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Abstract: We present the first results on the two-loop massless QCD corrections to the

four-point amplitude b+ b→ H +H in the five flavour scheme, treating bottom quarks as

massless. This amplitude is sensitive to the trilinear Higgs boson coupling. Our two-loop

result for this amplitude constitutes of purely virtual contributions to the next-to-next-to-

leading order QCD predictions for the production of a pair of Higgs bosons at the Large

Hadron Collider. We have implemented our two-loop results in a numerical code that can

be used for further studies.
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1 Introduction

Ever since the discovery of the Standard Model (SM) Higgs boson [1, 2], one of the main

objectives of the Large Hadron Collider (LHC) physics program has been to understand

its properties. This involves the measurements of the Higgs boson couplings to the SM

fermions and gauge bosons, its mass (mh), its CP properties etc. Among these, the Higgs

boson self couplings such as the trilinear (λSM
3 ) and quartic couplings (λSM

4 ) take promi-

nence, which in the SM, can be unambiguously obtained from the Higgs boson mass. The

SM Higgs potential, after the electro-weak symmetry breaking (EWSB), is given by

L ⊃ −
m2
h

2
φ2(x)− λSM

3 vφ3(x)− λSM
4 φ4(x), λSM

3 =
m2
h

2v2
, λSM

4 =
m2
h

8v2
, (1.1)

where φ(x) denotes the Higgs field. v ≈ 246 GeV is the vacuum expectation value (vev)

of the Higgs field and is fixed by the Fermi constant GF . The Higgs boson mass mh, is

found experimentally to be approximately equal to 125 GeV and hence, the SM values

for λSM
3 and λSM

4 are ∼ 0.13 and ∼ 0.03, respectively. However, presence of beyond the

SM (BSM) physics scenarios can modify these couplings, which, in turn, suggests inde-

pendent measurements of them. Any deviation from the SM values from the experimental

measurements, could provide crucial information on the structure of the scalar potential

and thus could constrain BSM physics scenarios [3]. Moreover, the measurement of λSM
3

also provides a way to check that the EWSB follows from the simple Ginzburg-Landau
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φ4 potential. The observable that can probe these couplings at the hadron colliders is the

production of multiple Higgs bosons [4]. More precisely, the production of a pair of Higgs

bosons can probe λSM
3 but it is difficult to measure due to the smallness of its production

cross section and the presence of a large QCD background. However, the study for the

high luminosity LHC indicate that the Higgs boson pair production due to gluon fusion

can predict λSM
3 with O(1) accuracy [5–8].

A pair of Higgs bosons can be produced through several partonic channels, viz gluon

fusion, vector boson fusion, associated production with a vector boson or a pair of heavy

quarks. Among these channels, the gluon fusion channel is the most dominant one at the

LHC. Being a loop-induced channel, gluon fusion gives a minuscule production cross section.

Additionally, the large background of this channel makes its measurement experimentally

challenging. Hence unless contributions from BSM physics enhance the production cross

section, a measurement of this channel will require a considerable integrated luminosity.

On the other hand, in such a scenario, the sub-dominant channels in the SM could possibly

become interesting as they would receive substantial contributions from new physics. One

such channel is the production of a pair of Higgs bosons in bottom quark annihilation. In

certain supersymmetric models, namely the Minimal Supersymmetric SM (MSSM) [9], the

bottom quark Yukawa coupling is enhanced w.r.t. the top quark Yukawa coupling, in the

large tanβ region, where tanβ is the ratio of vev’s of up and down type Higgs fields in the

Higgs sector of the MSSM. Hence precise predictions for this channel is of high importance.

