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ON THE SIZE-RAMSEY NUMBER OF GRID GRAPHS

DENNIS CLEMENS, MEYSAM MIRALAEI, DAMIAN REDING, MATHIAS SCHACHT,

AND ANUSCH TARAZ

Abstract. The size-Ramsey number of a graph F is the smallest number of edges in a

graph G with the Ramsey property for F , that is, with the property that any 2-colouring

of the edges of G contains a monochromatic copy of F . We prove that the size-Ramsey

number of the grid graph on n ˆ n vertices is bounded from above by n3`op1q.

§1. Introduction and Results

For two graphs F and G, we say that G is Ramsey for F and write G ÝÑ F , if every

2-colouring of the edges of G yields a monochromatic copy of F . Erdős, Faudree, Rousseau,

and Schelp [12] defined the size-Ramsey number of r̂pF q to be the smallest integer m such

that there exists a graph G with m edges that is Ramsey for F , i.e.,

r̂pF q “ mintepGq : G ÝÑ F u .

Addressing a question posed by Erdős [11], Beck [3] proved that the size-Ramsey number of

the path Pn is linear in n by means of a probabilistic construction and Alon and Chung [1]

later gave an explicit construction. Beck’s proof gave r̂pPnq ď 900n and this upper bound

was improved several times [5, 9, 23] by simplified and refined probabilistic constructions.

Currently, the best known upper bound of the form r̂pPnq ď 74n is due to Dudek and

Prałat [10]. The size-Ramsey number was studied for other graphs than paths including

cycles [3,4,16,18], powers of paths and cycles [6], and trees of bounded degree [3,4,8,13,15].

This line of research was inspired by a question of Beck [4], whether the size-Ramsey

number grows linearly in the number of vertices for graphs of bounded degree. In fact,

for the graph classes mentioned so far this question was answered affirmatively. However,

Rödl and Szemerédi [25] gave an example of a sequence of 3-regular, n-vertex graphs

pFnqnPN for which they could establish

r̂pFnq ě n logc n

for some c ą 0.
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Moreover, they conjectured that for every ∆ ě 3 there exists an ε ą 0 such that for

every sufficiently large n we have

n1`ε ď max r̂pF q ď n2´ε ,

where the maximum is taken over all n-vertex graphs F with maximum degree ∆pF q ď ∆.

The upper bound of this conjecture was confirmed by Kohayakawa, Rödl, Schacht, and

Szemerédi [22] for any ε ă 1{∆. The proof was also based on a probabilistic construction.

More precisely, it was shown in [22] that for appropriate constants a ą 0 and C ą 1

and p “ Cplog n{nq1{∆ the random graph Gpn, pq asymptotically almost surely has the

property Gpn, pq ÝÑ F for every an-vertex graph F with maximum degree at most ∆.

We remark that the edge probability p is chosen in such a way that any set of ∆ vertices

in Gpn, pq has some joint neighbours, which allows for a “greedy type” embedding strategy

for a graph F with maximum degree ∆. Recently, Conlon and Nenadov [7] managed to

overcome this natural barrier for triangle-free, graphs F on n vertices with ∆pF q ď ∆ and

∆ ě 5, by showing that

r̂pF q “ Opn2´ 1
∆´0.5 log

1
∆´0.5 nq . (1.1)

We focus on 2-dimensional grids. The s ˆ t grid graph Gs,t is defined on the vertex

set rss ˆ rts with edges uv present, whenever u and v differ in exactly one coordinate by

exactly one. For the square grid Gn,n on n2 vertices the upper bounds arising from [22]

and (1.1) are of the order n7{2`op1q and n24{7`op1q, respectively, if we choose to ignore the

restriction ∆ ě 5 in (1.1) for the moment. Our main result improves these upper bounds

to n3`op1q (see Corollary 1.2).

Theorem 1.1. For all α1 ą 0 there exist c ą 0 and C ě 1 such that for p ě Cplog n{nq1{2

a.a.s. G P Gpn, pq satisfies the following. Every subgraph H Ď G with epHq ě α1epGq

contains a copy of Gs,s for any s ď c
p
.

A simple first moment calculation shows that already for p “ cn´ 1
2 with c ă 1 the

random graph Gpn, pq asymptotically almost surely does not contain a square grid of size

logarithmic in n, which shows that the condition on p is almost optimal. Theorem 1.1 has

the following immediate consequence for the size-Ramsey number of square grids.

Corollary 1.2. The size-Ramsey number of the n ˆ n square grid satisfies r̂pGn,nq ď

n3`op1q.

There is not much evidence that n3 is the right order of magnitude for r̂pGn,nq. For

the sake of a simpler presentation, we therefore have made no attempt to strengthen

Theorem 1.1 in such a way that would allow us to remove the op1q term in the upper
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bound in Corollary 1.2. However, it seems very likely that a more careful analysis in the

proof of Theorem 1.1 would allow such an improvement.

§2. Preliminaries

For a graph G, we write V pGq and EpGq and epGq for the vertex set, edge set and the

number of edges of G, respectively. Given v P V pGq, by NGpvq we mean the set of all

neighbours of v and set dGpvq “ |NGpvq|. We use the standard notation ∆pGq and δpGq for

the maximum and minimum degree of vertices in G, respectively. For a vertex v P V pGq

and a subset X Ď V pGq, let NGpv, Xq denote the set of neighbours of v in X. Given a

subset X Ď V pGq, we let GrXs be the subgraph of G that is induced by X. We write G´X

for GrV pGq r Xs. For subsets X, Y Ď V pGq, we define GrX, Y s to be the subgraph of G

on vertex set X Y Y with edges xy where x P X and y P Y . We denote by EGpX, Y q its

edge set and set eGpX, Y q :“ |EGpX, Y q|.

For real numbers x, y, δ ą 0, we write x “ p1 ˘ δqy if p1 ´ δqy ă x ă p1 ` δqy, and for

every integer k we denote by rks the set of the first k positive integers t1, . . . , ku.

The binomial random graph Gpn, pq is defined on the vertex set rns that is obtained by

pairwise independently including each of the possible
`

n

2

˘

edges with probability p “ ppnq.

We say that an event holds asymptotically almost surely (abbreviated a.a.s.) in Gpn, pq,

if its probability tends to 1 as n tends to infinity.

