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On uplifts by warped anti-D3-branes
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In this note we outline the arguments against the ten-dimensional consistency of the simplest
types of KKLT de Sitter vacua, as given in [I]. We comment on parametrization proposals within
four-dimensional supergravity and express our disagreement with the recent criticism by the authors

of [2].

I. Introduction

Whether or not string theory has semi-classical solutions
with the isometries of four dimensional de Sitter space is
the subject of an ongoing debate. The renewed interest
concerning this question is partially due to a very recent
conjecture that states that at each point in scalar field
space, the gradient of the scalar potential is bounded
from below by the vacuum energy (in Planck units) [3].
If true, positive energy solutions must always be time-
dependent due to the rolling of scalar ﬁeldsﬂ This
conjecture is fueled partly by classical no-go theorems
called Maldacena-Nuifiez theorems [I0, [11] against four
dimensional de Sitter critical points in ten and eleven-
dimensional supergravity. These theorems apply when-
ever each singularity that occurs in the compactification
is controlled by a stress-energy tensor that satisfies a cer-
tain energy condition. However, these theorems can in
principle be evaded once either

e sources that violate the energy condition are imple-
mented in a controlled way or

e genuinely four dimensional (e.g. non-perturbative)
effects play an important role that cannot be
treated semi-classically within a higher dimensional
framework.

One of the most popular mechanisms for generating 4D
de Sitter vacua (the KKLT mechanism [12]) has been
argued to operate along the second option. Since this
mechanism can be considered an important counter ex-
ample to the conjecture [3] it is clearly interesting to put
it under scrutiny, either to improve our understanding of
the mechanism or to find good reasons to reject it. It is
important to carefully weigh both supporting and critical
arguments (even though problems with any one de Sitter
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1 As'stated, the conjecture [3] would even forbid any de Sitter crit-
ical point. This is hard to justify both from a stringy perspective
[4 5] as well as from the bottom-up [6H8]. However, it is possible
that a statement could hold that is similar in spirit, allows for
de Sitter critical points but not minima (see e.g. [5, [9]).

construction are not the end of the de Sitter landscape):
on the one hand being able to reject KKLT would supply
non-trivial evidence supporting the absence of de Sitter
vacua in string theory and, if the conjecture is proven,
it would provide an unprecedented concrete and experi-
mentally testable prediction.

Last year we came to the conclusion that the simplest
example of the KKLT mechanism cannot produce four
dimensional de Sitter vacua because this would violate
the ten dimensional Maldacena-Nunez consistency con-
ditions. Since this conclusion has been criticized recently
from various angles we would like to take the opportu-
nity to explain which types of criticism in our opinion
can form a basis for a fruitful discussion and which do
not. To this end we will shortly review the main features
of KKLT, our objection to it, and comment on recent
criticism.

II. KKLT in a nutshell

KKLT work within the landscape of Calabi-Yau ori-
entifolds of type IIB string theory (in its supergravity
approximation) with three-form flux quanta turned on.
Within this setup it is known that a subset of the light
scalar degrees of freedom obtain a large mass (at least as
long as fluxes are dilute). These are the axio-dilaton as
well as the complex structure moduli. After integrating
out these degrees of freedom, we are left with an effective
supergravity model for the Kéhler moduli. If there is only
a single Kéhler modulus 7', the model is parametrized by
a Kéahler potential and superpotential

K = -31log(T +T) + const, W =Wy = const. (1)

The constant Wy comes from evaluating the Gukov-Vafa-
Witten (GVW) flux superpotential at the stabilized value
of the complex structure moduli and the axio-dilaton.
Appropriate choices of flux quanta allow us to tune |Wy|
extremely small. The model is of no-scale typd? and
its scalar potential vanishes so the Kéahler modulus T
remains massless.

