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Abstract. This paper deals with a situation when one is interested in the dependence

structure of a multidimensional response variable in the presence of a multivariate co-

variate. It is assumed that the covariate affects only the marginal distributions through

regression models while the dependence structure, which is described by a copula, is un-

affected. A parametric estimation of the copula function is considered with focus on the

maximum pseudo-likelihood method. It is proved that under some appropriate regularity

assumptions the estimator calculated from the residuals is asymptotically equivalent to

the estimator based on the unobserved errors. In such case one can ignore the fact that

the response is first adjusted for the effect of the covariate. A Monte Carlo simulation

study explores (among others) situations where the regularity assumptions are not satis-

fied and the claimed result does not hold. It shows that in such situations the maximum

pseudo-likelihood estimator may behave poorly and the moment estimation of the copula

parameter is of interest. Our results complement the results available for nonparametric

estimation of the copula function.

Keywords and phrases: asymptotic normality, copula, moment estimation, pseudo-likelihood,

residuals.

1. Introduction

Consider a d-dimensional vector Y = (Y1, . . . , Yd)
T of responses and an associated q-

dimensional vector of the covariates X = (X1, . . . , Xq)
T. For instance in insurance appli-

cations one can consider that the response represents various type of payments related to a

given car accident (medical benefits, income replacement benefits, and allocated expenses

for a claimant) and the covariates present some additional information (claimants age,

gravity of accident, number of people injured in the accident, . . . ).

http://arxiv.org/abs/1903.04221v1
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Often we are interested in the conditional distribution of Y given the value of the

covariate. To simplify the situation it is often assumed that X affects only the marginal

distributions of Yj (j = 1, . . . , d), but does not affect the dependence structure of Y .

More formally, it is assumed that there exists a copula C such that the joint conditional

distribution of Y given X = x can be for all x ∈ SX (the support of X) written as

Hx(y1, . . . , yd) = P(Y1 ≤ y1, . . . , Yd ≤ yd | X = x) = C
(
F1x(y1), . . . , Fdx(yd)

)

where Fjx(yj) = P(Yj ≤ yj |X = x), j = 1, . . . , d. Using this assumption one can proceed

in two steps. In the first step one models the effect of the covariate on each of the marginal

distributions separately (i.e. estimating Fjx for each j ∈ {1, . . . , d} separately). Having

F̂jx one estimates the copula function C in the second step.

Nonparametric estimation of the copula function C (for d = 2 and q = 1) was in detail

considered in Gijbels et al. (2015). The most interesting result is as follows. Suppose that

the marginal distributions follow the parametric or even non-parametric location scale

models, i.e.

(1) Yj = mj(X) + sj(X)εj, where εj is independent with X.

Note that then C is the copula function corresponding to the random vector (ε1, ε2)
T.

Then Gijbels et al. (2015) proved that (under some regularity assumptions) the empirical

copula Ĉn based on the estimated residuals from model (1) is asymptotically equivalent to

the empirical copula C̃n calculated from the unobserved errors εji. More precisely it was

proved that

(2) sup
(u1,u2)∈[0,1]2

√
n
∣∣Ĉn(u1, u2)− C̃n(u1, u2)

∣∣ = oP (1).

This result was generalized to time-series setting by Neumeyer et al. (2019). In Portier and Segers

(2018) the authors were even able to drop the location-scale assumption (1) but at the cost

of deriving only a slightly weaker result (the supremum in (2) is replaced with sup[γ,1−γ]2

where γ can be taken arbitrarily small but positive). On the other hand Côté et al. (2019)

concentrated on the parametric form of the location scale model (1) and generalized the

results to d > 2, q > 1 and at the same time relaxed assumptions on fjε (the density of

εji).

To complement the results on nonparametric estimation of C one is naturally interested

if analogous results hold also for parametric estimation of C. More precisely suppose that

the copula function C belongs to the family C =
{
C(·; a) : a ∈ Θ

}
and we are interested

in estimating the unknown parameter. Denote α the true value of the parameter, α̂n
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the estimator based on the residuals (ε̂ji) and α̃n its counterpart based on the true (but

unobserved) errors (εji) from the location-scale model (1). Then in analogy to (2) one

would expect that α̂n is (the first-order) asymptotically equivalent to α̃n, i.e.

(3)
√
n
(
α̂n − α̃n

)
= oP (1).

Although the conjecture (3) seems to be natural, to the best of our knowledge there are

only limited results specifying the regularity assumptions that are needed so that (3) holds.

Some results for the moment-like estimators that can be deduced from the convergence of

the empirical copula Ĉn can be found in Neumeyer et al. (2019) and Côté et al. (2019).

In this paper (similarly as in Côté et al., 2019) we assume the parametric form of the

location-scale model (1) and concentrate on maximum pseudo-likelihood estimation.

This method of estimation was in the context of copula models popularised by Genest et al.

(1995) and in more detail investigated in Tsukahara (2005). This method is often preferred

to moment-like estimation because the resulting estimator has usually a lower asymptotic

variance.