The proof of Theorem 1.1 is based on the regularity lemma for subgraphs of sparse

random graphs (see Theorem 2.2 below), which was introduced by Kohayakawa and

Rödl [19, 20] and below we introduce the required notation. Let H “ pV, Eq be a graph

and let p P p0, 1s be given. Suppose that K ą 1 and η ą 0. For nonempty subsets X,

Y Ď V , we consider the p-density of the pair pX, Y q defined by

dH,ppX, Y q “
eHpX, Y q

p|X||Y |
.

We say that H is a pη, Kq-bounded with respect to the density p if for all pairwise disjoint

sets X, Y Ď V with |X|, |Y | ě η|V |, we have

eHpX, Y q ď Kp|X||Y | .

Given ε ą 0 and disjoint nonempty subsets X, Y Ď V , we say that the pair pX, Y q is

pε, pq-regular if for all X 1 Ď X and Y 1 Ď Y satisfying

|X 1| ě ε|X| and |Y 1| ě ε|Y |,

we have
ˇ

ˇdH,ppX, Y q ´ dH,ppX 1, Y 1q
ˇ

ˇ ď ε.
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Note that for p “ 1 we recover the well-known definition of ε-regular pairs in the context

of Szemerédi’s regularity lemma [26].

Definition 2.1. Given a real number ε ą 0, a positive integer t and a graph H “ pV, Eq,

we say that a partition tViu
t
i“0 of V is pε, pq-regular if

(i ) |V0| ď ε|V |,

(ii ) |V1| “ ¨ ¨ ¨ “ |Vt|,

(iii ) all but at most ε
`

t

2

˘

pairs pVi, Vjq with 1 ď i ă j ď t are pε, pq-regular.

The vertex class V0 is referred to as the exceptional set.

The following is a variant of the Szemerédi Regularity Lemma [26] for sparse graphs.

Theorem 2.2 (Sparse Regularity Lemma). For any ε ą 0, K ą 1, and t0 ě 1, there

exist constants T0, η ą 0, and N0 such that any graph H that has least N0 vertices and

that is pη, Kq-bounded with respect to some density p P p0, 1s, admits an pε, pq-regular

partition tViu
t
i“0 of its vertex set with t0 ď t ď T0. �

Considering the random graph G P Gpn, pq it easily follows from Chernoff’s inequality

that a.a.s. G is pη, Kq-bounded with respect to p for any η ą 0 and K ą 1 as long

as p " n´1. In such an event, every subgraph H Ď G is by definition again pη, Kq-

bounded with respect to p and consequently it admits a regular partition. We shall employ

the following standard version of Chernoff’s inequality (see, e.g., [17, Corollary 2.3]) on

the deviation of the binomial random variable Binpn, pq.

Theorem 2.3 (Chernoff’s inequality). For every binomial random variable X „ Binpn, pq

and every δ P p0, 3{2s we have P
`

X ‰ p1 ˘ δqErXs
˘

ă 2 exp
`

´ δ2
ErXs{3

˘

. �

We shall also use the fact that pε, pq-regularity is typically inherited in small subsets,

which in our setting are given by the neighbourhoods of vertices. For the classical notion

of (dense) ε-regular pairs this was essentially observed by Duke and Rödl [24] and for

sparse regular pairs it can be found in [14, 20]. More precisely, we shall employ a result

from [14] governing the hereditary nature of pε, α, pq-denseness (or one sided-regularity).

Definition 2.4. Let α, ε ą 0 and p P p0, 1s be given and let H “ pV, Eq be a graph. For

disjoint, nonempty subsets X, Y Ď V , we say that the pair pX, Y q is pε, α, pq-dense if for

all subsets X 1 Ď X and Y 1 Ď Y with |X 1| ě ε|X| and |Y 1| ě ε|Y |, we have

dH,ppX 1, Y 1q ě α ´ ε.

It follows immediately from its definition that pε, α, pq-denseness is inherited by large

sets, i.e. that for an pε, α, pq-dense pair pX, Y q and arbitrary subsets X 1 Ď X and Y 1 Ď Y
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with |X 1| ě µ|X| and |Y 1| ě µ|Y | where µ ě ε the pair pX 1, Y 1q is pε{µ, α, pq-dense. The

following result from [14, Corollary 3.8] states that with exponentially small error proba-

bility this denseness property is even inherited by randomly chosen subsets of significantly

smaller size.

Theorem 2.5. Given α, β ą 0 and ε1 ą 0, there exist constants ε0 “ ε0pα, β, ε1q ą

0 and L “ Lpα, ε1q such that for every ε P p0, ε0s and p P p0, 1s, every pε, α, pq-dense

pair pX, Y q in a graph H has the following property: the number of pairs pX 1, Y 1q of sets

with X 1 Ď X and Y 1 Ď Y with |X 1| “ w1 ě L{p and |Y 1| “ w2 ě L{p such that the

pair pX 1, Y 1q is not pε1, α, pq-dense is at most βmintw1,w2u
`

|X|
w1

˘`

|Y |
w2

˘

. �

Moreover, we will use the fact that enlarging the sets of some dense pair by a few vertices

may result in a pair that again is dense, but maybe with slightly weaker parameters (see,

e.g., [2, Lemma 2.10]).

Lemma 2.6. Let α ą 0, p P p0, 1q and ε P p0, 1
10

q. Let H “ pV, Eq be a graph and let U 1,

W 1 Ď V be disjoint nonempty sets such that pU 1, W 1q is pε, α, pq-dense in H. If U Ě U 1

and W Ě W 1 are disjoint with |U | ď
`

1 ` ε3

10

˘

|U 1| and |W | ď
`

1 ` ε3

10

˘

|W 1|, then pU, W q is

p2ε, α, pq-dense in H. �

§3. Properties of random graphs

For the proof of Theorem 1.1 we observe a few properties that asymptotically almost

surely are satisfied by the random graph.

Lemma 3.1. For every δ ą 0 there is some C ą 1 such that for p “ ppnq ą Cplogpnq{nq1{2

a.a.s. G “ pV, Eq P Gpn, pq satisfies the following properties:

(i ) Every vertex v P V has degree dGpvq “ p1 ˘ δqpn and the joint neighbourhood of

every pair of distinct vertices u, w P V satisfies |NGpuq X NGpwq| “ p1 ˘ δqp2n.

