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We present a determination of parton densities at NLO obtained with the Parton Branching
method using precision measurements of deep inelastic scattering cross sections at HERA. The
two sets of parton densities shown in this work are obtained with the same angular angular order-
ing condition for the evolution scale and they differ in the chosen scale for the αs evaluation, for
which we consider two scenarios: the evolution scale, and the transverse momentum qT from the
angular ordering prescription. The transverse momentum dependent densities obtained with the
Parton Branching method are applied to two LHC processes: the Drell-Yan pT spectrum and the
azimuthal correlation in high pT dijet events. For the Drell-Yan pT spectrum a significant effect
from the αs scale choice is observed.
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1. Introduction

The Parton Branching (PB) method, introduced in Refs [1, 2, 3], and implemented in the xFit-
ter package [4], provides an iterative solution for the evolution of both collinear and transverse
momentum dependent parton distributions (TMDs) [5]. An important feature of this method is that
it gives a solution which is fully exclusive, meaning that the splitting kinematics at each branch-
ing vertex is known. Therefore it allows for a natural determination of the transverse momentum
TMDs, as the transverse momentum at every branching vertex is known. The PB method has shown
to be valid for leading-order (LO), next-to-LO (NLO) and next-to-NLO (NNLO). Along this line,
the agreement within a percent of the integrated TMDs obtained by this method, with the corre-
sponding semi-analytical solution of the DGLAP [6, 7, 8] evolution (implemented in Qcdnum [9])
was achieved at LO, NLO and NNLO [1, 2, 10]. In this report the determination of parton densi-
ties at NLO obtained using the PB method is presented together with applications of the obtained
TMDs to LHC processes (Drell-Yan and azimuthal correlations in dijet events).

2. Parton Branching method

The evolution with the scale Q2 of a parton density fa(x,Q2) of flavour a and longitudinal
momentum fraction x can be described by the DGLAP equation. The PB method, applied to a
momentum weighted parton density f̂a(x,Q2) = x fa(x,Q2), is based on the following equation [2]:

Q2 ∂ f̂a(x,Q2)

∂Q2 = ∑
b

[∫ zmax

x
dzPR

ab
(
z,αs(Q2)

)
f̂b(

x
z
,Q2)− f̂a(x,Q2)

∫ zmax

0
dz zPR

ba
(
z,αs(Q2)

)]
, (2.1)

where z is the light-cone momentum fraction of the parton undergoing the splitting, and PR
ab

(
z,αs(Q2)

)
are the real DGLAP splitting kernels [2, 3]. The parameter zmax is the resolution scale [1] that sep-
arates the resolvable emissions region (z < zmax) from the non-resolvable emissions one (z > zmax).
The Eq. 2.1 converges to the DGLAP equation in the limit zmax → 1 [1]. The indexes a and b
denote the flavor indexes. The Eq. 2.1 can then be rewritten as:

Q2 ∂

∂Q2
f̂a(x,Q2)

∆a(Q2,Q2
0)

=
1

∆a(Q2,Q2
0)

∑
b

∫ zmax

x
dzPR

ab
(
z,αs(Q2)

)
f̂b(

x
z
,Q2), (2.2)

where the Sudakov form factor was introduced, and it is defined as:

∆a(Q2,Q2
0)≡ exp

[
−∑

b

∫ Q2

Q2
0

dQ
′2

Q′2

∫ zmax

0
dz zPR

ba

(
z,αs(Q

′2)
)]

(2.3)

The sensitivity of Eq. 2.1 to the arbitrary parameter zmax has been studied in Ref. [2] and shown
to give stable solutions in the limit of applicability (1− zmax� 1).

The Sudakov form factor ∆a(Q2,Q2
0) represents the no-branching probability between the

scales Q2
0 and Q2 for a parton with flavor a. The probability of no-branching between two scales

Q2
1, Q2

2 can be expressed as ∆a(Q2
2,Q

2
1) = ∆a(Q2

2,Q
2
0)/∆a(Q2

1,Q
2
0). The DGLAP evolution is then

explicitly obtained by a sequence of branchings happening at scales Q2
0 < Q2

1 < .. . < Q2. The scale
Q2

i of the i-th splitting is chosen (via Monte Carlo (MC) sampling) according to the distribution
∆a(Q2

i ,Q
2
i−1) which depends on the previous splitting. Analogously, the corresponding z of the i-th
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splitting a→ bc is generated according PR
ba(z,Q

2
i ). The details of the procedure can be found in

Ref. [2].

