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ON THE SIZE-RAMSEY NUMBER OF GRID GRAPHS

DENNIS CLEMENS, MEYSAM MIRALAEIL, DAMIAN REDING, MATHIAS SCHACHT,
AND ANUSCH TARAZ

ABSTRACT. The size-Ramsey number of a graph F' is the smallest number of edges in a
graph GG with the Ramsey property for F', that is, with the property that any 2-colouring

of the edges of G contains a monochromatic copy of F. We prove that the size-Ramsey

number of the grid graph on n x n vertices is bounded from above by n3*+°(),

§1. INTRODUCTION AND RESULTS

For two graphs F' and G, we say that G is Ramsey for F' and write G — F', if every
2-colouring of the edges of G yields a monochromatic copy of F'. Erdds, Faudree, Rousseau,
and Schelp [12] defined the size-Ramsey number of #(F) to be the smallest integer m such
that there exists a graph G with m edges that is Ramsey for F, i.e.,

7(F) = min{e(G): G — F}.

Addressing a question posed by Erdés [11], Beck [3] proved that the size-Ramsey number of
the path P, is linear in n by means of a probabilistic construction and Alon and Chung [1]
later gave an explicit construction. Beck’s proof gave 7(P,) < 900n and this upper bound
was improved several times [5,9,23] by simplified and refined probabilistic constructions.
Currently, the best known upper bound of the form #(P,) < 74n is due to Dudek and
Pratat [10]. The size-Ramsey number was studied for other graphs than paths including
cycles [3,4,16, 18], powers of paths and cycles [6], and trees of bounded degree [3,4,8,13,15].
This line of research was inspired by a question of Beck [4], whether the size-Ramsey
number grows linearly in the number of vertices for graphs of bounded degree. In fact,
for the graph classes mentioned so far this question was answered affirmatively. However,
Ro6dl and Szemerédi [25] gave an example of a sequence of 3-regular, n-vertex graphs
(Fy)nen for which they could establish

7(F,) = nlog‘n

for some ¢ > 0.
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Moreover, they conjectured that for every A > 3 there exists an € > 0 such that for

every sufficiently large n we have
't < max#(F) <n®°,

where the maximum is taken over all n-vertex graphs F' with maximum degree A(F') < A.
The upper bound of this conjecture was confirmed by Kohayakawa, Rodl, Schacht, and
Szemerédi [22] for any € < 1/A. The proof was also based on a probabilistic construction.
More precisely, it was shown in [22] that for appropriate constants a > 0 and C' > 1
and p = C(logn/n)"* the random graph G(n,p) asymptotically almost surely has the
property G(n,p) — F for every an-vertex graph F with maximum degree at most A.
We remark that the edge probability p is chosen in such a way that any set of A vertices
in G(n, p) has some joint neighbours, which allows for a “greedy type” embedding strategy
for a graph F' with maximum degree A. Recently, Conlon and Nenadov [7] managed to
overcome this natural barrier for triangle-free, graphs F' on n vertices with A(F) < A and
A > 5, by showing that

#(F) = O(n?> 55 log 5705 n) . (1.1)

We focus on 2-dimensional grids. The s x t grid graph Gs; is defined on the vertex
set [s] x [t] with edges uv present, whenever u and v differ in exactly one coordinate by
exactly one. For the square grid G,,,, on n? vertices the upper bounds arising from [22]
and (1.1) are of the order n”/2+°(1) and n?*7*°() | respectively, if we choose to ignore the
restriction A = 5 in (1.1) for the moment. Our main result improves these upper bounds

3+0(1) (

ton see Corollary 1.2).

Theorem 1.1. For all o/ > 0 there exist ¢ > 0 and C = 1 such that for p = C(logn/n)"/?
a.a.s. G € G(n,p) satisfies the following. Every subgraph H < G with e(H) > d'e(G)

contains a copy of G s for any s < i.

A simple first moment calculation shows that already for p = en~2 with ¢ < 1 the
random graph G(n,p) asymptotically almost surely does not contain a square grid of size
logarithmic in n, which shows that the condition on p is almost optimal. Theorem 1.1 has

the following immediate consequence for the size-Ramsey number of square grids.

Corollary 1.2. The size-Ramsey number of the n x n square grid satisfies 7(Gpn) <
n3+0(1).

There is not much evidence that n® is the right order of magnitude for #(G,,). For
the sake of a simpler presentation, we therefore have made no attempt to strengthen

Theorem 1.1 in such a way that would allow us to remove the o(1) term in the upper
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bound in Corollary 1.2. However, it seems very likely that a more careful analysis in the

proof of Theorem 1.1 would allow such an improvement.

§2. PRELIMINARIES

For a graph G, we write V(G) and E(G) and e(G) for the vertex set, edge set and the
number of edges of G, respectively. Given v € V(G), by Ng(v) we mean the set of all
neighbours of v and set dg(v) = | Ng(v)|. We use the standard notation A(G) and §(G) for
the maximum and minimum degree of vertices in G, respectively. For a vertex v € V(G)
and a subset X < V(G), let Ng(v, X) denote the set of neighbours of v in X. Given a
subset X <€ V(G), we let G[X] be the subgraph of G that is induced by X. We write G—X
for G[V(G) ~ X]. For subsets X, Y < V(G), we define G[X, Y] to be the subgraph of G
on vertex set X U Y with edges xy where x € X and y € Y. We denote by Eq(X,Y) its
edge set and set eq(X,Y) := |Eq(X,Y)|.