(ii ) For every vertex v P V and every subset X Ď NGpvq with |X| ě δpn, there are at

most 7
δ3p

vertices y P V such that |NGpyq X X| ą p1 ` δqp|X|.

(iii ) For every subset U Ď V with |U | ě δn, there are at most 7
δ3p

vertices y P V such

that |NGpyq X U | ą p1 ` δqp|U |.

(iv ) For every pair of distinct vertices u, w P V and all subsets U Ď NGpuq, W Ď NGpwq

with |U | ě δpn and |W | ě 3δ´3pn{ log n, the number eGpU, W q of edges in the

induced bipartite graph GrU, W s satisfies eGpU, W q “ p1 ˘ δqp|U ||W |.

(v ) For every pair of disjoint sets of vertices A, B Ď V with |A|, |B| ě δn we have

eGpAq “ p1 ˘ δqp
`

|A|
2

˘

and eGpA, Bq “ p1 ˘ δqp|A||B|.
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(vi ) For all distinct vertices u, v P V and all disjoint subsets X Ď NGpuq, Y Ď NGpvq

and disjoint subsets A, B Ď V satisfying |X|, |Y | ě δpn and |A|, |B| ě δn, the

number of 4-cycles xyabx with x P X, y P Y , a P A and b P B is bounded from

above by 2p4|X||Y ||A||B|.

Proof. Without loss of generality we may assume that p1 ` δq4 ` δ ă 2. We set C “ 7{δ3

and let p “ ppnq ą Cplogpnq{nq1{2.

By a standard application of Chernoff’s inequality (Theorem 2.3) combined with the

union bound it follows that G P Gpn, pq satisfies (i ) with probability 1 ´ op1q.

For the proof of part (ii ), consider subsets X, Y Ď V with |X| “ m ě δpn and

|Y | “ r 7
δ3p

s. It follows from Chernoff’s inequality (Theorem 2.3) that

P
`

|NGpyq X X| ą p1 ` δqp|X| for every y P Y
˘

ď P peGpX, Y q ‰ p1 ˘ δqEreGpX, Y qsq

ă 2 exp
`

´ δ2p|X||Y |{3
˘

ď 2 exp
`

´ 7|X|
3δ

˘

.

Considering all choices of v, Y , and X and imposing that X Ď NGpvq we arrive at

Ppproperty (ii ) failsq ď n ¨ n
r 7

δ3p
s

¨
ÿ

měδpn

ˆ

n

m

˙

pm ¨ 2 exp
`

´ 7m
3δ

˘

ď 2n
2` 7

δ3p ¨
ÿ

m

´epn

m

¯m

e´ 7m
3δ

ď 2n
2` 7

δ3p ¨
ÿ

m

epne´ 7
3δ

δpn

where we used the fact that x ÞÑ pa{xqx attains its maximum at x “ a{e. Consequently,

in view of the choice of C and p we obtain

Ppproperty (ii ) failsq ď 2n
2` 7

δ3p e´ 4
3

pn “ op1q .

This concludes the proof of part (ii ).

Part (iii ) follows by a similar argument and we omit the details here.

For the proof of part (iv ) we consider subsets U , W Ď V satisfying |U | ě δpn and

|W | ě 3δ´3pn{ log n and vertices u, w P V . Applying Chernoff’s inequality (Theorem 2.3)

we conclude

P
`

eGpU, W q ‰ p1˘δqp|U ||W | and U Ď NGpuq, W Ď NGpwq
˘

ď 2p|U |`|W | exp
`

´ δ2

3
p|U ||W |

˘

.
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Considering all choices of u, w, U , and W , the union bound yields

Ppproperty (iv ) failsq ď n2
ÿ

mU ěδpn

ˆ

n

mU

˙

ÿ

mW ě 3δ´3pn

log n

ˆ

n

mW

˙

2pmU `mW exp
`

´ δ2

3
pmU mW

˘

ď 2n2
ÿ

mU

ÿ

mW

ˆ

epn

mU

˙mU
ˆ

epn

mW

˙mW

exp
`

´ δ2

3
pmUmW

˘

.

Appealing again to the fact that x ÞÑ pa{xqx attains its maximum at x “ a{e and the

choice of C and p then gives

Ppproperty (iv ) failsq ď 2n2
ÿ

mU

ÿ

mW

e2pne´ δ2

3
p¨δpn¨3δ´3pn{ log n

“ 2n4
´

e2´p2n{ log n
¯pn

ď 2n4
´

e2´C2
¯pn

“ op1q ,

which concludes the proof of part (iv ).

Part (v ) again is proven by a standard application of Chernoff’s inequality and we omit

the proof.

Part (vi ) is, in fact, a deterministic consequence of properties (i )–(iv ), i.e., we will show

that every n-vertex graph G “ pV, Eq satisfying (i )–(iv ) enjoys property (vi ), provided n

is sufficiently large.

Given u, v, X, Y , A and B, we consider the set X 1 Ď X of exceptional vertices x1 P X

for which

ˇ

ˇNGpx1q X Y
ˇ

ˇ ą p1 ` δqp|Y | or
ˇ

ˇNGpx1q X B
ˇ

ˇ ą p1 ` δqp|B| .

Similarly, let Y 1 Ď Y be those vertices y1 P Y with too many neighbours in A, that is,

ˇ

ˇNGpy1q X A
ˇ

ˇ ą p1 ` δqp|A| .

It follows from (iv ) that the number of 4-cycles xyabx with x P X rX 1, y P Y rY 1, a P A

and b P B is bounded from above by

|X r X 1| ¨ p1 ` δqp|Y | ¨ p1 ` δqp ¨ p1 ` δqp|A| ¨ p1 ` δqp|B| ď p1 ` δq4p4|X||Y ||A||B| .

Indeed, fixing an edge xy P EGpX r X 1, Y r Y 1q, the number of which is bounded from

above by |X r X 1| ¨ p1 ` δqp|Y |, we find at most p1 ` δqp ¨ |NGpxq X B| ¨ |NGpyq X A| such

cycles containing xy.