KKLT proposed to include non-perturbative effects
such as gaugino condensation on a stack of N D7 branes

2 See however [13].
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which would contribute a superpotential term Ae=¢T,

with A = O(1) and a = 2F. It was shown that the
quantum corrected superpotential leads to an Anti-de-
Sitter vacuum with K&hler modulus stabilized at T, ~

Llog {fﬁ log(|W0|*2)} for [Wy| < 1. Once Wy is suf-

ficiently small, we can self-consistently neglect perturba-
tive and higher non-perturbative corrections.

The next step consists of adding a SUSY breaking
warped anti-D3-brane. Dimensionally reducing the anti-
D3-brane on the no-scale GKP [14] flux background gives
rise to a further term in the scalar potential [15]

2@%T3
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where a3 is of order the IR warp factor exp(2.4p) of a
Klebanov-Strassler throat and can easily take exponen-
tially small values, and T5 = O(1) is the brane tension
in Planck units. If this is correct, de Sitter vacua with
tunable cosmological constant exist and the anti-brane
potential does not interfere significantly with the stabi-
lization mechanism. Alternatively, one may parametrize
the uplift with the help of a nilpotent chiral superfield
S [I6HI9], with Kéhler and superpotential

K = -3log(T+T—-S5), W =Wy+Ae T +bS, (3)

where b ~ a2+/T3, and S is constrained by S? = 0.

ITI. The ten dimensional perspective

In [I] we have analyzed the KKLT construction from a
ten-dimensional point of view. Obviously, our conclu-
sions are valid only if a ten-dimensional description of
gaugino condensation on a seven-brane stack exists. In
our opinion a reasonable objection can be that gaug-
ino condensation is usually understood as a genuinely
four-dimensional phenomenon. However, there exists
compelling quantitative evidence that non-perturbatively
stabilized KKLT vacua can be consistently described by
plugging in a non-trivial expectation value for the gaug-
ino bilinear (A\) into the seven-brane action and compute
the ten-dimensional backreaction [20H22]. By doing so,
one may for instance match the known scalar potential
for mobile D3-brane moduli [20] 23] [24] that are induced
by gaugino condensation. Moreover, the SUSY condition
0 = DrW ~ Wy 4+ #(A)\) can be rediscovered in ten di-
mensions [I]. To us the evidence is convincing enough
to believe that a ten dimensional description of KKLT
vacua in the spirit of [20H22] is consistent. In our opin-
ion criticism of this point of view is perfectly acceptable
but the highly non-trivial evidence for it should be taken
into consideration carefully.

Under the above assumption one may estimate the ef-
fective energy momentum tensor that is induced by gaug-
ino condensation and check whether or not it provides a
loop-hole to the Maldacena-Nunez theorem. For type
IIB supergravity there exists a strengthened form of the

theorem that can be derived from a tadpole constraint
which takes the form [2T], 25] (see e.g. also [14] 26])

Aloc
0= [y MR+ 15
m
CYs
+e®* (positive semi-definite)] , (4)

where Al°¢ = i (T;;‘ — Tﬁ)loC — T3p¥° is a combination
of the energy momentum tensor and D3-brane charge of
localized objects, and Ry is the Ricci-scalar of the four
dimensional vacuum. For the classical no-scale solutions
all terms of the integrand vanish individually and the
tadpole bound is satisfied. Clearly, for a de Sitter vacuum
R4 > 0 so there must exist some localized object that has
a negative Aloc,

One can convince oneself that this is a problem for the
KKLT construction: in the supersymmetric situation the
only non-vanishing terms are sourced by the gaugino con-
densate. Since for a supersymmetric background R4 < 0,
the sum of the other terms must give a positive contribu-
tion. To leading order in the (small) gaugino condensate
all non-vanishing terms localize along the seven brane
stack so can be encoded in an effective energy momen-
tum tensor Ty, that must satisfy AlS ~ [AX2 > 0, at
least in the supersymmetric situation.

