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Abstract. For positive integers r ą `, an r-uniform hypergraph is called an `-cycle
if there exists a cyclic ordering of its vertices such that each of its edges consists of r
consecutive vertices, and such that every pair of consecutive edges (in the natural ordering
of the edges) intersect in precisely ` vertices. Such cycles are said to be linear when ` “ 1,
and nonlinear when ` ą 1. We determine the sharp threshold for nonlinear Hamiltonian
cycles and show that for all r ą ` ą 1, the threshold p˚

r,`pnq for the appearance of a
Hamiltonian `-cycle in the random r-uniform hypergraph on n vertices is sharp and
is p˚

r,`pnq “ λpr, `qp e
n q

r´` for an explicitly specified function λ. This resolves several
questions raised by Dudek and Frieze in 2011.

§1. Introduction

A basic problem in probabilistic combinatorics concerns locating the critical density at
which a substructure of interest appears inside a random structure (with high probability).
In the context of random graph theory, the question of when a random graph contains a
Hamiltonian cycle has received considerable attention. Indeed, from the foundational works
of Pósa [13], Komlós and Szemerédi [11], Bollobás [2], and Ajtai, Komlós and Szemerédi [1],
we have a very complete picture, understanding not only the sharp threshold for this
problem but the hitting time as well. Since these early breakthroughs, there have been a
number of papers locating thresholds, both asymptotic and sharp, for various spanning
subgraphs of interest (see, e.g., [12,14] and the references therein for various related results).

In contrast, threshold results for spanning structures in the context of random hypergraph
theory have been somewhat harder to come by. Indeed, even the basic question of locating
the asymptotic threshold at which a random r-uniform hypergraph (or r-graph, for short)
contains a matching, i.e., a spanning collection of disjoint edges, proved to be a major
challenge, resisting the efforts of a number of researchers up until the breakthrough work of
Johansson, Kahn and Vu [9]; more recently, both the sharp threshold as well as the hitting
time for this problem have been obtained by Kahn [10]. In the light of these developments
for matchings, we study what is perhaps the next most natural question in this setting,
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Figure 1.1. A 7-uniform 4-cycle.

namely that of when a random r-graph contains a Hamiltonian cycle; our main contribution
is to resolve the sharp threshold problem for nonlinear Hamiltonian cycles.

There are multiple notions of cycles in hypergraphs, so let us recall the relevant definitions:
given positive integers r ą ` ě 1, an r-graph is called an `-cycle if there exists a cyclic
ordering of its vertices such that each of its edges consists of r consecutive vertices in the
ordering, and such that every pair of consecutive edges (in the natural ordering of the
edges) intersect in precisely ` vertices (see Figure 1.1 for an example). A Hamiltonian
`-cycle is then an `-cycle spanning the entire vertex set; of course, an r-graph on n vertices
may only contain a Hamiltonian `-cycle when pr´ `q |n, and such a cycle then has precisely
n{pr ´ `q edges. Finally, by convention, an `-cycle is called linear (or loose) when ` “ 1,
nonlinear when ` ą 1, and tight when ` “ r ´ 1.

Given r ą ` ě 1, we set
λpr, `q “ t! ¨ ps´ tq!,

where s “ r ´ ` and 1 ď t ď s is the unique integer satisfying t “ r pmod sq, and define

p˚r,`pnq “
λpr, `qes
ns

.

Writing Gprqpn, pq for the binomial random r-graph on n vertices, where each possible r-set
of vertices appears as an edge independently with probability p, our main result is as
follows.

Theorem 1.1. For all integers r ą ` ą 1 and all ε ą 0, as n Ñ 8 with pr ´ `q |n, we
have

P
`

Gprqpn, pq contains a Hamiltonian `-cycle
˘

Ñ

$

&

%

1 if p ą p1` εqp˚, and

0 if p ă p1´ εqp˚,

where we abbreviate p˚ “ p˚r,`pnq.

