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Abstract

We present results for the bubble wall velocity and bubble wall thickness during a

cosmological first-order phase transition in a condensed form. Our results are for mini-

mal extensions of the Standard Model but in principle are applicable to a much broader

class of settings. Our first assumption about the model is that only the electroweak

Higgs is obtaining a vacuum expectation value during the phase transition. The second

is that most of the friction is produced by electroweak gauge bosons and top quarks.

Under these assumptions the bubble wall velocity and thickness can be deduced as a

function of two equilibrium properties of the plasma: the strength of the phase transition

and the pressure difference along the bubble wall.
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1 Introduction

The main property of a first-order phase transition is that it proceeds by bubble nuclation:

Small regions of the new phase expand into a sea of old phase. In cosmology, such a phase tran-

sition can lead to many interesting phenomena, for example baryogenesis [1–3], gravitational

wave production [4–9] or generation of magnetic fields [10]. One important characteristic is

hereby the velocity with which the bubble interface moves. The bubble wall velocity has to be

subsonic for efficient baryogenesis, while larger wall velocities typically lead to an enhanced

production of gravitational waves.

Some characteristics of the phase transition only rely on the equilibrium properties of the

plasma, for example the latent heat or nucleation probability of critical bubbles. Other char-

acteristics depend on the hydrodynamic behavior, for example the energy budget of the phase

transition (much latent heat is transferred into bulk motion of the plasma versus heating the

plasma). The wall velocity falls into a third category that even depends on the microscopic

properties of the a plasma. Friction is generated by the particle species that change mass

during the phase transition and are driven out-of-equilibrium by the bubble interface. Quan-

tifying the friction in the wall and bubble wall velocity hence requires a knowledge not only

about the scalar sector of the theory (that releases the latent heat) but also about the parti-

cles that cause the friction 1. Because of this, friction in the Standard Model [13, 14] works

for example quite differently than in extensions of the Standard Model, e.g. in the MSSM [15]

or in models with extended scalar sectors [16].

The present work aims at presenting results for the bubble wall velocity and the bubble

wall thickness for the electroweak phase transition in a large class of models. The main

assumption that is used to achieve this is the following: Motivated by the absence of BSM

at collider experiments so far, we assume that only the W -bosons and top quarks dominate

the friction. Any particle that contributes to friction requires a strong coupling to the Higgs.

In turn, a strong coupling to the Higgs can leave traces in the production and decay rates of

the Higgs, which is at odds with measurements at LHC. So, actually this assumptions seems

well motivated. Even under this assumption, it is not easy to present the results on wall

velocity since it depends in principle on three parameters. In order to make progress, we

impose the condition that the nucleation probability is the correct one for a phase transition

at electroweak scales. This allows us to remove one parameter and to produce results depend

only on two parameters and are easy to digest.

The structure of the paper is as follows: In Section 2 we outline the basic calculation of

friction in the bubble wall. Section 3 discusses how to reduce the number of input parameters

by using the tunneling probability as a universal (model-independent) constraint. In Section 4

we discuss relativistic bubble wall velocities before we present our main results in Sec. 5.

Finally, we comment on phase transition with several scalar fields in Sec. 6 and conclude in

Sec. 7.

1In principle, a phenomenological model can be used to bypass this [11,12].
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2 Friction

We will calculate the wall friction following the approach of Refs. [13,14] and [17]. We will be

rather brief here. More details on the calculation can be found in these two references. The

equation of motion for the particles in the plasma is the Boltzmann equation

pµ∂µ fi = collisions + forces . (1)

The forces in the plasma are produced by the fact that the particles change their mass

through their coupling to the Higgs VEV that changes in the bubble wall. In the wall frame,

the dispersion relation, p2 = m(z)2, is respected by the (pseudo-) particles in the plasma by

changing the pz momentum. This results (see eq. (5) in [17]) in the forces

forces = −1

2
∂zm

2
i∂pzfi , (2)

in the Boltzmann equation.

Typically, two-by-two scattering processes are so fast in the plasma that the system attains

kinetic equilibrium on scales smaller than the wall thickness. In this case, it is justified to use

for the particles in the plasma the flow Ansatz

fi =
1

exp(Xi)± 1
,

Xi = βi[u
i
µp

µ + µi] , (3)

where uiµ = γw(1, 0, 0, vw) is the (local) plasma four-velocity, βi denotes the inverse tempera-

ture and µi the chemical potential. Particle number changing interactions are usually slower

than two-by-two scattering processes such that the system will eventually relax to equilibrium

(µ = 0) away from the bubble wall. Notice that the forces inject energy and momentum into

the fluid such that the four-velocity and the temperature do not coincide on both sides of

the wall. Moreover, in the case of subsonic wall velocity, a shock builds up in front of the

wall such that the temperature in front of the wall does not coincide with the nucleation

temperature. We will take this effect also into account in our analysis.

