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Abstract: In this work we propose a statistical approach to handling sources of theoretical uncer-
tainty in string theory models of inflation. By viewing a model of inflation as a probabilistic graph,
we show that there is an inevitable information bottleneck between the ultraviolet input of the
theory and observables, as a simple consequence of the data processing theorem. This information
bottleneck can result in strong hierarchies in the sensitivity of observables to the parameters of
the underlying model and hence universal predictions with respect to at least some microphysical
considerations. We also find other intriguing behaviour, such as sharp transitions in the predictions
when certain hyperparameters cross a critical value. We develop a robust numerical approach to
studying these behaviours by adapting methods often seen in the context of machine learning. We
first test our approach by applying it to well known examples of universality, sharp transitions, and
concentration phenomena in random matrix theory. We then apply the method to inflation with
axion monodromy. We find universality with respect to a number of model parameters and that con-
sistency with observational constraints implies that with very high probability certain perturbative
corrections are non-negligible.
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1 Motivation

Cosmological inflation [1–3] is currently our most promising candidate description of the very early
Universe. But while precision cosmological observations are in striking compatibility with the
simplest inflation models consisting of a single scalar field with a slow-roll flat potential, the relation
between such a period and high energy physics remains unclear. A key element of this difficulty is
the fact that slow-roll inflation is sensitive to ultraviolet (UV) physics. Higher-dimension operators
arising from radiative corrections, suppressed couplings to heavy fields and quantum gravity itself
generically contribute O(1) corrections to the inflaton mass, spoiling the flatness of the potential.
Inflation therefore requires a description within a candidate UV complete theory of quantum gravity
such as string theory. Within string theory, the problem of UV sensitivity expresses itself in a
particularly explicit form: string theory compactifictions to four dimensions have at minimum a
spectrum of light moduli fields as well as KK modes. The couplings of a candidate inflaton to these
scalar fields will generically generate at least a finite number of dangerous dimension-6 operators
which have a drastic impact on the scalar potential, and of which we have little explicit theoretical
control.1

Given this situation, clear statements about the predictions of inflation models in string theory
seem to be elusive. An inflation model in string theory will generally have multiple, and possibly
a very large number of, free parameters. Some of these will represent the basic building blocks of
the model, while others will come from various classes of subdominant corrections to the potential.
While observable cosmological parameters can be extremely sensitive to such corrections, the range
of possible corrections and consequent outcomes for a given inflationary scenario can seem somewhat
overwhelming. Sometimes it is unclear whether or not it is possible even in principle for a model
to be ruled out by observation.

In this work we want to address this difficulty by presenting a statistical approach for handling
sources of theoretical uncertainty in string theory models of inflation. Our strategy is based on
a result from information theory known as the data processing theorem, with the key observation
being that an information bottleneck occurs whenever we coarse-grain a large amount of a priori UV
information into a few observables, such as the amplitude of the power spectrum, its tilt, and the
fractional power of inflationary gravitational waves. As a consequence of this information loss we do
not expect observables to be equally sensitive to all UV parameters, and in particular we expect them
to display universality with respect to variations in some aspects of the UV input. This behaviour
is extreme in high-dimensional probability (a particularly well known subfield being random matrix
theory), where models consisting of a large number of random variables very often demonstrate
emergent simplicity as the model approaches some form of ‘large n’ limit. This emergent simplicity,
as well as the occurrence of sharp predictions (such as in the law of large numbers and concentration
phenomenon more generally), are intimately related to universality and the data processing theorem.
In this work we will find analogous phenomena in a more general setup, without requiring the model
to necessarily be ‘large n’; the sacrifice we make for this significant practical gain is that our approach
is purely numerical.

The application of these phenomena to high energy physics is not new. There is a rather
striking analogy between the very rich set of UV input possibilities for inflation and the small
number of inflationary observables — which are measured at long wavelengths of the curvature
perturbations, so in the infrared (IR) — and the structure of Wilsonian effective field theory (EFT)
under renormalisation group flow. The most generic effective action we can write down for a
given set of symmetries in the UV will have an infinite number of coupling constants, but under
the renormalisation group this effective action flows to a theory with a finite set of marginal and

1In certain cases however [4–7], these corrections are amenable to structural analysis using holographic methods,
which in turn allows to treat their Wilsonian EFT coefficients as a finite set of random variables.
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relevant couplings in the deep IR. Analogies between inflation and renormalisation group flow have
been noticed before, see e.g. [8–12]. However the most striking parallel to us appears to be that
both inflation and the renormalisation group flow for Wilsonian EFTs are realisations of the data
processing theorem.

These phenomena suggest a more optimistic perspective on the complexity of inflation models
coming from string theory. It may be that this rich UV input, rather than a hindrance to making
predictions, can instead be seen as an opportunity enabling precise statements about the robustness
of a given model to various sources of theoretical uncertainty2. Ideally we would identify families
of models of particular interest and establish clear probabilistic statements about their predictions,
by identifying universality classes. With this aim we need to identify parameterisations of classes
of contributions to the effective action (e.g. perturbative corrections, instantons, or flattening
mechanisms . . . ), and then compute observables over the full parameter space. By embracing the
full complexity of the model, we will inevitably see significant information loss between observables
and the UV input. Understanding precisely how this information loss takes place can then be taken
advantage of in understanding the conditions under which predictions are universal, or not, and
hence direct further model refinement efforts by identifying which microphysical considerations have
the greatest impact on observables. While we will focus on the case of inflation, the strategy we
will present in this paper has a much broader scope of applicability, being potentially useful for any
complex probabilistic model.

To illustrate our proposed method, in this paper we will focus on the model class defined by
axion monodromy inflation in string theory [14–30]. Axion monodromy is a large field model with a
weakly broken effective shift symmetry which controls an infinite series of corrections both pertur-
bative and non-perturbative arising from the string theory embedding. Some of these corrections
can potentially spoil inflation, while some others may generate distinctive features like flattening
of the asymptotic monomial power of the scalar inflaton potential, V ∼ φp, or oscillatory patterns.
As we will see, even such a specific model class can give rise to a broad range of outcomes for
observables. Hence, the goal of our work is to identify the information bottleneck compressing the
UV sensitivity of axion monodromy inflation into the IR observables and find universality classes
— identify the conditions under which we can make robust predictions.

We will begin this endeavour by providing a detailed description of inflation as a probabilistic
graph in §2. In §3 we introduce some quantities from information theory which we use as diagnostic
tools and then apply them to studying well known phenomena in random matrix theory. This serves
both as a means to test our numerical methods, as well as to provide a well understood example of
the types of behaviour we would like to uncover in a model of inflation. In the remaining sections, we
apply the same methods to axion monodromy inflation. We review the model in §4, and then apply
the analysis methods first to axion monodromy inflation without corrections in §5, and then to an
extension of the model which includes parameterisations of ‘known unknowns’ in §6. Specifically,
we include a contribution thought to account for all known lowest order perturbative corrections,
as well as a broad class of non-perturbative corrections. For computational efficiency, our analysis
of axion monodromy inflation also involves some machine learning to learn the function mapping
the input parameters onto the observables (Pζ , ns, αs, r). This is described in §5. We discuss our
results in §7.

From here on we set the Planck mass to unity. Also, for simplicity in the notation, we will not
have distinct symbols for random variables (often denoted with upper case symbols) and particular
instances of that random variable (often given the corresponding lower case symbol) as hopefully
it will always be clear from the context which is being referred to.

2The beautiful lecture notes by Denef [13] on complex structure make much the same argument.
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Figure 1. A simple graphical model of axion monodromy, corresponding to the tree level potential studied
in §4.

2 Describing inflation as a probabilistic graph

The objective of this work is to build probabilistic models of inflation in order to better understand
the map between model parameters and predictions, and make probabilistic statements about
the outcomes for observables. As such, it is of central importance to go beyond scanning model
parameters and instead view them as stochastic variables. As proposed in Ref. [31], a suitable
approach to doing so is to view a model of inflation as a probabilistic graph3 (PG) — a probabilistic
model which may be represented by a directed acyclic graph, where nodes correspond to model
parameters and edges indicate either stochastic or deterministic dependencies.

An example of a PG, for a simple version of the inflation model studied in §4, is shown in
Fig. 1. At the bottom, we have observables collectively denoted x, which for the purpose of this
work we take to be the amplitude of the power spectrum Pζ , the spectral index ns, its running αs,
and the tensor-to-scalar ratio r, such that x = {Pζ , ns, αs, r} 4. The next layer up corresponds to
a set of variables which represent model parameters in the usual sense, i.e. parameters appearing
in the action, in this case {V0, µ, p}. These parameters, or the distributions from which they
are drawn, might be determined by other stochastic variables, which in turn can be drawn from a
distribution determined by other stochastic variables. The arrows indicate the dependencies between
the nodes and in principle there can be an arbitrary number of layers with any non-cyclic structure
of dependencies (see for instance, figure 1 of Ref. [32] for another example, and figure 3 of Ref. [33]
for a more complex one). Here we use non-shaded nodes to represent stochastic dependencies and
shaded grey nodes to indicate deterministic dependencies; for example, the observables represented
by the x-node are fully determined by the parameters showing up in the action. Finally, at the very
top layer of the graph we find the hyperparameters ξ, deterministic variables which parameterise
the distributions from which the model’s stochastic variables z are drawn. For instance, if some zi
were to be modelled as being drawn from the normal distribution zi ∼ N (µN , σN ), then the mean
µN and standard deviation σN would be a natural choice of hyperparameters.

By clearly identifying dependencies through a network, this graphical language can be a useful
3Often also referred to as a Bayesian network, although in this work we will not be performing Bayesian inference.

This would however be a very natural next step.
4In practice these are inferred quantities from cosmological surveys. Here we simply assume that the values these

quantities take are known up to a given accuracy.
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tool to study models built within a high-energy physics embedding such as string theory. Determin-
istic dependencies such as those defining x are derived from the action and other top-down model
building considerations. As an example, in the case of slow-roll single field inflation, we have the
well-known expressions for x written in terms of slow-roll parameters ε, η and ξ evaluated at the
time the pivot scale leaves the horizon, φ∗:

Pζ =
H2

8π2ε

∣∣∣∣
φ∗

=
V 3

12π2V ′2

∣∣∣∣
φ∗

(2.1)

ns = [1− 6ε+ 2η]φ∗ =

[
1− 3

V ′2

V 2
+ 2

V ′′

V

]
φ∗

(2.2)

αs =
[
16εη − 24ε2 − 2ξ

]
φ∗

=

[
8
V ′2V ′′

V 3
− 6

V ′4

V 4
− 2

V ′′′V ′

V 2

]
φ∗

(2.3)

r = 16ε|φ∗ = 8
V ′2

V 2

∣∣∣∣
φ∗

, (2.4)

where V and V ′ are the potential and its gradient. Stochastic dependencies provide a means to
handle sources of uncertainty, be it through having only partial knowledge of some aspects of
the underlying physics, or because the physics is fundamentally stochastic. For example, as will be
discussed in §4, in this particular model the prior on A is parameterised by Q andM . We have some
valuable information about these parameters, such as certain conditions they must satisfy and their
order of magnitude but their precise value is unknown. We therefor parameterise our ignorance by
treating them as stochastic variables drawn from a parametric distribution with hyperparameters
which we can vary. Ultimately, by following the network of dependencies, the hyperparameters
parameterise all the distributions of the model.

The joint PDF p(z; ξ), just like the deterministic dependencies, should also be derived from
top-down microphysical considerations. At first, this step may seem like a hopeless task. One may
be concerned that there is no systematic way in which to derive p(z; ξ), making the whole model and
its predictions rather meaningless. One of the central claims of this work is that all hope should
not be lost, and that indeed string theory models of inflation are well equipped to make strong
statements about the form of p(z; ξ). The basic idea is that the series of deterministic or stochastic
dependencies connecting a given fundamental parameter to an observable, can be viewed as a form
of data processing, between the UV physics and the observables. So while there may be considerable
uncertainty in the underlying physics, the structure of the graph will cause information loss and
hence a loss of sensitivity to variations of at least some of the most fundamental parameters. If
the information loss is severe, then this results in universality with respect to a given parameter —
predictions that are totally insensitive to certain aspects of the underlying physics. This point will
be discussed in detail in §3. Thus, what may at first seem like only very limited input from string
theory considerations can turn out to be sufficient to make robust statements about the prediction
of the model.