The critical density p˚r,` appearing in our result corresponds to the so-called ‘expectation
threshold’, namely the density above which the expected number of Hamiltonian `-cycles
in Gprqpn, pq begins to diverge. A moment’s thought should convince the reader that, unlike
in the case of linear Hamiltonian cycles where one has to worry about isolated vertices,
there are no ‘coupon collector type’ obstacles to the presence of nonlinear Hamiltonian
cycles; therefore, the conclusion of Theorem 1.1 should not come as a surprise. Indeed, the
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problem of whether something like Theorem 1.1 ought to hold was raised by Dudek and
Frieze [4, 5]. Towards such a result, they showed that p˚r,` is an asymptotic threshold for all
nonlinear Hamiltonian cycles, that p˚r,` is a sharp threshold for tight Hamiltonian cycles
when r ě 4, and that p˚r,` is a semi-sharp threshold for all r ą ` ě 3.

The main difficulty in proving Theorem 1.1 is that, with the exception of the case of
tight Hamiltonian cycles with r ě 4 mentioned earlier, the second moment method is in
itself not sufficient to prove the result; for instance, it is easy to verify, even in the simple
case of r “ 3 and ` “ 2 (i.e., tight Hamiltonian cycles in 3-graphs) that the requisite second
moment is too large to yield our result. To prove Theorem 1.1, we shall combine a careful
second moment estimate, which necessitates working modulo various symmetries, with a
powerful theorem of Friedgut [6] characterising coarse thresholds.

This paper is organised as follows. We gather the tools we require in Section 2. The
proof of Theorem 1.1 follows in Section 3. We conclude in Section 4 with a discussion of
some open problems.

§2. Preliminaries

We begin with some background on thresholds. Recall that a monotone r-graph prop-
erty W is a sequence pWnqně0 of families of r-graphs, where Wn is a family of r-graphs
on n vertices closed under the addition of edges and invariant under r-graph isomorphism.

Given a monotone r-graph property W “ pWnqně0, a function p˚pnq is said to be a
threshold or asymptotic threshold for W if PpGprqpn, pq P Wnq tends, as nÑ 8, either to 1
or 0 as p{p˚ tends either to 8 or 0 respectively, and a function p˚pnq is said to be a sharp
threshold for W if PpGprqpn, pq P Wnq tends, as n Ñ 8, either to 1 or 0 as p{p˚ remains
bounded away from 1 either from above or below respectively. Of course, thresholds
and sharp thresholds are not unique, but following common practice, we will often say
‘the’ threshold or sharp threshold when referring to the appropriate equivalence class of
functions. Finally, a function p˚pnq is said to be a semi-sharp threshold for W if there
exist constants C0 ď 1 ď C1 such that PpGprqpn, pq P Wnq tends, as n Ñ 8, either to 1
or 0 as p{p˚ remains bounded below by C1 or above by C0 respectively; while we do not
need this notion ourselves, we give this definition to place existing results around our main
result in the appropriate context.

That every monotone property has an asymptotic threshold follows from a (much more
general) result of Bollobás and Thomason [3]. Unlike with asymptotic thresholds, a
monotone property need not necessarily have a sharp threshold; such properties are said
to have coarse thresholds. We shall make use of a powerful characterisation of monotone
properties that have coarse thresholds due to Friedgut [6] which says, roughly, that such
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properties are ‘approximable by a local property’; a concrete formulation at a level of
generality sufficient for our purposes, see [7], is as follows.

Proposition 2.1. Fix r P N and let W “ pWnqně0 be a monotone r-graph property that
has a coarse threshold. Then there exists a constant α ą 0, a threshold function p̂ “ p̂pnq

with
α ă P

`

Gprqpn, p̂q P Wn

˘

ă 1´ 3α

for all n P N, a constant β ą 0 and a fixed r-graph F such that the following holds: for
infinitely many n P N, there exists an r-graph on n vertices Hn R Wn such that

P
`

Hn YG
prq
pn, βp̂q P Wn

˘

ă 1´ 2α,

where the random r-graph Gprqpn, βp̂q is taken to be on the same vertex set as Hn, and

P
`

Hn Y F̃ P Wn

˘

ą 1´ α,

where F̃ denotes a random copy of F on the same vertex set as Hn. �

We shall also require the Paley–Zygmund inequality.

Proposition 2.2. If X is a non-negative random variable, then

PpX ą 0q ě ErXs2

ErX2s
. �

Finally, we collect together some standard estimates for factorials and binomial coeffi-
cients.

Proposition 2.3. For all n P N, we have
?

2πn
´n

e

¯n

ď n! ď e
?
n
´n

e

¯n

,

and for all positive integers 1 ď k ď n, we have
ˆ

n

k

˙

ď

´en
k

¯k

. �

§3. Proof of the main result

In this section, we shall prove Theorem 1.1. We begin by setting up some notational
conventions that we shall adhere to in the sequel.