As long as the system is relatively close to equilibrium, the deviations from equilibrium

(in the symmetric phase) can be parametrized by small deviations

X = β[uµp
µ + µ] ≡ (uµ + δuµ(z) + δτ(z))β pµ + δµ(z) . (4)

Here, we defined the dimensionless deviations δτ = −δT/T and δµ = µ/T . Normalization

of the four-velocity (uµδuµ = 0) then leads to three degrees of freedom per particle species

in the plasma. The most important species in the Standard Model are hereby the top quark

and the W -boson. As long as there are no additional light degrees of freedom that couple

strongly to the Higgs field, friction will be dominated by these two species.

Using this Ansatz the Boltzmann hierarchy can be truncated and it remains to solve three

equations from the hierarchy to determine the three deviations {δµ, δτ, δuµ}. A natural choice
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is to use current and energy-momentum conservation of the different species in the plasma

∂µJ
µ
i = collisions ,

∂µT
µν
i = collisions + forces . (5)

In the wall frame the energy-momentum tensor and current are given in terms of the particle

distribution functions as

Jµi (z) =

∫
d3p

(2π)3
pµ

p0
fi(~p, z)

∣∣∣∣
p0=
√
~p2+m2

i

,

T µνi (z) =

∫
d3p

(2π)3
pµpν

p0
fi(~p, z)

∣∣∣∣
p0=
√
~p2+m2

i

. (6)

The forces arise hereby from the change in dispersion relation of the particles in the plasma

as discussed above

forces =
1

2
∂νm

2(z)

∫
d3p

(2π)3
1

E
f(~p, z) . (7)

Note that the equation of the current does not contain a force since the corresponding integral

by construction vanishes [17]. This is consistent with the picture that the force corresponds

to a kinematic effect that changes the momentum of the particles but does not change particle

numbers. Note also that by construction the deviations from equilibrium vanish in the wall

frame in case of a static wall, i.e. when ∂µ → ∂z and uz = 0. This is due to a cancellation

between the force term and the z-dependence in the energy-momentum tensor through the

mass. One way to see this is to observe that the Boltzmann equation in the wall frame can

be written in terms of the Poisson bracket

{a, b} =
da

dz

db

dpz
− da

dpz

db

dz
, (8)

and then reads
1

2

{
~p2 +m2, f

}
= collisions . (9)

For a static wall, the equilibrium distribution only depends on E2 = ~p2 +m2 and hence solves

the Boltzmann equation.

Ultimately, the equations are linearized in the deviations from equilibrium and are of the

form [17]

A · q′ + Γ · q = S , (10)

where A contains velocity dependent moments of the equilibrium distributions, Γ contains

scattering rates from particle number changing interactions, q contains the deviations from

equilibrium {δµ, δτ, δuµ} for all relevant species and the background of light particles and S

is the source term from the forces. Notice also that the prime denotes γv∂z in the wall frame

with the Lorentz factor of the wall velocity. This will become relevant in the runaway regime.
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The second equation of motion on has to solve is for the Higgs field. This can be obtained

by energy-momentum conservation of the full system Higgs+fluid. This equation reads

2φ+
dV

dφ
+
∑
i

dm2
i

dφ

∫
d3p

(2π)3
1

2E
fi(~p, z) = 0 . (11)

The last term is again the force term resulting from the impact of the dispersion relation on

the particle kinematics. An alternative way of writing this equation is by splitting the fluid

part into an equilibrium piece and a deviation from equilibrium. The equilibrium piece is the

free energy of the fluid and the equation hence reads

2φ+
dVT
dφ

+
∑
i

dm2
i

dφ

∫
d3p

(2π)3
1

2E
δfi(~p, z) = 0 , (12)

where VT denotes the thermal effective potential (or more precisely the free energy of the

system). The last contribution involving the deviation from equilibrium δf can then be

identified as the friction produced by the wall. Notice that this construction is not unique

since one can choose as equilibrium either the phase in front of the wall or the phase behind

the wall that are at different temperature.