For real numbers z, y, 6 > 0, we write z = (1 £ 0)y if (1 — )y <z < (1 + )y, and for
every integer k we denote by [k] the set of the first k& positive integers {1,..., k}.

The binomial random graph G(n, p) is defined on the vertex set [n] that is obtained by

n
2

We say that an event holds asymptotically almost surely (abbreviated a.a.s.) in G(n,p),

pairwise independently including each of the possible ( ) edges with probability p = p(n).
if its probability tends to 1 as n tends to infinity.

The proof of Theorem 1.1 is based on the regularity lemma for subgraphs of sparse
random graphs (see Theorem 2.2 below), which was introduced by Kohayakawa and
Rodl [19,20] and below we introduce the required notation. Let H = (V, E) be a graph
and let p € (0,1] be given. Suppose that K > 1 and n > 0. For nonempty subsets X,
Y € V, we consider the p-density of the pair (X,Y") defined by
eg(X,Y)
dp,(X,Y) = W
We say that H is a (1, K)-bounded with respect to the density p if for all pairwise disjoint
sets X, Y < V with | X|, |Y]| = n|V|, we have

en(X,Y) < Kp|X[[Y].

Given € > 0 and disjoint nonempty subsets X, Y < V, we say that the pair (X,Y) is
(e,p)-regular if for all X’ € X and Y’ € Y satisfying

| X' = e|X| and [|Y'| = ¢e|Y],

we have

|dup(X,Y) = dy (X Y| <e.
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Note that for p = 1 we recover the well-known definition of e-regular pairs in the context

of Szemerédi’s regularity lemma [26].

Definition 2.1. Given a real number ¢ > 0, a positive integer t and a graph H = (V, E),
we say that a partition {V;}._, of V is (e, p)-regular if
(4) Vol < elV],
(i) Vil = - = Vi,
(éi) all but at most &(3) pairs (V;,V;) with 1 <i < j < ¢ are (e, p)-regular.

The vertex class V) is referred to as the exceptional set.
The following is a variant of the Szemerédi Regularity Lemma [26] for sparse graphs.

Theorem 2.2 (Sparse Regularity Lemma). For any ¢ > 0, K > 1, and ty > 1, there
exist constants Ty, n > 0, and Ny such that any graph H that has least Ny vertices and
that is (n, K)-bounded with respect to some density p € (0,1], admits an (e, p)-regular

partition {V;}i_, of its vertex set with ty <t < Ty. O

Considering the random graph G € G(n,p) it easily follows from Chernoff’s inequality
that a.a.s. G is (1, K)-bounded with respect to p for any n > 0 and K > 1 as long

as p » n L

In such an event, every subgraph H < G is by definition again (n, K)-
bounded with respect to p and consequently it admits a regular partition. We shall employ
the following standard version of Chernoff’s inequality (see, e.g., [17, Corollary 2.3]) on

the deviation of the binomial random variable Bin(n, p).

Theorem 2.3 (Chernoff’s inequality). For every binomial random variable X ~ Bin(n, p)
and every 6 € (0,3/2] we have P(X # (1 +§)E[X]) < 2exp (— 6*E[X]/3). O

We shall also use the fact that (e, p)-regularity is typically inherited in small subsets,
which in our setting are given by the neighbourhoods of vertices. For the classical notion
of (dense) e-regular pairs this was essentially observed by Duke and Rodl [24] and for
sparse regular pairs it can be found in [14,20]. More precisely, we shall employ a result

from [14] governing the hereditary nature of (e, a, p)-denseness (or one sided-regularity).

Definition 2.4. Let o, ¢ > 0 and p € (0, 1] be given and let H = (V, E) be a graph. For
disjoint, nonempty subsets X, Y € V| we say that the pair (X,Y) is (g, a, p)-dense if for
all subsets X' <€ X and Y’ € Y with | X'| = ¢|X| and |Y’| = ¢]Y|, we have

dH’p(X,, Y’) = o — €.

It follows immediately from its definition that (e, «, p)-denseness is inherited by large

sets, i.e. that for an (e, «, p)-dense pair (X,Y’) and arbitrary subsets X' € X and Y/ € Y
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with [ X'| = p|X| and |Y’| = p|Y| where g > € the pair (X', Y’) is (¢/u, a, p)-dense. The
following result from [14, Corollary 3.8] states that with exponentially small error proba-
bility this denseness property is even inherited by randomly chosen subsets of significantly

smaller size.

Theorem 2.5. Given o, f > 0 and € > 0, there exist constants g = eo(a, B,€") >
0 and L = L(«a,é&') such that for every e € (0,e0] and p € (0,1], every (e, c, p)-dense
pair (X,Y) in a graph H has the following property: the number of pairs (X', Y') of sets
with X' < X and Y' < Y with |X'| = wy = L/p and |Y'| = wy = L/p such that the
pair (X',Y") is not (¢/, a, p)-dense is at most ﬁmin{wl’wﬂ(m) (\Yl). O

w1 w2

Moreover, we will use the fact that enlarging the sets of some dense pair by a few vertices
may result in a pair that again is dense, but maybe with slightly weaker parameters (see,
e.g., [2, Lemma 2.10]).