In what follows, we fix r, ` P N with r ą ` ą 1, set s “ r ´ `, take t to be the unique
integer satisfying t “ r pmod sq with 1 ď t ď s, and set λ “ t!ps´ tq!. We shall henceforth
assume that n is a large integer divisible by s, and we set m “ n{s so that m is the number
of edges in an `-cycle on n vertices. Finally, all r-graphs on n vertices in the sequel will
implicitly be assumed to be on the vertex set rns “ t1, 2, . . . , nu.
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Figure 3.1. Blocks and subblocks of a 7-uniform 4-cycle.

To deal with r-graph cycles on the vertex set rns, we shall define an equivalence relation
on Sn, the symmetric group of permutations of rns “ t1, 2, . . . , nu; we shall ignore the group
structure of Sn for the most part, so for us, a permutation σ P Sn is just an arrangement
σp1q, σp2q, . . . , σpnq of the elements of rns (namely, vertices), at locations indexed by rns.

We divide rns into m blocks of size s, where for 0 ď i ă m, the i-th such block is
comprised of the interval tis` 1, is` 2, . . . , is` su of vertices, and we further divide each
such block into two subblocks, where the t-subblock of a block consists of the first t vertices
in the block, and the ps´ tq-subblock of a block consists of the last s´ t vertices in the
block. Now, define an equivalence relation on Sn by saying that two permutations σ and τ
are subblock equivalent if τ may be obtained from σ by only rearranging vertices within
subblocks; in other words, an equivalence class of this equivalence relation may be viewed
as an element of the quotient Qn “ Sn{pSt ˆ Ss´tq

m.
The definition of the above equivalence relation is motivated by the natural `-cycle

associated with a permutation: given σ P Sn, consider the r-graph Hσ on rns with m edges,
where for 0 ď i ă m, the i-th edge of Hσ is the r-set tσpis` 1q, σpis` 2q, . . . , σpis` rqu, of
course with indices being considered cyclically modulo n. It is easy to verify both that Hσ

is an `-cycle for each σ P Sn, and that if σ and τ are subblock equivalent, then Hσ “ Hτ ;
see Figure 3.1 for an illustration. Hence, in what follows, we shall abuse notation and call
the elements of Qn permutations (when strictly speaking, they are equivalence classes of
permutations), and for σ P Qn, we write Hσ for the natural `-cycle associated with σ.

We parameterise p “ Cp˚r,lpnq “ Cλes{ns for some constant C ą 0, and work with
G “ Gprqpn, pq, where we take the vertex set of G to be rns. Therefore, our goal is to show
that G contains a Hamiltonian `-cycle with high probability when C ą 1 (namely, the
1-statement), and that G does not contain a Hamiltonian `-cycle with high probability
when C ă 1 (namely, the 0-statement).

In what follows, constants suppressed by asymptotic notation are allowed to depend on
fixed parameters (quantities depending only on r, `, C, etc.) but not on variables that
depend on n, which we send to infinity along multiples of s. We also adopt the standard
convention that an event holds with high probability if the probability of the event in
question is 1´ op1q as nÑ 8.
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We shall focus our attention on the random variable X that counts the number of σ P Qn

for which the `-cycle Hσ is contained in G, noting that G contains a Hamiltonian `-cycle if
and only if X ą 0.

We start by computing the first moment of X.

Lemma 3.1. We have ErXs “ |Qn|p
m “ n!pp{λqm, so that

ErXs ÝÑ

$

&

%

8 if C ą 1, and

0 if C ă 1.

Proof. This follows from noting that |Qn| “ n!{λm, estimating n! using Proposition 2.3,
and using the fact that n “ ms. �

In particular, the above first moment estimate, combined with Markov’s inequality,
establishes the 0-statement. To establish the 1-statement, the following second moment
estimate will be crucial.

Lemma 3.2. For C ą 1, we have ErX2s “ OpErXs2q.

Let us point out that Lemma 3.2 does not make the stronger promise that

ErX2
s “ p1` op1qqErXs2 ,

and indeed, such an estimate does not hold generally for an arbitrary pair of integers
r ą ` ą 1.