Again, to solve this equation we use an Ansatz for the Higgs VEV profile, namely a tanh

profile with a wall thickness Lw. The final Higgs equations then read

∆VT
T 4

= f ,

− 2

15(TLw)2

(
φ0

T

)3

+
W

T 5
= g , (13)

where ∆VT denotes the difference in effective potential (free energy) between the two phases,

φ0 denotes the Higgs VEV in the broken phase 2 , T = 1/β is the temperature and W denotes

the following integral

W ≡ −
∫ φ0

0

dVT
dφ

(2φ− φ0)dφ . (14)

While ∆V is the pressure along the wall, W is a measure for the pressure gradient along the

wall and mostly determines the wall thickness. The functions f and g are the corresponding

integrals over the force term in the Higgs equation of motion

f = T−4
∫
dz
dφ

dz

∑
i

dm2
i

dφ

∫
d3p

(2π)3
1

2E
δfi(~p, z) , (15)

g = T−5
∫
dz
dφ

dz
(2φ− φ0)

∑
i

dm2
i

dφ

∫
d3p

(2π)3
1

2E
δfi(~p, z) . (16)

2 Notice that these quantities are evaluated right in front of the wall. For deflagrations, there is a difference

to the plasma in the symmetric phase due to the shock front before the bubble wall interface that we take

into account.
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The two dimensionless functions f and g have to be obtained by solving the fluid system (5).

They depend on the strength of the phase transition φ0/T , the wall velocity vw, the wall thick-

ness Lw and several couplings and collision rates in the top quark and W -boson sectors [17].

Aim of the present paper is to disentangle this dependence and provide an easy to use result

for the bubble wall velocity that applies to a wide range of models.

In the present approach we have used the assumptions that the system is locally in kinetic

equilibrium and that the deviations from equilibrium are small enough to allow for the flow

Ansatz. Clearly, this is not always justified. One important example are wall velocities close

to the speed of sound. This can lead to large deviations from equilibrium even when the

forces are small. This is signaled by a singular matrix A in (10) when the system in linearized

in the deviations {δµ, δτ, δuµ}. Another notable regime are relativistic bubble wall velocities.

In this case scattering processes are suppressed and the system does not even attain kinetic

equilibrium in the wall. This bound is discussed in detail in section 4.

A common strategy to solve these equations is to solve the fluid system for fixed wall

velocity vw and wall thickness Lw and then to vary these two parameters until the Higgs

equations (15) and (16) are fulfilled. In most cases, the function g plays a subdominant role

and the wall thickness is determined by W only (for fixed wall velocity). At the same time,

the function f is proportional to the wall velocity what ultimately determines the expansion

speed of the Higgs bubbles. Finally, notice that in case of subsonic walls, there is a shock in

front of the wall such that the temperature in front of the wall does not coincide with the

nucleation temperature of the system. This mismatch depends on the wall velocity [18] and

we take this effect into account.

3 Tunneling as a constraint

As discussed in the last section, to determine the wall velocity (or its friction), one has to

solve the dynamics of the fluid in conjuncture with the Higgs equation of motion. For a

concrete model, the nucleation temperature and corresponding effective potential are known.

This means that the strength of the phase transition, φ0/T , as well as the quantities ∆V and

W in (13) are specified. So it remain the wall velocity vw and the wall thickness Lw that have

to be fixed by fulfilling (13) using the deviations from equilibrium f and g obtained from

solving (10) 3.

For every set of concrete model and input data {∆V,W, T, φ0} these equations can be

solved. Ultimately, the problem is that the general solution cannot be visualized easily to

make it applicable for general models. Also the functions f and g (even in the simplest case

of a SM particle content) still depend on three quantities: The wall velocity vw, the wall

3As mentioned earlier, for subsonic walls a shock precedes the bubble which adds one more complication

in the procedure. However, the shock only depends on the wall velocity and hence this part does not depend

on the model and can be easily incorporated.
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thickness Lw as well as the strength of the phase transition φ0/T . Hence, also these functions

cannot be easily visualized and/or parametrized.

Our main idea is to reduce the number of relevant parameters from four to two. More

concretely

{∆V,W, T, φ0} → {∆V/φ4
0, φ0/T} . (17)

This makes it possible to provide contour plots for the wall velocity vw and wall thickness

Lw/T that are valid for a wide range of models. First, since we are only interested in the

dimensionless quantities vw and Lw/T , trivially only three dimensionless combinations of the

four parameters can enter. To reduce the number of parameters further to two requires a bit

more work.