In passing to the non-supersymmetric situation one has
to include the localized energy momentum tensor of the
anti-brane which by itself does not allow to evade the
no-go theorem, i.e. it gives a positive contribution to
Alec [14, 21]. Hence, even after inclusion of the SUSY
breaking anti-brane the no-go theorem still appliesﬂ

From this we have concluded that single modulus
KKLT vacua cannot be lifted to de Sitter vacua via the
inclusion of warped SUSY breaking sources such as anti-
branes. We would like to emphasize that this was the
main idea presented in [I]. One may either criticize the
ten-dimensional approach from the start (as was done for
instance in [27]) or accept it and argue about the proper
implementation within 4D supergravity.

If one is convinced that our 10D conclusion is correct
one may debate over how it can be implemented within a
corrected 4D supergravity model. As a first step toward
such a 4D parametrization we have proposed a simple
model that does the job (in some regime) and we will
comment on this and the criticism of [2] in the next sec-
tion.

3 Strictly speaking one also has to estimate to what extend the
presence of the anti-brane can change the value of the gaugino
condensates contribution to Al;’f. Under the assumption that the
magnitude of the condensate is not reduced by a large amount
(i.e. by a whole cycle-volume) one may argue that the only non-
negligible backreaction can be that the volume modulus finds
a new stabilized value and hence the value of the condensate
adjusts. This is enough to conclude the above.



IV. Four dimensional supergravity
implementations

Based on a ten dimensional analysis we have argued that
within a consistent truncation to leading order in inverse
cycle volumes there are no de Sitter KKLT vacua within
a controlled regime. Of course, it would be desirable to
understand this from the four dimensional perspective.
In [I] the following interpretatiorﬁ was given:

As the uplift potential (say the IR warp factor)
is dialed up, the volume modulus is pushed to
larger volumes in such a way that it is impossible (5)

to reach positive vacuum energy (see Figure .

We have proposed to implement this behavior by mod-
ifying the 4D SUGRA as follows

W — Wy + Ae T 4+ ¢Se T + b8, (6)

for some unsuppressed coefficient ¢. This proposal
matches the outcome of our 10D arguments by realiz-
ing the above interpretation . For this to happen the
dominant part of uplifting must arise from the c-coupling,
and not from the b-coupling. In particular, only choosing
a large enough coeflicient ¢ (where ‘large enough’ will be
made more precise below) provides a match to the 10D
results.

One may convince oneself that for b = 0 there are no
de Sitter vacua and the coupling proportional to ¢ me-
diates a large back-reaction on the Kéhler modulus 7" as
the vacuum energy increases. For any given value of ¢
we can turn on the small coefficient b until eventually
one reaches positive vacuum energy and the additional
backreaction on 7' that comes from turning on b # 0
is small. However, if ¢ is large enough to provide the
dominant part of uplifting to zero vacuum energy, such
de Sitter “vacua” cannot be trusted within a truncation
to the leading order Kéahler potential. This is because
contributions to the scalar potential from perturbative
corrections to the Kéhler potential can no longer be ar-
gued to be negligible. The model thus matches our 10D
result within the margin of theoretical error if ¢ is large
enough in the sense we now describe.

The T-dependent scalar potential around the super-
symmetric AdS KKLT vacuum (b = ¢ = 0) looks rather
similar to the potential around the non-supersymmetric
AdS point with ¢ # 0. Naively one might believe that
both vacua are equally well controlled. However, per-
turbative corrections to the scalar potential in the form
of volume suppressed o’ corrections are expected to take
the form

SV ~ o |Wp)? x 1

T 20 (7)

4 This interpretation is correct at least in certain 6d toy models
that are similarly constrained by the Maldacena-Nunez theorem.
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FIG. 1. In blue: the supersymmetric KKLT potential with
an uplift by ¢ = 0, b ~ €% in blue error bars in orange
(assuming p = %) Perturbative corrections to the potential
are negligible. In orange: partially uplifted scalar potential in
the limit of marginally controlled uplift from the c-coupling
at ¢ = cerit (and v = 6), b = 0. Perturbative corrections can
no longer be neglected. In red: uplifted scalar potential in
the limit of marginally controlled uplift from the c-coupling
at ¢ = cerit , and additional b-coupling uplift with 0 < b <
e?40  Again, perturbative corrections can not be neglected,
and putative dS minima in this regime are not trustworthy.
In all cases we have chosen A =1, a = 0.1, Wy = —10~*.

where Ky is the tree level Kahler
and p = 1/2,1,3/2 for corrections
O(a’), 0(a'?), O(a’?), respectively.