Proof of Lemma 3.2. To estimate the second moment of X, it will be convenient to make
the following definition: for 0 ď b ď m, let Npbq denote, for any fixed permutation σ P Qn,
the number of permutations τ P Qn meeting σ in b edges, by which we mean that Hτ

intersects Hσ in exactly b edges. With this definition in place, using the trivial fact that
Np0q ď |Qn|, we have

ErX2
s “

ÿ

σ,τPQn

PpHσ YHτ Ă Gq

“ |Qn|p
m

m
ÿ

b“0
Npbqpm´b

ď |Qn|
2p2m

` |Qn|p
m

m
ÿ

b“1
Npbqpm´b

“ ErXs2 ` ErXs
m
ÿ

b“1
Npbqpm´b,
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whence it follows that
ErX2s

ErXs2
ď 1`

m
ÿ

b“1

Npbqp´b

|Qn|
,

so to prove Lemma 3.2, it suffices to show that the sum

Γ “
m
ÿ

b“1

Npbqp´b

|Qn|

satisfies the estimate Γ “ Op1q when C ą 1.
The rough plan of attack now is similar to that adopted by Dudek and Frieze [4], but we

shall require a more careful two-stage analysis since we require stronger estimates: first, we
shall control the ‘canonical’ contributions to Γ, and subsequently bound the ‘non-canonical’
contributions in terms of the aforementioned ‘canonical’ ones; we make precise these notions
below.

An r-graph is called an `-path if there exists a linear ordering of its vertices such that
each of its edges consists of r consecutive vertices, and such that every pair of consecutive
edges (in the natural ordering of the edges) intersect in precisely ` vertices. Given a
permutation σ P Qn, we say that τ P Qn meets σ canonically if Hτ meets Hσ in a family
of vertex-disjoint `-paths, and we otherwise say that τ meets σ non-canonically.

For 1 ď b ď m, let Ncpbq to be the number of permutations τ P Qn which canonically
meet a fixed permutation σ P Qn in b edges, set N 1pbq “ Npbq ´ Ncpbq, and decompose
Γ “ Γc ` Γ1, where naturally

Γc “
m
ÿ

b“1

Ncpbqp
´b

|Qn|

and

Γ1 “ Γ´ Γc “
m
ÿ

b“1

N 1pbqp´b

|Qn|
.

First, we bound the canonical contributions to Γ.

Claim 3.3. For C ą 1, we have Γc “ Op1q.

Proof. Fix a permutation σ P Qn and for 1 ď a ď b, write Ncpb, aq for the number
of permutations τ P Qn which meet σ canonically in b edges which together form a

vertex-disjoint `-paths in Hσ. We now proceed to estimate Ncpb, aq.
Given σ, a pb, aq-configuration in σ is a collection of b edges in Hσ which together form a

vertex-disjoint `-paths; clearly, a pb, aq-configuration covers sb` `a vertices. The number
of ways to choose a pb, aq-configuration in σ is clearly at most

ˆ

m

a

˙ˆ

b

a

˙

,
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Figure 3.2. The rigid interior of a 7-uniform 4-path in the two possible
directions of embedding.

since there are at most
`

m
a

˘

ways of locating the leftmost edge in each of the a `-paths
in Hσ, and the number of ways to subsequently choose the number of edges in each of
these a paths so that there are b edges in total is clearly at most the number of solutions
to the equation x1 ` x2 ` ¨ ¨ ¨ ` xa “ b over the positive integers, which is

`

b´1
a´1

˘

ď
`

b
a

˘

.
Next, given a pb, aq-configuration P in σ, let us count the number of choices for τ P Qn

for which Hτ contains P . We do this in two steps. First, we count the number of ways in
which the vertices covered by P can be embedded into τ , and then estimate the number of
ways in which the vertices not covered by P can be ordered in τ , ensuring at all times that
we only count up to subblock equivalence.

Now, there are at most a!
`

m
a

˘

ways to choose the starting blocks of the leftmost edges of
the a distinct `-paths of P in τ . Once the left endpoint of one of these `-paths has been
fixed in τ , we observe that there are only Op1q ways, up to subblock equivalence, to embed
the remaining vertices of this `-path into τ ; indeed, the relative ordering of all the vertices
in an `-path, with Op1q exceptions at the left and right extremes, is rigid up to subblock
equivalence, up to a reversal of the direction of embedding (left-to-right or right-to-left), as
shown in Figure 3.2. Consequently, once the location of the a leftmost edges have been
determined in τ , the number of ways of embedding the rest of P into τ is at most La for
some L “ Lpr, `q. We conclude that the number of ways to embed P is at most

ˆ

m

a

˙

a!La.

