series is in this case
even shorter than for the local observables. As an effect of the “shoulders” in the pdf’s,
we obtain very uncertain estimates even for large block sizes, and the KS-tests reject
the hypothesis of a GEV model in these cases. The shape parameter estimates have a
large latitudinal spread due to the varying form of pdf’s according to latitudes. Except
the differences between the GEV (Fig. 4.8a,b,c) and GPD (4.8d,e,f) shape parameters at
small block sizes and high exceedance ratios, both methods show us basically the same
picture. The misleading property of the KS-test p-values p is underlined by Fig. 4.8.
Even in case of the zonally-averaged and average mid-latitude observables, where we
cannot detect any convergence at all, we find p > 0.05 for a wide range of block sizes
and exceedance ratios (circle markers).
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Figure 4.8: Shape parameter for ∆T = 40 K. GEV shape parameter for a) local, b) zonally-
averaged, and c) average mid-latitude energy. GPD shape parameter for d)
local, e) zonally-averaged, and f) average mid-latitude energy. The circle
markers point out shape parameter values, for which the p-value of the KS-
test is above 0.05. Grey, horizontal line: theoretical shape parameter. The
grey shading represents a possible range of the theoretical shape parameter
according to the limits described in Sec. 2.1. The error bars show 95 %
confidence intervals of the maximum likelihood estimation. Different colours
represent different latitudes
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4.3 Summary and discussion

In this chapter we have studied the convergence of statistically estimated GEV and GPD
shape parameters to a a theoretical shape parameter. The latter is calculated based
on properties of the attractor (Holland et al., 2012; Lucarini et al., 2014b). We analyse
a quasi-geostrophic 2-layer atmospheric model. We study extremes of different types
of energy observables: local, zonally-averaged, and average mid-latitude energy. We
perform simulations with two different forcing levels: a strong forcing (∆T = 133 K),
producing a highly chaotic behaviour of the system, and a weak forcing (∆T = 40 K),
producing a less pronounced chaotic behaviour. In the case of strong (weak) forcing,
we produce time series of about 9.6× 104 (4.8× 105) years, representing a deterministic
equivalent to a stationary process. We estimate the GEV and GPD shape parameters
for exponentially increasing block sizes and exponentially decreasing exceedance ratios
(fractions of above-threshold events), i.e. increasing thresholds, by performing maxi-
mum likelihood estimation. For comparability, we choose the GPD thresholds so that
the number of threshold exceedances corresponds to the number of block maxima. We
take advantage of the fact that statistics are uniform in the zonal direction, and use the
data from every second longitude for the analysis of extreme events, thus increasing the
length of available data for the local observables to about 1.7× 106 (8.7× 106) years in
the case of strong (weak) forcing.

We start the discussion of our results with the strong forcing regime. In this case, we
observe a roughly monotonic increase of the estimated GEV (GPD) shape parameters
towards the theoretical value ξδ = −0.002. The estimated shape parameters seem to
converge to ξδ in the case of local observables at every latitude and in the case of zonally-
averaged observables at central latitudes. Thus, our numerical results allow for robust
conclusions regarding the universality of extremes, according to the theory presented in
Sec. 2.1. However, in the case of several (especially marginal) latitudes of the zonally-
averaged observables, as well as for the average mid-latitude observable, the estimated
shape parameter is relatively far from the theoretical one. For these observables the
amount of data seems to be not enough to approach asymptotic levels, thus we cannot
make more precise statements on the success of the analysis. Even in this extremely
chaotic case, the convergence is very slow, suggesting that customary choices like yearly
maxima are not always the best option for an accurate modelling of extremes.

Despite the predicted universal asymptotic properties of extremes, if we consider a cer-
tain block size (threshold), we find that the shape parameter estimates are different
among the observables and latitudes. Thus, on pre-asymptotic level, extremes show
rather diverse properties. The speed of convergence to the asymptotic level is not univer-
sal. The local observables exhibit high-frequency fluctuations, as an effect of boundary
fluxes, and at the same time, the fastest convergence of the shape parameter estimates to
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the theoretical value. Since the energy is transported mostly along the zonal direction by
the zonal mean flow, by averaging along a latitudinal band, the highest frequencies are
filtered out, and fluctuations with lower frequencies become stronger. In the case of the
zonally-averaged observables, we obtain weak auto-correlations and fast convergence
to ξδ in the middle of the channel where the baroclinicity is the strongest, versus high
auto-correlations and slow convergence at the margins of the channel where instead the
baroclinicity is weak. The stronger the serial correlation, the less the number of un-
correlated data in a block, and the larger block sizes are needed in order to approach
asymptotic levels (see also Coles, 2001). By averaging over the mid-latitude area, one
merges zonally-averaged time series exhibiting different auto-correlations. Thereby, the
convergence to ξδ is faster than in the case of zonally-averaged observables at marginal
latitudes. To sum up, a very important conclusion of our study is the existence of
latitude-dependent pre-asymptotic differences, as a counterpart to the universal asymp-
totic properties.

We assume that the extremely slow convergence has to do mainly with the fact that ξδ
is negative but very close to 0. Based on ξδ and on the estimated GPD modified scale
parameter, one is able to estimate according to Lucarini et al. (2014b) the absolute max-
imum, which is the upper end point of the GPD distribution, as mentioned in Sec. 4.1.
By performing a very rough estimation (and neglecting the weak latitude-dependence
of the GPD modified scale parameter), the absolute maximum in case of the local ob-
servables Amax ≈ 12.5, which is about 200 times the mean local energy value (see
Fig. 4.1) and 20 times larger than some of the largest estimated return levels obtained
for the largest return times considered here (see Fig. 4.4). This means that extremes are
bounded, and an absolute maximum does exist, but the tail is extremely stretched out,
and ultra long simulations are needed to explore this absolute maximum. Our results
point out the discrepancy between the existence of a mathematical limit and the actual
possibility of observing it. Note that if the asymptotic shape parameter is lower, the
absolute maximum will be much closer to the maximum observed within a long, yet
finite, time series, as it is shown in a recent study on temperature extremes in Southern
Pakistan (Zahid et al., 2017).

Our conclusions regarding the convergence of the estimated shape parameter to ξδ are
confirmed by results based on the GPD modified scale and return level estimates, in the
case of local observables. We point out, however, that the longer the return period, the
slower the convergence of the estimated return levels to their asymptotic values, and
the larger the underestimation of the asymptotic return levels if we consider small block
sizes (low thresholds).

In the case of weak forcing, temporal and spatial correlations are very strong due to
a regime behaviour of our system, which exhibits two regimes: a more unstable one
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with stronger fluctuations and a less unstable one with reduced fluctuations. Due to
this regime behaviour the statistics of extreme events are “contaminated”: if the block
size (threshold) is not large (high) enough, we select events from both regimes, whereas
if it is large (high) enough, only extremes from the more unstable regime are selected.
This induces non-monotonic changes of the estimated shape parameters by increasing
the block size (threshold), and leads to the appearance of positive, i.e., non-physical, or
very low shape parameter estimates. In the case of the local observables, the estimated
shape parameters seem to converge at almost every latitude to a value which is lower
(≈ −0.06) than the theoretical shape parameter (ξδ = −0.03). Furthermore, in the case
of the zonally-averaged and average mid-latitude observables, we cannot detect any
convergence at all. The inconsistency of our numerical results with the theory is, in fact,
unsurprising given the qualitative properties of the system in the low forcing regime,
which do not resemble characteristics of Axiom A systems (at least on the finite time
scales we are able to explore based on the available data).

Our results show that with increasing block size or threshold the shape parameters
of the GEV and GPD distributions are becoming more and more similar, according
to the asymptotic equivalence of the two models (Coles, 2001; Lucarini et al., 2014b).
Both methods show us basically the same picture regarding the statistical properties of
extreme events. Despite the mentioned similarities, we observe also some differences
between the two approaches. The convergence to the limiting distribution seems to
be somewhat faster in the case of the POT approach. This is in agreement with the
well-established fact that the POT approach produces often more accurate predictions
in the case of applications (Davison and Smith, 1990; Coles, 2001). Despite the faster
convergence, however, the best GPD shape parameter estimates (defined in Sec. 4.1)
do not approximate ξδ more accurately than the best GEV shape parameter estimates.
Therefore, the advantage of the POT approach compared the BM approach is irrelevant
in the case of very long time series.