Lemma 2.6. Let « > 0, pe (0,1) and € € (0,5). Let H = (V, E) be a graph and let U’,
W' < V be disjoint nonempty sets such that (U',W') is (e, a,p)-dense in H. If U 2 U’
and W 2 W' are disjoint with |U| < (1 + %)|U’| and [W| < (1+ i—z)|W’|, then (U, W) is

(2¢,a, p)-dense in H. O

§3. PROPERTIES OF RANDOM GRAPHS

For the proof of Theorem 1.1 we observe a few properties that asymptotically almost

surely are satisfied by the random graph.

Lemma 3.1. For every § > 0 there is some C' > 1 such that for p = p(n) > C(log(n)/n)/?
a.a.s. G = (V, E) € G(n,p) satisfies the following properties:

(i) Every vertex v € V has degree dg(v) = (1 + §)pn and the joint neighbourhood of
every pair of distinct vertices u, w € V satisfies [Ng(u) n Ng(w)| = (1 £ §)p?n.

(ii) For every vertex v e V and every subset X < Ng(v) with |X| = dpn, there are at
most 57717 vertices y € V' such that |[Ng(y) n X| > (1 + d)p|X]|.

(7i) For every subset U < V with |U| = on, there are at most 5T7p vertices y € V' such
that |Ng(y) nU| > (1 + 0)p|U].

(iv) For every pair of distinct vertices u,w € V' and all subsets U < Ng(u), W < Ng(w)
with |[U| = opn and |W| = 35 3pn/logn, the number eq(U, W) of edges in the
induced bipartite graph G|U, W] satisfies eq(U, W) = (1 £ 0)p|U||W]|.

(v) For every pair of disjoint sets of vertices A, B < V with |A|, |B| = dn we have
ea(A) = (1 £ 8)p(19)) and eq(A, B) = (1 £ 6)p|A||B|.
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(vi) For all distinct vertices u, v € V' and all disjoint subsets X < Ng(u), Y < Ng(v)
and disjoint subsets A, B <V satisfying |X|, |Y| = dpn and |A|, |B| = dn, the
number of 4-cycles xyabr with x € X, y €Y, a€ A and b € B is bounded from
above by 2p*| X||Y||A||B|.

Proof. Without loss of generality we may assume that (1 +6)* + 6 < 2. We set C' = 7/6°
and let p = p(n) > C(log(n)/n)"2.

By a standard application of Chernoff’s inequality (Theorem 2.3) combined with the
union bound it follows that G € G(n, p) satisfies (7) with probability 1 — o(1).

For the proof of part (ii), consider subsets X, Y < V with |X| = m > Jdpn and
Y| = [6T7p]' It follows from Chernoff’s inequality (Theorem 2.3) that

P(|Na(y) n X| > (1+6)p|X] for every y € V) < P (eq(X,Y) # (1 +6)E[eq(X,Y)])
< 2exp ( — 52p|X||Y|/3)

X1y

<26Xp(— 5

Considering all choices of v, Y, and X and imposing that X < Ng(v) we arrive at

7 n
P(property (ii) fails) < n - n/@s! . m.2exp (— I
(property (i) fails) Y (m>P xp (— 55)
< 2n2+$ Z <@>m67%

24+ 1 _T
< 2n" -Zep"e 350P7

where we used the fact that x — (a/z)” attains its maximum at z = a/e. Consequently,

in view of the choice of C' and p we obtain
P(property (ii) fails) < on?t =3 = o(1).

This concludes the proof of part (7).

Part (ii7) follows by a similar argument and we omit the details here.

For the proof of part (iv) we consider subsets U, W < V satisfying |[U| > dpn and
\W| = 36 3pn/logn and vertices u, w € V. Applying Chernoff’s inequality (Theorem 2.3)

we conclude

P(eq(U, W) # (1£8)p|U||W|and U € Ng(u), W < Ng(w)) < 2p"HWlexp (- Zp|U|[W)).
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Considering all choices of u, w, U, and W, the union bound yields

P (property (iv) fails) < n? Z ( " ) Z ( " )2me+mW exp ( - %memW)

m mw
my=opn U 36—3pn
myy = Togn

my myy
< 2n2Z Z (%) (%) exp ( — %memW) .

my mw

Appealing again to the fact that z — (a/z)* attains its maximum at x = a/e and the
choice of C' and p then gives
2 —
IP(property (iv) fails) < 2n22 Z o2Pn o= p-6pn-35~3pn/log n

my mw

=t <e2*102n/logn>pn
< 2nt (ez’cz)pn
=o(1),

which concludes the proof of part (iv).

Part (v) again is proven by a standard application of Chernoff’s inequality and we omit
the proof.

Part (vi) is, in fact, a deterministic consequence of properties (i)—(v), i.e., we will show
that every n-vertex graph G = (V| F) satisfying (7)—(iv) enjoys property (vi), provided n
is sufficiently large.

Given u, v, X, Y, A and B, we consider the set X’ € X of exceptional vertices 2’ € X
for which

|Na(z') nY| > (1+8)plY] or |Ng(z')nB|> (1+6)p|B|.
Similarly, let Y’ € Y be those vertices ¥’ € Y with too many neighbours in A, that is,
INa(y') n Al > (14 8)p|A].