The dominant channel for Higgs boson pair production i.e. the gluon fusion channel,

is mediated by a top quark loop. This was evaluated at leading order (LO) in perturbative

QCD in [10–12] decades before. The next-to-leading order (NLO) contributions were ob-

tained in [13] only in the infinite top mass limit, i.e. the top quark loop is integrated out

resulting in an effective Lagrangian [13–16] of gluons and Higgs fields. There are several

NLO results [17–22] considering finite top quark mass effects which finally led to the full

NLO corrections with exact top quark mass dependence [23, 24]. In all these works, it

has been found that, with an inclusive K-factor close to 2, the QCD corrections at NLO

level are as large as that observed for a single Higgs boson production. Hence, the next-to-

next-to-leading order (NNLO) corrections were computed in [25], in the effective theory,

followed by a soft plus virtual approximated NNLO cross section in [26]. Consecutively, the

effect of leading top quark mass corrections also has been included in [27]. Finally a fully

differential distribution has been obtained at the NNLO level in [28, 29] and also threshold

resummation at next-to-next-to-leading logarithmic (NNLL) level in [30, 31]. In [32], a re-

weighting technique has been used to properly account for finite top mass effects at NNLO

level. Recently the virtual contributions relevant for next-to-next-to-next-to-leading order

(N3LO) QCD have also been computed in [33], within the effective theory.

While a plethora of work has been performed to reach ultimate precision for the gluon

channel, the sub-dominant channels have not received much attention. Although, as men-

tioned earlier, in certain BSM physics scenarios, they become consequential. We are partic-

ularly interested in the bottom quark annihilation channel where the Higgs boson couples

to bottom quarks through the Yukawa coupling (proportional to the mass of the bottom

quark), and the bottom quark is massless otherwise [34–36]. For single Higgs boson produc-
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tion through this channel, various work is known up to NNLO [37–42] and N3LO [43–46]

level in the variable flavour scheme (VFS) [47–50]. For the production of a pair of Higgs

bosons, the NLO correction was first obtained in [51]. Later on, NLO corrections have been

obtained for this channel considering several BSM scenarios [52–54]. For the latter, the

bottom quark annihilation process dominates over the gluon fusion even at LO level. In

addition, their NLO QCD corrections are not only sizeable but also larger than the super-

symmetric QCD corrections. In order to stabilize the cross section with respect to higher

order radiative corrections, NNLO corrections to this channel are desirable. In this paper,

as a first step towards the full NNLO QCD corrections, we present the two-loop virtual

contributions for the production of a pair of Higgs bosons in bottom quark annihilation

channel.

There are two classes of diagrams (we call them Class-A and Class-B, see Sec. 2.4),

that contribute at two loops. The vertex type of diagrams which belong to Class-A are

already known up to three loops [44]. For the Class-B, the one-loop QCD corrections exist

in the literature [51]. Here we compute the two-loop QCD corrections. We have studied

the structure of infrared (IR) singularities and found that they are in agreement with the

predictions by Catani [55]. The finite results expressed in terms of classical polylogarithms

of weight up to 4 is used to study the numerical stability of the amplitudes over a wide

range of allowed kinematical variables. The immediate application of our result is to include

the universal soft gluon contributions from the real emission diagrams to obtain soft plus

virtual contributions up to the NNLO level which will be presented elsewhere.

The paper is organized as follows. In Sec. 2, we discuss the Lagrangian, kinematics and

the classes of diagrams that are relevant for our computation. Sec. 3 contains details of the

computation, the ultraviolet (UV) renormalization and the structure of IR divergences. We

devote Sec. 4 for the numerical evaluation of the amplitude over a wide kinematic region

before we conclude in Sec. 5.

2 Theory

At the LHC, the dominant channel for the production of a pair of Higgs bosons is the

gluon fusion. In addition, there are several sub-leading channels that contribute to the

production. We consider one of these channels, namely the production through the bottom

quark annihilation process. Since the LO and the NLO [51] QCD effects have already been

studied in the literature, as a first step towards the computation of the full NNLO QCD

corrections, we evaluate two-loop virtual contributions to the production of a pair of Higgs

bosons in this channel. Note that we further need to compute contributions from real

emission subprocesses to obtain IR safe observables at the NNLO level. These pure virtual

corrections contribute to both the inclusive as well as the differential observables. These

results along with the process independent soft gluon contributions, can give us the first

result at the NNLO level in the threshold limit, i.e., when the invariant mass of the pair of

Higgs bosons approaches the partonic centre of mass energy. We reserve these applications

for future publication.
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We use the regularized version of the QCD Lagrangian throughout. The regularization

scheme that we use, is the dimensional regularization (DR), in which all the fields and

couplings of the Lagrangian and the loop integrals that appear in the Feynman diagrams

are analytically continued to d = 4 + ε spacetime dimensions. In addition, we perform

traces of Dirac γ matrices in d-dimensions.