In practice, what we will see is a tendency for strong hierarchies between the parameters. Hence,
there will be universality with respect to some, possibly many parameters, but there will be a subset
of parameters to which predictions are sensitive. This situation is reminiscent of identifying relevant
couplings under renormalisation group flow. Although in this case, we do not have the luxury of a
scale parameter and will therefore need to discover the hierarchies using numerical methods. To do
so, we will make use of tools from information theory and machine learning. The strategy we will
employ has three steps.
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2.1 Three step procedure for studying a probabilistic model of inflation

Definition of PG and identification of relevant scales — The first step is expressing
the inflation model as a PG, where all parameters and hyperparameters are identified and their
dependencies appropriately defined. As discussed, it is often not easy to compute the distributions
for stochastic parameters from top-down considerations, but it is however often possible to identify
the relevant scales that each parameter can take. We use these bounds to build what we have
decided to call fiducial priors. Fiducial priors are built using micro-physical considerations or, in
the lack of any top-down information, modelled assuming maximum ignorance, for example with
a flat or log-flat distribution. We will then test the sensitivity to these assumption by studying
variations of the prior relative to this fiducial model (this is the third step).

Learning the mapping from model parameters to observables — Once the model
parameters and their fiducial priors and hyperparameters are fully defined, we want to compute
the distributions for observables for a range of values of the hyperparameters. For this we use, for
example in the case of slow-roll single-field inflation, the mapping defined by equations (2.1)-(2.4).
For more complicated models involving more fields or deviations from slow-roll, while this mapping
remains deterministic, rarely can one derive analogous expression and generally one must resort
to numerics. Indeed, even in situations where expressions (2.1)-(2.4) do hold, it is still often the
case that there is some need for numerics. The reason for this is simply that these expressions
require knowledge of φ∗ — the point in field-space corresponding to the horizon-crossing of the
relevant pivot-scale — and even in rather simple models it can be challenging to find analytical
expressions valid over the full parameter space. The numerical alternative is to solve a system of
ordinary differential equations for the inflationary trajectory, and if need be, for the perturbations as
well. This must be repeated for each random draw of the model parameters and hence computing
distributions for observables is a computationally heavy task. Indeed, the numerical expense of
computing these distributions for a large range of hyperparameters can quickly become inaccessible.

To bypass this problem, we appeal to basic machine learning methods. The idea is to build the
distribution for observables using equations (2.1)-(2.4) only once, for the fiducial prior. We then use
regression methods to learn the mapping from parameters appearing in the action to observables,
x(V0, µ, p). Once this function is built numerically, it is trivial to study how the distributions
for observables change with hyperparameters. Exactly which regression method is best suited to
learning this map is a model-dependent question. In section §4 we describe how we did this for the
specific model of Fig. 1, as well as for a more complete (and complex) version of this model.

Testing prior sensitivity with information theory — Once we know how the distri-
butions for observables change with variations of the hyperparameters, we would like to have a
systematic and quantitative means to measure information loss, and hence identify hierarchies in
dependencies and the emergence of universality. As the name might suggest, information theory
has a number of suitable diagnostic tools. In particular, we will use the relative entropy (a.k.a the
Kullback–Leibler divergence) and mutual information, as we will now review. We use these tools to
look for three specific traits — robustness to prior assumptions, the presence of sharp transitions
in predictions and we are also interested in the predictive power of the model.

3 Elements of information theory

In this section we briefly introduce the information theoretic concepts motivating our approach to
studying probabilistic models of inflation and more specifically, our choice of diagnostic tools for
identifying certain model behaviours. The methods of this paper seek to be applicable to both
simple and complex models alike, and as this paper hopefully demonstrates, they are useful for
revealing non-trivial structure even in models with a small number of parameters. However, for
more complex models we can expect these tools to be especially valuable.
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And yet, in many regards the behaviour of a probabilistic model will typically simplify once
the model is sufficiently complex. A number of phenomena we are interested in are most easily
understood in some form of large n limit. For this reason we guided our analysis by making system-
atic contact with the wealth of results that have been developed in the context of high-dimensional
probability. Despite our axion monodromy model not being high-dimensional in any sense, we found
this approach to be fruitful, since at a qualitative level we identified similar behaviour. Hence, in
this section, in addition to introducing some quantities from information theory, we also introduce
some ideas from high-dimensional probability. We then use simple examples with large random
matrices to illustrate the utility of our information theoretic tools in identifying this behaviour.

As beautifully described by van Handel [34], there is a list of general principles which are fre-
quently applicable in the study of high-dimensional probability: concentration of measure, suprema
(as a means of estimating expectation values), universality, and sharp transitions. In this work we
are primarily concerned with understanding the conditions under which a model of inflation gives
robust predictions, hence methods relating to universality are of central importance. Concentration
of measure is clearly another important topic in this context since it presents the tantalising possi-
bility that not only can predictions be robust when the model is sufficiently complex, but also that
the predictions may be sharp. Since we are primarily concerned with numerical methods in this
work, the usage of suprema for estimating expectation values is not really required. Sharp transi-
tions are a fascinating aspect of large-n behaviour and we will see that the information measures
we use here lend an interesting new perspective to this topic.

A rather stunning demonstration of these basic principles of high dimensional probability arrises
in the study of large random matrices. For the purpose of this work, we can view universality
in random matrix theory (RMT) as a specific example of the sort of hierarchies we wish discover
through numerical studies of probabilistic models of inflation. So after we introduce our information
theory diagnostic tools, we will turn our discussion to a special class of random matrices known as
Wigner matrices and use them both to demonstrate some of these ideas in action and also to explore
the extent to which the information theoretic measures are effective as numerical probes of these
concepts. We will then in §5 and §6 apply the same principles to a model of axion monodromy (AM),
first in its simplest tree level form, and second to a more complete formulation. Table 1 summarises
some analogies between behaviour seen with random matrices and with axion monodromy, together
with an example diagnostic tool. This table may also serve as a high level map to the rest of this
paper.

Table 1. Roadmap: Explore 3 general behaviours of probabilistic models in RMT and axion monodromy

RMT example AM (tree level) AM (with corrections)

Universality p(λ) p(x) w.r.t. µ ; p(A) p(x) w.r.t. Cn and χn
Predictivity p(λ1) as n→∞ p(x|p) p(x) for small V0

Sharp transitions p(λ1) under shift of
mean of Mn

— p(x|V0) as V0 changes

3.1 The diagnostic tools — f-divergences and mutual information

Minimally adapting discussion in Ref. [35], we can think of a model of inflation as a family of
probability measures p on the space of parameters Ω. We can see p as a mapping from the space
of hyperparameters M to probability density functions on Ω,

p : M → P(Ω) , (3.1)

such that we have a probability measure p(z; ξ) on the parameter space Ω.
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Given such a model, we can then compute observables. This amounts to deriving a map from
the parameter space Ω to the space of possible outcomes for observables Ω′

κ : Ω→ Ω′ . (3.2)

The map κ induces a family of measures on Ω′, which we denote p′ and hence the statistical model
(M,Ω,p) gets transformed into a model on observable space (M,Ω′,p′).

If Ω′ is smaller than Ω then in general we can expect information to be lost. Our goal is to study
the characteristics of this information loss in order to assess universality and the robustness of the
predictions of the model. There are many ways one might wish to do this but here we will primarily
consider just two approaches. One way is to study the mapping κ directly by computing how much
information about a parameter zi is contained in an observable xj ; this is usually characterised by
the mutual information. A different approach is to assess how moving around in the hyperparameter
space is reflected in the induced model (M,Ω′,p′), i.e. find a measure of the distinguishability
of points in M when viewing (M,Ω′,p′); for this we can use the ratio of appropriately chosen
f -divergences. The mutual information and f -divergences have different properties and provide
complementary perspectives of the of the model. There are also situations where one quantity
can be trivial to compute and the other extremely difficult. We now discuss each in turn in more
detail, and in the following subsections we will apply them to random matrix theory examples which
illustrate how they can be used to assess universality §3.2, predictivity §3.3 and sharp transitions
§3.4.

Basic Properties of f-divergences In this context, divergences can be thought of as measures of
dissimilarity between probability distributions. However, it is important to note that in general they
are neither symmetric, nor do they satisfy the triangle inequality and are thus not a distance measure
in the usual sense. First introduced by Csiszár [36], the f -divergence between two distributions p
and q is defined by

Df (p‖q) := Eq
[
f

(
p

q

)]
, (3.3)

where f is a strictly convex function f : R+ → R, and Eq is the expectation value with respect to
q. A particularly important example of an f -divergence is the choice f(x) = x lnx, which is known
as the Kullback – Leibler divergence, otherwise known as the relative entropy. In this work we will
focus on this case, which we denote DKL(p‖q) 5. The key feature of a divergence, which makes it a
“distance-like" measure, is that it satisfies Gibbs’ inequality:

Df (p‖q) ≥ 0 , (3.4)

where Df (p‖q) = 0 if and only if p = q. Another key property of f -divergences (and hence also of
the relative entropy) is that they satisfy monotonicity under information loss (otherwise known as
the Data Processing Theorem) [36]:

If κ is an arbitrary transition probability (deterministic or stochastic map) that trans-
forms measure p and q into pκ and qκ, then

Df (p‖q) ≥ Df (pκ‖qκ) (3.5)

where equality holds if and only if the transition is induced from a sufficient statistic
with respect to {p, q}.

5Other well known examples include total variation, χ2-distance, Hellinger-distance and Tsallis-distance. It should
be noted however that “not all f -divergences are born equal" and that a considerable body of work exists that seeks
to find bounds on one divergence in terms of another, which may be more tractable in a specific scenario. We do not
take advantage of this rich history here. Instead we will focus on building intuition about what can be learnt from
DKL(p‖q).
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The theorem refers to a Markov chain in describing κ as a transition probability but here we are
mostly concerned with the special case where κ is deterministic. To understand the implications of
this theorem consider p to be the distribution of some parameter z for a choice of hyperparameters
ξ1 — p(z; ξ1) — and q to be p(z; ξ2), and κ to be the map from Ω to Ω′ described above. Expres-
sion (3.5) states that Df (p(z; ξ1)‖p(z; ξ2)) ≥ Df (p(x; ξ1)‖p(x; ξ2)), i.e. there is information loss in
the map from parameters to observables and this loss can be measured by the change in f -divergence
between two points in M under this map. f -divergences, and in particular the KL-divergence, are
therefore useful quantities to assess universality and robustness.

Anticipating discussion of universality in subsequent sections, an important special case is when
a subclass of model parameters z = (z1, . . . , zn) are statistically independent such that

p(z) =

n∏
i

p(zi) . (3.6)

In this case the data processing theorem reads
n∑
i

DKL (p(zi)‖q(zi)) ≥ DKL (pκ(x)‖qκ(x)) . (3.7)

The proof is given in Appendix A. Note that in the case where zi are not only independent but
also identically distributed (iid), the left hand side of Eq. (3.7) is simply nDKL (p(zi)‖q(zi)). This
motivates the following measure of information processing

If (ξ1, ξ2) :=
Df (p(x; ξ1)‖p(x; ξ2))

Df (p(zi; ξ1)‖p(zi; ξ2))
. (3.8)

This object takes values in the range If ∈ [0, n ]. For ξ1 6= ξ2, If = 0 implies total universality and,
at the other extreme, If = n implies precisely zero loss of information. For n > 1, the intermediate
value If = 1 seems to represent the boundary between two interesting classes of behaviour. If
If < 1 then clearly information is being lost and for models exhibiting universality in the large n
limit we can probe the approach to universality by studying the n-dependence of If . If > 1 implies
that x is a sensitive probe of ξ and in many situations we can expect the sensitivity to improve
with n. An extreme example is if x is a sufficient statistic for ξ. For instance, if x is the sample
mean x = 1

n

∑n
i zi and the zi are drawn from a normal distribution with fixed variance, and the

sole hyperparameter ξ = µ being the mean, then clearly the sensitivity to µ increases with n and
thus If increases from one monotonically with n. We will explore these ideas in more detail in §3.4.