It follows from (7v) that the number of 4-cycles zyabr with z € X N X', ye Y \Y' ae A
and b € B is bounded from above by

(XNX (L4 0)p[Y] - (L+8)p- (1+0)plAl - (1+0)p|B| < (1+6)*p*|X]|Y]|Al|B].

Indeed, fixing an edge xy € Eq(X ~ X', Y \Y’), the number of which is bounded from
above by | X ~ X' - (14 0)p|Y|, we find at most (1 +0)p - |Ng(z) n B|-|Ng(y) n A| such
cycles containing xy.

Consequently, it suffices to bound the number of 4-cycles passing through X’ or Y’
by dp*| X||[Y]|A||B| to complete the proof. To this purpose we note that properties (i)
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and (7ii) ensure
14 7
IX'|<— and Y| < —. (3.1)
d3p 53p
Moreover, (7) implies that the number of 4-cycles passing through X', Y, A and B is at

most
X' (1+8)p*n- (14 8)pn - (1+6)p°n

as any vertex ¥’ € X’ has at most (1 + §)p*n joint neighbours y with v in Y and at most
(1 + §)pn neighbours b in B and y and b have at most (1 + §)p®n joint neighbours in A.
Similarly, there are at most (1 + §)3p®n3|Y”| such 4-cycles passing through Y’, and hence

it follows from (3.1) that there are at most

21 55 21 21

%(1 +0)°p’n” = ﬁ(l +6)*p*n® < (1 +0)?

<5 pIXIY Al B]

0p*n
4-cycles passing through X’ or Y’ where we used |A|, |B| = on and |X]|, |Y| = dpn for
the last inequality. Noting that p?n — o as n — oo shows that there are indeed at

most 6p*| X ||Y||A||B| such 4-cycles passing through X’ or Y, which concludes the proof
of part (vi). O

The following lemma asserts that a.a.s. in G(n,p), given a sufficiently large bipartite
(¢, a, p)-dense subgraph H with vertex set (A, B), say, (¢/, a, p)-denseness is inherited by
most of the pairs (Ng(z, B), Ny(y, A)) with xy € Ey(A, B), where € depends on €.

Lemma 3.2. For every v, a, € > 0 there exists € > 0 with the property that for every
n > 0 there exists C = 1 such that for p = C(log(n)/n)"? a.a.s. G = (V,E) € G(n,p)
satisfies the following.

Suppose H < G is a bipartite subgraph of G with vertex set V(H) = A w B such that

(i) nmm < |A| < |B| < 2|A|, and (A, B)y is (g, «, p)-dense,

(ii) for every x € A and y € B we have
[Nu(y, A)| = ap|A] and  |Ng(x, B)| = ap|B].
If M is a matching in H such that for every edge xy € M the pair

(Nu(y, A), Nu(x, B)) 5
is not (¢', o, p)-dense, then |M| < ~v|B|.

Proof. Let v, and €’ be given. Set
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and let g and L be given by Theorem 2.5 applied with «, 5 and ¢”. We define

1
e=3 min{ey, a}

-

Suppose that H < G is a bipartite subgraph satisfying conditions (i) and (i7). Assume

and for given n > 0 we set

Finally, we let n be sufficiently large

that there exists a matching M of size at least 7| B| in H such that for all edges zy € M the
pair (Ny(y, A), Ng(x, B))y is not (¢/, a, p)-dense. Then, there exists a matching M’ < M
of size |M'| = 2|M| such that A\ V(M')| = (1 —6)|A], BNV (M')| = (1 - 6)|B|, and
such that for all xy € M’ we have

[Nu(y, ANV (M) = (1= 6)|Nu(y, A)| and [Ng(z, B~ V(M))| = (1-6)|Nu(z, B)|.

Indeed, choosing such a matching randomly by including every edge of M independently
with probability g into M’, a simple application of Chernoff’s inequality (using Theo-
rem 2.3) shows that the above occurs with probability 1 — o(1).

Let A" := AN\V(M’) and B’ := BNV (M'). Then (A’, B')y is (2¢, a, p)-dense. Moreover,
applying Lemma 2.6, for every xy € M’ the pair (Ny(y, A'), Nu(x, B')) is not (¢'/2, a, p)-
dense.

Now, fix an edge xy € M’ such that (Ny(y, A"), Ny(x, B'))y is not (¢'/2, a, p)-dense. It
can be verified that there are subsets A = Ny (y, A’) and B, € Ny(x, B') of size precisely
Zap|A| and £ap|B| respectively, such that dup(A,, B;) < a—¢'/2. Now let A, and B,
be such that A, = A, = Ny(y,A') and B, < B, = Ny(z, B') with [4,| = jap|A| and
|B,| = 3ap|B|. Then clearly (A, B,) is not (¢”, o, p)-dense. We may thus find a family
{(Ay, B;)) : xy € M'} of pairs of subsets of mentioned size such that these pairs are not
(e”, a, p)-dense, although (A’, B") g is (2¢, «, p)-dense.

We will now show that a structure consisting of a graph H, disjoint sets A’, B, M’ and
a family of pairs (A,, B,) as described above is unlikely to appear in G(n, p).