2.1 The Yukawa interaction

We begin by reviewing the theoretical framework for the production of a pair of Higgs

bosons via bottom quark annihilation at hadron colliders. The interaction part of the

Lagrangian that is responsible for the production is given by,

L = −λbφ(x)ψ̄b(x)ψb(x) , (2.1)

where ψb(x) is the bottom quark field. λb is the Yukawa coupling which after the EWSB is

found to be
√

2mb/v, where mb is the bottom quark mass and v the vev of the Higgs field.

In the SM, the ratio of the top quark Yukawa coupling (λt) and the bottom quark Yukawa

coupling (λb) is found to be approximately 35 i.e. λt/λb ≈ .35. In addition, the bottom

quark flux in the proton-proton collision is much smaller than the gluon flux. Hence, the

contribution from this channel is sub-dominant as compared to the gluon fusion channel.

However, in the MSSM [9], this ratio depends on the value of tanβ which can increase the

contribution resulting from the bottom quark annihilation channel. At LO,

λMSSM
t

λMSSM
b

= fφ(α)
mt

mb

1

tanβ
, (2.2)

with

fφ(α) =


− cotα for φ = h,

tanα for φ = H,

cotβ for φ = A,

(2.3)

where h is the SM like light Higgs boson, H and A are the heavy and the pseudoscalar Higgs

bosons, respectively. The parameter α is the angle between weak and mass eigenstates of

the neutral Higgs bosons h and H. Since, the bottom quark mass is much smaller than the

other energy scales that appear at the partonic level, we set the former to zero except in

the Yukawa coupling in perturbation theory [34–36]. In particular, the finite mass effects

from the bottom quarks are found to be suppressed by the inverse power of mass of the

Higgs boson. The number of active flavours is taken to be nf = 5 and we work in the

Feynman gauge.

2.2 Kinematics

We compute all the relevant one- and two-loop amplitudes in perturbative QCD that

contribute to the annihilation of bottom quarks into a pair of Higgs bosons. The scattering

process is given by

b(p1) + b̄(p2)→ H(p3) +H(p4) , (2.4)
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where p1, p2 are the momenta of incoming bottom, anti-bottom quarks and p3, p4 are the

momenta of the final state Higgs bosons. The associated Mandelstam variables are,

s = (p1 + p2)2, t = (p1 − p3)2, u = (p2 − p3)2, (2.5)

which satisfy the relation s + t + u = 2m2
h. For convenience, we use the dimensionless

variables x, y and z defined [56] as follows

s = m2
h

(1 + x)2

x
, t = −m2

hy, u = −m2
hz . (2.6)

The variables x, y and z satisfy

(1 + x)2

x
− y − z = 2 . (2.7)

The final result will be expressed in term of logarithms and classical polylogarithms which

are functions of these scaling variables.

2.3 General structure of the amplitude

The external states for the process given in Eq. (2.4) involve two fermions and two scalars,

hence the most general structure of the amplitude can be parametrized as

Aij = v̄(p2)
(
C1 + C2 /p3

)
u(p1)δij

≡ (C1T1 + C2T2) δij , (2.8)

where the coefficients Cm ≡ Cm(x, y, z) with m = 1, 2 are scalar functions. In color space,

the amplitude is diagonal in the indices (i, j) of the incoming quarks. Since, we are inter-

ested in higher order QCD corrections, we have used symmetries such as Lorentz covariance,

parity and time reversal invariances to parametrize the amplitude. In addition we have

dropped those terms that vanish when the bottom quarks are massless. The coefficients