Basic Properties of the Mutual Information The mutual information measures the average
information a random variable x conveys about another variable z

I(x; z) :=

∫
dxdz p(x, z) log

p(x, z)

p(x)p(z)
, (3.9)

which is equivalent to the relative entropy between the joint probability p(x, z) and the product of
the marginal distributions p(x)p(z)

I(x; z) ≡ DKL(p(x, z)‖p(x)p(z)) . (3.10)

Thus I(x; z) ≥ 0 and the bound is saturated when x and z are statistically independent. Recently,
the mutual information was successfully used to gain insight into the process of deep learning
using the information bottleneck principle [37–39]6. Given a graphical model such as the one
given in Fig. 1, we can compute the mutual information between nodes to diagnose hierarchies in
dependencies.

6The methods of Refs. [37–39] are not directly applicable to this work but they were clearly influential and hence
we pay tribute with our choice of title for this paper.
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Figure 2. A model

I Vs If Both the mutual information and ratios of the relative entropy, or KL-divergence, can
be used to study information loss in the mapping from parameter space to observable space but
the precise questions they are suited to addressing differ. They also have different practical con-
siderations. To illustrate this, consider a model of the form shown in Fig. 2. The plates around
variables yi and zi indicate that there are m independent and identically distributed (iid) variables
yi, with the same hyperperameter ξ1 and n iid variables zi with hyperparamter ξ2. One might have
a number of questions about this hypothetical model. For instance:

1. How much information does x contain about each of the m+ n latent variables?

2. How much information does x contain about the variables y = (y1, . . . , ym) collectively vs.
the variables z = (z1, . . . , zn)?

The first question is naturally addressed by computing the mutual information between each latent
variable and the observables — I(x; yi) and I(x; zj). This can be done quite efficiently even for
large m + n and a number of publicly available packages exist (we tried the codes resulting from
Refs. [40–42]) which will compute these quantities directly from random samples (i.e. bypassing the
need to estimate the joint distributions p(x, yi), etc.). The second question could also be studied
with the mutual information, by computing I(x;y) and I(x; z). However, unless the model exhibits
a symmetry which simplifies the problem, this calculation becomes computationally intensive for
large m + n. The KL-divergence, on the other hand, is easy to compute and hence question 2
might be better addressed by computing IKL(ξ1, ξ

′
1) and IKL(ξ2, ξ

′
2), where ξ1 → ξ′1 and ξ2 → ξ′2

are coordinate changes in hyperparameter space. The key point to note here is that despite the
fact that x is the result of a map from an (n+m)-dimensional parameter space to a 1-dimensional
observable space, this analysis takes advantage of the fact that there are only two classes of iid
variables. So instead of studying the (m + n)-dimensional family of distributions on parameter
space p(y, z; ξ1, ξ2), one can study information loss through sensitivity to changes in hyperparameter
space. Hence instead of scaling withm+n the study just scales with the number of hyperparameters,
of which, in many situations, there are only a few. We will explore these possibilities further in the
following sections.

3.2 Universality

Central to this paper is the task of identifying universality, which occurs whenever the distribution
of a variable x = f(z1, . . . , zn) is robust against changes in the distributions of random variables
z1, . . . , zn. It is interesting to make a connection between the information theory language just
discussed and approaches in high dimensional probability used to get analytic results. In this
regard, a common choice for a measure of the robustness of the distribution on x is the expectation
value. In this case, universality can be informally defined as done in Ref. [34]:
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If z1, . . . , zn are independent (or weakly dependent) random variables, then the ex-
pectation E[f(z1, . . . , zn)] is "insensitive" to the distribution of z1, . . . , zn when f is
"sufficiently smooth".

This statement can be made precise in a number of ways, as discussed in appendix B. At a first glance
it seems like the requirement of Eq. (3.8), i.e. IKL → 0, is much more stringent than requiring
constant expectation values. This is of course true, however, as will be shown in appendix B,
studying the behaviour of full distributions can be recast as computing an expectation value of
an appropriately chosen quantity. Thus this statement, and in particular Eq. (B.1), can in some
cases be sufficient to prove complete universality analytically. To our knowledge, results such as
Eq. (B.1) have never been applied to inflation models, however numerical evidence of universality
in multifield inflation has been reported for handful of models [31, 43, 44].

An especially striking demonstration of universality arrises in the study of large random ma-
trices, in particular in the study of the global properties of the eigenvalue spectrum of Wigner
matrices. We present the Wigner ensemble using the definition in Ref. [45]:

A Wigner Hermitian matrix ensemble is a random matrix ensemble An = (Aij)1≤i,j≤n
of Hermitian matrices ([...]), in which the upper-triangular entries Aij , i > j are iid
complex random variables with mean zero and unit variance, and the diagonal entries
Aii are iid real variables, independent of the upper-triangular entries, with bounded
mean and variance.

In this work we construct numerically an ensemble of Wigner matrices by first constructing a non-
symmetric n × n random matrix Mn with entries Re (Mn)ij ∼ pM , Im (Mn)ij ∼ pM , where pM
is a distribution with support over R and appropriately rescaled such that E[(Mn)ij ] = 0 and
Var[(Mn)ij ] = 1. We then build a Hermitian matrix An which belongs to the Wigner ensemble by
defining

An =
1

2

(
Mn + (Mn)†

)
. (3.11)

With this definition, all entries have variance Var[(An)ij ] = 1. Note that the definition of a Wigner
matrix above only restricts the first two moments of the entries of An and thus we have considerable
freedom in our choice of pM .

To see the emergence of universality in the global statistics of this ensemble, consider Fig. 3.
The histograms are constructed by generating a large ensemble of Wigner matrices and then binning
the resulting eigenvalues rescaled by a factor or

√
n 7. Moving from left to right, the top two rows

show the resulting eigenvalue spectrums from 1× 1, 2× 2, 5× 5, and 10× 10, matrices. The first
and second rows differ in the choice of prior for (Mn)ij , the shape of which can be seen directly
from the 1 × 1 case. Both distributions can be thought of as different hyperparameter choices of
the generalised normal distribution (Mn)ij ∼ p(·;β) with density function

p(x;β) ∼ β

2αΓ(1/β)
e−( |x|α )

β

(3.12)

where Γ is the usual Gamma function and we set α =
√

Γ(1/β)/Γ(3/β) to ensure unit variance.
When β = 2 the distribution is simply the normal distribution, which is the case for the top row
of Fig. 3. As n increases, the histograms in the first and second row appear to become increasingly
similar. The plot on the bottom left of Fig. 3 confirms this by computing IKL = DKL(p(λ;β =

2)‖p(λ;β = 32))/DKL(p(Mij ;β = 2)‖p(Mij ;β = 32)), which quickly approaches 0 with increasing
7The edges of the distribution scale as

√
n so by studying the spectrum of An/

√
n one makes the width of the

distribution independent of n.
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Figure 3. The top two rows show histograms of the scaled eigenvalues λ/
√
n of n × n Wigner matrices,

with the real and imaginary components of (Mn)ij drawn from the generalised normal distribution with
hyperparameter β = 2 in the top row and β = 32 in the second row. We have rescaled the distribution
to ensure that Var[Mij ] = 1. The n = 1 case shows the shape of these two priors. As n increases,
the distributions of the eigenvalues become increasingly similar. A measure of this similarity is given by
IKL = DKL(p(λ;β = 2)‖p(λ;β = 32))/DKL(p(Mij ;β = 2)‖p(Mij ;β = 32)), shown in the bottom left plot.
As n increases IKL rapidly approaches zero. The bottom right plot shows a histogram of the eigenvalues of
an ensemble of 100× 100 Wigner matrices. This distribution closely resembles the Wigner semicircle law,
proven to be universal in the large n limit.

n. Indeed, as n becomes large, regardless of the choice of prior, the distribution of eigenvalues of
An/
√
n converges to the famous Wigner semicircle law:

p(λ) =
1

2π

√
4− λ2 δ|λ|≤2 , (3.13)

where δ|λ|≤2 indicates p(λ) = 0 for |λ| > 2. This is illustrated by the bottom right hand plot, which
shows the spectrum for 100 × 100 matrices. This striking example of universality can be proven
using standard tools in high-dimensional probability, as described in appendix B.

This rather brief example illustrates precisely the sort of behaviour we would like to discover
in a given inflation model. From a model building perspective, if we imagine that the eigenvalue
spectrum corresponds to an observable, then in order to make robust predictions, we only need
very limited (but specific) knowledge about the statistics of the entries in order to make robust
statements about the predictions. Specifically, in this case, we care about the mean and variance
of the entries, but beyond that the “predictions” become robust to our choice of prior once n is
sufficiently large.
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3.3 Predictivity of the model, or concentration of measure

Beside diagnosing if the predictions of a model are robust against considerations about the underly-
ing construction, one can also study if or when these predictions become sharp. This phenomenon
is referred to as concentration of measure in the context of high dimensional probability. Ref. [34]
informally defines it as

If z1, . . . , zn are independent (or weakly dependent) random variables, then the ran-
dom variable f(z1, . . . , zn) is close to its mean E[f(z1, . . . , zn)] provided the function
f(z1, . . . , zn) is not too sensitive to any of the variables zi.

So provided certain criteria are met (which determines the precise meaning of "not too sensitive")
then sufficiently complex models can be highly predictive.

In the context of inflation, this idea has not been studied in detail, although some first steps
have been taken. There are at least two ways in which large n phenomena can arise in inflation.
One can consider inflation with a very large number of fields (sometimes referred to as manyfield
inflation), or one can consider a small number of fields but a large number of terms appearing in
the effective potential. In the case of manyfield inflation, numerical studies of a specific model of
n-flation in Refs. [31, 43, 46] found that models consisting of O(100) fields had similar predictive
power to single field models 8. This is despite the fact that for a modest number of fields 1 < n . 10

the model is less predictive. More recently, similar studies have been carried out for considerably
more complex manyfield models, showing that at least for some observables (but not all) models
are again highly predictive [44, 47, 48]. In the case of single field models with a large number of
terms in the potential, cencentration of measure with regard to predictions has to our knowledge
not been directly studied. However this was possibly a motivation for the work that was done in
Refs. [49–51].

Again, a great example of this phenomenon can be found in the study of Wigner matrices. To
see this, instead of looking at global statistics of the eigenvalue spectrum, we now focus on a local
property: the distribution of the largest eigenvalue of An, which we denote λ1. As before, we look
at Wigner matrices rescaled by An/

√
n and with unit variance, Var[(An)ij ] = 1. The cumulative

distribution of λ1 can be shown to (under general conditions9) converge, for n→∞, as

p
(
n2/3(λ1 − 2) ≤ t

)
→ Ξ2 , (3.14)

where Ξ2 is the famous Tracy–Widom distribution of the type found in the Gaussian Unitary
Ensemble [53]. Indeed the distribution of λ1 has a standard deviation that scales as n−2/3, and
converges almost surely [54] to

λ1(An)→ 2 . (3.15)

An example of this behaviour is shown in Fig. 4 where the distribution of the rescaled λ1 of n× n
GUE Wigner matrices is shown for different values of n.

With regard to numerically assessing how predictive the model is, in practice we found it
simplest to just inspect histograms directly. This is in contrast to exploring sharp transitions and
testing for universality, where we found the use of the relative entropy, or mutual information to
provide valuable information not so easily appreciated by simply looking at histograms alone.

8More precisely, it was argued in Ref. [31] that the dominant source of uncertainty was the choice of pivot scale
as determined by reheating. A problem that impacts single field and multifield models equally.

9This has been proven for broad classes of Wigner matrices but establishing whether or not this is the case for
all Wigner matrices remains an open problem [52]. The appearance of the Tracy-Widom distribution is common to
many diverse complex systems which are said to belong to the KPZ universality class. This phenomenon is poorly
understood and is an area of active research.
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Figure 4. Histograms of the rescaled largest eigenvalue λ/
√
n of n×n Wigner matrices, with the real and

imaginary components of (Mn)ij drawn from a normal distribution with mean zero and unit variance (this
is simply the largest eigenvalue from each random draw used to make the top row of plots in Fig. 3). For
large n, this distribution is described by the Tracy-Widom distribution.

3.4 Sharp transitions

Sharp transitions in the predictions of a model are ubiquitous in the study of high dimensional
probability. A priori, we have no reason to think this will also be true for low-dimensional models.
Nevertheless, as discussed in §6.3, we do find this behaviour in the axion monodromy model. In
this subsection, we again look at the statistics of the largest eigenvalue λ1 an example.