Consequently, it suffices to bound the number of 4-cycles passing through X 1 or Y 1

by δp4|X||Y ||A||B| to complete the proof. To this purpose we note that properties (ii )
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and (iii ) ensure

|X 1| ď
14

δ3p
and |Y 1| ď

7

δ3p
. (3.1)

Moreover, (i ) implies that the number of 4-cycles passing through X 1, Y , A and B is at

most

|X 1| ¨ p1 ` δqp2n ¨ p1 ` δqpn ¨ p1 ` δqp2n

as any vertex x1 P X 1 has at most p1 ` δqp2n joint neighbours y with v in Y and at most

p1 ` δqpn neighbours b in B and y and b have at most p1 ` δqp2n joint neighbours in A.

Similarly, there are at most p1 ` δq3p5n3|Y 1| such 4-cycles passing through Y 1, and hence

it follows from (3.1) that there are at most

21

δ3p
p1 ` δq3p5n3 “

21

δ3
p1 ` δq3p4n3 ď

21

δ3
p1 ` δq3 1

δ4p2n
p4|X||Y ||A||B|

4-cycles passing through X 1 or Y 1, where we used |A|, |B| ě δn and |X|, |Y | ě δpn for

the last inequality. Noting that p2n Ñ 8 as n Ñ 8 shows that there are indeed at

most δp4|X||Y ||A||B| such 4-cycles passing through X 1 or Y 1, which concludes the proof

of part (vi ). �

The following lemma asserts that a.a.s. in Gpn, pq, given a sufficiently large bipartite

pε, α, pq-dense subgraph H with vertex set pA, Bq, say, pε1, α, pq-denseness is inherited by

most of the pairs pNHpx, Bq, NHpy, Aqq with xy P EHpA, Bq, where ε depends on ε1.

Lemma 3.2. For every γ, α, ε1 ą 0 there exists ε ą 0 with the property that for every

η ą 0 there exists C ě 1 such that for p ě Cplogpnq{nq1{2 a.a.s. G “ pV, Eq P Gpn, pq

satisfies the following.

Suppose H Ď G is a bipartite subgraph of G with vertex set V pHq “ A Ÿ B such that

(i ) ηn ď |A| ď |B| ď 2|A|, and pA, BqH is pε, α, pq-dense,

(ii ) for every x P A and y P B we have

|NHpy, Aq| ě αp |A| and |NHpx, Bq| ě αp |B| .

If M is a matching in H such that for every edge xy P M the pair

pNHpy, Aq, NHpx, BqqH

is not pε1, α, pq-dense, then |M | ă γ|B|.

Proof. Let γ, α and ε1 be given. Set

δ “
pε1q3

100
, ε2 “

ε1

4
and β “

ˆ

1

3

˙
8

αδγ ´ α

2e

¯3
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and let ε0 and L be given by Theorem 2.5 applied with α, β and ε2. We define

ε “
1

2
mintε0, αu

and for given η ą 0 we set

C “

ˆ

4

η

˙
1
2

.

Finally, we let n be sufficiently large

Suppose that H Ď G is a bipartite subgraph satisfying conditions piq and piiq. Assume

that there exists a matching M of size at least γ|B| in H such that for all edges xy P M the

pair pNHpy, Aq, NHpx, BqqH is not pε1, α, pq-dense. Then, there exists a matching M 1 Ă M

of size |M 1| ě δ
4
|M | such that |A r V pM 1q| ě p1 ´ δq|A|, |B r V pM 1q| ě p1 ´ δq|B|, and

such that for all xy P M 1 we have

|NHpy, A r V pM 1qq| ě p1 ´ δq|NHpy, Aq| and |NHpx, B r V pM 1qq| ě p1 ´ δq|NHpx, Bq| .

Indeed, choosing such a matching randomly by including every edge of M independently

with probability δ
2

into M 1, a simple application of Chernoff’s inequality (using Theo-

rem 2.3) shows that the above occurs with probability 1 ´ op1q.

Let A1 :“ ArV pM 1q and B1 :“ BrV pM 1q. Then pA1, B1qH is p2ε, α, pq-dense. Moreover,

applying Lemma 2.6, for every xy P M 1 the pair pNHpy, A1q, NHpx, B1qqH is not pε1{2, α, pq-

dense.

Now, fix an edge xy P M 1 such that pNHpy, A1q, NHpx, B1qqH is not pε1{2, α, pq-dense. It

can be verified that there are subsets A1
y Ď NHpy, A1q and B1

x Ď NHpx, B1q of size precisely
ε1

4
αp|A| and ε1

4
αp|B| respectively, such that dH,ppA1

y, B1
xq ă α ´ ε1{2. Now let Ay and Bx

be such that A1
y Ď Ay Ď NHpy, A1q and B1

x Ď Bx Ď NHpx, B1q with |Ay| “ 1
2
αp|A| and

|Bx| “ 1
2
αp|B|. Then clearly pAy, Bxq is not pε2, α, pq-dense. We may thus find a family

tpAy, Bxqq : xy P M 1u of pairs of subsets of mentioned size such that these pairs are not

pε2, α, pq-dense, although pA1, B1qH is p2ε, α, pq-dense.

We will now show that a structure consisting of a graph H , disjoint sets A1, B1, M 1 and

a family of pairs pAy, Bxq as described above is unlikely to appear in Gpn, pq.

Since pA1, B1qH has to be p2ε, α, pq-dense, we have eHpA1, B1q ě pα ´ 2εqp|A1||B1|. Thus,

we can fix both A1 and B1 along with the edges of the bipartite graph HrA1, B1s in at most

ÿ

|A1||B1|ě 1
2

ηn

ˆ

n

|A1|

˙ˆ

n

|B1|

˙

ÿ

těpα´2εqp|A1||B1|

ˆ

|A1||B1|

t

˙

ways.