Cm, m = 1, 2, can be determined from the amplitude Aij by using appropriate projection

operators denoted by P(Cm), i.e.,

Cm =
1

N

∑
P(Cm)Aijδij , (2.9)

where the sum includes spin, flavours and colours of the external fermions; N is the number

of colours in SU(N) gauge theory. In d-spacetime dimensions, the projectors that satisfy∑
P(Cm)Tm = 1 and

∑
P(Cm)Tn = 0 ∀m 6= n, are found to be

P(C1) =
1

2s
T †1 ,

P(C2) =
1

2[(m2
h − t)(m2

h − u)− sm2
h]
T †2 . (2.10)

Since the application of projection operators on the amplitude gives only Lorentz scalar

functions, the algebraic manipulations with loop integrals become straightforward. The
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square of the amplitudes, that contributes to the total cross-section, can now be obtained

from the coefficients C1 and C2 using

|Aij |2 = N
[
|C1|2T1T †1 + |C2|2T2T †2 + C1C†2T1T †2 + C†1C2T2T †1

]
. (2.11)

Note that these coefficients are in general complex due to the Feynman loop integrals.

We expand the amplitude Aij as well as the coefficients Cm in powers of the strong cou-

pling constant defined by as = g2
s(µ

2
R)/16π2, where gs is the renormalized strong coupling

constant and µR is the normalization scale:

Aij =

∞∑
l=0

als A
(l)
ij , Cm =

∞∑
l=0

als C(l)
m , (2.12)

and consequently

A(l)
ij =

(
C(l)

1 T1 + C(l)
2 T2

)
δij . (2.13)

Our next task is to compute these coefficients C(l)
m , m = 1, 2, up to two loop level, i.e., up

to O(a2
s) in perturbative QCD.

2.4 Classification of Feynman diagrams

At LO, only three Feynman diagrams contribute, out of which one contains single Yukawa

and trilinear couplings, and the remaining ones are quadratic in the Yukawa coupling. We

denote the former by Class-A and the latter diagrams by Class-B. The same classes of

diagrams contribute beyond LO. We elaborate on these classes of diagrams below:

• Class-A: It contains diagrams where an off-shell Higgs boson produced in the bottom

quark annihilation process decays to a final state containing a pair of on-shell Higgs

bosons (H∗ → HH) and is proportional to λSM
3 λb. They are shown in Fig. 1. Note

that the decay part of the amplitudes does not get any QCD corrections, however the

initial states do get. These corrections are identical to those that contribute to the

amplitudes for producing a single Higgs boson in bottom quark annihilation. The

latter is known up to three-loop level in QCD [44].

b

b̄

H∗
H

H

b

b̄

H∗
H

H

b

b̄

H∗
H

H

Figure 1. Illustration of Class-A diagrams; Born, one and two-loop examples.

• Class-B: It contains diagrams where both the Higgs bosons couple directly to the

bottom quarks and hence they are proportional to λ2
b as shown in Fig. 2. At two

loops level, one encounters a new set of diagrams, the singlet contributions, where

both the Higgs bosons are produced from a closed bottom quark loop as shown in

Fig. 3.
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b

b̄

H

H

b

b̄

H

H

b

b̄

H

H

Figure 2. Illustration of Class-B diagrams; Born, one and two-loop examples.

b

b̄

H

H

b

b̄

HH

Figure 3. Illustration of special set of Class-B diagrams, the singlet contributions.