For Mij ∼ N (1, µ), when µ = 0 the distribution of λ1 is determined by the Tracy-Widom
distribution, as described by Eq. (3.14). Once µ 6= 0 the matrix ensemble ceases to be Wigner and
the convergence theorems leading to Eq. (3.14) and Eq. (3.15) no longer apply. Fig. 5 shows the
effect of changing µ on the eigenvalue spectrum of An/

√
n. As µ increases, a second peak appears

to the right of the semicircle. Note that this second peak does not violate the result that the
spectrum approaches the semicircle law in the large n limit but it does of course violate Eq. (3.15),
highlighting an important distinction between universality results for local and global properties.

To study the distribution of the largest eigenvalue in more detail, we compute

IKL =
DKL(p(λ1;µ = 0)‖p(λ1;µ))

DKL(p(Mij ;µ = 0)‖p(Mij ;µ))
. (3.16)

As shown in Fig. 6 the behaviour is quite rich. As µ increases, the sharp rise in IKL tells us that
the distribution of λ1 is initially very sensitive to the distribution of the entries Mij , and changes
very rapidly. This transition becomes sharper with the size of the matrix (increasing n). After the
transition, IKL drops down to a lower value until it settles into a slow rise. Fig. 6 also highlights
the sensitivity of IKL to changes in the distribution. The top row of shows p(λ1;µ) for three
different choice of µ. The lefthand plot is approximately Tracy–Widom, the righthand plot is well
approximated by a Gaussian but the middle plot, at µ = 0.1, according to IKL, differs significantly
from either of these. This point is not easily appreciated by looking at the histograms alone. To
address this, one could for instance also study the moments of p(λ1;µ) but this has clear limitations
since in principle there are an infinite number of moments one might need to study and there is no
guarantee that any one moment would capture the relevant behaviour. We therefore conclude that
IKL has especially appealing properties as a diagnostic tool.

Despite not being a member of the Wishart ensemble when µ 6= 0 the behaviour seen in Fig. 6
and Fig. 5 is familiar in random matrix theory. To make contact with known results we decompose
Mn as

Mn = Q̃n + E[Q11](1 + i)Jn , (3.17)
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Figure 5. Histograms of the rescaled eigenvalue spectrum of ensembles of Hermitian matrices of the form
An = (Mn + (Mn)†)/2, with n = 200. The real and imaginary components of (Mn)ij are drawn from a
normal distribution with mean µ and unit variance. When µ is sufficiently large, the largest eigenvalue gets
ejected from the semicircle.

where (Q̃n)ij are iid with zero mean and J is the all-ones matrix. An then takes the form

An = Wn + E[Q11]Jn , (3.18)

where Wn = 1
2

(
Q̃n + (Q̃n)†

)
is a Wigner matrix and the second term is a deterministic rank

one matrix. Thus, varying the mean µ is a particular case of finite rank deformations of Wigner
matrices, for which there are a number of known results. In particular, Refs. [55, 56] describe in
detail very similar behaviour to that found here. Interestingly, Ref. [55] points out that the limiting
distribution of λ1 depends on the form of the deformation10. For the case of interest here, where
the deformation is proportional to Jn, they find universal behaviour and the distribution of λ1 is
Gaussian for large deformations.

3.5 Overlaps with other fields of research

The usage of information theory to study parameter sensitivity is not new. For instance, in the
context of artificial neural networks, this falls under the broader subject of input variable selection
methods [57]. Recently, the Fisher information matrix (FIM) was used to study Higgs measurements
at the LHC [58] and similar in spirit to this is the body of work on so-called ‘sloppy’ models such as
in Refs. [59–61]. In these cases they use hierarchies between in the eigenvalues of the FIM to identify
hierarchies in parameter sensitivity. This is rather similar to our usage of the relative entropy, in
so much as in information geometry, the FIM can be viewed as a metric in the same sense that the
relative entropy plays the role of a distance measure (see e.g. Ref. [35] for a review). We explored
the possibility of using the FIM in this work but found the usage of relative entropy to have a
number of practical advantages. Apart from the various pros and cons of using local vs non-local
quantities as diagnostic tools, we also found the relative entropy considerably easier to compute.

10A particularly interesting form of deformation is a diagonal rank one matrix. In this case Ref. [55] find non-
universality and the distribution of λ1 is a convolution between a Gaussian and the distribution of the entries of
Wn.
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Figure 6. The top row shows histograms of the largest eigenvalue λ1 of An, with n = 200, for differ-
ent choices of the mean µ of the prior (Mn)ij ∼ N (µ, 1). The lower plot shows IKL = DKL(p(λ1;µ =

0)‖p(λ1;µ))/DKL(p(Mij ;µ = 0)‖p(Mij ;µ)) for different sizes of Hermitian matrices n = {10, 100, 200}. As
µ increases, we see a transition in behaviour and the transition becomes sharper with increasing n. For
µ = 0 the distribution closely resembles the Tracy–Widom distribution. For µ = 0.975 the distribution is
Gaussian, for µ = 0.1 the distribution neither resembles Tracy-Widom, nor a Gaussian. This is most easily
seen by the presence of the sharp spike in IKL for the n = 200 case.

Finally, in the context of Bayesian inference there is the notion of ‘model complexity’, or
‘Bayesian complexity’ [62, 63] which seeks to compute the effective number of parameters of a
model which can be inferred from data.

4 Our test model: Axion Monodromy

To test the idea of robust predictions and handling of theoretical uncertainties in a specific infla-
tionary model we turn to axion monodromy. This model, as we will discuss in the next section,
works as a good implementation example as it is specific enough to have UV input for the shape of
the potential but also accommodates theoretical uncertainty as suppressed corrections to the tree
level potential.

4.1 A brief review of axion monodromy

4.1.1 Historical progression of axion inflation

Inflation is a process whose effective field theory (EFT) description is sensitive to the UV completion
of its underlying dynamical mechanism in a putative theory of quantum gravity. In the context of
canonical single-field slow-roll inflation driven by a scalar field φ with scalar potential V (φ) this
sensitivity shows up in the form of an infinite series of higher-dimension operators

δV4+n = V (φ)
φn

Mn
P

. (4.1)
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They induce corrections

δεn ∼
(
φn−1

Mn−1
P

)2

, δηn ∼
φn−2

Mn−2
P

(4.2)

to the slow-roll parameters ε, η which become O(1) for all n ≥ 1 and n ≥ 2, respectively, once φ &
MP. However, assuming monotonicity of ε along the the slow-roll trajectory, the Lyth bound [64]

r . 8

(
∆φNe
Ne

)2

' 0.003×
(

∆φNe
MP

)2(
50

Ne

)2

(4.3)

on the tensor-to-scalar ratio r ≡ Pζ/PT = 16ε endows those single-field models which traverse a
field range ∆φ60 &MP during the last observable 60-something e-folds of inflation with detectable
amounts of primordial tensor modes. Hence, it is exactly this most UV sensitive class of ‘large-field
inflation’ which at the same time offers enhanced testability by producing detectable levels of r.

Clearly, calculational control of such ‘large-field inflation models’ requires suppression of an
infinite series of higher-dimension operators in the effective action. This amounts to requiring
that UV completions of large-field inflation must provide a sufficiently softly broken effective shift
symmetry for the inflaton φ.

For these reasons, we try to construct inflation models in controlled compactifications of string
theory as a candidate theory of quantum gravity. At first, it was realised that most of the volume
moduli of the extra dimensions, and the D-brane position moduli used in the first string inflation
models, generically have compact moduli spaces with diameter . MP. In consequence, controlled
large-field inflation models of the type V ∼ φp are built in string theory so far utilising the discrete
shift symmetries of the axions which descend from the higher-dimensional p-form gauge potentials
of the theory. The shift symmetries of these string axions are only broken by non-perturbative
quantum effects, D-branes or fluxes, leading to expectations of enhanced control over the infinite
series of dangerous corrections discussed before.

However, a wealth of combined theoretical evidence both from the direct analysis of different
classes of string compactifications [65, 66] as well as low-energy effective quantum gravity constraints
such as the weak gravity conjecture (WGC) [67] has established a constraint on the axion decay
constants fi . MP as an ‘empirical’ fact. Concretely, axions cin descending from n-form gauge
potentials Cn in ten dimensions lead in four-dimensional compactifications controlled by a single
length scale L = V1/6 to axion decay constants

fcin ∼
MP

L2n
=

MP

Vn/3 . (4.4)

Here, V = L6 denotes the dimensionless volume of the compact six extradimensions in units of the
string scale `s =

√
α′. We can arrange for a setup, where we localise the n-dimensional submanifolds,

called n-cycles Σin, on which the Cn-axions cin and their kinetic terms live, in a warped region of
the extra dimensions. The axion decay constants arise from canonically normalising the kinetic
terms of the axions. Hence, if an axion kinetic term is localised in a warped region of the extra
dimensions, then the warp factor exp(A) at the location of the axion kinetic term (the IR redshift
of the warped region) suppresses the decay constants

fi ≡ fcin ∼MP
eA

V l/6 (4.5)

where we define l ≡ 2n ∈ {2, 4, 6}. This again implies fi < MP as by definition

exp(A) < 1 (4.6)

in a warped region, and
V > 1 (4.7)
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for computational control of the supergravity approximation to the full string theory. As the
fundamental region of periodicity of the axions 2πfi defines their field range, this seemed to preclude
large-field inflation with axions in string theory.

4.1.2 Basics of axion monodromy

This conclusion turned out to be too naïve due to two realisations. Firstly, alignment effects in the
effective action of a few axions [68], as well as the collective Hubble friction assistance of the many
axions of N-flation [69–71] provide examples where the collaboration of several axions increase the
total axion field range by providing a covering space for one effective axion direction which covers
many fundamental domains. Secondly, restricting from now on to the case of a single axion, the
analysis of Refs. [14–16] exhibited the existence of sources of axion stress-energy which intrinsically
break the discrete shift symmetry of an axion: these sources display ‘monodromy’ under a shift
φ→ φ+2πfφ of the canonically normalised axion φ arising from a spontaneous breaking (‘Higgsing’)
of the 10D U(1) symmetry underlying the discrete axion shift symmetry. For a discussion of large-
field inflation in string theory, see e.g. Ref. [72] for the definitive textbook and e.g. [73, 74] for some
reviews. Such sources of stress-energy with axion monodromy can be e.g. D-branes or NS5-branes
coupled to the higher p-form gauge potentials from which the axions descend, axion-p-form flux
Chern Simons couplings, or p-form field strengths themselves [15, 17, 20–24].

Subsequent work [17–19, 23, 25, 27–30, 75–79] led to a more differentiated picture where the
presence of the moduli fields of string compactifications as well as certain non-perturbative quantum
corrections leads to backreaction effects on the string axion inflaton potential. These backreaction
effects can sometimes break the underlying discrete shift symmetry badly enough to destroy infla-
tion [25, 75]. In other cases [17–19, 23, 27–30] these effects respect the underlying periodicities of the
discrete shift symmetries and produce the generic effect of flattening the axion inflation potential

V (0)(φ) ∼ φp0 → Vtree(φ) = V0

[(
1 +

φ2

µ2

)p/2
− 1

]
∼ φp , φ� µ (4.8)

such that generically p < p0. Existing lamp post constructions [14, 15, 17, 23, 30] with p0 = 2

have produced p ∈ {2/5, 2/3, 1, 4/3} while the cross-over field range µ, which is typically given by
a combination of the volume of n-cycle carrying the cn-axion and the decay constant fφ, has led to
µ .MP. Hence, we will describe p as being drawn from a prior distribution with range p ∈ {0.1, 2}
and varying shape, while µ will be described as being drawn from a prior with range p ∈ {0.1, 1}
and varying shape.

Moreover, we find from these lamp-post constructions of axion monodromy, that the overall
scale of the inflation potential V0 arises both from the Weyl rescaling from 10D string frame to
4D Einstein frame providing a factor 1/V2 and potential redshifting e4A from placing the source of
axion monodromy at the infrared end of warped throat regions of the extra dimensions as e.g. in
Ref. [15, 80]

V0 ∼
e4A

V2
. (4.9)

The axion monodromy induced potential for the axion is subject to the warp factor suppression,
if e.g. the monodromy-generating D-branes or fluxes providing the axion potential are localised at
the IR end of such a warped throat.