In the econometric (time-series) literature the inference based on the residuals is also

known as univariate (marginal) filtering (see e.g., Bücher et al., 2015) and the result (3) is

supported by many simulation studies. The result is formulated already in Chen and Fan

(2006a) but there it is presented more on an intuitive level and the precise assumptions

(as well as reasoning) are missing. This lack of of rigorousness were to some extent re-

deemed in the subsequent paper Chan et al. (2009) where the authors concentrated on the

multivariate GARCH-models and presented a lot of interesting ideas how to deal with the

technical difficulties. But a careful reading of the paper reveals that (probably due to the

broad scope of the presented results) some of the crucial steps in the proofs are missing.

In our paper we will explore in detail the assumptions that are needed so that (3)

holds in the standard i.i.d. setting. Even in this relatively simply setting one has to

handle many technical difficulties. The thing is that it is not clear how to make use to

of the recent deep results in empirical copula estimation (see e.g., Berghaus et al., 2017;

Radulović et al., 2017) as the densities of many standard copulas are unbounded. The

only remarkable exception in this aspect is Theorem 3.3 of (Berghaus et al., 2017), but the

authors considered only two dimensional copulas and no covariates.

We show that although the assumptions that guarantess (3) are mild, they are not sat-

isfied for some combinations of commonly used copula functions and marginal densities.

Roughly speaking we illustrate that an unbounded copula density has to be compensated
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with marginal densities that are well behaved not only in the supports of the correspond-

ing distributions, but also at the border points of the supports. We are convinced that

exploring this problem in this settings is not only of independence interest, but it provides

also insights to understand what might go wrong when switching to more complicated

econometric or time-series models (see also the discussion in Section 4).

The paper is organised as follows. The main result and the needed assumptions are

formulated in Section 2. The theoretical results are illustrated in a simulation study in

Section 3. All the proofs are given in the Appendices.

2. Main result

In what follows we assume that for each j ∈ {1, . . . , d} there exists a known transfor-

mation Tj increasing on the support of Yj and known functions mj(x; θj) and sj(x; θj)

depending only on an unknown (finite-dimensional) parameter θj such that the random

variable

εj =
Tj(Yj)−mj(X; θj)

sj(X; θj)
,

is independent of X with cumulative distribution function Fjε. The distribution of the

random vector ε = (ε1, . . . , εd)
T has continuous margins and the copula corresponding to

ε belongs to the families of copulas C =
{
C(·; a) : a ∈ Θ

}
and Θ ⊂ R

p.

Our task is to estimate the true value of the copula parameter (say α) based on the

observations
(
Y 1

X1

)
, . . . ,

(
Y n

Xn

)
that are assumed to be mutually independent copies of the

vector
(
Y

X

)
.

Let Y i = (Y1i, . . . , Ydi)
T. As the parameters θj (j ∈ {1, . . . , d}) are in practice unknown,

we work with the residuals

ε̂ji =
Tj(Yji)−mj(X i; θ̂j)

sj(X i; θ̂j)
, i = 1, . . . , n; j = 1, . . . , d,

where θ̂j is a suitable estimate of θj . For j ∈ {1, . . . , d} let F̂jε̂ be the marginal empirical

distribution function of the estimated residuals, i.e.

F̂jε̂(y) =
1

n

n∑

i=1

1{ε̂ji ≤ y}.

Then the maximum pseudo-likelihood estimator based on the residuals is defined

as

α̂n = argmax
a∈Θ

n∑

i=1

log
{
c
(
Ûi; a

)}
,
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where

(4) Ûi =
(
Û1i, . . . , Ûdi

)⊤
= n

n+1

(
F̂1ε̂(ε̂1i), . . . , F̂dε̂(ε̂di)

)⊤

are the estimated pseudo-observations and c(u; a) is the density of the assumed copula

family. As it is common in the maximum likelihood theory we will consider the estimator

α̂n to be an appropriately chosen root of the estimating equations

(5)

n∑

i=1

ψ(Ûi; α̂n) = 0p, where ψ(u; a) =
∂ log{c

(
u; a

)
}

∂a
.

Analogously let α̃n be the corresponding estimator based on the true (but unobserved)

errors εji. I.e. α̃n is defined as (an appropriately chosen) root of the estimating equations

(6)
n∑

i=1

ψ(Ũi; α̃n) = 0p,

where

(7) Ũi =
(
Ũ1i, . . . , Ũdi

)⊤
= n

n+1

(
F̂1ε(ε1i), . . . , F̂dε(εdi)

)⊤

and F̂jε is the marginal empirical distribution function of the (unobserved) errors, i.e.

F̂jε(y) =
1

n

n∑

i=1

1{εji ≤ y}, j = 1, . . . , d.

2.1. Regularity assumptions on the marginal distributions. In general we need to

assume that the density of the error term εj should be ‘well-behaved’ on the border of

its support. The following assumption is close to assumption F(iii) in Appendix A of

Einmahl and Van Keilegom (2008). But our assumption is weaker as it allows for distri-

butions with supports different from a real line.