Note that for n chosen sufficiently large we have

p2n ě C2 log n ě
2L

αη
.
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Moreover, owing to the assumption we have 1
2
αp|A|, 1

2
αp|B| ě αpηn

2
ě L{p. Hence we can

apply Theorem 2.5 to HrA1, B1s and infer that there are at most
„

β
1
2

αp|A|

ˆ

|A1|
1
2
αp|A|

˙ˆ

|B1|
1
2
αp|B|

˙|M 1|

ď

„

β
1
2

αp|A|

ˆ

|A|
1
2
αp|A|

˙ˆ

|B|
1
2
αp|B|

˙|M 1|

possibilities for choosing the pairs pAy, Bxq ranging over all xy P M 1, when we condition on

pA1, B1q being an p2ε, α, pq-dense pair. Combining the two above estimates we infer that

the probability of the above-described structure appearing in Gpn, pq is bounded from

above by the number of choices for M 1 (easily bounded from above by en log n) multiplied

by

ÿ

|A1||B1|ě 1
2

ηn

ˆ

n

|A1|

˙ˆ

n

|B1|

˙

ÿ

těpα´2εqp|A||B|

ˆ

|A||B|

t

˙

pt

ˆ

„

β
1
2

αp|A|

ˆ

|A|
1
2
αp|A|

˙ˆ

|B|
1
2
αp|B|

˙|M 1|

p
1
2

αpp|A|`|B|q|M 1|

ď
ÿ

|A1||B1|ě 1
2

ηn

ˆ

n

|A1|

˙ˆ

n

|B1|

˙

ÿ

těpα´2εqp|A||B|

ˆ

|A||B|ep

t

˙t

ˆ

«

β
1
2

αp|A|

ˆ

2e

α

˙
1
2

αpp|A|`|B|q
ff|M 1|

ď
ÿ

|A1|,|B1|ě 1
2

ηn

ˆ

n

|A1|

˙ˆ

n

|B1|

˙

ÿ

těpα´2εqp|A||B|

ep|A||B| ˆ

«

β
1
2

α

ˆ

2e

α

˙
3
2

α
ffp|A||M 1|

ď
ÿ

|A1||B1|ě 1
2

ηn

ˆ

n

|A1|

˙ˆ

n

|B1|

˙

ÿ

těpα´2εqp|A||B|

˜

eβ
1
2

α δ
4

γ

ˆ

2e

α

˙
3
2

α δ
4

γ
¸p|A||B|

ď n2 ¨ 22n ¨ n2 ¨
´e

3

¯n3{2

,

where in the second inequality we used the fact that the function fptq “
`

|A||B|ep{t
˘t

is

maximized at t “ p|A||B|, in the third inequality we used that |M 1| ě δ
4
|M | ě δγ

4
|B|, and

in the fourth inequality we used that β
1
8

αδγ
`

2e
α

˘
3
8

αδγ
“ 1{3 and p|A||B| ě n3{2 for large n.

We conclude that the above-mentioned probability is op1q. �

§4. Technical lemma

In this section we state and prove the main technical lemma for the proof of Theorem 1.1.

For that we will need the following definition.

Definition 4.1. Let H be a graph with disjoint vertex subsets A, B Ď V pHq and let a

set ε, α, ν of constants as well as p ą 0 be given.

(a ) An edge wz P EpHq is defined to be in RHpA, B; ε, α, pq if pNHpw, Aq, NHpz, BqqH

is pε, α, pq-dense and |NHpw, Aq| ě αp |A|, |NHpz, Bq| ě αp |B|.
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(b ) An edge wz P EpHq is defined to be in QHpA, B; ε, α, p, νq if

ˇ

ˇEH

`

NHpw, Aq, NHpz, Bq
˘

X RHpA, B; ε, α, pq
ˇ

ˇ ě p1 ´ νq
ˇ

ˇEH

`

NHpw, Aq, NHpz, Bq
˘ˇ

ˇ .

We will apply the following lemma will be applied repeatedly in the proof of the main

result presented in Section 5.

Lemma 4.2. For ε1, α, µ ą 0 with ε1 ă α
2
, there exists ε ą 0 with the property that for

all η ą 0 there exists C ą 1 such that for p ě Cplogpnq{nq1{2 a.a.s. G “ pV, Eq P Gpn, pq

satisfies the following.

Suppose H Ď G with vertex set V pHq “ X Y Y Y A Y B satisfies

(i ) X Ď NGpvq and Y Ď NGpuq for some vertices v, u P V ,

(ii ) X X Y “ ∅ and |X| , |Y | ě ηpn and |EHpX, Y q| ą α
2
p|X||Y |,

(iii ) A X B “ ∅ and ηn ď |A| ď |B| ď 2|A|, and

(iv ) pA, BqH is pε, α, pq-dense.

If |EHpX, Y q X RHpA, B; ε1, α, pq| ě p1 ´ µq|EHpX, Y q|, then

ˇ

ˇEHpX, Y q X QHpA, B; ε1, α, p, µq
ˇ

ˇ ě p1 ´ 2µq
ˇ

ˇEHpX, Y q
ˇ

ˇ .

Proof. Let ε1, α, and µ ą 0 be given. We fix the auxiliary constant

γ “
1

50
α4µ2 . (4.1)

For this choice of γ, α, and ε1 ą 0, Lemma 3.2 yields a constant ε ą 0, which in turn we

use for the intended ε for Lemma 4.2. Having fixed ε ą 0, we receive η ą 0 and applying

Lemma 3.2 with the same η yields some C 1 ą 1. Moreover, we apply Lemma 3.1 with

δ “ γη (4.2)

to obtain some C2 ą 1 and we let C be the maximum of C 1 and C2.

For p ą Cplogpnq{nq1{2 and sufficiently large n let H Ď G “ pV, Eq, where G P Gpn, pq,

and suppose V pHq “ X YY YAYB with properties (i )–(iv ) holding. To simplify notation

we set

RH “ RHpA, B; ε1, α, pq and QH “ QHpA, B; ε1, α, p, µq .

Furthermore, towards a contradiction we assume that |EHpX, Y qXRH | ě p1´µq|EHpX, Y q|,

but
ˇ

ˇEHpX, Y q X QH

ˇ

ˇ ă p1 ´ 2µq
ˇ

ˇEHpX, Y q
ˇ

ˇ .