Since (A’, B') g has to be (2¢, v, p)-dense, we have ey (A’, B') = (a — 2¢)p|A’||B’|. Thus,
we can fix both A" and B’ along with the edges of the bipartite graph H[A’, B’] in at most

/ /
AN B> L (A NIBY o s t

Note that for n chosen sufficiently large we have

ways.

2L
p*n = C*logn > ~—.
an
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Moreover, owing to the assumption we have sap|A|, sap|B| = “B™ > L/p. Hence we can
apply Theorem 2.5 to H[A’, B'] and infer that there are at most

/ / [M| | M|
)] )
sap|Al) \5ap|B| sap|Al) \sap|B|

possibilities for choosing the pairs (A,, B,) ranging over all zy € M’, when we condition on
(A’, B') being an (2¢, a, p)-dense pair. Combining the two above estimates we infer that

the probability of the above-described structure appearing in G(n,p) is bounded from

nlogn)

above by the number of choices for M’ (easily bounded from above by e multiplied

by

S ()s) S ()
/ /
\A’HB’|>lnn |A| |B| t=(a—2¢)p|Al|B| t
M|
l ap|A( Al >(1 |B| )] phap(AI+ BN
saplA|) \ 3ap| B
Lan(lAl+|B [M’|
< ( )( ) Z <|AIIB|ep)t y [5 Lop|A| (26)2 P A+ ')]
/
|A'||B' 1B s tasomians t «
, 0o, da]PHAIN
pl Al B la [ 2€
\ , , Z € X [BQ <—) ]
|A| |B’ (|A|) <|B >t>(a2€)pA||B| o
Sady plAl|B|
(Zf)( DB (e ()
|A’||B’|> nn | t=(a—2¢)p|Al||B|

<n?.om. 2_(_) ’
3

where in the second inequality we used the fact that the function f(t) =

2|¥

(1Al Blep/t)" is
maximized at ¢ = p|A||B|, in the third inequality we used that [M’| > $|M| > 2|B|, and
3
in the fourth inequality we used that 3507 (%)8 " 1/3 and p|A||B| = n*? for large n.
We conclude that the above-mentioned probability is o(1). O

§4. TECHNICAL LEMMA

In this section we state and prove the main technical lemma for the proof of Theorem 1.1.

For that we will need the following definition.

Definition 4.1. Let H be a graph with disjoint vertex subsets A, B € V(H) and let a
set €, a, v of constants as well as p > 0 be given.
(a) An edge wz € F(H) is defined to be in Ry (A, B;e,a,p) if (Ng(w, A), Ng(z, B))g
is (e, a, p)-dense and |Ng(w, A)| = ap|A|, |Nu(z, B)| = ap|B].



SIZE-RAMSEY NUMBER OF GRIDS 11
(b) An edge wz € E(H) is defined to be in Qy (A, B;e, o, p,v) if
|Ex (Ny(w, A), N (2, B)) n Ru(A, Bye,o,p)| = (1 — v)|Ey (Nu(w, A), Ny (2, B))|.

We will apply the following lemma will be applied repeatedly in the proof of the main

result presented in Section 5.

(8]

5, there exists € > 0 with the property that for
all n > 0 there exists C > 1 such that for p = C(log(n)/n)"/? a.a.s. G = (V,E) € G(n,p)
satisfies the following.

Suppose H < G with vertex set V(H) = X Y U AU B satisfies

(i) X € Ng(v) and Y < Ng(u) for some vertices v, u eV,

(7i) X nY =g and |X|,[Y] = npn and |Ex(X,Y)| > §p|X|]Y],

(i) An B =@ and nn < |A| < |B| < 2|A], and

(iv) (A, B)y is (g, «, p)-dense.
If |[En(X,Y) nRu(A, Bie',a,p)| =2 (1 — p)|Ex(X,Y)], then

Lemma 4.2. For e, a, p > 0 with &' <

}EH<X7 Y) N QH(A7 B;El,Oé,p, :u)‘ = (1 - 2“)‘EH(X7 Y)‘ :

Proof. Let €/, o, and 1 > 0 be given. We fix the auxiliary constant
Loy
= — : 4.1
V=g s (4.1)
For this choice of v, a;, and ¢ > 0, Lemma 3.2 yields a constant € > 0, which in turn we
use for the intended ¢ for Lemma 4.2. Having fixed € > 0, we receive n > 0 and applying

Lemma 3.2 with the same 7 yields some C” > 1. Moreover, we apply Lemma 3.1 with

o =m (4.2)

to obtain some C” > 1 and we let C' be the maximum of C” and C”.

For p > C(log(n)/n)"/? and sufficiently large n let H < G = (V, E), where G € G(n, p),
and suppose V(H) = X uY uAu B with properties (7)—(7v) holding. To simplify notation
we set

Ru =Ru(A B¢ a,p) and Qu = Qu(A, B;e',a,p, ).
Furthermore, towards a contradiction we assume that |[Eg (X, Y)nRy| = (1—p)|Ex(X,Y)|,
but
|En(X,Y) N Qu| < (1 =2p)|Ex(X,Y)].
In particular, we have

(1)
|(Bu(X.Y) 0 Ru) \ Qu| = ulEa(X.Y)| = ugplX]||Y].
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In other words, at least u§p|X||Y| edges zy € Eg(X,Y) \ Qg have the property that the
neighbourhoods Ny (y, A) and Ng(z, B) have size at least ap|A| and ap|B]|, respectively,
and the pair (Ng(y, A), Ng(z, B))y is (¢/, a, p)-dense. Therefore,

‘EH(NH(y, A), Ny (z, B))) > (o — £")p| Ny (y, A)||Nu(z, B)| = %3p3|A||B| .