Assumption (Fjε): For each j ∈ {1, . . . , d} the density function fjε of εj is continuous on

the support of εj and there exists β ∈ [0, 1
2
) such that

(8) sup
u∈(0,1)

fjε
(
F−1
jε (u)

)(
1 + |F−1

jε (u)|
)

uβ(1− u)β
<∞

and

sup
u∈(0,1/2)

fjε
(
F−1
jε (2u)

)

fjε
(
F−1
jε (u)

) <∞ and sup
u∈(1/2,1)

fjε
(
F−1
jε (1− 2u)

)

fjε
(
F−1
jε (1− u)

) <∞.

Further for some u1, u2 in (0, 1) the function fjε
(
F−1
jε (u)

)
is non-decreasing on (0, u1) and

non-increasing on (u2, 1).
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Note that assumption (Fjε) with β = 0 allows also for distributions with non-continuous

but bounded densities (e.g. exponential and uniform). But as we show later, for copula

families with unbounded densities one needs to assume that β > 0.

Remark 1. The assumption (Fjε) is formulated so that it covers the general case when

both the conditional mean as well as the conditional variance of Tj(Yji) depends on X i.

From the proofs given in the appendix it follows that if one rightly assumes that the

conditional variance does not depend on X i, then one does only location adjustment (i.e.

ε̂ji = Tj(Yji)−mj(X i; θ̂j)) and assumption (8) simplifies to

sup
u∈(0,1)

fjε
(
F−1
jε (u)

)

uβ(1− u)β
<∞.

On the other hand if one rightly assumes that the conditional mean is zero then one does

only scale adjustment (i.e. ε̂ji =
Tj(Yji)

sj(Xi;θ̂j)
) and it is sufficient to assume

sup
u∈(0,1)

fjε
(
F−1
jε (u)

) ∣∣F−1
jε (u)

∣∣
uβ(1− u)β

<∞.

This last assumption is close to the assumption 2. formulated just before Theorem 2.1 of

Chan et al. (2009). But similarly as when comparing with assumption F(iii) in Appendix A

of Einmahl and Van Keilegom (2008), our assumption does not require that the support

of the distribution is a real line.

Remark 2. As in assumption (Fjε) the function fjε
(
F−1
jε (u)

)
is supposed to be monotone

when u is close to zero or close to one, then the integrability of fjε (see Lemma 12) implies

that

lim
|x|→∞

|x|fjε(x) = 0.

Thus if

(9) lim
u→0+

F−1
jε (u) = −∞

(
lim
u→1−

F−1
jε (u) = ∞

)
,

then one gets

(10) lim
u→0+

fjε
(
F−1
jε (u)

)(
1 + |F−1

jε (u)|
)
= 0

(
lim
u→1−

fjε
(
F−1
jε (u)

)(
1 + |F−1

jε (u)|
)
= 0

)
.

Note that the above equations are also automatically satisfied if β > 0 even if (9) does not

hold. Thus one can conclude that if (10) does not hold, then β = 0 and the corresponding

border of the support is finite, i.e.,

lim
u→0+

F−1
jε (u) > −∞

(
lim
u→1−

F−1
jε (u) <∞

)
.
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2.2. Regularity assumptions on mj and sj. The next assumption states that the para-

metric models can be estimated at the standard
√
n-rate and that the location and scale

functions are sufficiently smooth and integrable.

Assumption (ms): For each j ∈ {1, . . . , d} θ̂j is a
√
n-consistent estimate of the param-

eter θj ∈ R
pj . The functions mj(x; t) and sj(x; t) are (once) differentiable with respect

to t and the derivatives are denoted as m′
j(x; t) and s

′
j(x; t). Further there exists a neigh-

borhood U(θj) of the true value of the parameter θj such that infx∈SX ,t∈U(θj) sj(x; t) > 0

and there exists a function Mj : SX → R such that for each x ∈ SX :

sup
t∈U(θj)

∥∥m′

j(x;t)

sj(x;t)

∥∥ ≤ Mj(x), sup
t∈U(θj)

∥∥ s′j(x;t)
sj(x;t)

∥∥ ≤Mj(x),

and E
[
Mj(X)

]r
<∞ for some r ≥ 2. Finally, for each K > 0 the derivatives m′

j(x; t) and

s′j(x; t) viewed as functions of t are continuous at θj uniformly in x ∈ {x̃ ∈ SX : ‖x̃‖ ≤ K}.

2.3. Regularity assumptions about the copula family C. To formulate the main

regularity assumptions about the copula family it is useful to introduce the following set

of functions.

Definition (Class of J - and J̃ β1,β2-functions). A function ϕ : (0, 1)d → R is called a J -

function if ϕ is continuous on (0, 1)d and there exist η ∈ [0, 1) and a finite constant M1

such that for all u ∈ (0, 1)d

|ϕ(u1, . . . , ud)| ≤
d∑

j=1

M1[
min{uj, 1− uj}

]η .