We use the Kolmogorov-Smirnov test (KS-test) to verify the fit of the GEV (GPD) distri-
bution to the distribution of extremes, selected as block maxima (threshold exceedances).
Our results show that the KS-test is merely an indicator of the fit quality, and does not
show whether the convergence to the correct GEV (GPD) distribution is reached or not.
The KS test suggests a good fit to the GEV (GPD) distribution even in cases when the
distance between the estimated and the asymptotic shape parameter is substantial and
even if no convergence can be detected. The misleading property of p-values of the KS
and Pearson’s chi-squared tests was also pointed out in previous studies in the case of
more simple systems (Faranda et al., 2011; Bódai, 2017). In this work, we estimate the
GEV and GPD parameters performing maximum likelihood estimation (Coles, 2001),
but it would be relevant to find out to what extent other estimation procedures, like the
L-moments (Hosking, 1990) or probability-weighted moments methods (Hosking et al.,
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1985), would change the results.

Concluding, we would like to emphasise some key messages one can get from our
results:

• Indeed, we have been able to find the signature of the universal properties of
the extremes of physical observables in strongly chaotic dynamical systems, as
predicted in the case of Axiom A systems. Nonetheless, given the availability of
very long, yet finite, time series, we have been able to find more convincing results
(yet with a relatively large uncertainty) only for specific observables, because in
the case of observables featuring serial correlations it is extremely hard to collect
robust statistics of extremes.

• We have observed that in the case of strong forcing the estimate of the shape
parameter increases monotonically towards its asymptotic value for stricter and
stricter criteria of selection of extremes. This corresponds to the fact that we man-
age to collect more detailed information on the local properties of the attractor
near the point of absolute maximum of the observable, and thus explore all the
dimensions of the attractor.

• We also remark that agreement of the results with the theory of extremes of ob-
servables of dynamical systems developed in the context of Axiom A flows cannot
be found in the case of the weakly chaotic flow featuring regime behaviour and
strong spatial and temporal correlations, as these features suggest strong devia-
tions from the conditions behind the chaotic hypothesis. Note that conceptually
analogous results had been found in a simple model in Bódai (2017).

• We note that the predicted and estimated shape parameters are extremely small
so that the statistics of extremes is virtually indistinguishable, up to ultra long
return periods, from what would be predicted by a Gumbel distribution (ξ = 0),
which emerges as the statistical model of reference for physical extremes in high
dimensional chaotic systems, and suggests in the case of fluids the existence of a
well-developed turbulent state.

• We conclude by noting that in some cases of great practical relevance one finds re-
sults in contradiction with the basic tenets of the theory of extremes of dynamical
system, suggesting that one should never find block maxima distributed accord-
ing to the Fréchet distribution, which allows for arbitrary large extremes. The
precipitation, as opposed to geophysical fields like temperature or pressure, is a
non-smooth intermittent field with multifractal properties in space and time (Dei-
dda, 2000; Bernardara et al., 2007), as a result of the complex chain of multiscale
physical processes ranging from large scale water vapour transport on scales of 106

m and days, convection occurring on scales of 104 m and hours, and phase tran-
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sitions occurring at microscopic level and on ultra short time scales. As a result
of the intermittency of the rainfall, a very large (yet finite) amount of water can
precipitate at a specific location, with little or no precipitation occurring nearby, as
in the case of localised intense thunderstorms. Instead, extremely large anomalies
of temperature or pressure cannot be reached as the climate has efficient mech-
anisms to dissipate them via, e.g. waves. Indeed, the analysis of block maxima
of rain gauge readings shows many cases where the Fréchet distribution appears
as the optimal model (Koutsoyiannis, 2004a,b). This is a result of the fact that in
order to observe the actual physical limit of rainfall one should observe the system
for an impossibly long time, and that closed physical budgets exist locally (and
on a finite spatial domain) for the water balance (involving evaporation from sur-
face and horizontal convergence of water transport), not in the precipitation per
se. One can expect that such an anomalous behaviour is reduced if one chooses a
smoother, better defined observable, such the spatial average of precipitation over
a region.
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general circulation model of the

atmosphere PUMA

After analysing extremes in the QG model based on EVT and connecting their statistics
to universal properties of the system, we continue with the study of persistent extreme
events in the simplified general circulation model of the atmosphere PUMA. For this,
we use LDT and we rely on the connection between extremes of finite size averages and
persistent events, which is true for certain temporal or spatial scales, as shown below.
We see furthermore that the LDP in one direction, i.e. in space or in time, is not suited
for the analysis of persistent events because it becomes valid on large scales, where
persistence vanishes and universality prevails. To capture persistent spatio-temporal
events, we need to perform averaging in two dimensions: first we average in space on
intermediate spatial scales (defined later in this chapter), and then we obtain a LDP in
time. We find that on these intermediate scales the system allows for a higher degree
of spatio-temporal organisation than on very small or very large ones. We also search
for the connection between temporal and spatial, as well as spatio-temporal averaging.
We compare the results obtained by LDT based on return level plots with the empirical
data and with return levels obtained by the POT approach of EVT.

Before discussing our main results related to the large deviations of temperature, it
is useful to have a general picture about the properties of the simulated temperature
field at 960 hPa (i.e. close to the surface). For the analysis of temporal, zonal, and
spatio-temporal large deviations, we select three latitudes: 60◦, 46◦, and 30◦ (dashed
horizontal lines in Fig. 5.1a). We focus on the mid-latitudes because it is the region of
the atmosphere with the strongest turbulence, so that we expect that the corresponding
observables should behave in coherence with the chaotic hypothesis. The two hemi-
spheres are symmetric, thus it is not important which one we consider. In the following,
we provide first a qualitative comparison of temporal and spatial characteristics of the
temperature field, and then we quantify the persistence in time and space based on the
integrated auto-correlation.

Figure 5.1a illustrates the temperature field T(x,y, t∗) as function of longitude x and
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latitude y at one selected time point t∗, whereas Fig. 5.1b represents the temperature
field T(x∗,y, t) as function of latitude y and of time t at one selected longitude x∗.
Qualitatively similar figures would be obtained for different values of t∗ and of x∗,
respectively. Note that, to facilitate the comparison between space and time, the x-axis
in Fig. 5.1b is backward in time according to the prevailing eastward zonal wind at mid-
latitudes. Additionally, the range of the x-axis in Fig. 5.1b is the same as in Fig. 5.1b once
we rescale the time axis according to the scale velocity Uτ introduced below (computed
for 46◦), which weights the decay of correlation in space at fixed time and in time at
fixed location. Comparing these two figures we realise that by cutting across time or
across longitudes we obtain very similar wavy patterns, which is non-surprising since
the forcing is invariant in time and along a latitudinal band.

While this result would be trivial when observing a periodic or quasi-periodic signal, we
need to consider here that the dynamics of the atmosphere features a nontrivial mixture
of wave, turbulence, and particles (Ghil and Roberston, 2002), so that we need to look at
this space-time similarity from a statistical point of view. According to this, we have that,
at a given latitude y∗, the temporal series T(x∗,y∗, t) and the zonal series T(x,y∗, t∗) are
sampled from two similarly distributed random processes, given the condition of steady
state and the discrete symmetry with respect to translation along latitudes.

The main difference is related to distinct temporal and spatial characteristic scales, i.e. to
temporal or spatial correlations. At mid-latitudes, cyclones have a typical temporal scale
of ≈ 1 day and a characteristic spatial scale of about 1000 km (Holton, 2004). Obviously,
these scales are relevant when we try to obtain a LDP, thus it is very important to find
an adequate metric to describe them. We quantify the typical temporal and zonal scales
based on the integrated auto-correlation, as explained in Sec. 2.2.

We calculate the auto-correlations of the temporal and zonal series at a selected latitude
y∗, based on which we obtain later the integrated temporal and zonal auto-correlations.
For this, we use 1000 years of our simulation out of a total of 10000 years, as this proves
to be more than enough to reach robust estimates. As explained in Sec. 2.2, the auto-
correlation is defined as the ratio between the auto-covariance C(l) at lag l and the
variance σ2: c(l) = C(l)/C(0) = C(l)/σ2. To obtain better auto-correlation estimates, we
calculate the spatio-temporal mean and variance at each y∗, and use these estimates for
the computation of both temporal and zonal auto-correlations:

µ =
1

NtNx

Nt∑
j=1

Nx∑
i=1

T(i,y∗, j)

and

σ2 =
1

NtNx − 1

Nt∑
j=1

Nx∑
i=1

(T(i,y∗, j) − µ)2 ,
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Figure 5.1: General properties of the temperature field at 960 hPa. a) Temperature values
T(x,y, t∗) as function of longitude x and latitude y at one selected time point
t∗. b) Temperature values T(x∗,y, t) as function of latitude y and of time t
at one selected longitude x∗ (the x-axis is backward in time). The dashed
lines in a) and b) mark the selected latitudes. c) Temporal and d) zonal auto-
correlation functions according to (5.1) and (5.2) for the selected latitudes
(different colours according to the legend).

where Nt = 3.6× 105 is the number of considered points in time (daily data), and Nx =

128 is the number of grid points in the zonal direction. This is reasonable considering
the symmetries in our system in time and along latitudinal circles. The subscripts t and
x refer to time and to the zonal dimension, also in what follows.