3 Methodology

3.1 Computational details

It is easy to see from the form of Ti in Eq. (2.8), that only the Class-A diagrams contribute

to C1 and the Class-B to C2. Note that the Class-A diagrams are already computed to three

loops in QCD [44]. Hence in this section, we briefly discuss how the scalar function C2 in

Eq. (2.9) is computed order by order in perturbation theory. As we mentioned, we use the

dimensional regularization, in which the spacetime dimensions are taken to be d = 4 + ε

and perform traces of Dirac γ matrices, contraction of Lorentz indices in d-dimensions. For

convenience, we work with the bare form of the Lagrangian and evaluate the coefficient C2

in powers of bare coupling constant âs, where âs = ĝ2
s/16π2, ĝs being the dimensionless

strong coupling constant. Beyond LO, one- and two-loop amplitudes containing massless

quarks, anti-quarks and gluons develop IR divergences in addition to UV ones. There are

two types of IR divergences, viz soft and collinear divergences. The soft ones are due to

soft gluons and the collinear ones arise due to massless quarks and gluons. Dimensional

regularisation regulates both these divergences in addition to UV divergences.

We have used QGRAF [57] to generate the Feynman diagrams at every order in the

strong coupling constant. Beyond one-loop, large number of Feynman diagrams contributes

to the amplitude. We find that there are 2 diagrams at the Born level, 10 diagrams at

one-loop and 153 diagrams at two-loop level. We then multiply these amplitudes with the

projection operator P(C2) defined in Eq. (2.10) to obtain the scalar function C2. Substitu-

tion of Feynman rules and computation of various traces involving Dirac and Gell-Mann

matrices, are done using in-house routines that use publicly available packages such as

FORM [58] and Mathematica. At this stage we end up with a large number of one- and

two-loop Feynman integrals. The projection operators guarantee that all the tensor inte-

grals are converted to scalar integrals. We rearrange all the Feynman integrals into a few
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chosen integral families through shifting of loop momentum. To achieve this, we use the

package Reduze2 [59]. At one-loop, the following three integral families can accommodate

all the Feynman integrals

{P1,P1:i,P1:i,i+1,P1:i,i+1,i+2} , (3.1)

where, i takes one of the values {1, 2, 3} whose elements are arranged cyclically. A typical

two-loop topology contains at most seven propagators. However, there are nine different

Lorentz invariants (ki.kj , ki.pj) which can appear in the numerator of an integral. Hence,

we introduce two auxiliary propagators in each of the two-loop integral families. The

following two sets describe the six integral families that we use at two-loops,

{P0,P1,P2,P1:i,P2:i,P1:i,i+1,P2:i,i+1P1:i,i+1,i+2,P2:i,i+1,i+2} ,
{P0,P1,P2,P1:i,P2:i,P1:i,i+1,P2:i,i+1,P0:i+2,P1:i,i+1,i+2} . (3.2)

Here,

Pα = k2
α , Pα:i = (kα − pi)2 , Pα:ij = (kα − pi − pj)2 , Pα:ijk = (kα − pi − pj − pk)2 ,

P0 = (k1 − k2)2 , P0:i = (k1 − k2 − pi)2 .

This large number of Feynman integrals belonging to different integral families can be

written in terms of a smaller set of integrals, so-called master integrals (MIs). This can

be achieved by using the integration-by-parts (IBP) [60, 61] and the Lorentz Invariance

(LI) [62] identities, which are implemented in the Mathematica based package LiteRed [63].

Finally, we obtain 10 and 149 MIs at one- and two-loops, respectively. The resulting set

of MIs is systematically mapped on to those evaluated in [56, 64] as Laurent series in ε

up to the required order. Finally, substituting the results of MIs from [56, 64], we obtain

the two-loop result for the coefficient C2. Both UV and IR divergences appear as poles in

ε at every order in âs. In the next section, we demonstrate how the renormalization of

the strong and the Yukawa couplings render these coefficients UV finite leaving only IR

divergences.