Let β1 ∈ [0, 1/2) and β2 ≥ 0 be fixed. We say that a function ϕ : (0, 1)d → R is a J̃ β1,β2-

function if it is continuous on (0, 1)d and there exists a finite constant M2 such that for all

u ∈ (0, 1)d

|ϕ(u1, . . . , ud)| ≤
d∑

j=1

M2[
min{uj, 1− uj}

]β1 .

Further
∣∣ϕ(j)(u1, . . . , ud)

∣∣ uβ2j (1− uj)
β2 is a J -function for all j ∈ {1, . . . , d}, where

ϕ(j)(u1, . . . , ud) =
∂ϕ(u1, . . . , ud)

∂uj
.

Now we are ready to formulate the needed regularity assumptions about the copula

family. Recall that Θ ⊂ R
p, α is the true value of the parameter, and c(u; a) is a density

corresponding to the copula function C(u; a).
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Assumptions C:

C1. c(u; a1) = c(u; a2) for almost all u ∈ (0, 1)d only if a1 = a2.

C2. The function log{c(u; a)} is continuously differentiable with respect to a for all u ∈
(0, 1)d.

Denote the kth element of the vector function ψ(u; a) = ∂ log{c(u; a)}/∂a by ψk(u; a).

C3. For each k ∈ {1, . . . , p}, the function ψk(·;α) ∈ J̃ β1,β2, where β > max{β1 + 1
r−1

, β2},
for β introduced in assumption (Fjε) and r in assumption (ms).

C4. The function ψ(u; a) is assumed to be continuously differentiable with respect to a

for all u ∈ (0, 1)d. Further there exist an open neighborhood U ⊂ Θ of α and a dominating

function h(u) ∈ J such that ∂ψ(u; a)/∂aT is continuous in (0, 1)d × U and

max
k,ℓ∈{1,...,p}

sup
a∈U

∣∣∂ψk(u;a)
∂aℓ

∣∣ ≤ h(u).

C5. The p× p (Fisher information) matrix I(α) = −E
{
∂ψ(U; a)/∂aT

∣∣
a=α

}
, where

U =
(
U1, . . . , Ud

)T
=

(
F1ε(ε1), . . . , Fdε(εd))

T,

is finite and nonsingular.

Remark 3. Note that the score functions of the commonly used one-parameter bivariate

copula families with unbounded densities (e.g. Clayton, Gumbel, Normal, Student, . . . )

can be bounded by

|ψ(u1, u2; a)| ≤M3

2∑

j=1

∣∣ log(uj) + log(1− uj)
∣∣

and its derivative as

|ψ(j)(u1, u2; a)| ≤
M3[

min{uj, 1− uj}
] +M3

2∑

j′=1

∣∣ log(uj′) + log(1− uj′)
∣∣, j = 1, 2

for a sufficiently large but finite constant M3 (see also Chen and Fan, 2006b). Thus in

Assumption C3 one can consider β1 and β2 arbitrarily close to zero but positive.

Assumption C3 is inspired by Chan et al. (2009). Note that generally speaking this

assumption is more strict than the corresponding assumptions of Tsukahara (2005) that

are based on U -shaped functions. The advantage of assumption C3 is that it enables to

derive bounds that depend only on the marginal distributions. The price that we pay for
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this advantage does not seem to be big because we are not aware of a standard copula

family that does not meet C3 with β1 and β2 arbitrarily small positive constants.

Note that assumption C3 implies that β > 0, which does not allow for marginal densi-

ties fjε that are bounded but possibly discontinuous at a border point (e.g. exponential or

uniform distributions). As shown in simulations in Section 3 the aimed result (3) indeed

does not hold in general when the marginal densities fjε are not continuous.

Nevertheless a closer inspection of the proof shows that β > 0 is needed to get a control

over a possibly unbounded score function ψ(u; a). But there are commonly used copula

families (e.g. Frank, Ali-Mikhail-Haq, Plackett) for which the score function ψ(u; a) and

its derivatives are bounded. It is of interest to formulate an alternative to assumptions C3

and C4 separately as it allows for β = 0 in assumption (Fjε),

C6. The function ψ(u; a) is bounded and continuously differentiable with respect to a for

all u ∈ (0, 1)d. Further there exists an open neighborhood U of α such that ∂ψ(u; a)/∂aT

is continuous in (0, 1)d × U and

max
k,ℓ∈{1,...,p}

sup
a∈U

sup
u∈(0,1)d

∣∣∂ψk(u;a)
∂aℓ

∣∣ <∞ and max
j∈{1,...,d}

max
k∈{1,...,p}

sup
u∈(0,1)d

∣∣∂ψk(u;α)
∂uj

∣∣ <∞.

2.4. Main results. Now we are ready to formulate the main results of the paper.

Theorem 1. Suppose that assumptions (ms), C1-C5 and (Fjε) with β > 0 are satisfied.

Then with probability going to one there exist consistent roots (say α̂n and α̃n) of the

estimating equations (5) and (6). Further α̂n and α̃n satisfy (3).

The next theorem say that if assumption C6 is satisfied then one can also include the

case β = 0 in assumption (Fjε). Thus for instance if one (rightly) assumes that C is a

Frank copula then the marginal distributions of the errors are allowed to be also uniform

or exponential.