However, since xy ¢ Qg at least a p-fraction of those edges are not in Ry, i.e. there exists

a subset
3
. «
E.,, < Eg(Nu(y,A), Nu(z, B)) ~\ Ry with |E, |> u7p3|A||B|.

Now, Lemma 3.2 along with Ko6nig’s theorem for matchings in bipartite graphs tells us
that there are subsets A’ € A and B’ < B with \A’ U B’\ < 7|B| such that A" U B’ is a

vertex cover for | J E! , where the union is taken over all zy € (Ey(X,Y) nRy) \ Qu.

y7
For convenience we fix some supersets A” and B” of size v|B| with A’ € A” < A and
B'< B"< B.

Seeing all the edges xy € (EH(X, Y)n RH) \ Qp, we conclude that there are at least

1 ) 1 « o .
5‘(EH(X, Y)nRu) N Qul-|E,,| = §M§P|X||Y| TP Al B

@y .,
> Gyp | X[IY]| Al B (4.3)
4-cycles zyabr in H € G withze X, yeY,ae A, and be B, whereae A  or be B'.

On the other hand, Lemma 3.1 (vi) applied to X, Y, A", and B (see also (4.2)),
asserts that there are at most 2p*| X||Y||A”|| B| such cycles passing through A’ < A” and,
similarly, there are at most 2p*| X ||Y'||A|| B”| such cycles passing through B’ = B”. Owing
to |A”] = |B"| = v|B| < 2v|A|, it follows that there are at most 6yp*|X||Y||A||B| such
4-cycles, which contradicts (4.3) and concludes the proof. O

By a similar argument we may ignore the conditions (i) and (77) in Lemma 4.2 and
consider the sets X and Y to be of order {2(n). This way we obtain the following version

of Lemma 4.2.

Lemma 4.3. For all &', a, 0 > 0, there exists € > 0 such that for all n > 0 there exists
C > 1 such that for p = C(logn/n)"? a.a.s. G = (V, E) € G(n,p) satisfies the following.
Suppose H < G with vertex set V(H) = X Y U AU B satisfies
(1) X nY =@ and |X|,|Y]| =nn and |[Exg(X,Y)| > Sp|X||Y],
(i) An B =@ and |A],|B| = nn, and
(ii) (A, B)g is (e, a, p)-dense.
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If [Ex(X.Y) nRu(A,Bie',a,p)| = (1 — p)|Ex(X,Y)], then

|En(X.Y) 0 Qu(A, Bie',a,p, p)| = (1= 2p)|[Ey (X, Y)].

§5. PROOF OF THE MAIN RESULT
In this section, we prove our main result, Theorem 1.1.

Proof. The proof consists of three parts. In the first part we fix all constants needed for
the proof. In the second part we assume that G € G(n,p) and H < G satisty |V(H)| =n
and e(H) = o’e(G), so as to find a suitable dense pair (A, B) in H among which we aim
to embed the grid G, ,. Here the Sparse Regularity Lemma will play a key role. In the
last part we find the embedding.

Constants. Let o/ > 0 be given. First we define the constants u, « and &’ of Lemmas 4.2
and 4.3. We set

a=da/20, p=a/100 (5.1)
as well as
¢’ = min{a/4,1/2} (5.2)

and let 1 > 0 and €5, > 0 be as guaranteed by Lemma 4.2 and Lemma 4.3, respectively.

Further, we fix

ap
= —. 5.3
7= (5.3)
Applying Lemma 3.2 with v, a, ¢’ as defined yields a constant 3 > 0. Next we set
2
€ = min {51,82,63,%,1/4}, K =2 and to = —. (54)
«

Let Ty, A and Ny be the constants guaranteed by the Sparse Regularity Lemma (Theo-

rem 2.2) corresponding to 5, K, and ¢, given above. We set
1

— T

Having €1, 9,3 > 0 and applying Lemmas 4.2, 4.3 and 3.2 respectively with this n yields

0 (5.5)

some constants C7, Cy and C5. Moreover, let
§ = min{1/3, ua’n?}, (5.6)

and apply Lemma 3.1 with
d" = min{eadn, A},
obtaining some constant Cy > 1. We set C' := max{C{, Cy, C3,C,}. Finally, we set

c=oan/8 (5.7)
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and consider n to be large enough whenever necessary.

12 and n

Finding a good dense pair. Let G = (V, E) € G(n,p), where p > C(logn/n)
is large enough. We condition on G satisfying the properties from Lemma 3.1. Assume
that H is an n vertex subgraph of G with e(H) > o’e(G).

We apply the Sparse Regularity Lemma (Theorem 2.2) with /2, K = 2, ¢, and p to H.
Note that, owing to Lemma 3.1 (v), the graph G and hence H < G are (\, K)-bounded.
Theorem 2.2 therefore yields a constant Ty and an (£/2, p)-regular partition {V;}!_, of
V(H) with ty <t < Tp.