3.2 Ultraviolet renormalization

The scalar function C2 computed in powers of the bare coupling constant âs contains both

UV and IR divergences. Note that the entire amplitude is proportional to the square of

λ̂b, the bare Yukawa coupling. We use the modified minimal subtraction (MS) scheme

to perform the UV renormalization of the amplitudes. In this scheme, the renormalized

strong coupling constant as is related to the bare strong coupling constant, âs, through the

renormalization constant Z
(
as(µ

2
R), ε

)
at the renormalization scale µR as

âs
µε0
Sε =

as
µεR

Z
(
as(µ

2
R), ε

)
, (3.3)
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where Z
(
as(µ

2
R), ε

)
up to two-loops is given by

Z
(
as(µ

2
R), ε

)
= 1 + as

(
2β0

ε

)
+ a2

s

(
4β2

0

ε2
+
β1

ε

)
+O(a3

s) . (3.4)

Here, Sε ≡ exp[(γE − ln 4π) ε2 ] is the phase-space factor in d-dimensions, γE = 0.5772... is

the Euler-Mascheroni constant and µ0 is an arbitrary mass scale introduced to make ĝs
dimensionless in d-dimensions. The constants β0 and β1 are the coefficients of beta function

which, for nf light quark flavours, are found [65–69] to be

β0 =
11

3
CA −

4

3
nfTF , β1 =

34

3
C2
A −

20

3
CAnfTF − 4CFnfTF , (3.5)

where CA = N , CF = (N2−1)/2N are the Casimirs of SU(N) group and TF = 1/2. Similar

to âs, the renormalization of the Yukawa coupling constant λ̂b leads to renormalized λb(µ
2
R)

at the renormalization scale µR through

λ̂b

µ
ε/2
0

Sε =
λb

µ
ε/2
R

Zλ
(
as(µ

2
R), ε

)
=

λb

µ
ε/2
R

[
1 + as

(
1

ε
Z

(1)
λ,1

)
+ a2

s

(
1

ε2
Z

(2)
λ,2 +

1

ε
Z

(2)
λ,1

)
+O(a3

s)

]
, (3.6)

where the coefficients Z
(i)
λ,j are given by

Z
(1)
λ,1 = 6CF , Z

(2)
λ,2 = 18C2

F + 6β0CF , Z
(2)
λ,1 =

3

2
C2
F +

97

6
CFCA −

10

3
CFnfTF . (3.7)

The perturbative expansion of the amplitude for the aforementioned process in terms of

the bare strong and Yukawa couplings is given by

Aij =

(
λ̂b

µ
ε/2
0

Sε

)2 [
Â(0)
ij +

(
âs
µε0
Sε

)
Â(1)
ij +

(
âs
µε0
Sε

)2

Â(2)
ij +O(â3

s)

]
, (3.8)

where Â(l)
ij is the lth loop unrenormalized amplitude. Similarly, the coefficient C2 replicates

similar perturbative expansion of the following form,

C2 =

(
λ̂b

µ
ε/2
0

Sε

)2 [
Ĉ(0)

2 +

(
âs
µε0
Sε

)
Ĉ(1)

2 +

(
âs
µε0
Sε

)2

Ĉ(2)
2 +O(â3

s)

]
. (3.9)

In terms of the renormalised couplings, the coefficient C2 takes the form

C2 =

(
λb

µ
ε/2
R

)2 [
C(0)

2 + as C(1)
2 + a2

s C
(2)
2 +O(a3

s)
]
. (3.10)

We obtain the coefficients C(i)
2 using Eq. (3.3) and (3.6) in Eq. (3.9) and comparing with

Eq. (3.10):

C(0)
2 = Ĉ(0)

2 ,
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C(1)
2 =

12

ε
CF Ĉ(0)

2 +
1

µεR
Ĉ(1)

2 ,

C(2)
2 =

[
12

ε2

(
6C2

F + β0CF

)
+

1

ε

(
3C2

F +
97

3
CFCA −

20

3
CFnfTF

)]
Ĉ(0)

2

+
2

µεR

[
β0

ε
+

6CF
ε

]
Ĉ(1)

2 +
1

µ2ε
R

Ĉ(2)
2 . (3.11)

These constants C(l)
2 , l = 0, 1, 2, that result after performing the renormalization of the

strong and the Yukawa couplings, are UV finite. However they are sensitive to both soft

and collinear divergences which will be the topic of our next section. These soft and

collinear divergences show up in terms of poles in ε.