Theorem 2. Suppose that assumptions (ms), C1, C2, C5, C6 and (Fjε) are satisfied.

Then the statement of Theorem 1 holds.

The above theorems imply that when fitting the copula C one can (under the stated

assumptions) ignore the fact that he/she is working with estimated residuals (ε̂ij) instead

of unobserved errors (εij). As it is known (and it also follows from the proof of Theorem 1)

the asymptotic distribution of α̃n is normal. Thus thanks to (3) one can conclude that

also α̂n is asymptotically normal.
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Corollary 1. Suppose that the assumptions either of Theorem 1 or 2 hold. Then with

probability going to one there exists a consistent root α̂n of (5). This root satisfies
√
n
(
α̂n −α

) d−−−→
n→∞

Np(0,Σ), Σ = I−1(α) var
(
ψ̃
(
U)

)
I−1(α),

where ψ̃
(
u) =

(
ψ̃1(u), . . . , ψ̃p(u)

)T
with

(11) ψ̃k(u) = ψk(u;α) +

d∑

j=1

∫

[0,1]d

[
1{uj ≤ vj} − vj

]
ψ

(j)
k (v;α) dC(v), k = 1, . . . , p.

3. Simulation study

A Monte Carlo study was conducted in order to illustrate the theoretical conclusions and

to show how the finite sample performance of the maximum pseudo-likelihood estimator

depends on the level of violation of the regularity assumptions.

3.1. Settings. To keep the presentation as clear as possible we concentrate on a bivariate

response variable (some results for a three-dimensional case can be found in the Supple-

mentary material) following the model

(12) Y1i = θ10 + θ11Xi + ε1i, Y2i = θ20 + θ21Xi + ε2i, i = 1, . . . , n.

The joint cumulative distribution function H(y1, y2) of the random vector (ε1i, ε2i)
⊤ is

C
(
F1ε(y1), F2ε(y2)

)
, where C is a copula and F1ε, F2ε are marginal distribution functions.

The following five copula families were considered for C: Clayton, Frank, Gumbel, Gauss-

ian, and Student with 5 degrees of freedom. The copula parameter α is chosen such that

the corresponding Kendall’s tau is τ = 0.5 or τ = 0.75. The marginal distributions were

chosen one of the following:

− F1ε is standard normal and F2ε exponential with mean 1 (denoted as N+E),

− F1ε is standard normal and F2ε uniform on [−1, 1] (denoted as N+U),

− F1ε and F2ε are both Student t with 5 degrees of freedeom (denoted as t).

The first two situations satisfy the assumption (Fjε) only with β = 0. Hence, the result

of Theorem 2 applies only if (C6) holds. From the five considered copula families, this is

the case only for the Frank copula. On the other hand, the t marginals satisfy (Fjε) with

β > 0 and the assumptions of Theorem 1 hold. Hence, these marginals provide a useful

regular benchmark for a comparison with the first two situations.

The covariate Xi is generated from the standard normal distribution (Poisson distribu-

tion with mean 5 was considered as well, but the results are almost identical and are not

reported). The presented results correspond to the particular choice θ10 = 1, θ20 = −1,
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θ11 = 1, and θ21 = 2. The unobserved errors εji are estimated as the residuals after fitting

the regression lines (marginally) where the parameters are estimated with the help of the

least squares method assuming sj ≡ 1, j = 1, 2, cf. Remark 1.

The following estimators of the parameter α are compared:

(i) (oracle) inversion of Kendall’s tau based on the unobserved errors α̃(ik);

(ii) inversion of Kendall’s tau based on the residuals α̂(ik);

(iii) (oracle) maximum pseudo-likelihood estimator based on the unobserved errors α̃(pl);

(iv) maximum pseudo-likelihood method estimator on the residuals α̂(pl);

(v) modified maximum pseudo-likelihood estimator based on the residuals α̂(pl∗).

The latter estimator α̂(pl∗) is inspired by the estimator introduced in the context of single

index conditional copulas by Fermanian and Lopez (2018). In our situation this estimator

coincides with the maximum pseudo-likelihood estimator computed only from Ûi which

lie in [δn, 1− δn]
2, where δn = Dn−1/λ. Note that this choice corresponds to the choice δn

in the proof of Theorem 1. In the presented simulations we choose D = 1/4 and λ = 1.9,

thus in view of Remark 3 the statement of Theorem 1 (or 2) holds also for α̂(pl∗) provided

that the corresponding regularity assumptions hold.

In order to have more comparable results for the various copula families, the estimates of

the parameters are presented on the Kendall’s tau scale. The performance of the estimators

is measured by the bias, the standard error (SD), and the root mean square error (RMSE),

which are estimated from 1 000 random samples of sample sizes n = 100, 1 000, 10 000 and

whose 100 multiplies are reported, because the obtained quantities are typically of order

10−2. The obtained results for Clayton, Frank and Gaussian copulas are listed in Tables 1,

2, and 3, while tables for Gumbel and Student copula can be found in the Supplementary

material. The Monte Carlo simulations were run in R statistical computing environment

(R Core Team, 2018). The same starting seed was always used so that the estimates based

on the true (but unobserved) errors εij are the same regardless the choice of the marginals

F1ε and F2ε. These ‘oracle’ estimates are denoted as “inov” in the tables and provide

benchmarks for the estimators calculated from the estimated residuals.