Once we have embedded P into τ , there are pn´ sb´ `aq! ways to arrange the remaining
vertices uncovered by P , without accounting for subblock equivalence. It is easy to check
that any embedding of P covers at most b ` `a blocks in τ , so the number of choices
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for τ P Qn with a given embedding of P is at most
pn´ sb´ `aq!
λm´b´`a

.

From the above estimates and using Proposition 2.3 to bound binomial coefficients, we
conclude that

Ncpb, aq ď

ˆ

m

a

˙ˆ

b

a

˙ˆ

m

a

˙

a!La pn´ sb´ `aq!
λm´b´`a

ď exp pOpaqqn
2aba

a2a
pn´ sb´ `aq!

λm´b
, (3.1)

where, as remarked upon before, constants suppressed by the asymptotic notation depend
only on r and `.

To finish the proof of the lemma, we now use, in order, the above bound (3.1), the fact
that ` ě 2, Proposition 2.3, and the fact that 1` x ď ex for all x P R to show that

Γc “
m
ÿ

b“1

b
ÿ

a“1

Ncpb, aqp
´b

|Qn|

ď

m
ÿ

b“1

b
ÿ

a“1
exp pOpaqqn

2aba

a2a
pn´ sb´ `aq!

λm´b
λm

n!
nsb

Cbλbesb

ď

m
ÿ

b“1

b
ÿ

a“1
C´b exp pOpaqqn

2aba

a2a
pn´ sb´ 2aq!

n!
nsb

esb

ď

m
ÿ

b“1

b
ÿ

a“1
C´b exp pOpaqqn

sb`2aba

a2a
pn´ sb´ 2aqn´sb´2a

nn

ď

m
ÿ

b“1

b
ÿ

a“1
C´b exp pOpaqq b

a

a2a

ˆ

1´ sb` 2a
n

˙n´sb´2a

ď

m
ÿ

b“1

b
ÿ

a“1
C´b exp pa log b´ 2a log a´ sb´ 2a` psb` 2aq2{n`Opaqq.

We uniformly have p4a2 ` 4sabq{n “ Opnq, since a ď b ď m ď n, so the above estimate
reduces to

Γc ď
m
ÿ

b“1

˜

C´b exp p´sb` psbq2{nq
b
ÿ

a“1
exp pa log b´ 2a log a`Opaqq

¸

. (3.2)

Finally, since sb ď sm “ n, we uniformly have

exp p´sb` psbq2{nq ď 1

for all 1 ď b ď m, and it is straightforward to verify that we uniformly have

exp pa log b´ 2a log a`Opaqq “ exppopbqq
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for all 1 ď a ď b. Using these two bounds in (3.2), it follows that for C ą 1, we have

Γc ď
m
ÿ

b“1
C´bb exppopbqq “

m
ÿ

b“1
C´b`opbq “ Op1q,

proving the claim. �

The second and final step in the proof of Lemma 3.2 is to estimate the non-canonical
contributions to Γ.

Claim 3.4. For C ą 1, we have Γ1 “ Op1q.

Proof. We shall prove the claim by means of a comparison argument: we shall demonstrate
how we may group summands in Γ1 so as to get estimates analogous to those that we
obtained for Γ in the proof of Claim 3.3.

For any σ, τ P Qn, we may decompose the intersection of Hσ and Hτ into a collection of
vertex-disjoint weak paths, where a weak path is a just a sequence of edges in which every
consecutive pair of edges intersect.

We fix a permutation σ P Qn for the rest of the argument. Given a weak path P 1 in Hσ,
notice that there is a unique minimal `-path P in Hσ covering precisely the same set of
vertices as P 1; we call P the minimal cover of P 1. Now, given any τ P Qn, there is a unique
minimal covering configuration in σ associated with τ obtained by taking the minimal
covers of each of the weak paths in which Hτ meets Hσ. To prove the claim, we shall show
that the contributions to Γ1 from all those τ P Qn whose covering configuration is P is
comparable to the contributions to Γc from all those τ P Qn meeting σ canonically in P .