The warp factor of such throat regions provides for the possibility of exponentially small scales.
However, consistent string compactifications realising such warping in type IIB string theory [81]
require the presence of quantised 3-form fluxes. Each such warped throat region of a CY manifold
arises from a complex structure modulus being stabilised by 3-form flux at exponentially small
values. This requires at least one pair of quantised 3-form fluxes with quanta Q and M on the A
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and B 3-cycle, respectively, of a given warped throat. In terms of these, the warp factor at the IR
end of the throat becomes [81]

eA ∼ e− Q
M . (4.10)

An important constraint on the distribution of Q and M comes from the fact that the 3-
form fluxes contribute to the total amount of D3-brane charge QD3. The compactness of the extra
dimensions then dictates a Gauss law type ‘tadpole’ constraint limiting the maximum value of QD3.
As the pair of quantised 3-form fluxes with quanta Q and M in a given warped throat contributes
an amount Q ·M to QD3, we see that we must impose on any model of axion monodromy a limit

Q ·M < QD3 < QmaxD3 . (4.11)

We will thus describe Q and M as being drawn distributions with support on

Q,M ∈ [1, QmaxD3 ] (4.12)

subject to the above tadpole constraint. The maximum possible D3-brane charge in such type
IIB string compactifications we estimate by looking at the F-theory lift of the type IIB string
compactification with the largest Euler number of the underlying elliptically fibred CY fourfold
which determines QmaxD3 to be QmaxD3 ∼ 105 [82].

4.1.3 Corrections to the tree-level model

Beyond the dominant flattening backreaction effects, the underlying discrete shift symmetries con-
trolling many of the corrections to such axion monodromy inflation models show up in the fact that
perturbative higher-dimensional corrections in 10D typically arise as integer powers of the field
strengths |Fp|2 or their couplings to powers of the Riemann curvature tensor, or nonperturbative
effects producing periodically oscillating corrections. Hence, many of the corrections take the forms

V eff.
p =

N∑
n>2

χn C
eff.
n

(
V (0)(φ)

)n
M4n−4

p

, Vnp = Λ4
UV

M∑
m>1

Dme
−mS cos

(
mφ

fφ

)
(4.13)

where generically the instanton actions S appearing in the non-perturbative effects may have de-
pendence on the inflaton-axion φ as well. Moreover, V (0)(φ) = m2φ2 denotes the tree-level axion
scalar potential arising from the quadratic |Fp|2-terms in 10D. The instanton action for an instanton
wrapping a k-cycle of the extra dimensions will scale as

S = C Vk (4.14)

for dimensional reasons, with k ∈ {2, 3, 4, 6} and C ∈ [V−l, 1]. The energy scale ΛUV of the non-
perturbative effects, by Weyl rescaling from 10D string frame to 4D Einstein frame, behaves as

Λ4
UV ∼

1

V2
. (4.15)

This is typically to be expected, because non-perturbative effects arise in string theory from branes
wrapping cycles of the compact extra-dimensions. Hence, the Kaluza-Klein scale of the extra-
dimensions generically provides the UV cut-off to these non-perturbative corrections which in turn
leads to the above behaviour of Λ4

UV .
Moving on, the Cn and Dm denote generically O(1) Wilsonian EFT coefficients, while the χn

represent the fact that many of the perturbative higher-dimensional corrections in 10D typically
arising as integer powers of the field strengths |Fp|2 or their couplings to powers of the Riemann
curvature tensor are controlled by topological invariants of the extra dimensional manifold. We
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Figure 7. Histogram of the 2nd and 3rd Chern classes (Euler number) in the Kreuzer-Skarke database [83],
together with a Gaussian PDF with mean zero and standard deviation of 217.

collectively denote such invariants with χn and use the example of the 2nd and 3rd Chern classes
(Euler number) as a guide for the typical sizes: e.g. for the Kreuzer-Skarke database of CY
manifolds [83] the typical size of the Euler number is ' 200, see Fig. 7.

Next, we note that the non-perturbative corrections in Eq. (4.13) generate oscillating terms in
the scalar potential. These oscillation patterns cause oscillating features in the curvature pertur-
bation two-point function power spectrum, and enhanced levels of non-Gaussianity from resonance
effects [84]. Treating these interactions within the effective field theory of inflation [85], described
by just the axion field fluctuation coupled to the Goldstone boson of dS time translation invariance
breaking, places a lower bound of

fφ & 10−4MP (4.16)

on the axion decay constant. Otherwise, the effective theory would be forced to include new degrees
of freedom. These get excited once fφ < 10−4MP because then the oscillating interactions for the
slow-rolling axion-inflaton have a time-domain frequency above the UV cutoff of the EFT of inflation
ω > Λ [86].

In parallel, a series of works [16, 18, 19, 87] established that the 4D effective description of
axion monxinflation can be cast in the form of an effective 4-form field strength F4 = dA3 coupled
to the inflaton-axion φ by a CS-term

∆L = φεµνρσF
µνρσ . (4.17)

Combined with the kinetic term for F4 which together with Lorentz invariance forces Fµνρσ =

const. × εµνρσ, this generates a quadratic potential for φ by integrating out F4. As this happens
while the full action for φ and F4 possesses the full combined gauge and shift symmetries of F4 and
φ, this shows monodromy as a spontaneous symmetry breaking phenomenon.

Subsequent works [18, 88] demonstrated that higher-dimension corrections respecting the un-
derlying symmetries of the 4D effective action must come essentially as integer powers of F 2

4 or
non-perturbative corrections. As the tree level potential of φ, V (0) = m2φ2 arises from the tree-
level F 2

4 term and the φF4 coupling, this shows that the corrections come in powers of V (0) which
nicely matches with the structure of the corrections descending from 10D in the string models
above.
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From this discussion it is clear that essentially all of the corrections consistent with 4D sym-
metries of the Kaloper-Sorbo effective description of axion monodromy take the form of Eq. (4.13).
Moreover, the fact that these corrections arise in the Kaloper-Sorbo descriptions as terms (F 2

4 )n,
implies that the perturbative corrections of the type Eq. (4.13) can be decomposed for each n into
two contributions

χnC
eff.
n ≡ Ctree

n + χnCn . (4.18)

Here, we model the parameter Cn as a random O(1) Wilsonian EFT coefficient, while we split off
a contribution Ctree

n such that all the associated correction pieces

V tree
p =

N∑
n>2

Ctree
n

(
V (0)(φ)

)n
M4n−4

p

= V0

[(
1 +

φ2

µ2

)p/2
− 1

]
, Vp =

N∑
n>2

χnCn

(
V (0)(φ)

)n
M4n−4

p

(4.19)

resum into the flattened tree-level axion inflaton potential Vtree(φ).
Hence, we expect that describing single-field axion monodromy inflation as arising from a flat-

tened tree-level potential Eq. (4.8) subject to an infinite series of corrections Eq. (4.13) exhausting
the range allowed by 4D symmetries underlying the 4D Kaloper-Sorbo effective description of axion
monodromy, should capture a large class of effects arising from the typical spectrum of corrections
we expect in a string theory model of axion monodromy inflation. As such, this setup forms the
basis for a probabilistic network analysis of single-field axion monodromy inflation to which we now
turn.

4.2 Introducing the probabilistic model

Following the discussion of the previous section, the model we will be working with is an axion
monodromy construction based on Ref. [17] where suppressed perturbative and non-perturbative
corrections to the potential are modelled in the spirit of Ref. [18]. The potential looks like

V = V eff.
p + Vnp = V0

[(
1 +

φ2

µ2

)p/2
− 1

]
︸ ︷︷ ︸

V tree
p

+Vp + Vnp , (4.20)

where Vp and Vnp are defined by Eqs. (4.13) and (4.19).
As discussed in §2, the first step to studying this model systematically is to recast it as a

probabilistic graphical model where all dependencies are made clear, and to establish the relevant
range of values each parameter can take. Our proposed graphical representation of the model is
presented in Fig. 8. We can see that the parameters in the potential do not necessarily correspond
to the parameters which are most easily constrained from the UV perspective. Rather, in some
cases, they are related by a series stochastic and deterministic dependencies. The deterministic
dependencies have been given in the previous section in Eqs. (4.5), (4.15), (4.9) and (4.14), together
with the expressions for observables given by Eqs. (2.1), (2.2), (2.3) and (2.4). We define the
stochastic dependencies in table 2 by giving the range of scales of each stochastic variable and
their fiducial prior. In cases where the top-level parameters have a finite range, we assume a (log-)
uniform distribution. This is simply a statement of our ignorance ([89]) of further microphysical
considerations. In some other cases we have a little more information. Most notably, our choice of
fiducial prior for χn comes from looking at the distribution of the 2nd and 3rd Chern classes (Euler
number) in the Kreuzer-Skarke database [83]. Fig. 7 shows a histogram of this data, together with
a Gaussian PDF with zero mean and standard deviation of 217. This very crude matching will
prove to be more than sufficient for our needs in §6.

Ultimately however the precise choice of fiducial prior is of limited importance. To probe the
model’s sensitivity to the choice of prior we endow the top-level priors with hyperparameters ξ which
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Figure 8. Graphical representation of the full potential of Eq. (4.20)

enable parametric deviations from the fiducial prior. We must therefore choose a distribution which
has finite range, includes the uniform distribution for a special choice of the hyperparameters, and
yet also demonstrates sufficient flexibility to enable us to study the impact of significant variations
of the prior. We find the Beta distribution to meet these requirements quite nicely.

The Beta distribution has the probability density function

p(z;α, β) =
Γ(α+ β)

Γ(α)Γ(β)
zα−1(1− z)β−1 − 1

2
. (4.21)

It has support on the interval [−1/2, 1/2], which we rescale for each parameter to match the desired
range and for α = 1 and β = 1 is equal to the uniform distribution. By varying the hyperparameters
α and β, we can obtain a wide variety of distributions. In practice though, we do not perform a
complete scan of both α and β. Instead we define a new hyperparamter ξ which for positive values
is gives ξ = β and α = 1 and for negative values ξ = −α and β = 1. Examples of the resulting
distribution are shown in the lefthand plot of Fig. 9. The righthand plot shows how the relative
entropy between the fiducial distribution (α = 1, β = 1) and the Beta distribution depends on ξ.

For the parameters with Gaussian fiducial prior, we simply study the impact of varying the
mean. For all priors, we compare the same range of values of the relative entropy and we choose
the maximum relative entropy to be roughly 4.4. So for instance, if a given parameter were to have
a fiducial prior that is Gaussian with mean zero and 0.5 standard deviation, then the maximum
variation of the mean would be 1.5, such that the maximum relative entropy between the fiducial
prior and the prior with shifted mean would be roughly 4.4. Similarly for the Beta distribution, we
take the maximum values of ξ to to be 9, since, as shown in Fig. 9, this gives a relative entropy
with respect to the uniform distribution of roughly 4.4.

Beside the parameters of the potential, the model in principle also depends on the initial
conditions for the field and its velocity, φ0 and φ̇0, We chose not to model this dependence, by
requiring 55 e-folds of inflation from all realisations. Similarly, we also do not model the choice of
pivot scale at which the observables are estimated (more specifically, the number e-folds from the
end of inflation to horizon exit of the pivot scale). The uncertainty in the pivot scale is related to
the uncertainty in the reheating process. For simplicity, we assume instantaneous reheating.

Before moving on to the analysis of this model, we would like to make a comment on the range
of V0. According to Eq. (4.9), and looking at the range of scales of A and V, the scale V0 can
take values between

[
10−24, 1

]
. This is problematic as V0 ∼ 1 breaks the perturbative treatment
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Figure 9. Beta distribution: On the left hand plot, the distribution is shown for different values of α and
β. The right hand plot shows the increase in KL-divergence (relative entropy) between the fiducial prior
(α = 1, β = 1) and the Beta distribution as α and β are varied. The parameter ξ is positive for fixed β = 1

such that ξ = α, and it is negative for fixed α = 1 such that ξ = −β.