3.2. Findings. As it is well known (Genest et al., 1995; Tsukahara, 2005) in case of no

covariates the maximum pseudo-likelihood is usually more efficient than the moment like

estimators. This is illustrated by the performance of the estimators α̃(ik) and α̃(pl) that

are calculated from the errors εij . The question of interest is if this property continues

to hold also for estimators that are calculated from the residuals (i.e., in the presence of

covariates).
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τ margins estim n = 100 n = 1 000 n = 10 000

bias SD RMSE bias SD RMSE bias SD RMSE

0.50 inov α̃
(ik) −0.03 5.54 5.54 0.00 1.64 1.64 −0.01 0.53 0.53

α̃
(pl) 0.33 4.90 4.91 0.01 1.49 1.49 0.00 0.48 0.48

N+E α̂
(ik) −1.25 5.62 5.76 −0.27 1.64 1.67 −0.05 0.53 0.53

α̂
(pl) −3.91 5.54 6.78 −2.26 2.08 3.08 −0.80 0.75 1.10

α̂
(pl∗) −1.94 5.30 5.65 −1.23 1.81 2.19 −0.44 0.63 0.77

N+U α̂
(ik) −0.21 5.55 5.55 −0.03 1.63 1.63 −0.02 0.53 0.53

α̂
(pl) −0.84 4.86 4.93 −0.61 1.53 1.65 −0.22 0.51 0.55

α̂
(pl∗) 0.02 5.00 5.00 −0.13 1.50 1.51 −0.05 0.49 0.49

t α̂
(ik) −0.15 5.58 5.58 −0.01 1.64 1.64 −0.02 0.53 0.53

α̂
(pl) 0.10 4.96 4.96 −0.02 1.50 1.50 −0.01 0.48 0.48

α̂
(pl∗) 0.38 5.05 5.06 0.06 1.51 1.51 0.02 0.48 0.48

0.75 inov α̃
(ik) 0.02 3.40 3.40 −0.01 1.01 1.01 0.01 0.31 0.31

α̃
(pl) −0.77 3.12 3.21 −0.16 0.93 0.94 −0.01 0.28 0.28

N+E α̂
(ik) −2.14 3.70 4.27 −0.48 1.08 1.18 −0.07 0.32 0.33

α̂
(pl) −9.19 5.85 10.89 −4.19 2.88 5.09 −1.57 1.14 1.94

α̂
(pl∗) −6.26 4.95 7.98 −2.86 2.36 3.71 −1.07 0.94 1.43

N+U α̂
(ik) −0.24 3.39 3.40 −0.06 1.01 1.01 0.00 0.31 0.31

α̂
(pl) −2.99 3.27 4.43 −1.22 1.18 1.70 −0.44 0.41 0.60

α̂
(pl∗) −1.63 3.15 3.55 −0.60 1.01 1.17 −0.20 0.33 0.39

t α̂
(ik) −0.22 3.45 3.45 −0.05 1.01 1.01 0.01 0.31 0.31

α̂
(pl) −1.21 3.21 3.43 −0.22 0.93 0.95 −0.02 0.28 0.28

α̂
(pl∗) −1.04 3.24 3.40 −0.17 0.93 0.95 −0.01 0.28 0.28

Table 1. Model (12) with Clayton copula, quantities multiplied by 100.

Generally speaking one can conclude that in agreement with our theoretical results the

maximum pseudo-likelihood estimator α̂(pl) outperforms α̂(ik) in situations for which our

regularity assumptions are satisfied (see Table 2 and the rows corresponding to t-marginals

in Tables 1 and 3). For these situations the modified maximum pseudo-likelihood estimator

α̂(pl∗) is of no interest.

On the other hand the performance of α̂(pl) may deteriorate significantly if the regularity

assumptions are not met. The problems are generally worse for larger values of Kendall’s

tau (a stronger dependence). It is also interesting that exponential margins (rows denoted

as N+E) are much more problematic than uniform margins (rows denoted as N+U).