In case of the temporal series T(x∗,y∗, t), we calculate the auto-covariance at one selected
longitude x∗. This estimate is independent of x∗, thus it is unimportant which longitude
we choose. We have:

ct(lt) =
1
σ2

1
Nt

Nt−lt∑
i=1

(T(x∗,y∗, i) − µ) (T(x∗,y∗, i+ lt) − µ) (5.1)

The length of the zonal series T(x,y∗, t∗), however, is too short to obtain reliable auto-
correlation estimates. The number of grid points along the zonal dimension is only
128. Together with such a restriction related to the size of the Earth, there is another
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one related to the shape of the Earth. In fact, we have to reduce the maximum lag to
Nx/2 = 64 because at larger lags the correlations start to increase again due to the
periodicity along a latitudinal circle. To increase the robustness of our estimate, we first
calculate the lagged zonal auto-correlation coefficients at each time point and then we
take the average over time:

cx(lx) =
1
σ2

1
NxNt

Nt∑
j=1

Nx−lx∑
i=1

(T(y∗, i, j) − µ) (T(y∗, i+ lx, j) − µ) . (5.2)

Figure 5.1c shows the temporal auto-correlation coefficient as function of the temporal
lag in units of days, whereas Fig. 5.1d illustrates the zonal auto-correlation coefficient
as function of the spatial lag expressed as longitude indexes ix = 0, 1, 2, .... Both tem-
poral and spatial auto-correlations decay to zero, meaning that two temperature values,
which are far away from each other in time or in space are almost independent. We
finally estimate the integrated temporal and zonal auto-correlations by taking the sum
of the auto-correlations coefficients until the maximum lag lt = lx = 64. Note that we
use the same temporal and zonal maximum lags for consistency reasons. The tempo-
ral integrated auto-correlation can be obtained also for larger maximum lags, but this
changes only negligibly the estimate value because the decay to 0 is relatively fast. We
define:

τt = 1 + 2
64∑
lt=1

ct(lt) (5.3a)

τx = 1 + 2
64∑
lx=1

cx(lx) (5.3b)

τt is 1.32 at 60◦, 1.05 at 46◦, and 1.61 at 30◦, whereas τx is 3.26 at 60◦, 3.54 at 46◦, and
7.68 at 30◦. We define τt and τx in a non-dimensional form (i.e. as number of time units
or zonal data points) to facilitate the comparison of temporal and spatial persistence
based on the resolution of our data, and because in this form we can use them directly
for scaling the rate function, as we show below.

In order to express the temporal and zonal persistence in physical units, one just needs
to multiply τt by the time step δt = 1 day, and τx by the zonal grid spacing δx, which
is latitude dependent. Thus, the temporal persistence expressed in units of days is
equivalent to τt, and the zonal persistence in units of km amounts to 391 at 60◦, 732
at 46◦, and 1292 at 30◦. We define the scale velocity Uτ := τxδx

τtδt
. From a statistical

point of view, Uτ represents the ratio between spatial and temporal persistence. From
a geometrical/dynamical point of view, Uτ represents the ratio between spatial and
temporal typical scales. Thus, Uτ is a measure for the anisotropy between space and
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time. At 60◦ Uτ = 4.25 ms−1 and at 46◦ Uτ = 8.47 ms−1. Uτ is not necessarily the same
as the temporally averaged zonal mean wind [U] (at the same vertical level of 960 hPa),
although, clearly, a dynamical relationship exists, because the turbulent structures are
advanced, to a first approximation, by the mean flow. In fact, we find that [U] is 3.6 ms−1

at 60◦, and 6 ms−1 at 46◦, which bear a good agreement with the scale velocities at the
same latitudes.

The agreement is lost when looking at 30◦, which is at the boundary of the mid-latitude
baroclinic zone where the qualitative description given above applies. As we approach
the equator, the atmospheric dynamics has a much lower degree of chaoticity with re-
spect to the mid-latitudes, unless we look at the convective scales, which are not resolved
at all in this model, and spatial persistence is very enhanced (see also Fig. 5.1a,b). In
this case we find Uτ = 14.95 ms−1, while [U] is −3.4 ms−1, which indicates prevailing
easterly flow, a clear signature of tropical dynamics.

Before continuing with the description of the temporal and spatial large deviations,
we briefly discuss the connection between high values of coarse grained temperatures
and long individual events where the temperature readings are persistently above the
long-term average, discussed already in Sec. 1.4. Figures 5.2a,b,c show three short tem-
poral series at latitude 46◦ together with the corresponding series of the coarse grained
quantities where averages are computed using block lengths of 20τt, 10τt, and 5τt, re-
spectively. The three short time series have been specifically chosen because they feature
a large fluctuation in the coarse grained quantity. Figures 5.2d,e,f show the same in case
of the zonal fields. The main finding is that up to moderately long averaging windows
of about 10τt (or 5τx for spatial averages) it is possible to link large fluctuations with
individual persistent events. When a coarser graining is considered, using a window
of 20τt for time averages and 10τx or 20τx for spatial ones, thus going in the direction
of the regime of the large deviations discussed below, we do not have such an one-to-
one identification. Instead, large ultralong fluctuations are related to the occurrence of
subsequent moderately long persistent features.

5.1 The link between temporal and zonal large deviations

At this point, we turn our attention to the estimation of the temporal and zonal rate
functions. For this, we first have to obtain sequences of temporal and zonal averages for
increasing lengths of averaging blocks nt and nx, for which we use the total length of
our simulation of 10000 years.
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n=5τx

Figure 5.2: Relationship between persistent events and large fluctuations of the coarse-
grained fields. a) Time series (black line) of near-surface temperature at 46◦

in the case of a large event of the coarse grained time series (red line) with
averaging window of 20τt; x-axis in units of τt = 1.05 days. b) Same as a),
for averaging window of 10τt. c) Same as a), for averaging window of 5τt.
d) Zonal series (black line) of surface temperature at 46◦ in the case of a large
event of the coarse grained zonal series (red line) with averaging window of
20τx; x-axis in units of τx = 3.54 grid points. e) Same as f), for averaging
window of 10τx. f) Same as d), for averaging window of 5τx. In all panels
the grey horizontal line represents the long term and longitudinal average.

Ant =
1
nt

nt∑
i=1

T(x∗,y∗, t = i) (5.4a)

Anx =
1
nx

nx∑
i=1

T(x = i,y∗, t∗) (5.4b)

The lengths of temporal averaging blocks are chosen to be multiples of τt: nt =
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5 Large deviations of temperature in PUMA

5τt, 10τt, ..., 40τt. Similarly, the lengths of zonal averaging blocks are multiples of τx,
but in this case the largest possible multiple m is limited due to the size and shape of
the Earth, as mentioned above: nx = 5τx, 10τx, ...,mτx. m = 20 in the case of latitudes
60◦ and 46◦, whereas m = 10 in the case of latitude 30◦. To increase the number of av-
eraged values for the computation of the temporal rate functions, we lump together the
temporal averages from every 25th longitude along a latitudinal circle. Since τx � 25,
these temporal sequences can be treated as independent repetitions. In case of zonal av-
eraging, we take one averaged value in space from every 10th point along the time axis,
which we consider to be independent repetitions as well. This assumption is reasonable
because the integrated temporal auto-correlation of zonal averages is much lower then
10, even for the largest nx (as shown later in Fig. 5.4). We obtain for each value of nt
and nx estimates of the rate functions, after using the re-normalising factors given by
1/τt or 1/τx, respectively:

Ĩnt(a) = −
lnp(Ant = a)

nt
τt, (5.5a)

Ĩnx(a) = −
lnp(Anx = a)

nx
τx, (5.5b)

where p(Ant = a) and p(Anx = a) represent empirical estimates of the pdf’s of the
temporally and zonally averaged sequences. Due to the re-normalisation, the logarithm
of the probabilities is scaled by nt/τt or nx/τx, i.e. by the number of uncorrelated
instead by the total number of data in an averaging block. Thus, we eliminate the effect
of correlations.

Figure 5.3 displays Ĩnt (a–c) and Ĩnx (d–f) for every nt and nx as function of temperature
fluctuations T ′ = T − µ. As a side note, we remark that in every figure below the shown
re-normalised rate function estimates are shifted vertically so that their minimum is at
0. In case of the temporal rate functions, it is clear that for nt > 20τt the estimates Ĩnt
do not change in shape by further increase in nt, meaning that we obtain stable and
reliable estimates, i.e. there is a proof in our data for a LDP in time. We also notice
that the range of Ant values becomes narrower as nt increases as an effect of averaging,
which reduces the amount of available data. Thus, we obtain our best estimate at an
optimal averaging block length n∗t , which is large enough to allow for the convergence
of rate function estimates, but is in the same time small enough so that the range of Ant
is not too narrow, i.e. n∗t = min(nt; Ĩnt ≈ Int). We choose the same optimal averaging
length for all three latitudes n∗t = 20τt, although in the case of latitudes 60◦ and 30◦,
Ĩnt=10τt seems to be already a good estimate for the asymptotic Int . In the case of
zonal rate functions, we first notice that the largest nx seems to be too small for a clear
convergence. In other words, the length of a latitudinal circle is not long enough to
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clearly obtain a large deviation limit. However, the dependence of Ĩnx on nx seems to
decrease as nx is increasing, thus we choose the largest possible nx as the optimal zonal
averaging length n∗x = max(nx). n∗x = 20τx in the case of latitudes 60◦ and 46◦, whereas
in the case of latitude 30◦, n∗x is only 10τx because of stronger zonal auto-correlations.