In particular, we have

ˇ

ˇ

`

EHpX, Y q X RH

˘

r QH

ˇ

ˇ ě µ
ˇ

ˇEHpX, Y q
ˇ

ˇ

(ii )
ě µ

α

2
p|X||Y | .
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In other words, at least µα
2
p|X||Y | edges xy P EHpX, Y qrQH have the property that the

neighbourhoods NHpy, Aq and NHpx, Bq have size at least αp|A| and αp|B|, respectively,

and the pair pNHpy, Aq, NHpx, BqqH is pε1, α, pq-dense. Therefore,

ˇ

ˇ

ˇ
EH

`

NHpy, Aq, NHpx, Bq
˘

ˇ

ˇ

ˇ
ě pα ´ ε1qp

ˇ

ˇNHpy, Aq
ˇ

ˇ

ˇ

ˇNHpx, Bq
ˇ

ˇ ě
α3

2
p3|A||B| .

However, since xy R QH at least a µ-fraction of those edges are not in RH , i.e. there exists

a subset

E1
xy Ď EH

`

NHpy, Aq, NHpx, Bq
˘

r RH with
ˇ

ˇE1
xy

ˇ

ˇ ě µ
α3

2
p3|A||B| .

Now, Lemma 3.2 along with Kőnig’s theorem for matchings in bipartite graphs tells us

that there are subsets A1 Ď A and B1 Ď B with
ˇ

ˇA1 Y B1
ˇ

ˇ ď γ|B| such that A1 Y B1 is a

vertex cover for
Ť

E1
xy, where the union is taken over all xy P pEHpX, Y q X RHq r QH .

For convenience we fix some supersets A2 and B2 of size γ|B| with A1 Ď A2 Ď A and

B1 Ď B2 Ď B.

Seeing all the edges xy P
`

EHpX, Y q X RH

˘

r QH , we conclude that there are at least

1

2

ˇ

ˇ

`

EHpX, Y q X RH

˘

r QH

ˇ

ˇ ¨
ˇ

ˇE1
xy

ˇ

ˇ ě
1

2
µ

α

2
p|X||Y | ¨ µ

α3

2
p3|A||B|

(4.1)
ą 6γp4|X||Y ||A||B| (4.3)

4-cycles xyabx in H Ď G with x P X, y P Y , a P A, and b P B, where a P A1 or b P B1.

On the other hand, Lemma 3.1 (vi ) applied to X, Y , A2, and B (see also (4.2)),

asserts that there are at most 2p4|X||Y ||A2||B| such cycles passing through A1 Ď A2 and,

similarly, there are at most 2p4|X||Y ||A||B2| such cycles passing through B1 Ď B2. Owing

to |A2| “ |B2| “ γ|B| ď 2γ|A|, it follows that there are at most 6γp4|X||Y ||A||B| such

4-cycles, which contradicts (4.3) and concludes the proof. �

By a similar argument we may ignore the conditions piq and piiq in Lemma 4.2 and

consider the sets X and Y to be of order Ωpnq. This way we obtain the following version

of Lemma 4.2.

Lemma 4.3. For all ε1, α, µ ą 0, there exists ε ą 0 such that for all η ą 0 there exists

C ą 1 such that for p ě Cplog n{nq1{2 a.a.s. G “ pV, Eq P Gpn, pq satisfies the following.

Suppose H Ď G with vertex set V pHq “ X Y Y Y A Y B satisfies

(i ) X X Y “ ∅ and |X| , |Y | ě ηn and |EHpX, Y q| ą α
2
p|X||Y |,

(ii ) A X B “ ∅ and |A| , |B| ě ηn, and

(iii ) pA, BqH is pε, α, pq-dense.
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If |EHpX, Y q X RHpA, B; ε1, α, pq| ě p1 ´ µq|EHpX, Y q|, then

|EHpX, Y q X QHpA, B; ε1, α, p, µq| ě p1 ´ 2µq|EHpX, Y q|.

§5. Proof of the main Result

In this section, we prove our main result, Theorem 1.1.

Proof. The proof consists of three parts. In the first part we fix all constants needed for

the proof. In the second part we assume that G P Gpn, pq and H Ď G satisfy |V pHq| “ n

and epHq ě α1epGq, so as to find a suitable dense pair pA, Bq in H among which we aim

to embed the grid Gs,s. Here the Sparse Regularity Lemma will play a key role. In the

last part we find the embedding.

Constants. Let α1 ą 0 be given. First we define the constants µ, α and ε1 of Lemmas 4.2

and 4.3. We set

α “ α1{20, µ “ α{100 (5.1)

as well as

ε1 “ mintα{4, 1{2u (5.2)

and let ε1 ą 0 and ε2 ą 0 be as guaranteed by Lemma 4.2 and Lemma 4.3, respectively.

Further, we fix

γ “
αµ

8
. (5.3)

Applying Lemma 3.2 with γ, α, ε1 as defined yields a constant ε3 ą 0. Next we set

ε “ min
!

ε1, ε2, ε3,
α

3
, 1{4

)

, K “ 2 and t0 “
2

α
. (5.4)

Let T0, λ and N0 be the constants guaranteed by the Sparse Regularity Lemma (Theo-

rem 2.2) corresponding to ε
2
, K, and t0 given above. We set

η “
1

2T0

. (5.5)

Having ε1, ε2, ε3 ą 0 and applying Lemmas 4.2, 4.3 and 3.2 respectively with this η yields

some constants C1, C2 and C3. Moreover, let

δ “ mint1{3, µα3η2u, (5.6)

and apply Lemma 3.1 with

δ1 “ mintεαδη, λu,

obtaining some constant C4 ą 1. We set C :“ maxtC1, C2, C3, C4u. Finally, we set

c “ δαη{8 (5.7)
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and consider n to be large enough whenever necessary.

Finding a good dense pair. Let G “ pV, Eq P Gpn, pq, where p ą Cplog n{nq1{2 and n

is large enough. We condition on G satisfying the properties from Lemma 3.1. Assume

that H is an n vertex subgraph of G with epHq ě α1epGq.

We apply the Sparse Regularity Lemma (Theorem 2.2) with ε{2, K “ 2, t0, and p to H .

Note that, owing to Lemma 3.1 (v ), the graph G and hence H Ď G are pλ, Kq-bounded.

Theorem 2.2 therefore yields a constant T0 and an pε{2, pq-regular partition tViu
t
i“0 of

V pHq with t0 ď t ď T0.