Table 2. Stochastic variables of the model described by Fig.8

range of scales fiducial prior relevant discussion

µ [0.1 , 1] flat distribution, by lack
of particular structure

around Eq. (4.8)

p [0.1 , 2] flat distribution, by lack
of particular structure

around Eq. (4.8)

χn O(200) N (0, 200) after Eq. (4.14)

Cn O(1) N (0, 1) after Eq. (4.14)

Dm O(1) N (0, 1) after Eq. (4.14)

fφ
[
10−4, 1

]
log-flat prior, by lack of
particular structure

WGC arguments
together with discussion
around Eq. (4.16)

eA [fφ, 1] distribution defined by
Q and M according to
Eq. (4.10)

the range of scales is
determined by Eq. (4.5),
together with the prior
on fφ and Eq. (4.6) and
Eq. (4.7)

Q and M
[
1, 105

]
conditioned on

Q ·M < 105

flat distribution, by lack
of particular structure

around Eqs. (4.11) and
(4.12)

l {2, 4, 6} flat see Eq. (4.5)

k {2, 3, 4, 6} flat around Eq. (4.14)

C [V−l, 1] flat distribution, by lack
of particular structure

around Eq. (4.14)
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of this potential. For our purposes, we will condition V0 < 10−5, which ensures that the potential
is self-consistent while keeping the range of values broad enough to safely capture all interesting
physics compatible with our observable universe. It will become clearer in what follows that looking
at larger values of V0 is indeed of little physical interest.

5 Warmup: Analysis of the Tree-Level Axion Monodromy Model

The tree-level model, illustrated in Fig. 1, is especially straightforward to study. Since slow-roll
conditions hold, the only observable which depends on V0 is the amplitude of the power spectrum
Pζ , while the other observables ns, αs and r only depend on two parameters, µ and p. We therefore
treat this model as a warmup to help gain some intuition before moving on to the full model in the
next section.

5.1 Machine learning the mapping from model parameters to observables

Our analysis relies heavily on being able to repeatedly generate large samples of observables for
different choices of priors. As a first step, for the fiducial prior, we follow the strategy below:

• Take a random draw of the model parameters (for the tree level model this is simply {V0, µ, p})

• Numerically solve the equations of motion for the background and perturbations, starting
with initial conditions that ensure at least 60 e-folds of inflation

• Compute {Pζ , ns, αs, r}

• Repeat this procedure, say, O(107) times for a fixed choice of hyperparameters

We use a minimally adapted version of the Transport code [90, 91] to numerically solve the back-
ground equations of motion and compute observables. In principle we could perform the above
procedure for each choice of prior that we wish to study. However, this becomes computationally
quite costly and certainly highly inefficient, since we would be repeatedly sampling the same pa-
rameter space, just with a different weighting each time we change the prior. Instead we choose to
“learn” the mapping from model parameters to observables. Specifically, for the tree level model we
wish to find numerical approximations to the functions {Pζ(V0, µ, p), ns(µ, p), αs(µ, p), r(µ, p)}.

We explored a number of methods (gradient boosted trees, two-layer fully connected neural
network, Gaussian process regression) and found the k-nearest neighbour (KNN) method to work
the best11. We used Scikit Learn’s [93] built-in KNN function. We found the default settings of
a leaf size of 30, Minkowski distance metric, and 10 distance-weighted neighbours to be close to
optimal for all variants of both the tree-level and full model that we considered. For the tree-level
model, we found essentially perfect agreement when testing the KNN model on holdout data.

A key step in order to get accurate results from the KNN method is to standardise the data. For
the tree-level model, all parameters have support on a finite interval and hence simply performing
a coordinate transformation such that all variables lie on a unit interval works well. We define

zV0 =
V0 − 1

2 (max(V0) + min(V0))

max(V0)−min(V0)

zµ =
µ− 1

2 (max(µ) + min(µ))

max(µ)−min(µ)

zp =
p− 1

2 (max(p) + min(p))

max(p)−min(p)
. (5.1)

11Gaussian process regression with GPy [92] also worked extremely well for the tree-level model but became more
challenging to use with the full model.
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Since the relative entropy (and hence also the mutual information) is invariant under a bijective
change of variables, this step also marginally simplifies our analysis of prior sensitivity, since now
all variables have the same range. Our strategy is to perform a KNN regression on the predictions
obtained using the fiducial prior for model parameters. With the KNN algorithm in place there is
no further need to solve the equations of motion in order to compute observables. The procedure
is simply

• Take a random draw of the model parameters (for the tree level model this is simply {V0, µ, p})

• Substitute them into the KNN function {Pζ(V0, µ, p), ns(µ, p), αs(µ, p), r(µ, p)}

• Repeat this procedure as many times as you like, since it is really fast

and hence it becomes trivial to study the impact for predictions of changing the prior on model
parameters.

5.2 Large hierarchy in information loss between µ and p

We start by computing the mutual information between each parameter and each observable for the
tree-level model with fiducial priors. To do so we use the publicly available NPEET code [94, 95].
Table 3 shows that there are strong hierarchies in the mutual information. For instance, we see
that Pζ contains a great deal of information about V0 while the other observables contain none at
all. This is consistent with the previous discussion that for the tree-level model, V0 drops out of
the expressions for {ns, αs, r} provided the slow-roll expressions are valid.

Table 3. Mutual information between each parameter and each observables for the fiducial tree-level model

Pζ ns αs r

V0 0.7 0.0 0.0 0.0
µ 0.1 0.2 0.1 0.1
p 0.5 5.2 2.7 6.5

Somewhat more interesting is that table 3 shows a strong hierarchy in information about µ and
p. To explore this in more detail we study the effect of changing the prior. As discussed in §4.2, we
do so by generating large samples of µ and p drawn from Beta distributions with varying hyperpa-
rameters. We then feed these samples to the KNN learnt functions {ns(µ, p), αs(µ, p), r(µ, p)} to
generate the corresponding distributions for observables.

As summarised in Fig. 10, we find that the consequence of the hierarchy in information loss is
that the model predictions are much more sensitive to changes of the prior on zp than to changes
of the prior on zµ. The top row of plots compares the relative entropy of the distributions for
observables to the relative entropy of the prior as a given hyperparameter is changed with respect
to the fiducial distribution. We see that the relative entropy increases much more rapidly when
the prior zp is changed, compared to when the prior on zµ is changed. Indeed, referring back to
the discussion surrounding Eq. (3.8), the approximately linear slope with gradient close to one
implies that the hierarchy is so strong that there is almost no information loss with respect to
p and substantial information loss with respect to µ. The second and third row give example
histograms for observables resulting from the extreme variations of the priors that we considered.
Corroborating the takeaway message from the plots in the top row, we see that qualitatively the
plots in the bottom row, which correspond to variations in the prior on zp, appear to differ from
one another significantly more than those in the middle row (which correspond to variations in the
prior on zµ).
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Figure 10. Sensitivity of observables to changes in priors for µ and p: The top row shows the KL-divergence
(relative entropy) of the distribution of observables ns, αs and r against the KL-divergence of the prior
of zµ and zp, as the hyperparameters move the priors away from the Beta(1,1) fiducial distribution. Solid
lines represent changes in β for fixed α = 1, and dashed lines changes in α for fixed β = 1. The middle
and bottom rows show the distributions for observables upon changes in the prior of zµ (middle) and
zp (bottom), particularly when the priors are described by the Beta distribution with (α = 1, β = 9),
(α = 1, β = 1) and (α = 9, β = 1).

We conclude that to further refine the predictions of this model, one should focus model building
efforts on understanding the microphysical considerations underlying p. Refining our understanding
of µ however, will have little-to-no impact on the predictions of the model, since, with respect to
µ, the predictions are bordering on universal.

This observation is rather timely, given the recent surge of interest in criteria like the WGC
or the Swampland Distance Conjecture (SDC) [96]. These conjectures try to establish limits µ .
O(MP) as a consequence of consistency of a given EFT with general properties of candidate theories
of quantum gravity like string theory. While the motivations for exploring these conjectures are
diverse, one might have hoped that one result to come from this program would be more refined
models of inflation (assuming inflation is allowed by whatever concrete statements might emerge
from this program). Clearly, our results indicate that for models of axion monodromy inflation,
this program is unlikely to be fruitful in this particular regard, in so much as the inflationary
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observables largely decouple from the precise value of µ. Rather, we find that a potentially dramatic
improvement in our ability to make predictions would follow from a better understanding of the
physics underlying p. This highlights the potential value of the type of analysis we are proposing
here. That the pursuit of more precise statements about predictions may be most effectively carried
out through an iterative procedure of statistical analysis along the lines of this work, followed by
directed model refinement based on the conclusions.

A comment on the lower bound on r Having said that the model predictions largely decouple
from µ, it is important to note an exception — the lower bound on the tensor-to-scalar ratio. This
is a particularly important point to note at this stage, as a fantastic experimental effort is being
made by ground experiments, both currently and in the near future, to further constrain the upper
limit on r. As can be seen in Fig. 10 the distribution of µ changes the lower bound on r. While this
change might be small, it can be important for the possibility of ruling out the model with future
data. Indeed, while for the fiducial distribution the lower bound is r & 0.02, for the distribution
peaking at larger µ values r & 0.03. It turns out that for the smallest values of p, µ is a good
predictor of the lower bound on r and p decouples from the estimation of this bound. Another
point we would like to make is that a naïve estimative of the value of r using the approximations
V (φ) ≈ φp and ε ∝ 1/Ne leads to a predicted lower bound of r > 0.007 for the total number of
e-folds Ne = 55, which is far from the 0.02 bound we see from Fig. 10. Indeed, for the values that
p and µ can take in our model, both parameters are important to determine r.

5.3 The remarkable robustness of the distribution of the warp factor and V0

In this subsection we return to the discussion of deriving a prior on V0 from top-down considerations.
The main point we would like to emphasise is that simple observations arising from requiring
consistency of the underlying physics can have strong ramifications for the form of the distribution.

5.3.1 The distribution of the warp factor

With our current knowledge, we cannot say much about the individual distributions of Q and M
other than that they are integers in the range [1, 105]. Given this large range we will simplify our
analysis by approximating Q and M as continuous rather than discrete random variables. We will
then, as before, use variation of the Beta distribution and computing the resulting relative entropy
as our probe of prior sensitivity.

While we may not know much about the individual distributions of Q and M , the constraints
QM < 105 and exp(−Q/M) > 10−4 lead to dramatic information loss and hence a surprisingly
robust prediction for the distribution of the warp factor. This point is illustrated in the top row
of plots of Fig. 11, where the left plot shows two different possible distributions for Q (and we
use the same for M), and the middle plot shows the resulting distributions for A = −Q/M (i.e.
the log of the warp factor) after enforcing the constraints. When we use the flat prior for Q and
M , the vast majority of samples get rejected by the bound QM < 105. For distributions more
peaked towards lower values the rejection rate is lower, but if very peaked at low values the bound
on exp(−Q/M) > 10−4 becomes increasingly important. These cuts on the distribution gives
rise to significant information loss, and hence, by the data processing theorem, must result in the
distribution of the warp factor being less sensitive to variations of the hyperparameter β than Q

and M . This is confirmed by the third plot, which shows that the relative entropy of the warp
factor is down by more than an order of magnitude compared to the relative entropy of Q or M ,
for a given change in β.

In summary, applying strong constraints to otherwise broad distributions can be thought of as a
particularly extreme form of data processing leading to information loss. Thus it can be possible to
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Figure 11. Robustness of the distribution for eA and V0: The top left plot shows the priors for Q (and
identically M) for different choices of the hyperparameter β. The top middle plot shows the resulting
distribution for A for both priors on Q and M ; we see how robust this is to changes on the prior. The top
right plot shows the KL-divergence of the distribution of A against the KL-divergence of the prior on Q

(and M), for changing β; we see there is high information loss. The bottom left plot shows the distribution
of log10(V0) before imposing the cut V0 < 10−5 for different priors on fφ – Beta(1,1) (blue) and Beta(1,9)
(orange). The bottom middle plot shows the same distributions, but after imposing the cut V0 < 10−5.
The bottom right plot shows the KL-divergence for the distribution of V0 against the KL-divergence for the
prior on fφ, for varying β. The blue line shows the unconstrained case, with little loss of information, and
the orange line shows the case when the cut V0 < 10−5 has been imposed, with a large information loss.

make robust statements about the form of the resulting distribution, despite significant uncertainty
in the distribution of more fundamental quantities.