We fix a pb, aq configuration P in σ consisting of b edges in total distributed across a
`-paths, and we consider the set of permutations τ P Qn with minimal cover P that meet σ
non-canonically; we additionally parametrise this set by 1 ď k ď b, writing QpP , kq for the
set of such permutations τ for which there are k edges of P missing from the intersection P 1

of Hτ and Hσ.
We claim that the number of ways to select a configuration P 1 as above, and then

embed the vertices covered by P 1 into a permutation τ P QpP , kq in such a way that P 1 is
contained in Hτ is, up to subblock equivalence, at most

ˆ

b

k

˙ˆ

m

a

˙

a!Ra`k

for some R “ Rpr, `q.
We may verify the estimate above as follows. The number of possible choices for P 1,

namely the number of ways to choose k edges from P such that each of the `-paths of P
remains a weak path after these k edges are removed, may be crudely bounded above



SHARP THRESHOLDS FOR NONLINEAR HAMILTONIAN CYCLES IN HYPERGRAPHS 11

by
`

b
k

˘

. As in the proof of Claim 3.3, there are
`

m
a

˘

a! ways to choose the starting blocks
of the leftmost edges of the a distinct weak paths of P 1 in τ . Assume now that we have
fixed P 1, the starting blocks in τ of the leftmost edges of the a weak paths of P 1, and the
directions of embedding of these weak paths into τ (for which there are 2a choices). Now,
it is easy to see from the linear structure of a weak path that the relative order of vertices
in disjoint edges of a weak path must be preserved in any embedding of that weak path
into τ , so in particular, there are only Op1q choices for the location in τ of any particular
vertex covered by P 1 (once endpoints and directions of embedding have been fixed, as we
have assumed). Furthermore, it follows from the rigidity of an `-path (as in the proof
of Claim 3.3) that any vertex covered by P 1, with Op1q exceptions at the left and right
extremities of each of the a weak paths, which possesses potential embedding locations
in more than one subblock must necessarily be within Op1q distance (in σ) of some edge
present in P but not in P 1; clearly there Opkq such vertices in total. These facts taken
together demonstrate the validity of the bound claimed above.

Now, noting that the contribution of any τ P QpP , kq to Γ1 is a factor of pk times the
contribution to Γc from any τ P Qn meeting σ canonically in P , we may mimic the proof
of Claim 3.3 to show that

Γ1 ď
m
ÿ

b“1

b
ÿ

a“1

˜

exp pOpaqqn
2aba

a2a
pn´ sb´ `aq!

λm´b
λm

n!
nsb

Cbλbesb
b
ÿ

k“1

ˆ

b

k

˙

Rkpk

¸

.

Observing that
b
ÿ

k“1

ˆ

b

k

˙

Rkpk “
b
ÿ

k“1
exppOpkqq bk

kknsk
“ Op1q,

we are left with an estimate for Γ1 of the same form as the one for Γ1 which we showed to
be Op1q when C ą 1 in the proof of Claim 3.3; the claim follows. �

The two claims above together imply that Γ “ Op1q when C ą 1, from which it follows
that ErX2s “ OpErXs2q when C ą 1; the result follows. �

With our moment estimates in hand, we are now ready to prove our main result.

Proof of Theorem 1.1. As mentioned earlier, the 0-statement, namely that Gprqpn, pq does
not contain a Hamiltonian `-cycle with high probability if p ă p1 ` εqp˚r,`pnq follows
immediately from Lemma 3.1 and Markov’s inequality.

We prove the 1-statement, namely thatGprqpn, pq contains a Hamiltonian `-cycle with high
probability if p ą p1`εqp˚r,`pnq, by showing that the property of containing a Hamiltonian `-
cycle has a sharp threshold, and that this sharp threshold must (asymptotically) necessarily
be p˚r,`pnq.
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If p ą p1` εqp˚r,`pnq, then it follows from Lemma 3.2 and the Paley–Zygmund inequality,
i.e., Proposition 2.2, that Gprqpn, pq contains a Hamiltonian `-cycle with probability at least
δ ą 0 for some δ “ δpε, r, `q; consequently, if the property of containing a Hamiltonian
`-cycle has a sharp threshold, this sharp threshold is necessarily asymptotic to p˚r,`pnq.

It remains to prove that the monotone r-graph property W “ pWnqně0 of containing
a Hamiltonian `-cycle has a sharp threshold, so suppose for the sake of a contradiction
that W has a coarse threshold.