In order to achieve this, we use the tunneling action to constrain W in terms of ∆V . To

get the three-dimensional tunnel action [19–21], one has to calculate the bounce solution that

obeys
d2φ

dρ2
+

2

ρ

dφ

dρ
=
dV

dφ
. (18)

This equation has the following properties: If the potential is scaled, V → λV , the bounce

solution scales as ρ → λ−1/2ρ and accordingly S3 → λ−1/2S3. Likewise, if the potential is

stretched, φ→ λφ, the bounce solution scales as ρ→ λρ and accordingly S3 → λ3S3. So, the

tunneling action for any family of potentials with three free parameters can be written as

S3

φ0

=
W 3/2φ1/2

∆V 2
×X(W/∆V/φ0) , (19)

where the argument W/∆V/φ0 is invariant under above rescalings. The prefactor is chosen

such that it reproduces the correct behavior of S3 → λ−1/2S3 and such that in the thin wall

regime W/∆V/φ0 →∞ the function X(W/∆V/φ0) approaches a constant.

The question is how different X(W/∆V/φ0) can be across different families of potentials.

Figure 1 shows this function for three families of potentials. They all share the operators φ2

and φ4. In order to construct a barrier, a third operator is necessary and this is the cubic

(φ3), dimension six (φ6) or logarithmic (φ4 log(φ)) operator. Notice that there is no reference

to temperature in this figure. The potential are not realistic finite temperature potentials

but the three examples should exemplify the range of possibilities that arise at nucleation

temperature.

For most parts, the models agree for

W > 0.5 ∆V φ0 . (20)

This is the most relevant regime for several reasons. Observe that this is the thin wall regime

where the barrier is relatively small compared to the potential difference. Furthermore, (19)

can be written as √
∆V

φ2
=

ξX

(S3/T )

(
W

∆V φ

)2

. (21)
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Figure 1: The plot shows the function X defined in (19). The limiting cases are the models

with a φ3 and φ6 terms in the free energy that should cover most of realistic potentials.

Since S3/T ' 140 and X < 15, a small W/∆V φ is in most models in tension with the observed

Higgs mass. We will display the bound (20) in our final results.

The relation (19) relates ∆V and W and the wall velocity vw and the wall thickness Lw
can be expressed as a function of ∆V/φ4

0 and φ0/T only. As discussed above, this should work

especially well in the limit of small wall velocities and thick walls. Hence, we will use the

opposite regime to benchmark the quality of our results, in particular models with runaway

walls.

4 Runaway

The regime of relativistic wall velocities was first discussed in Ref. [22] and a higher order

effect was presented in Ref. [23]. In the regime of relativistic wall velocity the system becomes

collisionless [remember the Lorentz factor in (10)]. More quantitatively, this happens for

ΓLw � γw A , (22)

where A contains velocity dependent moments of the equilibrium distributions (that are of

order one for large velocities), Γ contains scattering rates from particle number changing

interactions, Lw is the wall thickness and γw is the Lorentz factor coming from the wall

velocity.
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In this regime, the z-momentum changes according to the dispersion relation. Since the

system is collisionless, this allows to directly infer the particle distribution function behind

the wall in the broken phase from the one in the symmetric phase

fb(pz) = fs(p̄z) , p̄z =
√
p2z −m2

b +m2
s . (23)

Notice that this reasoning is consistent wit the collisionless Boltzmann equation in (9). More-

over, the energy momentum tensor in the broken phase can be evaluated by undoing the shift

in pz in the integration variable. In particular one finds

Jzb = Jzs ,

T 0z
b = T 0z

s ,

T zzb = T zzs + ∆T zzBM , (24)

with

∆T zzBM = (m2
b −m2

s)

∫
d3p

(2π)3
1

2E
f(E)

∣∣∣∣
E=
√
~p2+m2

s

. (25)

More generally, any moment that contains one factor pz and arbitrary factors of E will be

conserved in the wall, just like Jz and T 0z. This is due to the fact that dpz pz does not change

under the shift in (23).