By Lemma 3.1 (i) the exceptional set touches at most 2pn|Vy| < epn? edges. Also by
Lemma 3.1 (v) there are at most 2p|V;||V;| < 2p(n/t)* edges between non-regular pairs
(Vi, V;) with 1 < i < j < ¢t and inside each of the partition sets V; there are at most
2p(“g"|) < p(n/t)? edges. Thus the number of edges in H both inside the partition sets and
between non-regular pairs is bounded from above by

e+ S(1) 2 <n>2+t (n>2< S 42 2<5{4) & 2
n° + = : — pl— —c+— |pn —pn® .
Prrole) PG P\3 2° T %)t g?

By (5.6) and Lemma 3.1 (v) we have e(H) > d/e(G) = %’pnz Hence, the number of edges
lying in (£/2, p)-regular pairs is at least %pnz.

Averaging now guarantees the existence of an (£/2, p)-regular pair (V;, V;) such that
s’
t
(2)
Thus, (A1, By) := (V;,V;) is (¢/2,d/ /4, p)-dense.

Next, we will discard vertices of too small or too large degree inside the pair (A;, By).
First, set

O/
en(VisV;) = S5 > SplVillvil

AQZ

O{/
{v €A1 |Ny(v,By)| < §p|B1|},

o
BQ : {U € Bl : |NH(U,A1)| < §p|A1|} .

Then [As| < 5[A1] and [By| < §|By], by the definition of (g/2, p)-regularity. Next set

Ay i={ve A [Nu(v, Bi)| > (1+0)p|Bil},
By :={ve By: |Ng(v,A1)| > (14 0)p|A|}.

We then observe that |A}| < 5= < £|Ay| for large n, by applying Lemma 3.1 (i) and

(0")%p
using that |A;] = % > nn > &'n by the choice of n and ¢'. Similarly, |B;| < £|Bi]



SIZE-RAMSEY NUMBER OF GRIDS 15

holds. Finally, set

A= o s (0 ) N, B0 B> i},

/ / a/
B3 := {U € By N (Byu Bj): |[Ny(v,Ay U A))| = 1—6p|A1|} :

Then, considering an arbitrary set B > By U B} with |B| = €|Bi| = enn > §'n, and

observing that by definition every v € A3 satisfies

/
[Nu(v, B)| > T:plBy| > 3pl |

by the choice of € in (5.4), Lemma 3.1 (747 ) ensures that |A3| < (6, < §|A1]. Analogously,

|Bs| < £|Bi1| holds. Now set A := A; \ (A2 u Ay U A3) and B := 31 N (B2 u By U Bs).

By the choice of 1 in (5.5) and for large enough n we have |A| > (1 — ¢)|A1| = nn and

|B| = (1 —¢)|By| = nn. Also, since (A1, By) is (£/2,a//4,p)-dense, the pair (A, B)y is

(¢, a, p)-dense and, by the definition of A and B, we obtain that for every vertex v € A we

have
o o
N (v, B)| = gplBll - 1—6p|31| — | Bs| > ap|B| (5.8)

and for every vertex v € B we have |Ny (v, A)| = ap|A|. Without loss of generality let
|A| < |B| and note that |B| < 2|A| holds.

Embedding G ;. Recall that s = - From now on, we fix the pair (A, B)y and aim to
embed the grid G, iteratively in the bipartite graph H[A, B]. Let

Ry = Ru(A, B;e',a,p) and Qp := Qu(A, B;e', v, p, ).

Towards this purpose, we say that a sequence of paths (P, ..., P;) in H produces a copy
of Gs+in H if |[V(P;)| = s holds for every ¢ € [t], and if between each of the pairs (P;, P;11)
with ¢ € [t —1] there exists a matching M; in H such that .y E(F;) v Uief,_1 M: induces
a copy of G .

We now prove the following inductively for every ¢ € [s]: there exists a sequence
(Py,...,P;) of paths in H[A, B] such that the following is true:

(P1) (Pi,..., P) produces a copy of G, on some vertex set S < Au B,
(P2) E(P,) € Ry n Qu,

(P3) for every v e V(P;) n A we have |Ny(v, B\ S)| = (1 —9)|Ny(v, B)|,
(P4) for every v e V(F;) n B we have |[Ny(v, AN\ S)| = (1 —0)|Nu(v, A)|.

Induction beginning: Since (A, B)y forms an (e, o, p)-regular pair, we have |Eg(A, B)| >
(v — e)p|A||B|. In particular, we claim that

|En(A, B) " Ru| = (1= p)|En(A, B)|.
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Indeed, if this were not true, we would have |Eg (A, B)\Rpg| > “p|A||B|. However, as the
maximum degree satisfies A(H[A, B]) < (1+0)pmax{|A|,|B|} < 4p|A| by Lemma 3.1 (7),
we would then find a matching of size at least % > v|B| in E(H) \ Ry, which
contradicts Lemma 3.2.

Applying Lemma 4.3 (with X = A and Y = B) we now obtain that
|Er (A, B) 0 (Ru 0 Qp)| = (1= 3p)|Ex(A, B)|.

Therefore, on average the vertices in A U B are incident with at least

2(1 = 3p)|En(A, B)| _ SpIAP _ anpn _ 2¢
|A U B| A 6 P

edges from Eg(A,B) n Ry n Qp. Thus, we can find a path P, with s = I—C) vertices,

=

consisting of edges in Ry n Qg only, which gives the Properties (P1) and (P2) for ¢ = 1.
By (5.7) and (5.8) for every v € V(P;) n A we have

\Ny(v, BNV (P))| = |Nu(v,B)| —¢/p=(1—-10)|Nu(v, B)|.