3.3 Infrared divergences and their factorization

The UV finite amplitudes still contain divergences resulting from soft and collinear regions

of the loop integrals. They result from soft gluons and massless collinear quarks and gluons

in the loops. In the physical observables, the soft and the collinear divergences coming

from the final states of the virtual diagrams cancel against those resulting from the phase

space integrals of the real emission processes. Due to the Kinoshita-Lee-Nauenberg (KLN)

theorem [70, 71], the cancellation takes place order by order in perturbation theory. While

the soft divergences cancel fully, the collinear divergences resulting from initial massless

states, do not cancel at the subprocess level. Thanks to the collinear factorization theorem

[72] these initial state collinear divergences can be factored out in a process independent

way and absorbed into the bare parton distribution functions. This procedure is called mass

factorization which is also a consequence of KLN theorem applied at the hadronic level.

While all these IR divergences that appear in the amplitudes do not pose any problem for

the physical observables, they provide valuable information about the universal structure

of the infrared divergences in the QCD amplitudes. In fact, it can be shown that these

divergences systematically factor out from the amplitudes to all orders in perturbation

theory [73, 74]. These factored IR divergences demonstrate the universal structure in

terms of certain soft and collinear anomalous dimensions. An elegant proposal was put

forth by Catani who predicted IR pole structure of the amplitudes up to two-loop level

in non-abelian gauge theory [55]. He demonstrated that the n-particle QCD amplitudes

factorize in terms of the universal IR subtraction operator denoted by I. This I-operator

has a dipole structure [55] containing process independent universal cusp and collinear

anomalous dimensions. Thanks to the wealth of results from two-loop calculations of the

three-parton qq̄g amplitudes [75] and 2→ 2 scattering amplitudes [76–78], that involve non-

trivial color structures [78, 79], the I-operator is completely known up to two-loop level. In

[80], the authors provide further insight on the factorization and resummation properties of

QCD amplitudes in the light of Catani’s proposal and demonstrate a connection between

divergences governed by soft and collinear anomalous dimensions, see also [81, 82]. There

have been several efforts [83, 84] to determine the structure of I-operator beyond two-loop

level. Following [55] we express one and two-loop UV renormalized amplitudes in terms of
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the I-operator as

C(0)
2 (ε) = C(0),fin

2 (ε) ,

C(1)
2 (ε) = 2I(1)

b (ε)C(0)
2 (ε) + C(1),fin

2 (ε),

C(2)
2 (ε) = 4I(2)

b (ε)C(0)
2 (ε) + 2I(1)

b (ε)C(1)
2 (ε) + C(2),fin

2 (ε). (3.12)

The matrix elements of the subtraction operator for the bottom quark, Ib are given by

I(1)
b (ε) =

e−
ε
2
γE

Γ
(
1 + ε/2

)(− 4CF
ε2

+
3CF
ε

)(
− s

µ2
R

) ε
2

,

I(2)
b (ε) = −1

2
I(1)
b (ε)

(
I(1)
b (ε)− 2β0

ε

)
+
e
ε
2
γEΓ (1 + ε)

Γ (1 + ε/2)

(
− β0

ε
+K

)
I(1)
b (2ε) + 2H

(2)
b (ε),

(3.13)

with K [55] and H
(2)
b [80] given by as follows

K =

(
67

18
− π2

6

)
CA −

10

9
nfTF ,

H
(2)
b =

(
− s

µ2
R

)ε e−
ε
2
γE

Γ
(
1 + ε/2

) 1

ε

[
CACF

(
−245

432
+

23

16
ζ2 −

13

4
ζ3

)

+ C2
F

(
3

16
− 3

2
ζ2 + 3ζ3

)
+ CFnf

(
25

216
− 1

8
ζ2

)]
. (3.14)

According to the proposal by Catani, the coefficients C(i),fin
2 (ε) should be free of IR diver-

gences and hence are finite as ε → 0. Since the resulting expression at two-loops level,

C(2),fin
2 (ε) is quiet lengthy, we had to simplify the expression first at the color factor level

and then for each color factor, terms of uniform transcendentality were further simplified.