The best estimates of the temporal and zonal re-normalised rate functions Ĩ∗nt = Ĩnt=n∗t
and Ĩ∗nx = Ĩnx=n∗x are shown again in Fig. 5.3g,h,i. The shading represents the 95%
confidence intervals of 2000 nonparametric ordinary bootstrap estimates based on the
normal distribution (functions boot and boot.ci of the R package boot, Davison and
Hinkley, 1997; Canty and Ripley, 2017). We notice that Ĩ∗nt ≈ Ĩ∗nx . The equivalence is
very good in the case of latitude 60◦ and in the case of negative anomalies at latitudes
46◦ and 30◦. We also notice some differences regarding positive anomalies at latitudes
46◦ and 30◦, with larger differences at 30◦. At this later latitude, however, it has to be
considered that the maximum possible zonal averaging length is 10τx, whereas in the
other cases it is 20τx. We assume that the differences between the temporal and zonal re-
normalised rate function estimates have to do with the fact that n∗x is not large enough
to estimate the rate function properly. Larger values of nx are needed to overcome the
enhanced skewness in the distribution of zonal averages as effect of spatial correlations,
however this is impossible due to limitations coming from the size and shape of the
Earth. These findings have correspondence with the large value of Uτ at this latitude,
defining the anisotropy between space and time. While the temporal rate function can
be estimated reliably at a relatively small nt, the estimation of the zonal one is a much
more difficult task.

However, the main message of Fig. 5.3 is that the temporal and zonal re-normalised
rate functions seem to be equal, Int = Inx , if the probability of averages is scaled by
the number of uncorrelated data in an averaging block nt/τt or nx/τx, as explained
above. In other words, there is a link connecting temporal and spatial large deviations
or averages, due to the existence of a universal function In; universal in the sense that it
represents large deviations in both dimensions: time and space.

Obviously, based on the LDP in time or in space, one cannot characterise persistent tem-
poral or spatial events, because the limit law starts to act on larges scales, where persis-
tence is lost and universality emerges. However, one can capture persistent space-time
events by averaging in both dimension space and time. To achieve this, it is important
that the spatial averaging length is not too small but not too large either, as we show in
the following.
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Figure 5.3: a) – c) Temporal re-normalised rate function estimates Ĩnt and d) – f) zonal
re-normalised rate function estimates Ĩnx for the three considered latitudes
and for increasing averaging lengths nt and nx according to the different
colours (see legend). g) – i) Best estimates of the temporal (red) and zonal
(blue) re-normalised rate functions. All estimates are shifted vertically so
that their minimum is at 0. T ′ = T − µ represents temperature fluctuations
around the mean.

5.2 Spatio-temporal large deviations

We consider temporal sequences of zonally averaged observables over averaging lengths
nx = 1τx, 5τx, 10τx, 20τx, and then average each sequence in time for increasing aver-
aging lengths n̂t = 1τ̂t, 5τ̂t, 10τ̂t, 15τ̂t, ...40τ̂t. The notation ˆ is meant to indicate that
we average in space and additionally in time, and τ̂t is the decorrelation time of the
spatially averaged observable. By considering several nx values, we choose the spatial
scale at which we analyse the large deviations in time. The spatio-temporal averages are
computed as:
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5.2 Spatio-temporal large deviations

Anx,n̂t =
1
n̂t

n̂t∑
j=1

1
nx

nx∑
i=1

T(i,y∗, j) =
1
n̂t

n̂t∑
j=1

Anx(j). (5.6)

Similarly to the previous cases, also in the case of spatio-temporal averages, we have to
take into account the strength of auto-correlations if we pursue to compare the spatio-
temporal rate functions with the temporal and zonal ones. We estimate the integrated
temporal auto-correlation τ̂t of spatio-temporal averages analogously to τt or τx, but
to assure the stability of τ̂t we choose a higher maximum lag of 120 days, because the
auto-correlation in time of zonal averages has a slower decay compared to the one of
unaveraged temporal or zonal observables. Figure 5.4 shows τ̂t as function of zonal
averaging length nx and temporal averaging length n̂t. The temporal auto-correlations
of the spatio-temporal observables are increasing with nx and decreasing with n̂t. The
increase with nx, on the one hand, can be explained by the connection between temporal
and spatial scales. Large events in space are long lasting events in time. The decrease of
the temporal integrated auto-correlation with n̂t, on the other hand, can be explained
by the increase of the number of uncorrelated events with respect to the number of
correlated events in an averaging block as a consequence of increasing the block length.
This is automatically the case for large averaging blocks when correlations are finite, and
is crucial for the applicability of the block averaging method. The different behaviour
with nx and n̂t, however, has to do mainly with the discrepancies in the temporal
resolution of the newly obtained averages. While, in the case of zonal averaging, the
temporal resolution remains one day, in the case of additional averaging in time, the
temporal resolution decreases with n̂t, thus the temporal auto-correlation lag increases.
However, this is not a problem for our analysis since we are interested in the correlations
of the averaged observables measured in number of averaged data. A stronger increase
of τ̂t at the “end” of the channel underlines the above discussed effect of averaging
along a latitudinal circle. At the zonal “end” of the channel, the temperature values are
strongly correlated with the ones at the “beginning” of the channel.

We observe the largest increase of τ̂t with nx in case of latitude 60◦. However, taking into
account the different typical zonal scales at different latitudes and comparing the auto-
correlations at same zonal averaging lengths in units of τx (for example along the vertical
lines with same colours in Fig. 5.4), things look more similar. Here, we deliberately use
the expression “more similar” instead of “the same” because the differences in the zonal
tendencies are, of course, not only a matter of scale. The changing dynamical properties
of the zonal mean temperature are determined by the latitudinal dependence of diabatic
forcing, meridional heat transport due to eddy activity, zonal mean wind, static stability,
etc.

Additionally, we also have to consider that the distance between the longitudes is de-
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creasing from equator to pole due to the geometry of the sphere. This, of course, con-
tributes to the fact that the temperature values at neighbouring longitudes are stronger
correlated at latitude 60◦ then at 46◦ or 30◦.
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Figure 5.4: Integrated temporal auto-correlation of spatio-temporal averages for the se-
lected latitudes as function of zonal and temporal averaging lengths. The
vertical lines mark longitudes representing upper limits of zonal averaging
(lower limit is 1), corresponding to the multiples of τx: 1τx, 5τx, 10τx, 20τx
(from white to green).

Estimates of spatio-temporal re-normalised rate functions are then computed for each
nx and n̂t as:

Ĩnx,n̂t(a) = −
ln p̃(Anx,n̂t = a)

n̂tnx
τ̂tτx (5.7)

We remark that Eq. (5.7) accounts for both zonal and temporal auto-correlations by
multiplication with τ̂tτx, similarly to the case of temporal and zonal rate functions. The
spatio-temporal re-normalised rate function estimates are displayed by Fig. 5.5 (coloured
lines). For comparison reasons, we also show the best temporal and zonal estimates Ĩ∗nt
(continuous black lines) and Ĩ∗nx (short-dashed black lines), together with the estimate
of the zonal re-normalised rate function at the selected zonal averaging length Ĩnx (long-
dashed black lines). The main message here is that:
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• The spatio-temporal re-normalised rate function seems to be equal to the universal
function In for small and large zonal averaging lengths.

• We suppose that, in the case of small zonal averaging lengths nx � n∗x, like nx =

1τx, the zonally averaged observable is not significantly different from the spatially
localised observable, so that Ĩnx,n̂t converges to the universal function In.

• In the case of large zonal averaging lengths nx > n∗x, like nx = 20τx, the zonal
averages already exhibit universal characteristics, which are not altered by the
additional temporal averaging, thus Ĩnx,n̂t corresponds again with the universal
function In.

• On intermediate levels however, i.e. τx < nx < n∗x, due to the non-trivial zonal
correlations one obtains after zonal averaging a totally different observable from
the original one.