Hence Property (P3) and then similarly Property (P4) follow.
Induction step: Assume we have found a sequence (Py,..., P;) satisfying (P1)-(P4) with
t < s. We aim to extend the sequence by another path P, .

Let {x1,s,...,zs} denote the vertices of P, with z;x;41 € E(P,) for every i € [s —
1]. Wiithout loss of generality, we may suppose that x; € B and z;;; € A. Note that
(Ny(zi, A), Ny(zi41, B)) g is (€', a, p)-dense for every i € [s — 1] since x;x;11 € Ry. For

every i € [s], we now consider

N; := Ng(z;, A) (U NH(xj,A)) :

J#
4]
S; 1= {v € Ny(z;, A) : |[Ny(v,S)| > §ozp|A|},
Xi = NH(LL’Z,A) AN (Nz U SZ) .

Note that this notation depends on whether or not x; € A or x; € B. We have defined
them on the assumption that z; € B. If x; € A, then one should replace A by B.
By the choice of ¢ in (5.7) and applying Lemma 3.1 (7), we have

)
|NZ.| <s- 2p2n = 2cpn < 5 |NH($2‘7A)|-

Considering an arbitrary set S © S with |§ | = ‘s'f‘T"n > §'n, and observing that by definition

every v € S; satisfies

_ 5 5 _
[Nu(v, 8)] = [Nu(v, 8)| = SaplA| > Sampn > 2p)3),
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Lemma 3.1 (7i7) together with (5.8) ensures that |S;| < ﬁ < 3|Ng(x;, A)| for large

enough n. Thus,
| Xi| = (1 =0) [Np(xi, A)].

Moreover, all the sets X; are pairwise disjoint, the pairs (X;, X;41) are (2¢', a, p)-dense for

every i € [s — 1] and for every v € X; we know that
[Nu(v, B)~ S| > (1 - 8) [Nu(v, B)|.

Therefore, Properties (P3) and (P4) will hold, once we manage to find a path P,y with
one vertex from each X, consisting of edges from Ry n Qg only. Let i € [s — 1]. As

r;r;y1 € Qp, we have
|En(Nu (i, A), Ny (i1, B)) 0 Ry| = (1 — )| En(Nu (i, A), Nu (241, B))|
and by applying Lemma 4.2 we obtain
|En(Nu(zi, A), Nu (@41, B)) 0 (Ru 0 Qu)| = (1 = 3u)|Ey(Np (i, A), Nu(2iv1, B))|.
Moreover, using that z;z;11 € Ry and (5.8), we get

|En(Ni (i, A), N (2i11, B))| 2 (o = €')p| Nig (i, A)||Nut (41, B)|
2
(0%

Ui

= szn'maX“NH(IiaA)L|NH(Ii+1aB)|}- (5-9)

By Lemma 3.1 (i) every vertex in N(z;, A) has at most 2p?n neighbours in N(z;.1, B),
and vice versa. Combining this with (5.9) we then know that
|Ex(Np (i, A), Ny (2341, B))| = | B (X3, Xig1)| < 2p°n(0|Np (i, A)| + 6| Ny (241, B)))
< 46p*nmax{| Ny (x;, A)|, [Ny (zi1, B)|}
< p|Eg(Nu(wi, A), Na(2iv1, B))|

owing to the choice of ¢ in (5.6). Thus, we conclude that many edges in Fy(X;, X;41)
belong to Ry n Qg in the sense that

By (X, Xin1) 0 (R 0 Q) = (1 — 40)|Eg(Nyg (25, A), Ny (zisr, B))| . (5.10)

In order to find the desired path we now prove a slightly stronger statement: in every set
X, at least half of its vertices can be reached from X; via a path in Ry n Q. For this

purpose, we iteratively define

X, if =1,

X! =
{veX;: JweX/_ st.vweRygn Qp} ifi>1.
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By induction, we then show that |X{| > 1|X;| for every i € [s]. Note that once this is
proven, we are done, as we can then take a path P,,; consisting of one vertex from every
X! and edges from Ry n Qg only, such that all of the properties (P1)-(P4) are satisfied.

For i = 1 there is nothing to do. So, let i > 1 and assume for a contradiction that X, :=
X;~\ X/ has size at least 1| X;|. By definition of X we have Ex(X]_;, X;)n(RypnQy) = @
and thus

|En (X1, Xo)| < [En(Xiey, Xi) N (R 0 Qu)| < 4p|En(N(xi1, B), N(x;, A))]
where in the second inequality we use (5.10), and where in the last inequality we apply

Lemma 3.1 (iv). However, as (X;_1,X;) is (2¢/,, p)-dense and |X/_;| > | X;_1| (by

induction) and also | X;| > 3| X;| (by assumption), we must have

< / Vi lad / o — 26,
|En (X, Xi )| = (@ —2¢")p ‘Xz} }Xifl‘ = Tp | Xi] | X1
a—2¢
> 20 5Pp NG, B N (i 4)
a contradiction. Hence, |X/| > 1 |X;| for every i € [s]. O
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