As illustrated in Table 1 one should be in particular careful when fitting the Clayton

copula (and also the Gumbel copula as illustrated in the Supplementary material). Then
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τ margins estim n = 100 n = 1 000 n = 10 000

bias SD RMSE bias SD RMSE bias SD RMSE

0.50 inov α̃
(ik) −0.03 4.62 4.62 0.01 1.44 1.43 0.01 0.45 0.45

α̃
(pl) −0.03 4.51 4.50 0.01 1.42 1.42 0.01 0.45 0.45

N+E α̂
(ik) −0.45 4.68 4.70 −0.05 1.44 1.44 0.00 0.45 0.45

α̂
(pl) −0.45 4.55 4.57 −0.05 1.43 1.43 0.00 0.45 0.45

α̂
(pl∗) −0.21 4.84 4.84 −0.04 1.46 1.46 0.00 0.45 0.45

N+U α̂
(ik) −0.08 4.65 4.65 0.00 1.44 1.43 0.00 0.45 0.45

α̂
(pl) −0.08 4.53 4.53 0.00 1.42 1.42 0.01 0.45 0.45

α̂
(pl∗) 0.09 4.85 4.85 0.01 1.45 1.45 0.01 0.45 0.45

0.75 inov α̃
(ik) −0.11 2.50 2.50 0.00 0.74 0.74 0.00 0.23 0.23

α̃
(pl) −0.53 2.45 2.50 −0.06 0.74 0.74 0.00 0.23 0.22

N+E α̂
(ik) −1.17 2.79 3.02 −0.14 0.76 0.77 −0.01 0.23 0.23

α̂
(pl) −1.59 2.77 3.19 −0.19 0.76 0.78 −0.02 0.23 0.23

α̂
(pl∗) −1.42 2.90 3.23 −0.17 0.77 0.79 −0.01 0.23 0.23

N+U α̂
(ik) −0.25 2.53 2.54 −0.01 0.74 0.74 0.00 0.23 0.23

α̂
(pl) −0.69 2.50 2.59 −0.07 0.74 0.74 0.00 0.23 0.23

α̂
(pl∗) −0.57 2.62 2.68 −0.05 0.76 0.76 0.00 0.23 0.23

Table 2. Model (12) with Frank copula, quantities multiplied by 100.

α̂(pl) performs significantly worse than α̂(ik) in cases of non-regular margins combined with

a strong dependence (τ = 0.75). The problems can be to some extent prevented by

considering the modified estimator α̂(pl∗) in particular in case of uniform margins (N+U).

Thus while for Frank copula the modified estimator α̂(pl∗) is of no interest, for the Clayton

(and the Gumbel) copula it presents an interesting alternative to the ‘standard’ pseudo

maximum-likelihood estimator.

The results for the Gaussian copula (see Table 3) are of independence interest. Note

that although the density of the copula function is unbounded, the estimator α̂(pl) performs

better than α̂(ik) for τ = 0.5 even in case of exponential margins (N+E). And this holds

true for uniform margins (N+U) even for τ = 0.75. This raises a question whether a milder

assumptions than (Fjε) would be sufficient for the Gaussian copula.

An analogous simulation study was conducted also for a system of three linear regres-

sions, where the vector of innovations was sampled from C
(
F1ε(y1), F2ε(y2), F3ε(y3)

)
with

the marginals F1ε and F2ε being standard normal and F3ε either exponential (with mean 1)

or uniform on [−1, 1]. As the obtained results are very similar to the results for model (12),

they are not presented here, but can be found in the Supplementary material. The common
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τ margins estim n = 100 n = 1 000 n = 10 000

bias SD RMSE bias SD RMSE bias SD RMSE

0.50 inov α̃
(ik) 0.03 4.94 4.94 −0.07 1.53 1.53 0.00 0.48 0.48

α̃
(pl) 1.07 4.51 4.63 0.10 1.39 1.40 0.03 0.44 0.44

N+E α̂
(ik) −0.43 4.97 4.99 −0.17 1.53 1.54 −0.02 0.48 0.48

α̂
(pl) 0.32 4.54 4.55 −0.21 1.41 1.43 −0.06 0.45 0.45

α̂
(pl∗) 0.99 4.90 5.00 0.08 1.46 1.46 0.03 0.45 0.45

N+U α̂
(ik) −0.06 4.97 4.97 −0.08 1.53 1.53 0.00 0.48 0.48

α̂
(pl) 0.87 4.53 4.62 −0.01 1.40 1.39 −0.01 0.44 0.44

α̂
(pl∗) 1.36 4.86 5.05 0.22 1.46 1.47 0.07 0.45 0.45

t α̂
(ik) 0.04 4.99 4.98 −0.07 1.53 1.53 0.00 0.48 0.48

α̂
(pl) 1.08 4.55 4.67 0.09 1.40 1.40 0.02 0.44 0.44

α̂
(pl∗) 1.42 4.90 5.10 0.21 1.46 1.48 0.06 0.45 0.45

0.75 inov α̃
(ik) 0.16 2.79 2.80 −0.02 0.89 0.89 0.00 0.27 0.27

α̃
(pl) 0.06 2.53 2.53 −0.02 0.80 0.80 0.00 0.25 0.25

N+E α̂
(ik) −1.02 2.93 3.10 −0.24 0.90 0.93 −0.04 0.27 0.27

α̂
(pl) −1.81 2.81 3.34 −0.73 0.95 1.20 −0.21 0.30 0.37

α̂
(pl∗) −1.01 2.77 2.95 −0.40 0.88 0.97 −0.10 0.27 0.29

N+U α̂
(ik) −0.08 2.80 2.80 −0.05 0.89 0.89 −0.01 0.27 0.27

α̂
(pl) −0.48 2.52 2.56 −0.27 0.82 0.86 −0.09 0.25 0.27

α̂
(pl∗) 0.00 2.61 2.60 −0.05 0.81 0.81 −0.01 0.25 0.25

t α̂
(ik) 0.14 2.82 2.82 −0.02 0.89 0.89 −0.01 0.27 0.27

α̂
(pl) 0.03 2.56 2.56 −0.02 0.79 0.79 0.00 0.25 0.25

α̂
(pl∗) 0.20 2.62 2.62 0.02 0.80 0.80 0.02 0.25 0.25

Table 3. Model (12) with Gaussian copula, quantities multiplied by 100.