By Lemma 3.1 (i ) the exceptional set touches at most 2pn|V0| ď εpn2 edges. Also by

Lemma 3.1 (v ) there are at most 2p|Vi||Vj| ď 2ppn{tq2 edges between non-regular pairs

pVi, Vjq with 1 ď i ă j ď t and inside each of the partition sets Vi there are at most

2p
`

|Vi|
2

˘

ď ppn{tq2 edges. Thus the number of edges in H both inside the partition sets and

between non-regular pairs is bounded from above by

εpn2 `
ε

2

ˆ

t

2

˙

¨ 2p
´n

t

¯2

` t ¨ p
´n

t

¯2

ă

ˆ

3

2
ε `

1

t0

˙

pn2
p5.4q

ă
α1

8
pn2 .

By (5.6) and Lemma 3.1 (v ) we have epHq ě α1epGq ě α1

4
pn2. Hence, the number of edges

lying in pε{2, pq-regular pairs is at least α1

8
pn2.

Averaging now guarantees the existence of an pε{2, pq-regular pair pVi, Vjq such that

eHpVi, Vjq ě
α1

8
pn2

`

t

2

˘ ą
α1

4
p|Vi||Vj | .

Thus, pA1, B1q :“ pVi, Vjq is pε{2, α1{4, pq-dense.

Next, we will discard vertices of too small or too large degree inside the pair pA1, B1q.

First, set

A2 :“

"

v P A1 : |NHpv, B1q| ă
α1

8
p|B1|

*

,

B2 :“

"

v P B1 : |NHpv, A1q| ă
α1

8
p|A1|

*

.

Then |A2| ď ε
2
|A1| and |B2| ď ε

2
|B1|, by the definition of pε{2, pq-regularity. Next set

A1
2 :“ tv P A1 : |NHpv, B1q| ą p1 ` δqp|B1|u ,

B1
2 :“ tv P B1 : |NHpv, A1q| ą p1 ` δqp|A1|u .

We then observe that |A1
2| ď 7

pδ1q3p
ă ε

4
|A1| for large n, by applying Lemma 3.1 (iii ) and

using that |A1| ě p1´εqn
T0

ą ηn ą δ1n by the choice of η and δ1. Similarly, |B1
2| ă ε

4
|B1|
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holds. Finally, set

A3 :“

"

v P A1 r pA2 Y A1
2q : |NHpv, B2 Y B1

2q| ě
α1

16
p|B1|

*

,

B3 :“

"

v P B1 r pB2 Y B1
2q : |NHpv, A2 Y A1

2q| ě
α1

16
p|A1|

*

.

Then, considering an arbitrary set B̃ Ą B2 Y B1
2 with |B̃| “ ε|B1| ě εηn ą δ1n, and

observing that by definition every v P A3 satisfies

|NHpv, B̃q| ě
α1

16
p|B1| ą 3p|B̃|

by the choice of ε in (5.4), Lemma 3.1 (iii ) ensures that |A3| ď 7
pδ1q3p

ă ε
4
|A1|. Analogously,

|B3| ă ε
4
|B1| holds. Now set A :“ A1 r pA2 Y A1

2 Y A3q and B :“ B1 r pB2 Y B1
2 Y B3q.

By the choice of η in (5.5) and for large enough n we have |A| ě p1 ´ εq|A1| ě ηn and

|B| ě p1 ´ εq |B1| ě ηn. Also, since pA1, B1q is pε{2, α1{4, pq-dense, the pair pA, BqH is

pε, α, pq-dense and, by the definition of A and B, we obtain that for every vertex v P A we

have

|NHpv, Bq| ě
α1

8
p|B1| ´

α1

16
p|B1| ´ |B3| ą αp|B| (5.8)

and for every vertex v P B we have |NHpv, Aq| ě αp|A|. Without loss of generality let

|A| ď |B| and note that |B| ď 2|A| holds.

Embedding Gs,s. Recall that s “ c
p
. From now on, we fix the pair pA, BqH and aim to

embed the grid Gs,s iteratively in the bipartite graph HrA, Bs. Let

RH :“ RHpA, B; ε1, α, pq and QH :“ QHpA, B; ε1, α, p, µq.

Towards this purpose, we say that a sequence of paths pP1, . . . , Ptq in H produces a copy

of Gs,t in H if |V pPiq| “ s holds for every i P rts, and if between each of the pairs pPi, Pi`1q

with i P rt´1s there exists a matching Mi in H such that
Ť

iPrts EpPiqY
Ť

iPrt´1s Mi induces

a copy of Gs,t.

We now prove the following inductively for every t P rss: there exists a sequence

pP1, . . . , Ptq of paths in HrA, Bs such that the following is true:

(P1) pP1, . . . , Ptq produces a copy of Gs,t on some vertex set S Ă A Y B,

(P2) EpPtq Ă RH X QH ,

(P3) for every v P V pPtq X A we have |NHpv, B r Sq| ě p1 ´ δq|NHpv, Bq|,

(P4) for every v P V pPtq X B we have |NHpv, A r Sq| ě p1 ´ δq|NHpv, Aq|.

Induction beginning: Since pA, BqH forms an pε, α, pq-regular pair, we have |EHpA, Bq| ě

pα ´ εqp|A||B|. In particular, we claim that

|EHpA, Bq X RH | ě p1 ´ µq|EHpA, Bq|.
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Indeed, if this were not true, we would have |EHpA, BqrRH | ą αµ
2

p|A||B|. However, as the

maximum degree satisfies ∆pHrA, Bsq ď p1`δqp maxt|A|, |B|u ă 4p|A| by Lemma 3.1 (i ),

we would then find a matching of size at least αµp|A||B|
8p|A|

ě γ|B| in EpHq r RH , which

contradicts Lemma 3.2.

Applying Lemma 4.3 (with X “ A and Y “ B) we now obtain that

|EHpA, Bq X pRH X QHq| ě p1 ´ 3µq|EHpA, Bq|.

Therefore, on average the vertices in A Y B are incident with at least

2p1 ´ 3µq|EHpA, Bq|

|A Y B|
ě

α
2
p|A|2

3|A|
ě

αηpn

6
ą

2c

p

edges from EHpA, Bq X RH X QH . Thus, we can find a path P1 with s “ c
p

vertices,

consisting of edges in RH X QH only, which gives the Properties (P1) and (P2) for t “ 1.