The spatio-temporal re-normalised rate functions are different from the universal func-
tion In at nx = 5τx in the case of latitudes 60◦ and 46◦, as well as at nx = 10τx in
the case of latitude 60◦, whereas in this last case is worth mentioning that the spatio-
temporal rate function corresponds with the zonal rate function estimate at nx = 10τx.
In all these cases, the spatio-temporal re-normalised rate functions are flatter than the
universal function, pointing out a higher probability of large deviations, which are as-
sociated to the presence of organised structures. Thus, these scales are exactly the ones
at which one can analyse persistent space-time events, like heat waves or cold spells,
based on the LDP. Figure 5.6 represents schematically the ranges of temporal and zonal
averaging lengths, at which universality emerges (blue) or is hindered (light blue) due
to zonal correlations. Pre-asymptotic regions, where the LDP is not valid yet, are left
white.

As a side note, the horizontal shifts of the rate function estimates at small averaging
lengths (nx or n̂t) emphasise that these estimates are not reliable because the averaging
length is too small for the law of large numbers to hold. We also wish to remark
that differences emerge when looking at temperature data from latitude 30◦. Here, the
spatio-temporal re-normalised rate function Ĩnx,n̂t at nx = 1τx is not equivalent with the
universal function In. One possible reason for this is that when averaging over a length
nx = 1τx the newly defined observable has already significantly different properties
from the temporal observable. The universality of the spatio-temporal rate function
cannot be checked properly due to the limit in zonal averaging length of 10τx. What we
see, however, is that at nx = 10τx spatio-temporal re-normalised rate function is quite
similar to - yet distinct from - the universal function.
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Figure 5.5: Rate functions of spatio-temporal averages for the selected latitudes and dif-
ferent zonal averaging lengths: a) – c) nx = 1τx, d) – f) nx = 5τx, g) – i)
nx = 10τx, j) – k) nx = 20τx. The coloured lines represent spatio-temporal
rate functions for different temporal averaging lengths n̂t according to the
legend. The black continuous line is the best temporal rate function estimate,
the black short-dashed line is the best zonal rate function estimate, and the
black long-dashed line is the zonal rate function estimate at the selected nx.
The rate function estimates are shifted vertically so that their minimum is at
0. T ′ = T − µ represents temperature fluctuations around the mean.
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Figure 5.6: Schematic representation of universality and effect of correlations depending
on the zonal and temporal averaging lengths. The dark blue colour marks
the region where universality emerges. The light blue colour represents the
region with non-universal spatio-temporal rate functions as an effect of zonal
correlations. Pre-asymptotic regions, i.e. where the LDP is not valid yet, are
white.

5.3 Return levels of large deviations

We summarise shortly our main findings presented until now:

1. The estimates of the rate functions seem to converge to an asymptotic function,
and we obtain the best estimate of the rate function at an optimal averaging block
length n∗. This is mostly clear in case of the temporal rate functions, showing that
there is a large deviation principle, i.e. a universal law that allows us to estimate
the probabilities of occurrence of averages over n > n∗, without having to actually
perform the averaging.

2. We have found an equivalence between the temporal, spatial and spatio-temporal
re-normalised rate functions, in the later case for very small and very large zonal
averaging lengths. This means that we can deduce statistical properties of tempo-
ral averages from the ones of spatial averages and vice-versa. We can do the same
in the case of spatio-temporal averages and temporal or spatial averages.

Now, the question is how can we use these information in a practical way? One pos-
sibility of application, which we present in this subsection by the example of latitude
60◦, arises in the context of computing return periods of large events. Figure 5.7 shows
return level plots, i.e. return levels as function of return periods obtained in three dif-
ferent ways, based on: empirical data (circle markers), large deviation principle (contin-
uous lines), and the Generalized Pareto distribution (dashed lines). For the estimation
of return periods based on the LDP, we first obtain kernel density estimates (function
density of the R package stats, R Core Team, 2016) of the pdf’s p(An = a) at fixed
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equidistant return levels An,1, ...,An,256, based on which we estimate the cumulative
distribution function P(An 6 a), and then compute the return periods for An > a as

1
1−P(An6a)

and for An 6 a as 1
P(An6a)

. Thus we obtain the return periods of both
positive (Fig. 5.7a,c,e) and negative (Fig. 5.7b,d,f) large deviations. The shading around
the continuous lines in Fig. 5.7 represents the 95% confidence intervals of 2000 nonpara-
metric ordinary bootstrap return period estimates based on the normal distribution.

We compute the GPD return levels based on (2.4) using the maximum likelihood esti-
mates of GPD parameters (functions gpd.fit and gpd.rl of the R package ismev func-
tions written by Janet E. Heffernan with R port and documentation provided by Alec
G. Stephenson., 2016). We analyse return levels of high temperature values exceeding
a threshold equal to the 99.9% quantile of the averaged series, as well as return levels
of low temperature values below the 0.1% quantile. To verify the applicability of the
GPD method, the stability of return levels was checked also for a higher (lower) quan-
tile of 99.99% (0.01%). The return level estimates seem to be stable even if the threshold
is increased (not shown). Note that, although the very slow convergence of the GPD
shape parameter is well known in some cases, the stability of return level estimates still
holds if the change in the shape parameter is relatively small as the threshold increases,
as shown in Sec. 4.1. The shading around the dashed lines in Fig. 5.7 represents 95%
maximum likelihood confidence intervals of return level estimates. As a side note, in
the case of GPD, the estimation concerns the return levels while the return periods are
fixed, whereas we proceed the other way around in the case of LDT. This is necessary
because we estimate the rate function I(a) at fixed equidistant values a.

In Fig. 5.7a,b the return levels of temporal averages are shown for three different aver-
aging windows 20τt, 30τt, 40τt. Here we use point 1. from above, and obtain the return
periods based on the LDP for every averaging window from p(An∗t=20τt = a). We notice
a very good agreement with the empirical data and the GPD return levels, not only
for 20τt but also in case of 30τt and 40τt, for both high (Fig. 5.7a) and low (Fig. 5.7b)
extremes of averages. In case of nt = 20τt, the confidence intervals of the largest return
periods based on the LDP become very unstable, the lower limits reach even negative
values, thus they cannot be displayed on this semi-logarithmic scale.

The return periods from the LDP have an upper (or lower) limit because the estimation
relies on empirical pdf’s. This is not the case for the GPD return periods since these can
be extrapolated to even unobserved events. The LDP, however, is a limit law that gives
us return periods for every averaging length n > n∗, whereas the GPD return periods
have to be computed separately for every n. This becomes more and more difficult
with increasing n due to the decreasing data amount as effect of averaging. In other
words, Fig. 5.7 points out the different dimensions in which the two limit laws act, as
mentioned already in Chapter 1. The predictability of GPD is directed towards larger
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5.4 Summary and discussion

and larger events, i.e. towards unobserved ones, whereas the predictability of LDT is
directed towards larger and larger averaging lengths, i.e. towards observables that, by
construction, reduce dramatically the amount of data available for statistical analysis.

Point 2. presented above is illustrated by Fig. 5.7c,d and Fig. 5.7e,f. In the first case,
return periods of temporal averages are computed based on the LDP obtained for zonal
averages (n∗x = 20τx), and, in the second case, return periods of spatio-temporal aver-
ages (with a spatial averaging length of 20τx) are obtained from the LDP for temporal
averages (n∗t = 20τt). In both cases, but especially for the spatio-temporal averages,
the agreement with the empirical data and the GPD return levels is good. The differ-
ences between the return levels based on the LDP and the empirical data (also GPD)
are related to the discrepancies in the estimation of the temporal and zonal, as well as
temporal and spatio-temporal re-normalised rate functions. For example, the underesti-
mation of low extremes of temporal averages based on the zonal rate function has to do
with higher re-normalised zonal rate function values compared to the temporal ones in
their left tails (see Fig. 5.3g).

We remark that the possibility of commuting between averages of different dimensions
(time and space) is due to the fact that, by eliminating the effect of serial correlations, the
large deviations of these different dimensions follow a universal function. This universal
function, however, is inadequate to describe persistent space-time events, like heat waves
or cold spells, because it acts on large scales, where persistence becomes irrelevant.
To characterise the persistent space-time events, one needs to compute the temporal rate
function of zonal averages on intermediate scales.