In case the particle is massless in the symmetric phase, the pressure in the runaway regime

is the mean-field contribution (25) to the effective potential using the particle distribution in

the symmetric phase. While the Boltzmann equation respects this behavior, the fluid Ansatz

does not. In particular, after linearization, the energy-momentum tensor fulfills

∂zT
zz = ∂zm

2(z)

∫
d3p

(2π)3
1

2E
f(E)

∣∣∣∣
E=
√
~p2+m(z)2

, (26)

which underestimates the true pressure difference. Hence we expect that the fluid Ansatz

overestimates the wall velocity in this regime. This difference can be quite substantial. In

the case of the top and W -bosons, the particle masses can be significantly larger than the

temperature such that (25) and (26) differ by a factor of order unity.

In terms of ∆V , the correct condition for runaway is then

∆V

φ4
0

>
∆T zzBM − VT

φ4
0

. (27)

In our setup, only the top quark and W -boson are taken into account and this bound becomes

independent from the actual zero temperature scalar potential because the right-hand-side of

(27) can be calculated as a function of ξ = φ0/T and the involved couplings. We will present

the runaway bound (27) and the constraint from the breakdown of the fluid approximation

(22) along the results for the wall velocity in the next section.

8



Figure 2: The constraints (20) and (22) as a function of the phase transition strength ξn and

the normalised vacuum energy ∆V/φ4
n, for the (top) cubic toy-model and (bottom) dimension

six extension.

5 Results

For the computation of the wall velocities from the fluid equations (13) we consider two

different potentials, namely a SM extension with a φ6 operator [24] and a toy model with a

9



tree-level cubic term. The tree-level potentials are, respectively,

V φ6

tree = −µ
2

2
φ2 +

λ

4
φ4 +

φ6

8M2
, (28)

V φ3

tree = λφ2(φ− φ0)
2 −DT 2

0 φ
2 , (29)

with D ≡ 1
24 v2

(6m2
t + 6m2

W + 3m2
Z) the coefficient of the quadratic term in the thermal

potential for the SM particle content. In the φ6 case we enforce that the minimum be at

v = 246.22 GeV, varying the scalar mass and the overall cutoff scale M . For the φ3 we fix

the overall scale T0 = 100 GeV and vary φ0 and λ. On top of the tree-level potentials, we

also add the one-loop Coleman-Weinberg as well as the thermal contributions.

5.1 Constraints from the universality of tunneling

As seen in Fig. 1 the behaviour of the tunneling action is quite universal in terms of W/∆V/φ0

as long as the phase transition is relatively weak. However, in the regime of strong phase

transitions, the models start to differ. In particular, the barrier in the effective potential

vanishes at different values of W/∆V/φ0 for different models (sending S3/T to zero). Results

for W/∆V/φ0 for above two models are shown in Fig. 2 We impose

W/∆V/φ0 > 0.5 , (30)

in our final results.

5.2 Constraints from the fluid approximation

Another approximation that can break down is the fluid approximation. The fluid approx-

imation requires that the interactions are strong enough to keep the system in kinematic

equilibrium. In our fluid system this implies

(A−1Γ)Lw > γw . (31)

Results for this bound are also displayed in Fig. 2. If this relation is violated, the friction

calculated will not be accurate. We will see this explicitly in the runaway regime that occurs

in a regime of parameter space that violates this bound.

5.3 Final results

The results are shown in Fig. 3. We plot the wall velocity as a function of the phase transition

strength ξn and the normalised vacuum energy ∆V/φ4
n, both evaluated at the nucleation

temperature. Also shown is the curve obtained from application of the Bödecker-Moore

criterion. The shaded region results from violation of one of our requirements in (30) and

(31).
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Note that the curves in the two plots essentially coincide in the region of mildly strong

phase transitions, ξn . 2.7, in agreement with the discussion of Fig. 1. For stronger transitions

we approach the case W/∆V/φ . 0.5, where the nucleation criterion alone does not allow us

to draw model-independent conclusions based only on ∆V and ξn.

Another important result presented in the plot is the huge gap between the model-

independent runaway curves obtained from the Bödecker-Moore criterion and from the flow

Ansatz. As the shaded regions indicate, the discrepancy seems to stem from a breakdown of

the fluid approximation, as collisions become too large for the perturbations to be treated

as small. Notice that also this disparity shows up in the shaded region due to the lack of

sufficient interactions to stay close enough to equilibrium.

Notice that our results for the Standard Model are quite off from what was originally

found in [14]. As already noted in [17] this is due to the fact that the infrared divergence in

the bosonic force terms is aleviated by using the full mass dependence (and to a much lesser

extent that we take into account the shock front before the wall in a non-linear way - an effect

that is only relevant for strong phase transitions).