This is reminiscent of Weinberg’s arguments leading to an anthropic bound on the cosmological
constant [97]: The anthropic c.c. argument essentially relies on the fact that imposing the dramati-
cally narrow anthropic cuts −ρ0 . Λ . O(10)×ρ0 on an unknown prior probability distribution of Λ

with width O(MP) renders the distribution approximately flat in the range −ρ0 . Λ . O(10)× ρ0.
Moreover, this outcome is independent of the shape of the prior as long as this has no pole within
the range of the anthropic cuts. Here ρ0 ∼ 10−120M4

P denotes the magnitude of the present-day
energy density of the universe. Clearly, Weinberg’s observation exemplifies a very drastic example
of data processing leading to information loss.

The analogy with our situation is clear, since we impose rather strong cuts on the range of
allowed warp factor values as well as on the flux integer values by virtue of the tadpole constraint
— quantities which otherwise could take rather wide ranges. It is comforting that by numerically
drawing Q and M we reproduce the analytical result for the distribution of the warp factor eA for
the near-conifuld flux density computed in Refs [98, 99]:

p(eA) ∼ 1

ln eA
. (5.2)
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Figure 12. Scatter plot of log (−4A) versus 2 log (V). The orange line represents the region where Vtree is
of the same order of magnitude as Vnp for k = 2. The volume spans over a much wider range of magnitudes
than the log of the warp factor, A. We can see that most realisations sit above the orange line and therefore
lead to a negligible contribution from Vnp

5.3.2 The prior on V0

We can express V0 as
V0 = e4A(1−3/`)f

12/`
φ . (5.3)

The exponential term is robust to changes in the distribution of Q and M as a direct consequence
of the discussion of the previous subsection, so the question becomes, how does the prior on the
axion decay constant fφ affect the distribution of V0? At first it appears that V0 is sensitive to the
distribution of fφ. Taking fφ to be drawn from a rescaled Beta distribution on the range [10−4, 1],
the bottom left plot of Fig. 11 shows significant variation (baring in mind that it is the histogram
of log10(V0) shown). This point is perhaps more easily seen by the relative entropy plot on the
bottom right (blue line), which shows a fairly modest degree of information loss. However, these
plots neglect the constraint V0 < 10−5, which restricts us the tail of the distributions shown in the
bottom left plot. After enforcing this constraint, we are left with the bottom centre plot, where the
two histograms almost perfectly coincide. Indeed, our estimate of the relative entropy is consistent
with these two distributions being identical (orange line in the bottom right plot).

6 Analysis of the full model

6.1 Non-perturbative corrections

According to Eq. (4.13) the non-perturbative corrections are exponentially suppressed by powers of
the volume, which can take quite large values, so we can expect that for the majority of parameter
space the effect of these contributions is negligible. On the other hand, if these corrections do
become important, they can easily ruin otherwise successful inflation by trapping the inflation in a
local minimum generated by the cosine potential. Thus for these corrections to allow monodromy
inflation and yet be large enough to cause a cosine modulation of the tree level potential, a very
delicate balance between parameters needs to occur. As a rough order of magnitude estimation of
these relations, we can assume that the requirement for the corrections to be relevant is

V0 ∼ Λ4
UVe

−S → 4A ∼ Vk . (6.1)
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Figure 13. Graphical representation of Vtree + Vp as defined in Eq. (4.20)

The volume can take values spanning a range of magnitudes, making this relation hard to achieve:
this is shown in Fig. 12, where we look at the case of k = 2. The vast majority of realisations sit
above the orange y = x line and lead to negligible contributions. Points below this line will easily
spoil the inflaton potential. Given how unlikely it is to realise a potential modulated by the cosine
corrections, we choose to focus our analises on the perturbative corrections only12. The potential
we will now discuss is shown in Fig. 13 as a probabilistic graph.

6.2 Perturbative corrections

When we include perturbative corrections to the potential, the probabilistic nature of the model
differs quite dramatically from the tree level case. The parameter V0 no longer decouples from
the predictions for {ns, αs, r} as in the tree-level case, on the contrary, it plays a crucial role in
controlling the size of the perturbative correction. There are also two more parameters appearing
in the action: Cn and χn. For simplicity we will study the case where N = 2, and therefore n only
takes one value, n = 1. While the probabilistic nature of the model changes, the relations between
fφ, Q, M , l, A and V leading to the distribution of V0 remain the same as discussed in §5.3. For
this reason, we will treat V0, µ, p, χn and Cn as the model parameters.

Figure 14 shows a scatter plot in the ns−r plane of samples generated by the fiducial tree-level
model (red) and for the fiducial full model (blue), except with a flat prior on log10 V0 to better
demonstrate the full range of the model. The orange points are those which satisfy constraints on
the amplitude of the power spectrum, which we discuss in §6.4. Clearly the range of possible values
of ns and r is much greater than the range of the tree level model and interestingly this includes
a region which fits the Planck constraints better than the tree-level model. The multiple regions
showing a denser clustering of blue points hints at the rich structure of the full model, which we
will now explore in detail.

As with the tree-level case, we start by computing the mutual information between each pa-
rameter and each observable for the fiducial model. Table 4 shows that in contrast to the tree-level
model, now all observables contain some information about V0. However {ns, α, r} still contain
significantly more information about p than any other parameter. Strikingly, no observable seems

12It would be interesting to constrain the parameter space to the regions leading to interesting non-perturbative
corrections and study phenomena such as features in the power spectrum and particle production, even though they
are not generic predictions of our model. We leave this for future work.
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Figure 14. Scatter plot of ns versus r: the red dots correspond to the predictions of the tree level model,
the blue dots correspond to the predictions of the model when we include perturbative corrections, and the
orange dots correspond to the subset of the latter which satisfy COBE normalisation. The grey contours
are the 68% and 95% confidence limits from the 2018 Planck data [100]. We can see that the perturbative
corrections have a very strong impact on the predictions from monodromy.

to contain much information about the parameters χn and Cn. In other words, the predictions are
universal with respect to the distribution of χn and Cn, despite the perturbative correction clearly
having a large impact on the predictions.

Table 4. Mutual information between each parameter and each observables for the fiducial full model

Pζ ns αs r

V0 0.7 0.3 0.2 0.2
µ 0.2 0.2 0.1 0.1
p 0.1 0.8 0.9 0.6
χn 0.0 0.1 0.1 0.1
Cn 0.0 0.1 0.1 0.1

6.3 Sharp Transitions

We can glean a little more intuition from the fiducial model by making two–dimensional histograms
for each observable and each parameter. Fig. 15 shows a number of sharp transitions in behaviour.
We can think of a vertical slice of these plots as a (unnormalised) histogram of a given observable,
conditioned on a particular value of the model parameter shown on the x-axis. For instance, we
can think of a vertical slice of the top left plot as being proportional to the conditional probability
density function p(lnPζ | lnV0). The first column therefore shows that as we vary V0, there is a
sharp transition, where for low values of V0 all observables are much more predictive compared to
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Figure 15. 2D histograms of observables versus model parameters

when V0 is large13. This sharp transition in behaviour from highly predictive to far less predictive,
is reminiscent of behaviour we saw when changing the mean of the random matrix example in
§3.4 (and is behaviour often seen in the context of high dimensional probability more generally),
although here the underlying mechanism is rather different. In this case, the sharp transition occurs
when the perturbative correction in Eq. (4.13) stops being negligible. When V0 is small, this term
is highly suppressed, and the model effectively reduces to the tree-level model. However, once V0

reaches a critical value, this term quickly transitions to having a strong effect on the predictions of
the model. Fig. 16 shows the corresponding mutual information for these conditional probability
plots. We see that when observables are conditioned on V0 being small, the mutual information
between the observable and the model parameter p is very high, consistent with the discussion
in §5, ultimately implying that in this regime p is a good predictor for ns. However, above a
certain threshold value, the mutual information drops. In this regime, the hierarchies in parameter
sensitivity are much less strong and the model is much less predictive.

6.4 Conditioning on satisfying observational constraints

Remarkably, inflationary realisations consistent with observational constraints on the amplitude of
the power spectrum live right on the edge of the sharp transition with respect to V0 just described.
This can be seen directly from the top left plot of Fig. 15. Going back to Fig. 14, the orange points
are the subset of the full model sample which satisfy observational constraints on Pζ . It is clear
that the perturbative correction continues to play a crucial role after conditioning on satisfying this

13Note that the normalisation is done over the 2D histograms. This means we don’t necessarily see a dark blue,
denser peak for regions which are highly predictive in the 1D sense of conditioning on the x-axis.
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Figure 16. Mutual information between observables and model parameters when conditioning on log(V0).
There is a sharp transition as V0 gets large, which is particularly prominent for p. The sudden drop for
log(V0) & −15, implies p stops being a good predictor.

constraint and that there is a cluster of points which also satisfy the observational constraints on
ns and r.

To explore this in more detail, Fig. 17 shows scatter plots solely consisting of points that are
consistent with the observational bounds on Pζ . The central plots are scatter plots of {ns, µ, p} (top)
and {r, µ, p} (bottom). The plots either side show the projections along the µ and p axis and the
grey regions between dashed lines show the 95% confidence limits from the Planck results [100]. We
can see that the transitional region discussed in §6.3 exhibits a particularly rich interplay between
the parameters of the model and the observables ns and r. For large values of p, the points collapse
onto a surface in the 3D plots. This effectively two-dimensional region corresponds to the tree-level
model. However, for smaller values of p we see points that do not sit on this surface, and are thus
points determined also by the perturbative correction. We see that in order to satisfy constraints
on r, the model must take small values of p. Thus, the key message to take away from these plots,
and indeed, one of the main results of this paper with regard to the study of axion monodromy,
is that compatibility with observational constraints coincides with the region of parameter space
where perturbative corrections play a crucial role.

Indeed the effect of these corrections is almost self-contradictory: while they are not strong
enough to destroy slow-roll inflation itself, they are easily capable of leading to drastic changes in
observable predictions – a state of affairs where these corrections can be described as being ‘dan-
gerously irrelevant’ [101] (see also Ref. [14] where corrections of this size where labeled ‘neglibigle’,
i.e. negligibly big). In addition, compatibility with observations forces the model to precisely live
in the parameter space where the corrections can neither be considered completely irrelevant, nor
are they completely dangerous.

6.5 Prior sensitivity

Finally, as with the tree level model, we test the sensitivity of predictions to variations of the prior
for each model parameter. With this aim, just like in the tree-level case, we first make use of
the KNN method to learn the mapping from parameters to observables. Again, we tried several
methods and found this to be the most reliable. Once this mapping is determined, computing prior
sensitivity is straightforward.

Fig. 18 shows the relative entropy when changing the prior on each model parameter in turn.
For small variations, it is clear that the prior on p has the greatest effect. Dashed lines correspond to
distributions peaking at high values, while solid lines represent distributions peaking at low values.
The orange dashed line being steeper than the solid line is due to the effect of the perturbative
correction being suppressed at large values of p as discussed in the previous section. In contrast,
the solid line becomes less steep due to the perturbative correction becoming more prominent. It is
quite interesting to compare Fig. 18 with Fig. 16. While each figure teaches us something different
about the model, in both cases we can interpret the plots as saying that we loose information about
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Figure 17. Scatter plots of realisations conditioned to COBE normalisation: The central plots show ns
(top) and r (bottom) versus p and µ, and the side plots show the projections ns(p) (top left), ns(µ) (top
right), r(p) (bottom left) and r(µ) (bottom right). The grey shaded areas correspond to the 95% confidence
limits from the Planck data [100]. The colour grading matches the ns (top) and r (bottom) values. It is
evident from the right hand side and central plots that perturbative corrections are important for small
values of p, which are also imposed by constraints on r. So observational constraints force the model to be
in the regime where perturbative corrections are important.

p as the perturbative correction becomes larger (although, in Fig. 16 the suppression was controlled
by V0, not by p). In, the case of Fig. 16, this is clearly achieved by a direct calculation of the mutual
information, whereas Fig. 18 requires the use of the data processing theorem in order to appreciate
the significance of the gradient of each line.