5.4 Summary and discussion

We have analysed the properties of temporal and spatial near-surface (960 hPa) temper-
ature averages in the PUMA simplified global atmospheric circulation model based on
LDT. Extremes of averages on specific scales are related to persistent extreme events,
like heat waves or cold spells. We run the model for 10000 years with a constant (only
latitude dependent) forcing, creating non-equilibrium (due to the forced-dissipative na-
ture of the model) steady state simulations without orography, annual or daily cycle.
The forcing is symmetric for the two hemispheres. The horizontal resolution is T42 with
10 vertical levels, and the temperature values are recorded daily. We compute and com-
pare re-normalised rate functions based on the integrated auto-correlation for temporal
and zonal temperature sequences at selected latitudes (60◦, 46◦, and 30◦), focusing in
the mid-latitudes region, where turbulence is best developed. The spatial averaging is
performed only in zonal direction, because this is a geometrical direction along which
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Figure 5.7: Return levels and return periods of positive (upper row) and negative (lower
row), a) – d) temporal and e) – f) spatio-temporal large deviations of temper-
ature at latitude 60◦. Circle markers: empirical data; continuous line with
shading: estimates based on LDT with 95% confidence intervals of 2000 non-
parametric bootstrap samples based on the normal distribution; dashed line
with shading: GPD estimates with 95% confidence intervals based on Max-
imum Likelihood Estimation. The different colours represent different aver-
aging lengths. The LD-estimates are obtained based on a), b), e), f) temporal
averages at n∗t = 20τt, and c), d) zonal averages at n∗x = 20τx.

the system has a symmetry. We also analyse the case of two-dimensional, i.e. spatio-
temporal averaging. We verify the correctness of our results by comparing the return
periods based on the rate functions with return periods from the empirical data and
from the POT method. Before discussing them in detail, we summarise first our main
findings:

1. The temperature averages in PUMA follow a LDP.

2. The temporal and zonal re-normalised rate functions are equal if we compute them
by eliminating the effect of temporal and zonal correlations. Thus, we can define
a universal function, describing temporal as well as spatial large deviations.

3. The spatio-temporal re-normalised rate functions are equal to the universal func-
tion for small and large spatial averaging lengths. On intermediate levels, as an effect
of non-trivial spatial correlation, the spatio-temporal re-normalised rate functions
differ from the universal one.
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5.4 Summary and discussion

Our results show that the temperature averages in PUMA follow a LDP. The estimated
rate functions clearly converge in case of temporal averages. We obtain reliable estimates
at an optimal averaging length n∗t , which is about 20τt, where τt represents the temporal
integrated auto-correlation. The fact that the temperature averages follow a LDP might
seem unsurprising, but actually it has extremely important consequences on a practical
level. Based on the LDP, we can estimate the probabilities of averages, and thus for the
practical use very important return periods, for every averaging length nt > n∗t . All
we need to know is the probability of averages An∗t , which we can estimate empirically.
In contrast to the temporal averages, in case of zonal averaging, the spatial averaging
length nx is substantially limited by the size and shape of a latitudinal circle. The
temporal averaging is performed on a theoretically infinite (and practically very long)
line, whereas the zonal averaging takes place on a circle. Thus, the convergence of
the estimated rate functions is not that clear as for temporal averages. However, the
comparison of the zonal results with the temporal re-normalised rate function estimates
shows that the averaging length n∗x = 20τx seems to provide a reasonable rate function
estimate, thus we choose this one as the optimal zonal averaging length. In the case
of latitude 30◦, 20τx cannot be reached due to stronger zonal correlations. Here, the
maximum averaging length is 10τx.

We find that the temporal and spatial re-normalised rate functions seem to be equal if
we eliminate the effect of correlations according to Eq. (5.5), where we basically scale
the rate functions by the number of uncorrelated data instead of the whole number of
data in an averaging block. Based on this equivalence, one finds a universal function
In = Int = Inx , in the sense that it describes both temporal and spatial large deviations.
From a statistical-mechanical point of view, this means that fluctuations (around the
steady state) in time and in space exhibit same basic properties, but differ as an effect of
temporal and spatial persistence. From a practical point of view, this implies that one
can commute between space and time: we can deduce statistical properties of spatial
averages (including return level estimates) from a single time series, and this is, of
course, true the other way round too.

Obviously, based on the LDP in one dimension - time or space - we cannot describe
persistent events, because the limit law is acting on very large scales, where spatial
or temporal organisation is lost and universality emerges. However, persistent space-
temporal events can be studied based on LDT if one performs the averaging in both
dimension - time and space.

Therefore, we extend our analysis also to spatio-temporal large deviations. Here, we
average first in zonal direction taking different averaging lengths nx = 1τx, 5τx, 10τx,
20τx, and then we search for a LDP in time of the zonally averaged observables. We find
that the spatio-temporal re-normalised rate function, computed again by eliminating
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5 Large deviations of temperature in PUMA

the correlations according to (5.7), is equal to the universal function In in two cases:
1) for small zonal averaging lengths nx ≈ τx, and 2) for large ones nx > n∗x. We
suppose that in the first case, due to the small nx, the zonally averaged observable
is not significantly different from the temporal observable, and thus the rate function
converges to the universal function. In the second case, the zonal averages already
exhibit universal characteristics because the large nx allows for enough mixing in the
series of zonal averages. These universal characteristics are not altered by the additional
temporal averaging. On intermediate scales however, i.e. τx < nx < n∗x, due to the non-
trivial zonal correlations, one obtains after zonal averaging a totally different observable,
whose large deviations follow a different re-normalised rate function then the universal
one. Consequently, by computing large deviations in time of zonal averages, we get
rid of temporal persistence if the temporal averaging length is large enough, but we
cannot eliminate the effect of zonal persistence on intermediate scales, which then leads
to a non-universal re-normalised rate function. This also means that in this way we
can study persistent extreme events based on LDT. These intermediate scales of about
5 − 10 τx or ≈ 2000 − 4000 km are approximately equal with the scale of persistent
synoptic disturbances, like the ones causing severe heat waves. According to this points
of view, long lasting synoptic scale disturbances are large deviations from the steady
state, which allow for a higher degree of spatio-temporal organisation and, in a loose
sense, a lower entropy compared to disturbances at any other scales.

Additionally, we compare the two frameworks for investigating rare events, i.e. LDT
and the POT approach of EVT, from a practical point of view, based on return level
and return period estimates. Both methods are based on limit laws, but they differ in
the way the limit is obtained, and thus also in the direction in which the limit acts.
The POT approach deals with the conditional probabilities of averages exceeding a high
threshold. The limit law is obtained as one considers larger and larger extremes, thus it
is directed towards large, even unobserved events. In case of LDT, we approach the limit
as we consider averages with increasing averaging length n, thus the limit is directed
towards n → ∞. Our results point out these differences. On the one hand, the return
time estimates based on LDT are limited from above at small averaging lengths because
they are obtained based on empirical distributions, whereas the estimates based on the
POT approach can be extrapolated to unobserved events. On the other hand, the return
times based on LDT can be obtained for every n > n∗ based on the probabilities of
An∗ , whereas in the case of the POT approach they have to be estimated for every n
separately. We also have to remark that the convergence to the limit law seems to be
easier to achieve in case of LDT than in case of EVT.

As mentioned above, we eliminate the effect of correlations in the computation of the
rate functions by multiplication with the integrated auto-correlation. We estimate both
temporal and zonal integrated auto-correlations, τt and τx. By computing the ratio
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5.4 Summary and discussion

between spatial and temporal persistence, we define a scale velocity Uτ = τx/τt, which
is a measure for the anisotropy between space and time. If the anisotropy between space
and time is strong, it becomes more difficult to show the existence of a universal rate
function. In the case of latitude 30◦, for example, due to a strong zonal persistence, the
largest zonal averaging length is limited to 10τx, which is not large enough to obtain
reliable estimates of the spatial rate function. We remark that the scale velocity we find
by such asymptotic procedure could be viewed in connection with the research lines
aiming at identifying the multifractal nature of the weather and climate fields (Lovejoy
and Schertzer, 2013) and, in particular, of precipitative fields (Deidda, 2000).

While nature and society do not typically conform to the hypotheses of the theorems one
needs to establish universal laws, such asymptotic results can nonetheless be extremely
useful for studying observational data, just as in the widely case of EVT. Therefore, this
work should be seen as a first step towards the use of LDT for the analysis of actual
climatic data and the outputs of state-of-the art climate models. The perspective is to
find new ways to estimate efficiently the probability of occurrence of extremely rare
events associated to persistent climatic conditions. In this work, we have focused on
time scales which are long compared to those typical for the atmosphere, but one can
adopt the same methods for studying persistent events of multiannual scales, where
the oceanic variability is, instead, essential. This has, potentially, great relevance for
addressing the problem of assessing human and environmental resilience to the low-
frequency variability of the climate system.
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6 Conclusions and outlook

In this thesis we have analysed extreme or rare events in two numerical atmospheric
models, having a twofold objective. First, we study extremes of energy observables in
a two-layer quasi-geostrophic (QG) atmospheric model and compare our results with
theoretical ones from the field of extreme value theory (EVT) for dynamical systems.
These energy observables can be considered as so-called “physical observables”, thus we
search for a relationship, derived theoretically for Axiom-A systems, between extremes
of physical observables and the dimension of the attractor of the system, considered to
be a global property. We apply the two popular methods of EVT, the Block Maxima (BM)
method, and the Peak over Threshold (POT) approach. Second, we study properties of
temporal, spatial, as well as spatio-temporal averages of near-surface temperature in the
simplified global circulation model PUMA. The main purpose here is to study persistent
extreme events of temperature, like heat waves or cold spells, based on their connection
with extremes of averages, from the perspective of Large Deviation Theory (LDT) for
non-equilibrium steady states. In both cases, we are interested in the relation between
statistical properties of extremes and dynamical properties of the system generating
them.