By (5.7) and (5.8) for every v P V pP1q X A we have

|NHpv, B r V pP1qq| ě |NHpv, Bq| ´ c{p ě p1 ´ δq|NHpv, Bq|.

Hence Property (P3) and then similarly Property (P4) follow.

Induction step: Assume we have found a sequence pP1, . . . , Ptq satisfying (P1)-(P4) with

t ă s. We aim to extend the sequence by another path Pt`1.

Let tx1, x2, . . . , xsu denote the vertices of Pt with xixi`1 P EpPtq for every i P rs ´

1s. Wiithout loss of generality, we may suppose that xi P B and xi`1 P A. Note that

pNHpxi, Aq, NHpxi`1, BqqH is pε1, α, pq-dense for every i P rs ´ 1s since xixi`1 P RH . For

every i P rss, we now consider

Ni :“ NHpxi, Aq X

˜

ď

j‰i

NHpxj , Aq

¸

,

Si :“

"

v P NHpxi, Aq : |NHpv, Sq| ą
δ

2
αp|A|

*

,

Xi :“ NHpxi, Aq r pNi Y Siq .

Note that this notation depends on whether or not xi P A or xi P B. We have defined

them on the assumption that xi P B. If xi P A, then one should replace A by B.

By the choice of c in (5.7) and applying Lemma 3.1 (i ), we have

|Ni| ď s ¨ 2p2n “ 2cpn ă
δ

2
|NHpxi, Aq| .

Considering an arbitrary set S̃ Ą S with |S̃| “ δαη
4

n ě δ1n, and observing that by definition

every v P Si satisfies

|NHpv, S̃q| ě |NHpv, Sq| ě
δ

2
αp|A| ą

δ

2
αηpn ą 2p|S̃|,
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Lemma 3.1 (iii ) together with (5.8) ensures that |Si| ď 7
pδ1q3p

ă δ
2
|NHpxi, Aq| for large

enough n. Thus,

|Xi| ě p1 ´ δq |NHpxi, Aq| .

Moreover, all the sets Xi are pairwise disjoint, the pairs pXi, Xi`1q are p2ε1, α, pq-dense for

every i P rs ´ 1s and for every v P Xi we know that

|NHpv, Bq r S| ą p1 ´ δq |NHpv, Bq|.

Therefore, Properties (P3) and (P4) will hold, once we manage to find a path Pt`1 with

one vertex from each Xi, consisting of edges from RH X QH only. Let i P rs ´ 1s. As

xixi`1 P QH , we have

|EHpNHpxi, Aq, NHpxi`1, Bqq X RH | ě p1 ´ µq|EHpNHpxi, Aq, NHpxi`1, Bqq|

and by applying Lemma 4.2 we obtain

|EHpNHpxi, Aq, NHpxi`1, Bqq X pRH X QHq| ě p1 ´ 3µq|EHpNHpxi, Aq, NHpxi`1, Bqq|.

Moreover, using that xixi`1 P RH and (5.8), we get

|EHpNHpxi, Aq, NHpxi`1, Bqq| ě pα ´ ε1qp|NHpxi, Aq||NHpxi`1, Bq|

ě
α2η

2
p2n ¨ maxt|NHpxi, Aq|, |NHpxi`1, Bq|u. (5.9)

By Lemma 3.1 (i ) every vertex in Npxi, Aq has at most 2p2n neighbours in Npxi`1, Bq,

and vice versa. Combining this with (5.9) we then know that

|EHpNHpxi, Aq, NHpxi`1, Bqq| ´ |EHpXi, Xi`1q| ď 2p2npδ|NHpxi, Aq| ` δ|NHpxi`1, Bq|q

ď 4δp2n maxt|NHpxi, Aq|, |NHpxi`1, Bq|u

ă µ|EHpNHpxi, Aq, NHpxi`1, Bqq|

owing to the choice of δ in (5.6). Thus, we conclude that many edges in EHpXi, Xi`1q

belong to RH X QH in the sense that

|EHpXi, Xi`1q X pRH X QHq| ě p1 ´ 4µq|EHpNHpxi, Aq, NHpxi`1, Bqq| . (5.10)

In order to find the desired path we now prove a slightly stronger statement: in every set

Xi at least half of its vertices can be reached from X1 via a path in RH X QH . For this

purpose, we iteratively define

X 1
i :“

$

&

%

X1 if i “ 1,
 

v P Xi : Dw P X 1
i´1 s.t. vw P RH X QH

(

if i ą 1 .
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By induction, we then show that |X 1
i| ě 1

2
|Xi| for every i P rss. Note that once this is

proven, we are done, as we can then take a path Pt`1 consisting of one vertex from every

X 1
i and edges from RH X QH only, such that all of the properties (P1)-(P4) are satisfied.

For i “ 1 there is nothing to do. So, let i ą 1 and assume for a contradiction that X̃i :“

XirX 1
i has size at least 1

2
|Xi|. By definition of X 1

i we have EHpX 1
i´1, X̃iqXpRH XQHq “ ∅

and thus

|EHpX 1
i´1, X̃iq| ď |EHpXi´1, Xiq r pRH X QHq| ď 4µ |EHpNpxi´1, Bq, Npxi, Aqq|

ď 5µp |Npxi´1, Bq| |Npxi, Aq| ,

where in the second inequality we use (5.10), and where in the last inequality we apply

Lemma 3.1 (iv ). However, as pXi´1, Xiq is p2ε1, α, pq-dense and |X 1
i´1| ě 1

2
|Xi´1| (by

induction) and also |X̃i| ě 1
2
|Xi| (by assumption), we must have

|EHpX̃i, X 1
i´1q| ě pα ´ 2ε1qp

ˇ

ˇX̃i

ˇ

ˇ

ˇ

ˇX 1
i´1

ˇ

ˇ ě
α ´ 2ε1

4
p |Xi| |Xi´1|

ě
α ´ 2ε1

4
p1 ´ δq2p |Npxi´1, Bq| |Npxi, Aq|

ą 5µp |Npxi´1, Bq| |Npxi, Aq| ,

a contradiction. Hence, |X 1
i| ě 1

2
|Xi| for every i P rss. �
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