The vacuum energy of the supersymmetric vacuum is
given by Vausy = —3eX|W|? ~ —3eX0|Wy|2. Therefore,
in the large volume regime one may neglect o’ correc-
tions to the scalar potential expanded around the SUSY
vacuum. In contrast, the vacuum energy of the non-
supersymmetric vacuum is parametrized by the value of
c. If ¢ is large enough, one has |Vsusy| > |Vausy] ~ 0V
and perturbative corrections start to give important con-
tributions to the scalar potential. We plot both scalar
potentials with their margins of theoretical error in Fig-
ure [

Hence, there is a critical value of c,

Cerit = AV alog(|A/Wol), (8)

with numerical coefficient ~y, such that

potential
arising at

e for ¢ < c¢¢prip using the b-coupling to provide the
missing uplift to zero vacuum energy contradicts
our 10D outcome ([5)),

e while for ¢ 2 c¢qp any dS minima created by
adding the b-coupling are in the regime |Vsysy| >
|Vsusy] ~ 0V where the scalar potential cannot be

reliably predicted.

In the “counter example” given in [2] the authors have
chosen ¢ = 1 which is simply not large enough in the



sense given above — i.e. for ¢ = 1 most of the uplift to
zero vacuum energy still comes from the b-coupling.

A further criticism that was spelled out [2] is that the
model cannot be valid on all of moduli space because at
points where ce™ T + b = 0 supersymmetry is restored.
Certainly we would not claim that the model is a good
description in this regime.

The model was only designed to illustrate the effect
of unsuppressed exponential couplings so in particular
we did not claim that it is a unique consequence of our
ten dimensional analysis. In fact the model can be easily
generalized to a whole class of models that all exhibit the
effect that we are after while avoiding the problem just
mentioned. One simply starts with the superpotential of
eq. , transforms the classical warp factor b into the
Kahler potential by a field redefinition of S as in [28],

_ S8
K_—3ln(T+T—b2) (9)

and then replaces
b = D2 4b(f(T+T)e T +e.c)+g(T+T)e 2RT | (10)

with some power law functions f and g. For the spe-
cial choice f = ¢ € C, g = |c|*> we obtain the simple
parametrization that was originally proposed.

However, we may instead choose g(T+T) = g1-(T+T),
with g1 € R4. One can check that the bound analogous

to reads
g1 Z Gerit = 'YIQQAQ ) (11)

again for some numerical constant ~'.

Clearly, the problem pointed out in [2] has disappeared
because the expression in does not have a root on
the positive half plane 7'+ T > 0. The model is “better”
than the simplest model we started with for a number
of reasons: first, one can match the ten dimensional re-
sult with a simple bound that does not scale with W as
awkwardly as the one of eq. . Second, the quantity in
(10) can be interpreted as a quantum corrected IR warp
factor very much in the spirit of [29].

V. Conclusions

In this note we have attempted to succinctly review our
arguments in [I] which show that the most simple setup
exemplifying the KKLT mechanism where the Kéahler
modulus is stabilized by a single gaugino condensate does
not evade the Maldacena-Nunez theorem. As a conse-
quence, the warped anti-D3-brane fails to uplift the vac-
uum energy to positive values. After summarizing the
10D argument we have reviewed the 4D parametrization
proposals made in [I] to meet the 10D results. Finally
we have expressed our disagreement with certain points
made in [2]. Besides analyzing the 4D parametriza-
tion proposals, a discussion of the validity of our 10D

argument is clearly necessary and must be carried out
elsewhere.
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