Both theories are asymptotic, i.e. their statements are based on limit laws, which pro-
vide predictive power to the obtained results if the limit is reached empirically. As
discussed in Sec. 1.5 and shown by our results in Sec. 4.1, this means that, beyond this
empirical limit, the results are indistinguishable from the theoretical predictions taking
into account the uncertainty due to the finite data size. If this is the case, we consider
to have reached the asymptotic regime or level. From the dynamical systems point of
view, when applying EVT we select one point on the attractor which we try to explore
based on close recurrences in phase space, i.e. we look at a certain point through a
kind of magnifying glass and try to explore the fine scale structure of the attractor (Lu-
carini et al., 2016). Thus, we still consider the original system, but instead of a global
view, we switch to a local, in-depth view around the point of absolute maximum of the
considered observable. When applying LDT, however, we adopt a completely different
approach. In this case, the original observable is transformed through the averaging
process, thus one considers a coarse grained observable with different, probably less
heterogeneous, phase space properties. We adopt a global view, and try to approximate
the full distribution of the new observable. Obviously, since the two different theories
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operate in different dimensions, the predictive power is directed towards different di-
mensions as well: towards unobserved events, i.e. events with decreasing probability, in
case of EVT; and towards averages obtained by increasing the averaging block length in
case of LDT.

Both limit laws have been derived under certain conditions, which means that in an-
ticipation of reliable results, one has to choose a system that is able to satisfy these
conditions. Our models can generate strongly chaotic systems if the applied forcing is
strong enough. These systems fulfil the so-called chaotic hypothesis, which means that
they behave at all practical purposes as Axiom A systems. These systems are charac-
terised by a fast decay of correlations, which provides the necessary mixing conditions to
reach asymptotic levels even in a finite-sized data set. We have seen that the QG model
with the strong forcing and the PUMA model under the applied forcing both represent
systems where this is true. In these highly chaotic systems with well-developed tur-
bulence, universality emerges as one approaches asymptotic regimes. Consequently, to
find universality in a deterministic chaotic system, two conditions have to be fulfilled:

1. the dynamics of the system has to feature a sufficient degree of chaoticity to fulfil
the mathematical conditions required for deriving the limit laws for its observ-
ables;

2. one has to reach asymptotic levels: the block size (threshold) has to be large (low)
enough when applying the BM (POT) approach, and the averaging block length
has to be long enough in case of LDT.

We summarise the core results of this thesis based on the conditions above:

• If both conditions are met, asymptotic universality emerges. This is the case of en-
ergy extremes in the QG model under the strong forcing. We have seen that the
GEV or GPD estimated shape parameter is the same for different observables and
corresponds in several cases with the theoretical one related to the partial dimen-
sions of the attractor. In case of large deviations of temperature in PUMA, we find
a universal function which describes both spatial, temporal, and spatio-temporal
averages, for very small and very large zonal averaging lengths in the later case.
These are certainly different types of universality: in the first case we find an
equivalence between properties of different observables and general system char-
acteristics, whereas in the second case we discover an equivalence between aver-
aging in space and in time (and in space-time). However, there is a connection
between them: in chaotic system with strong enough mixing or sufficiently fast
decaying correlations, there exist levels where the effect of correlations, memory,
or persistence vanishes, thus allowing for the emergence of universal properties
described by asymptotic laws.
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6 Conclusions and outlook

• If only condition 1. is fulfilled, one experiences pre-asymptotic non-universality.
The pre-asymptotic differences are mostly caused by serial correlations in our sys-
tems. Hence, they seem to be characteristics of deterministic chaotic systems and
represent a counterpart to asymptotic universality. The strength of correlations
influence the effective block size and thus the values of the pre-asymptotic shape
parameter estimate. In case of strong correlations, the number of uncorrelated
data in a block is lower than in weakly correlated cases, and the difference be-
tween the estimated shape parameter and the asymptotic value (bias) is higher, at
least considering monotonic convergence. Correlations also have an effect on the
pre-asymptotic rate function estimates, which are broader in case of strongly cor-
related data compared to weakly correlated data, hinting to a higher probability
of large deviations. Even the asymptotic rate function is affected by correlations,
if one does not re-normalise it using the integrated auto-correlation.

• If both conditions are violated, one cannot apply the theories because the asymp-
totic regime does not exist or it is impossible to be reached on realistic time scales. This
is the case when the forcing is not strong enough, and thus the system under in-
vestigation is not chaotic enough. The QG model under the weak forcing exhibits
a regime behaviour, which “contaminates” the statistics of extreme events lead-
ing to non-monotonic shape parameter estimates, which do not converge to the
theoretical value, at least on the explorable finite scales.

• In case of two dimensional, i.e. spatio-temporal, averaging of the temperature field
in PUMA, we find deviations from asymptotic universality, although both condi-
tions are met. Here, the spatial averaging is performed on intermediate zonal
scales, where as an effect of non-trivial spatial correlations the coarse grained
observable is totally different then the ones with universal properties. The re-
normalised large deviation rate function is lower then the universal function, hint-
ing to a higher probability of large fluctuations of the system, related to a higher
degree of spatio-temporal organisation. This is a very interesting and important
case of asymptotic non-universality due to persistent events, considering the high
impact of events like heat waves or cold spells.

We have seen that by applying EVT and LDT we encounter similar problems or diffi-
culties, which are mostly caused by correlations, finite data size, and convergence be-
haviour. Accordingly, we use similar strategies to deal with them. As mentioned above,
in case of sufficiently fast decaying correlations, and if our system fulfils the chaotic
hypothesis, the asymptotic limit exists, but it is more difficult to be reached. In the case
of the BM method, we need longer blocks to guarantee for the independence of block
maxima, in the case of LDT, we have to choose larger averaging block lengths to have
approximately uncorrelated averages. When applying the POT method, things can be-
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come even more complicated: declustering might be necessary to get rid of correlated
threshold exceedances.

When applying asymptotic theories, it is of utmost importance to verify whether the
asymptotic regime has been reached, otherwise the results can be erroneous. In the case
of the BM method, this is equivalent with searching for an optimal block size, at which
the shape parameter estimate corresponds to the theoretical value, it is stable against
further increase of block size, and the estimation uncertainty is as small as possible.
In the case of the POT method, one proceeds in an analogous way, but here the shape
parameter is investigated as function of increasing threshold values. In our study, the
theoretical shape parameter is known, thus we can estimate the actual bias. If this is not
the case, one can rely only on verifying the stability of the shape parameter. Thus, the
optimal block size (threshold) has to be large (high) enough, to allow for the asymptotic
limit to hold, but at the same time small (low) enough, to limit uncertainty. Similarly,
also in case of applying LDT, the optimal averaging block length has to be large enough,
for the LDP to hold, but also small enough, so that the range of averaged values does
not become too narrow as an effect of increasing averaging block lengths. Summing
up, the optimal level of estimation when applying an asymptotic theory, is the onset of the
asymptotic regime.

The speed of convergence to the asymptotic regime depends usually on the selected
observable and the properties of the system. We have shown that, in case of a high
dimensional system with a high degree of chaoticity, the convergence of the GEV and
GPD shape parameters is monotonic, which can be related to the fact that we manage
to collect more detailed information on the local properties of the attractor near the
point of absolute maximum of the observable, and thus explore all the dimensions of
the attractor. However, the convergence is very slow, which has to do probably with the
high number of dimensions one has to explore. In the framework of EVT, theoretical
studies show that the speed of convergence to the limiting distribution depends on
the type of parent distribution (Leadbetter et al., 1983), and, as we have seen, it is
additionally slowed down by correlations. In this work we experience similar effects
in the case of LDT, where correlations and the skewness of the original distribution
seem to slow down the convergence. Although we consider here different systems and
different observables, it is still worth to mention the different scales at which the two
limit laws converge in our work. Whereas the averages seem to converge for averaging
block lengths of order of 10τ, with τ representing the integrated auto-correlation, the
block maxima converge for block sizes larger then O(104)τ. We assume that the slower
convergence in case of EVT has to do, on the one hand, with a more agitated, more
noisy, phase space structure considering the original observables, which makes it very
difficult to explore every dimension, on the other hand, with the focus on very close and
thus extremely rare recurrences in phase space.
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6 Conclusions and outlook

We would like to point out that, although the above presented results and the related
conclusions are quite theoretical, they are still relevant for applications related, for ex-
ample, to climate risk assessment. We summarise the most important results from a
practical perspective:

• The convergence to the limiting GEV and GPD distributions is slow, suggesting
that customary choices like yearly maxima are not always the best option for an
accurate modelling of extremes. If the estimated shape parameter is different from
the asymptotic value, one has to be extremely careful especially in case of estimat-
ing events with long return times, because these can be over- or underestimated.
We show that return levels with relatively short return periods can be stable, even
though the shape parameter is still slightly changing with increasing block size (or
threshold). However, the longer the return period, the more difficult it is to obtain
stable return level estimates.