3. Mapping the branching kinematics to the evolution of the TMDs

Due to the branchings in the evolution, a parton of flavor a and longitudinal momentum frac-
tion x acquires a transverse momentum kt. Consequently, the corresponding TMD Aa(x,kt;Q2)

evaluated at the scale Q2 will depend also on the kt. The evolution of a TMD A(x,kt;Q2) from a
scale Q2

0 to a scale Q2 obeys the evolution equation introduced in [2, 3]:

Aa(x,kt;Q2) = ∆a(Q2,Q2
0)Aa(x,kt;Q2

0)+

+∑
b

∫ Q2

Q2
0

d2Q′

πQ′2
∆a(Q2,Q2

0)

∆a(Q
′2,Q2

0)

∫ zmax

x
dzPR

ab

(
z,αs(Q

′2)
)

Ab

(
x
z
,kt +(1− z)Q′;Q

′2
)
. (3.1)

In the application of Eq. 3.1 we consider the scale at which αs is evaluated not necessarily
equal to the evolution scale [3]. The kinematical variables associated with the splitting have to be
related to the scales at which the TMD and the αs are evaluated respectively. In this work we use
the choice Q = qT/(1− z) where qT stands for the transverse momentum of the emitted parton
with respect to the beam axis. This choice enforces an angular ordering of the emissions therefore
ensuring quantum coherence of softly radiated partons.

In the case of αs two choices for the renormalization scale Q2
r are investigated in this work:

the condition Qr = Q and the condition Qr = qT from the angular ordering prescription.

4. Determination of TMDs from fits to inclusive measurements

Two TMD sets (Set 1 and Set 2) were obtained in Ref. [3] using the two different choices
Qr = Q and Qr = qT for the αs evaluation (Fig. 1). For both sets the angular ordering condition
Q = qT/(1− z) was chosen for the evolution scale. The Fig. 1a shows that the sets differ in the
gluon component at small scales.

The integrated TMD is fitted, within the xFitter where the PB method is implemented, to
precision measurements of neutral and charged current DIS at various beam energies from HERA
1+2 [11] in the ranges 3.5 < Q2 < 50000 GeV2 and 4 · 10−5 < x < 0.65. The fits of both sets
resulted in a similar χ2/nd f ≈ 1.21 [3].

5. TMDs applied to Drell-Yan and dijet azimuthal correlations at the LHC

In Fig. 2a the predictions for the transverse momentum spectrum of the Z-boson obtained with
the two TMD distributions, and compared with the measurement from ATLAS [12] are shown. The
details of the calculation can be found in Ref. [3]. Although the overall shape of the distribution is
described by both TMD sets, the Set 2, for which αs is evaluated at the scale qT from the angular
ordering prescription, provides a better description of the data. The transverse momentum spectrum
of the Z-boson can therefore be used to investigate the higher order effects covered by the different
scale choices. The reader should notice that no adjustment has been made and only by means of
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(a) (b)

Figure 1: Parton densities for different choices for the renormalization scale in αs are shown. The
red band shows the experimental uncertainty, the yellow band the model dependence. The green
band shows the uncertainty from the variation of the cut used to avoid the non-perturbative region
in the αs evaluation [3].

the kt from the TMDs (which are constrained by the data) we are able to reproduce the Z-boson
transverse momentum spectrum up to a level of 20%.

Figure 2b illustrates the predictions for the azimuthal angular separation between the two
leading jets (∆φ12) in inclusive dijet events, compared with the measurement from CMS [13].
The events obtained with POWHEG [14] are convoluted with the TMDs and then showered. The
CASCADE MC generator [15, 16] was used for generating the initial state shower according to
the TMD evolution whereas the PYTHIA6 [17] was used for the final state shower. The prediction
from POWHEG + PYTHIA8 [18] is also shown in Fig. 2b.

6. Conclusions

The PB method has been utilized to obtain TMDs in a novel way. The integrated TMDs have
been fitted to DIS data measured at the HERA experiment over a large range in x and Q2. Two
TMD sets differing in the renormalization scale at which the αs is evaluated were obtained and
applied to LHC processes (Drell-Yan and azimuthal correlations in dijet events). The fits gave
similar χ2/nd f ≈ 1.21 values for both sets. The Drell-Yan spectrum (Fig. 2a) is sensitive to the
different gluon contributions in the TMDs. It is better described when αs is evaluated at the scale
qT from the angular ordering prescription. On the other hand, for the azimuthal correlation between
the leading jets in dijet events at LHC, both TMD variants give equivalent results.
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(a) (b)

Figure 2: a) The transverse momentum spectrum of the di-lepton pair measured by ATLAS [12]
and b) the ∆φ12 in dijet events measured by CMS [13] compared with the predictions based on Set
1 and Set 2 TMD densities.
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