Furthermore both figures 16 and 18 allow us to detect the presence of a sharp transition. In the
case of Fig. 18, we see this through the sharp increase in the gradient of the green line, indicating
that a sufficiently large change in the prior of V0 leads to a sudden change in the predictions.

Finally, we note the robustness of the predictions with regard to really quite large variations of
the prior on Cn and χn. Given that the fiducial distribution for V0 ensures that the perturbative
corrections are playing a key role, one might be surprised at how unimportant it is to have detailed
knowledge of the distribution of these parameters. This is perhaps the most striking demonstration
of universality in this work.
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Figure 18. Sensitivity of observables to changes in priors for model parameters: The plots show the KL-
divergence (relative entropy) of the distribution of observables ns (left), αs (middle) and r (right) against
the KL-divergence of the prior of zµ, zp zV0 , zCn and zχn , as the hyperparameters move the priors away
from the Beta(1,1) fiducial distribution. Solid lines represent changes in β for fixed α = 1 (towards smaller
values), and dashed lines changes in α for fixed β = 1 (towards larger values). For small deviations from
the fiducial prior, the observables are particularly sensitive to p. This changes with the onset of the effect
from perturbative corrections: there is a sharp rise in the sensitivity to V0 as its distribution moves towards
larger values, and there is a decrease of the sensitivity to p when its distribution moves towards smaller
values.

7 Conclusions

As model building in string theory continues to become increasingly sophisticated, it seems that
the resulting models are becoming increasingly complex. One consequence of this is a tendency
for a larger number of parameters appearing in the effective action, typically leading to a broader
range of possibilities for observables. In addition to this, it is clear that any one model constructed
in string theory harbours significant theoretical uncertainty. Two questions then arise.

1. Given the potentially very broad range of possible observable outcomes in a given model, how
does one best make use of observational data in guiding the refinement of the model?

2. How can one reliably make predictions for future surveys?

In this work we have proposed that by incorporating statistical methods into the model building
process, we can make progress with both of these questions. While this point may seem obvious
(and far from original), the reason we are excited about this approach now and the reason we believe
this approach is promising, essentially boils down to two observations.

1. For models derived from string theory, parameters appearing in the effective action can be
subject to constraints which place strong limitations on the prior of that parameter.

2. Inflation may be regarded as an information bottleneck between the UV theory and obser-
vations. This bottleneck will necessarily result in some notion of universality in the model
predictions.

By better understanding the probabilistic nature of the model and hence the conditions under which
predictions are robust, we can hope to make progress with regard to both questions 1 and 2.

With regard to question question 1, by knowing if a model exhibits hierarchies in parameter
sensitivity, in trying to refine the model we can then go on to prioritise those parameters to which
observables are most sensitive. In the case of axion monodromy inflation studied in this work, it is
clear that p and V0 play especially important roles in understanding the predictions of the model.
Thus, future work seeking to refine the predictions should focus on the physics underlying p, such as
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flattening mechanisms, or refine model building considerations relating to V0 such as improving our
understanding of perturbative corrections. In contrast, refining the modelling of, say, the parameter
µ (e.g. via obtaining a quantitative version of the weak gravity conjecture), does not seem likely to
be so fruitful.

Regarding question 2, by classifying the model building assumptions in this way, we can hope to
find ourselves in a situation where certain “known unknowns” can be shown to be unimportant. For
instance, this could have been the case with the perturbative corrections in axion monodromy, had
the conclusion of our analysis been that they are generically extremely suppressed. In reality, we
found the opposite. We found that consistency with current constraints implies working in a region
of parameter space where such corrections are extremely important. It is striking that we seem to
have found ourselves in a situation where such corrections are important for making predictions
and yet do not dominate to the extent of spoiling the possibility of large-field inflation occurring.
In this precise sense we seem to have found direct evidence for the ‘dangerous irrelevance’ of string
theory and its corrections [14, 101].

That said, there is much cause for optimism. While the perturbative corrections clearly are
important, they are also controllable. While we did not make a full analysis of next to leading order
terms and higher, there is good reason to think that only a finite number of terms will be important
for understanding the predictions of the model.

Future Directions

In addition to further developing our understanding of axion monodromy, almost all aspects of
the method used in this work could be developed much further. This project draws on ideas from
information geometry, machine learning, Bayesian statistics and high dimensional probability and
we barely scratched the surface of any of these fields. As such, this work could be extended in quite
a few directions.

For example, the inflation model we studied was in no sense high-dimensional but we hope
the methods proposed here will become invaluable when studying models involving either a large
number of fields or a large number of parameters. Some of the challenges and opportunities one
would likely encounter when exploring such a model include the following.

• In this work we used rudimentary machine learning methods to learn the deterministic map-
ping between model parameters and observables. We considered a number of approaches but
ultimately settled for one of the simplest, namely a k-nearest neighbours algorithm. It seems
unlikely that this will be the best way of handling a model with a very large number of pa-
rameters. It is likely that other more sophisticated machine learning algorithms will perform
better in a higher-dimensional setting. Another possibility is to rather than try to learn the
deterministic mapping, to fully embrace the probabilistic nature of the model and instead try
to learn the stochastic mapping between hyperparameters and distributions of observables.
This would essentially replace a high dimensional but deterministic problem with a lower
dimensional probabilistic one.

• We embraced certain notions from the field of high-dimensional probability, such as universal-
ity and sharp transitions, but we made no attempt to actually make use of the many results
that exist on this topic. This is of course in part because our model was in no sense high-
dimensional but more generally we decided to take a purely numerical approach, making no
attempt at analytical studies of our probabilistic model. It seems likely that in a truly high
dimensional model there would be an opportunity to gain analytic control, and robust results,
using mathematical concepts that have not seen a great deal of application in string theory
to date.
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We made a start in exploring information loss using tools from information theory. Our primary
tools were the mutual information and relative entropy. It is clear however, that there is far more
that could be done in this direction. Information theory and information geometry are of course
rich fields and many of the key results of recent years have not been taken advantage of in this
work. For instance, we made no attempt to bound the relative entropy or any other f -divergence
in our model, and yet a large literature exists on the subject.

Finally, a very natural next step would be to perform Bayesian inference. Universality is in a
sense a mixed blessing in so much as the more robust the predictions, the less we can learn about the
underlying parameters from observation. Thus, in the case of axion monodromy inflation studied
here, it is clear that we can infer more about V0 and p than µ, Cn and χn. Performing Bayesian
inference in this context, combined with sensitivity analysis along the lines of what we have done
here, would ultimately be the most rigorous way to address question 1.
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Appendix

A Proof of the Data Processing Theorem

In this paper we are interested in applying the Data Processing Theorem to situations where the
dimensionality of the model’s parameter space is greater than the dimensionality of the observable
space and the parameters are statistically independent (and potentially also identically distributed).
For this reason, in this appendix we give a proof of the data processing theorem suitable for our
needs.

Consider a channel κ that produces x given the vector z := (z1, . . . , zn). We wish to com-
pare the f -divergence of two distributions Df (p(z)‖q(z)) to the f -divergence of the correspond-
ing distributions output from the channel Df (pκ(x)‖qκ(x)). First, note that the f -divergence of
the joint distributions p(x, z) contains no more information than the distribution p(z) and hence
Df (p(x, z)‖q(x, z)) = Df (p(z)‖q(z)). This can be seen explicitly by writing

Df (p(x, z)‖q(x, z)) := Eq(x,z)

[
f

(
p(x, z)

q(x, z)

)]
= Eq(x,z)

[
f

(
p(x|z)p(z)

q(x|z)q(z)

)]
= Eq(z)

[
f

(
p(z)

q(z)

)]
= Df (p(z)‖q(z)) . (A.1)
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Next, we perform chain rule again but this time pulling out a factor of p(x) and then applying
Jensen’s inequality

Df (p(x, z)‖q(x, z)) := Eq(x)Eq(z|x)

[
f

(
p(x, z)

q(x, z)

)]
≥ Eq(x)

[
f

(
Eq(z|x)

[
p(x, z)

q(x, z)

])]
= Eq(x)

[
f

(
p(x)

q(x)

)]
= Df (p(x)‖q(x)) . (A.2)

This completes the usual proof of the data processing inequality, however we are interested in the
special case where the zi are independent. At least for the case of the relative entropy, the divergence
is additive. That is, for

p(z) =

n∏
1

p(zi) , (A.3)

we have

DKL(p(z)‖q(z)) =

n∑
i

DKL(p(zi)‖q(zi)) , (A.4)

and hence
n∑
i

DKL(p(zi)‖q(zi)) ≥ DKL(p(x)‖q(x)) . (A.5)

B Universality in RMT from a high dimensional probability perspective

To understand universality from a high probability perspective, we start with an informal definition
given in Ref. [34], where universality is stated as

If z1, . . . , zn are independent (or weakly dependent) random variables, then the ex-
pectation E[f(z1, . . . , zn)] is "insensitive" to the distribution of z1, . . . , zn when f is
"sufficiently smooth".

The meaning of "insensitive" and "sufficiently smooth" can be made precise in a number of ways.
Perhaps the simplest version follows from the Lindeberg method, and gives rise to the following
theorem

Let y and z be random vectors in Rn with independent coordinates. Then for any
f : Rn → R, the distribution of f shows universality if

|E[f(y)]− E[f(z)]| ≤
n∑
i=1

∥∥∥∥ ∂f∂yi
∥∥∥∥
∞
|E[yi]− E[zi]|

+
1

2

n∑
i=1

∥∥∥∥∂2f

∂y2
i

∥∥∥∥
∞

∣∣E[y2
i ]− E[z2

i ]
∣∣

+
1

6

n∑
i=1

∥∥∥∥∂3f

∂y3
i

∥∥∥∥
∞

E[|yi|3 − |zi|3] . (B.1)

Specifically, if yi and zi have the same mean and variance, the last term defines the smoothness
of f requirement through its third derivative. It should be noted that a number of more refined
theorems exist, including versions which do not require independence of z1, . . . , zn [34].
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A particularly striking demonstration of these basic principles of high dimensional probability
and their usefulness arrises in the study of large random matrices. Let us look at the global statistics
of Wigner matrices, as discussed in §3.2. As discussed, the spectrum of eigenvalues of an n × n
Wigner matrix, as n becomes large and regardless of the choice of prior on the entries of the matrix,
converges to the Wigner semicircle law:

p(λ) =
1

2π

√
4− λ2δ|λ|≤2. (B.2)

This is illustrated by the bottom right hand plot of Fig. 3. There are numerous ways in which this
result has been proven, which we will not discuss here. Instead we will sketch a strategy used in
high dimensional probability, which is commonly applied to many universality results. To obtain
the form of the limiting distribution often one takes the following two step procedure:

1. Show that the distribution is universal in the large n limit by, for instance, showing that
Eq. (B.1) applies.

2. Compute the distribution by assuming that the prior takes a particularly simple form which
enables an explicit calculation.

The first step is not obvious in so much as it may not be immediately clear how the expectation
values in Eq. (B.1) can be used to show that an entire function takes a universal form. To see this,
note that one can define the distribution of eigenvalues as the average histogram of eigenvalues with
infinitesimal binning. In other words, p(λ) is the average sum of a set of "spikes" at locations λ,
which can be formally written in terms of the expectation value of the sum of point masses:

µn ≡ E

[
1

n

n∑
i=1

δλi

]
. (B.3)

It is possible to show that this quantity exhibits universality in the large n limit using Eq. (B.1)
[34].

For the second step, the most common choice of prior is the Gaussian distribution, which is in
many cases sufficiently simple to permit analytical calculations even for finite n. Indeed, when the
prior of the entries (Mn)ij is Gaussian, the entries of An are statistically independent and at the
same time the ensemble is invariant under unitary transformations. This special subclass of Wigner
matrices known as the Gaussian Unitary Ensemble (GUE) allows a fantastic degree of analytic
control. Let us look again at the histograms in Fig. 3. While the analytic form for the density
functions of the second row are not known, for the first row which represents the GUE at finite n,
we simply have

p(x) =
1

n
√

2π
e−x

2/2
n−1∑
j=0

H2
j (x/
√

2)

2jj!
, (B.4)

where we define x = λ/
√
n and Hj(x) are Hermite polynomials (see, for instance, Ref. [102] for a

detailed derivation). In the large n limit this function converges to the Wigner semi-circle law.
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