It follows from Proposition 2.1 that there is a fixed r-graph F and a threshold function
p̂ “ p̂pnq with the property that for infinitely many n P N, there is an r-graph Hn R Wn

on n vertices such that adding a random copy of F to Hn is significantly more likely to
make the resulting graph contain a Hamiltonian `-cycle than adding a random collection
of edges of density about p̂; concretely, for some universal constants α, β ą 0, we have

PpHn YG
prq
pn, βp̂q P Wnq ă 1´ 2α, (3.3)

where the random r-graph Gprqpn, βp̂q is taken to be on the same vertex set as Hn, and

PpHn Y F̃ P Wnq ą 1´ α, (3.4)

where F̃ denotes a random copy of F on the same vertex set as Hn.
Now, the only way F can help induce a Hamiltonian `-cycle in Hn is through some

sub-hypergraph of itself that appears in all large enough `-cycles, so by pigeonholing (and
adding extra edges if necessary), we conclude from (3.4) that there exists a fixed `-path P ,
say with k edges on `` sk vertices, with the property that, for some universal constant
γ ą 0, we have

PpHn Y P̃ P Wnq ą γ,

where P̃ again denotes a random copy of P on the same vertex set as Hn. In other words,
a positive fraction of all the possible ways to embed P into the vertex set of Hn are useful
and end up completing Hamiltonian `-cycles.

Since p̂ is an asymptotic threshold for W , clearly p̂pnq “ Θpp˚r,`pnqq “ Θpn´sq, since p˚r,`
is also an asymptotic threshold for W , as can be read off from the proof of Lemma 3.2.
On the other hand, the expected number of useful copies of P created by the addition of
a βp̂ “ Θpn´sq density of random edges to Hn is

Ω
ˆˆ

n

`` sk

˙

pn´sqk
˙

“ Ω
`

n`
˘

,

and a routine application of the second moment method (indeed, `-paths are suitably
‘balanced’) shows that adding a βp̂ density of random edges to Hn must, with high
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probability, create at least one useful copy of P in Hn and complete a Hamiltonian `-cycle,
contradicting (3.3).

We have now shown that W has a sharp threshold, and that this threshold must be
asymptotic to p˚r,`pnq; the 1-statement follows, completing the proof. �

§4. Conclusion

There are two basic questions that our work raises; we conclude this paper by discussing
these problems.

First, now that we have identified the sharp threshold for the appearance of nonlinear
Hamiltonian cycles, one can and should ask about the ‘width’ of the critical window. Since
the sharp threshold corresponds to the expectation threshold, we do not expect the hitting
time to be of interest. Nonetheless, it is plausible that the expectation threshold is much
sharper than what we have shown, and we conjecture the following.

Conjecture 4.1. For all integers r ą ` ą 1, if p “ ppnq is such that, as nÑ 8, we have
ErX`s Ñ 8, then

P
`

Gprqpn, pq contains a Hamiltonian `-cycle
˘

Ñ 1,

where X` is the random variable counting the number of Hamiltonian `-cycles in Gprqpn, pq.

Second, it is natural to ask what happens for linear Hamiltonian cycles. The proof of
Theorem 1.1 shows that the appearance of a linear Hamiltonian cycle in Gprqpn, pq has a
sharp threshold, and we expect this sharp threshold to coincide with the sharp threshold
for the disappearance of isolated vertices (i.e., vertices not contained in any edges). For
r ě 3, writing

pdeg
r pnq “

pr ´ 1q! log n
nr´1

to denote the sharp threshold for the disappearance of isolated vertices in Gprqpn, pq, we
predict the following.

Conjecture 4.2. For each r ě 3, pdeg
r pnq is the sharp threshold for the appearance of a

linear Hamiltonian cycle in Gprqpn, pq.

In the case where r “ 3, Frieze [8] showed that pdeg
3 is a semi-sharp threshold for the

appearance of a linear Hamiltonian cycle, and Dudek and Frieze [5] showed that pdeg
r is

an asymptotic threshold for the appearance of a linear Hamiltonian cycle for all r ě 3.
Of course, we expect much more than Conjecture 4.2 to be true and naturally expect the
hitting time for the appearance of a linear Hamiltonian cycle to coincide with the hitting
time for the disappearance of isolated vertices, but even Conjecture 4.2 appears to be out
of the reach of existing techniques.
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