Finally, notice that subsonic and supersonic solutions cross in the cubic model. This is

due to the shock front that leads to an ambiguity in ∆V/φ4 evaluated at the nucleation

temperature. If it was evaluated at the bubble wall, this ambiguity would be absent.

6 Phase transitions with several scalars

Before concluding, we comment on the case where several scalar fields are involved in the

phase transition. As a prototype of this situation we have in mind the Standard Model

enhanced by a singlet that can develop a two-stage phase transition [25]. The second stage

will break the electroweak symmetry and can be very strong due to a potential barrier that

is even present at tree level.

The Higgs field φ and the singlet field s will both vary during the phase transition. The

fields will hence describe a path {φ(z), s(z)} in scalar field space. This path will pass through

the two minima and surpass the barrier close to a saddle point of the potential. In case the

path was known, one could reduce the problem to a one-dimensional problem. Consider a

variable p that parametrizes the path traveled

dφ2 + ds2 = dp2 . (32)

The equation of motion for p is obtained by summing over the corresponding equations for

φ and s of the form (12). Multiplying these equations by dφ/dz and ds/dz, respectively and

summing over the integration one finds again an equation of the form

∆VT
T 4

= f , (33)

− 2

15(TLw)2

(p0
T

)3
+
W

T 5
= g , (34)
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Figure 3: The plot shows the wall velocity as a function of the phase transition strength

ξn and the normalised vacuum energy ∆V/φ4
n, for the (top) cubic toy-model and (bottom)

dimension six extension. The stars denote the Standard Model with a very light Higgs boson

with masses mH ∈ {50, 30, 20} GeV. The results in the shaded regions are unreliable as seen

in Fig. 2.

with the contour integral

W ≡ −
∫ p0

0

(
dVT
dφ

dφ+
dVT
ds

ds

)
(2p− p0) . (35)

12



Figure 4: The same as Fig. 3 for the wall thickness.

The expression for f is unchanged while the definition g will contain a factor (2p−p0) instead

of (2φ− φ0). In any case, the function g is less relevant and typically smaller than the other

two contributions to the second equation of (33).

We would like to understand to what extent it is possible to reuse the results of the one

scalar case for potentials with several scalars. Unfortunately, this is very limited. Since f and

g are rather involved functions of vw and Lw and φ/T , the only way to make this happen is

13



to map φ0/T in the one scalar case to φ0/T in the multi-scalar case and check if this results

in a simple transformation on ∆V . According to (33) also ∆V has to be unchanged.

Since p is canonically normalized, the tunneling analysis is basically unchanged and we can

still express ∆V as a function of W . For fixed ∆V and S3/T , one finds the scaling W ∝ p−1

according to (19). This means in turn, that the W inferred in the single scalar case is a factor

p0/φ0 too large. At the same time, the first term in (34) is a factor (p0/φ0)
3 too large.

In the end, the multi-scalar case will lead to thicker walls and also higher wall velocities

than just feeding the values for ξ = φ0/T and ∆V/φ4
0 into the single scalar equations.

7 Discussion

We presented results for the bubble wall velocity and bubble wall thickness for the electroweak

phase transition in case it is first order, see Figs. 3 and 4. We discussed in detail under

what assumptions these results can be used in extensions of the Standard Model. Using

the requirement that the bubble nucleation probability is appropriate to trigger the phase

transition, makes it possible to reduce the number of input parameters to two, for example

the strength of the phase transition ξ = φ0/T and the pressure difference along the wall

∆V/φ4
0.

In order to quantify friction in the wall, we use the fluid approximation to model the out-

of-equilibrium. Limitation of the method are either a lack of interaction to keep the plasma

close enough to equilibrium. Besides, in order to reduce the number of input parameters, the

bubble walls have to be sufficiently thin. Both limits are discussed in Fig. 2.

Finally, let us discuss to what extent our results might be extrapolated to more complicated

situations. The main assumptions to our approach is that only the Higgs field is obtaining a

VEV during the phase transition and that the friction is produced by a SM particle content,

namely by the top quarks and electroweak gauge bosons. Extending our results to phase

transitions where several scalar fields are relevant seems to be hindered by the fact that we

cannot reduce the number of input parameters as before, see Sec. 6. Similarly, changing the

composition of the particles that are responsible for the friction is not easily accomplished.

Even changing the particle content in a rather trivial way (e.g. doubling the top and W -boson

content or adding a very strongly/very weakly interacting species) will have an impact on the

function W that is non-trivial.
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