We find that our final result is in accordance with Catani’s predictions for the IR poles,

which serves as an important check on the correctness of our computation.

It is interesting to observe that the singlet contributions which are proportional to

the color factor CFnbTF , for nb = 1, develops IR divergences at the intermediate stages

of the computation. However at the end, all the IR singularities cancel among themselves

contributing only to the IR finite part. This is consistent with the IR pole structure

predicted by Catani. The resulting finite constant C(2),fin
2 that results after subtracting the

IR divergences using Catani’s I-operators is too lengthy to be presented here and hence

attached as ancillary file in Mathematica format.

4 Numerical predictions

The finite coefficients, C(i),fin
2 , i = 1, 2, obtained in Eq. (3.12) contain multiple classical

polylogarithms, which are functions of the scaling variables x and y. These polylogarithms

can be attributed to different transcendental weights, the property that we use to simplify

the two loop coefficient, C(2),fin
2 . Considering the complexity of our final result C(2),fin

2 , we
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Figure 4. Behaviour of the real and the imaginary part of C(2),fin
2 as a function of the scaling variable

x for different values of cos(θ). The insets show the region close to x = 0.

perform a numerical evaluation using Mathematica for a wide range of scaling variables.

More precisely, in Fig. 4 we plot the real and the imaginary parts of the coefficient C(2),fin
2

as functions of the scaling variable x for different values of cos(θ), where θ denotes the

angle between one of the initial state fermions and the Higgs boson in the centre of mass

frame of incoming states. We consider mh = 125 GeV and the renormalization scale as

µ2
R = m2

h/2. In addition, we normalise the coefficient with the factor m2
h. The amplitude

is anti-symmetric under cos(θ) → − cos(θ), as expected for a purely fermionic amplitude.

Since this symmetry has not been used in the setup of the calculation, it serves as a strong

check on our results. Our expression contains polylogarithms that are multiplied by large

rational coefficients, hence we encounter numerical instabilities during the evaluation. To

avoid this, we evaluate the polylogarithms at double precision while setting the rational

coefficients at higher precision. From the Fig. 4, we observe a stable behaviour for the real

and imaginary parts for the range of parameters considered. In addition, the dependence

of the coefficient near the phase space boundary x = 0 is displayed in the insets. The

simplified analytical results and their numerical implementation are provided as separate

ancillary files.
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5 Conclusion

The extraction of the trilinear coupling of the Higgs bosons provides valuable information

on the shape of the Higgs potential. One of the most important observables sensitive to this

coupling is the production of a pair of Higgs bosons at the LHC. Among various partonic

channels that contribute to this process, gluon fusion is the dominant one which is well

studied both in effective theory as well as in the full theory. In the effective theory, top

quarks are integrated out. As the precision at the hadron collider improves, it is important

to incorporate other sub-dominant channels to the production mechanism. In this paper,

we have considered one such channel, namely the production of a pair of Higgs bosons in

the bottom quark annihilation which is also sensitive to the trilinear coupling. Both LO

and NLO QCD contributions exist in the literature and the present paper presents first

results on the two-loop virtual contributions at the NNLO level. There are two classes

of diagrams that contribute at two-loops, of which, the vertex type of diagrams belong

to Class-A are already known up to three-loops and hence we evaluate only the Class-B

diagrams. Our results are expressed in terms of classical polylogarithms of weight up to 4.

We observe that the infrared poles of the amplitudes are in agreement with the predictions

by Catani. We have studied the numerical stability of the coefficient C(2),fin
2 over the range

of x and cos(θ) required for further phenomenological studies. The immediate application

of our result is to include the universal soft gluon contributions from the real emission

diagrams to obtain the soft plus virtual contributions up to the NNLO level which will be

presented elsewhere.
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