• Our results also show that significance tests, like the Kolmogorov-Smirnov test,
are merely an indicator of the fit quality, but they do not show whether the con-
vergence to the asymptotic GEV or GPD distributions is reached or not. Thus,
once again, care is needed with the estimation of events with long return periods.

• In the case of LDT, we observe a significantly faster convergence than for EVT.
Therefore, we believe that LDT can be an adequate and powerful method to anal-
yse return times of persistent extreme events - like heat waves, cold spells, or
droughts - and the eventual modification of their statistics due to climate change.
However, this work is among the first ones in this direction, thus future studies are
needed to improve the methodology, especially regarding applications to realistic
data.

• We find a connection between properties of temporal and spatial (as well as spatio-
temporal) averages by eliminating the effect of correlations in the computation
of the rate functions. This relation is extremely important also from a practical
perspective, because it allows for obtaining spatial characteristics from temporal
data, and vice-versa. Additionally, we define a measure, which expresses how
difficult it actually is to obtain the space-time connection. This measure, which
we call scale velocity Uτ, is a fraction of the spatial and temporal integrated auto-
correlation, thus it is related to the anisotropy between space and time.

Since the essence of scientific development is asking (and answering) questions, we fin-
ish this thesis with a few questions, which hint at possible directions for future studies.
These questions concentrate around two main ones: 1) Can we find similar results in
other, more realistic systems? 2) What is the connection between pre-asymptotic non-
universality and asymptotic universality?
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It would be very appealing to find out whether the results found in this thesis apply also
in case of more realistic data, for example based on realistic climate model simulations or
observations. Especially, the theory of LD could be easier to apply due to the apparently
faster convergence. Thus, the next possible step would be to check whether one finds
similar space-time asymptotic universality of the re-normalised rate functions together
with the non-universality on intermediate spatial or temporal averaging scales in Large
Eddy Simulations.

While asymptotic theories provide powerful results if the asymptotic regime is reached,
they do not offer information about pre-asymptotic levels, where the effect of correla-
tions and memory is still important. However, pre-asymptotic scales are the ones where
temporal evolution takes place, and thus they are more comprehensible and considered
to be more relevant for human individuals or societies. Pre-asymptotic non-universality
is a big challenge for theoretical approaches, although some attempts have been made,
for example, in the context of penultimate EVT (Cohen, 1982; Gomes and de Haan,
1999). In this work, we have seen that one can capture persistent events by averaging
in two dimensions, space and time. By choosing a spatial averaging length on interme-
diate scales and then obtaining a LDP in time, one can analyse properties of persistent
events. This strategy, i.e. computing spatial averages over intermediate scales and then
analysing their extremes over time, is similarly applicable also in case of EVT. However,
some opened questions still remain, for example: Can we describe the path leading from
the phase space of a correlated observable to the one of the coarse grained observable
in the asymptotic regime, and, even more relevant, can we follow this path also in the
opposite direction in some cases? The answer to this question is extremely important
to several sub-fields of climate modelling, like parametrisations or downscaling, thus
depicts an exciting challenge for future studies.
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Colloque consacré à la théorie des probabilités, Hermann, Paris, volume 3, 2–23.

Davison, A. C. and D. V. Hinkley, 1997: Bootstrap Methods and Their Applications. Cam-
bridge University Press, Cambridge, iSBN 0-521-57391-2.
URL http://statwww.epfl.ch/davison/BMA/

Davison, A. C. and R. L. Smith, 1990: Models for exceedances over high thresholds. J. R.
Statist. Soc. B, 52, 393–442.

De Cruz, L., S. Schubert, J. Demaeyer, V. Lucarini, and S. Vannitsem, 2018: Exploring the
Lyapunov instability properties of high-dimensional atmospheric and climate models.
Nonlin. Processes Geophys., 2018, 387412.

Deidda, R., 2000: Rainfall downscaling in a space-time multifractal framework. Water
Resources Research, 36, 1779–1794.

den Hollander, F., 2000: Large Deviations. American Mathematical Society.

Donsker, M. and S. Varadhan, 1975a: Asymptotic evaluation of certain Markov process
expectations for large time. I. Comm. Pure Appl. Math., 28, 1–47.

— 1975b: Asymptotic evaluation of certain Markov process expectations for large time.
II. Comm. Pure Appl. Math., 28, 279–301.

— 1976: Asymptotic evaluation of certain Markov process expectations for large time.
III. Comm. Pure Appl. Math., 29, 389–461.

— 1983: Asymptotic evaluation of certain Markov process expectations for large time.
IV. Comm. Pure Appl. Math., 36, 183–212.

Easterling, D., G. Meehl, C. Parmesan, S. Changnon, T. Karl, and L. Mearns, 2000:
Climate extremes: Observations, modeling, and impacts. Science, 289, 2068–2074.

Eckmann, J.-P. and D. Ruelle, 1985: Ergodic theory of chaos and strange attractors.
Reviews of Modern Physics, 57, 617–656.

Ellis, R., 1984: Large deviations for a general class of random vectors. Ann. Probab., 12,
1–12.

Fang, J.-Q. and G. Liu, 1992: Relationship between climatic change and the nomadic
southward migrations in eastern asia during historical times. Climatic Change, 22, 151–

ii

http://statwww.epfl.ch/davison/BMA/


References

168, doi:10.1007/BF00142964.
URL https://doi.org/10.1007/BF00142964

Faranda, D., V. Lucarini, G. Turchetti, and S. Vaienti, 2011: Numerical convergence of the
block-maxima approach to the Generalized Extreme Value distribution. J. Stat. Phys.,
145, 1156–1180.

Faranda, D., G. Messori, and P. Yiou, 2017: Dynamical proxies of North Atlantic pre-
dictability and extremes. Scientific Reports, 7, 41278.

Felici, M., V. Lucarini, A. Speranza, and R. Vitolo, 2007a: Extreme value statistics of the
total energy in an intermediate-complexity model of the midlatitude atmospheric jet.
Part I: Stationary case. Journal of Atmospheric Sciences, 64, 2137–2158.

Ferro, C. A. T. and J. Segers, 2003a: Inference for clusters of extreme values. J. R. Statist.
Soc. B, 65, 545–556.

— 2003b: Inference for clusters of extreme values. J. R. Statist. Soc. B, 65, 545–556.

Fisher, R. A. and L. H. C. Tippett, 1928: Limiting forms of the frequency distribution of
the largest or smallest member of a sample. Proceedings of the Cambridge Philosophical
Society, 24, 180–190.

Fraedrich, K., H. Jansen, E. Kirk, U. Luksch, and F. Lunkeit, 2005a: The planet simulator:
Towards a user friendly model. Meteorologische Zeitschrift, 44, 299–304.

Fraedrich, K., E. Kirk, U. Luksch, and F. Lunkeit, 2005b: The portable university model
of the atmosphere (PUMA): Storm track dynamics and low-frequency variability. Me-
teorologische Zeitschrift, 14, 735–745.

Fraedrich, K., E. Kirk, and F. Lunkeit, 2009: PUMA Portable University Model of the
Atmosphere. Technical report, World Data Center for Climate (WDCC) at DKRZ.
URL https://doi.org/10.2312/WDCC/DKRZ_Report_No16

Franzke, C., A. J. Majda, and E. Vanden-Eijnden, 2005: Low-order stochastic mode re-
duction for a realistic barotropic model climate. Journal of the Atmospheric Sciences, 62,
1722–1745.

Frisius, T., 1998: A mechanism for the barotropic equilibration of baroclinic waves. Jour-
nal of Atmospheric Sciences, 55, 2918–2936.

functions written by Janet E. Heffernan with R port, O. S. and R. documentation pro-
vided by Alec G. Stephenson., 2016: ismev: An Introduction to Statistical Modeling of
Extreme Values. R package version 1.41.
URL https://CRAN.R-project.org/package=ismev

iii

https://doi.org/10.1007/BF00142964
https://doi.org/10.2312/WDCC/DKRZ_Report_No16
https://CRAN.R-project.org/package=ismev


References

Gallavotti, G., 2014: Nonequilibrium and irreversibility. Springer.

Gallavotti, G. and E. Cohen, 1995: Dynamical ensembles in stationary states. Journal of
Statistical Physics, 80, 931–970.
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