important finding is that the pseudo-likelihood estimator α̂(pl) may perform poorly (and

noticeably worse compared to α̂(ik)) for copula families with unbounded densities even in

cases when only one of the marginals does not satisfy the regularity assumption while the

remaining ones are regular.

4. Conclusions and further discussions

As illustrated in the previous section one should be careful when a copula with an

unbounded density is fitted with the help of the maximum pseudo-likelihood method.

Although the assumptions of Theorem 1 are not strict one should keep in mind that they

are not satisfied for distributions with a non-continuous error density function fjε (e.g.,

uniform distribution, exponential distribution, . . . ). Although such situations are probably
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rare in practice, there are applications in which for instance uniform errors can naturally

appear (see e.g., Schechtman and Schechtman, 1986).

One of the possible next steps would be to generalize the results into the time-series

context and to find the assumptions so that the results claimed in Chen and Fan (2006a)

hold. Based on our results for i.i.d. setting and our simulation study we conjecture that the

method of the pseudo-likelihood estimation can be problematic when the marginal models

have exponential innovations (or more generally positive or bounded innovations with

discontinuous density) (see e.g. Lawrance and Lewis, 1985; Davis and McCormick, 1989;

Anděl, 1989, 1992; Nielsen and Shephard, 2003) and one uses
√
n-consistent estimators of

the model parameters.

Note that in models where (based on our findings) the use of maximum pseudo-likelihood

estimation is questionable, one can consider the method of moments (see e.g., Section 5.5.1

of McNeil et al., 2005; Brahimi and Necir, 2012). As proved in Côté et al. (2019) many

moment estimators based on residuals satisfy (3) under less restrictive assumptions on the

marginal error density fjε. In particular for standard two-dimensional copulas the method

of the inversion of Kendall’s tau can present a ‘robust’ alternative. It is usually only slightly

less efficient if no covariates are present, but in the presence of covariates it can perform

significantly better than the maximum pseudo-likelihood estimator.

For the sake of brevity we concentrated only on estimation of the copula parameter.

We conjecture that also other procedures (e.g., procedures for goodness-of-fit testing) that

make use of the maximum pseudo-likelihood estimator α̂n calculated from the residuals will

be valid provided that next to our assumptions also some standard regularity assumptions

for these procedures are satisfied.
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Appendix A. Proofs of the main results

Note that the estimated pseudoobservations Ûi given by (4) can be viewed as estimates of

‘unobserved’ pseudoobservations Ũi (given in (7)) which can be further viewed as estimates
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of Ui, given by

Ui =
(
U1i, . . . , Udi

)
T

=
(
F1ε(ε1i), . . . , Fdε(εdi))

T.

To prove Theorem 1 we need some technical results about the ‘closeness’ of Ûji (the j-th

element of Ûi) to Ũji and Uji.

As we will show later one does not need to handle Ûji if either Uji is close to zero or one

or if Mj(X i) is too large. This is formalised as follows. Introduce the set of indices

(A1) JXjn =
{
i ∈ {1, . . . , n} : Uji ∈ [δn, 1− δn],Mj(X i) ≤ an

}
,

where

(A2) δn =
1

n1/λ
, and an = n1/(λxr), for some λ ≥ 1 and 0 < λx ≤ λ.

The following lemma gives an upper bound on the number of indices i for which it holds

that Uji 6∈ [δn, 1− δn] or Mj(X i) > an.

Lemma 1. Let δn and an satisfy (A2) and assumption (ms) holds. Then

1

n

n∑

i=1

1
{
Uji 6∈ [δn, 1− δn] or Mj(X i) > an

}
= OP

(
1

n1/λ

)
,

which further implies that

P

( n∑

i=1

1
{
Uji 6∈ [δn, 1− δn] or Mj(X i) > an

}
≤ n1−1/λ log n

)
−−−→
n→∞

1.

Proof. Denote

pn = P
(
Uji 6∈ [δn, 1− δn] or Mj(X i) > an

)

and note that thanks to (A2) and Markov’s inequality (applied to M r
j (X i))

pn ≤ P
(
Uji 6∈ [δn, 1− δn]

)
+ P

(
Mj(X i) > an

)

≤ 2δn + E
Mr

j (Xi)

arn
= O

(
1

n1/λ

)
+O

(
1

n1/λx

)
= O

(
1

n1/λ

)
.

Now as the random variable 1
n

∑n
i=1 1

{
Uji 6∈ [δn, 1−δn] or Mj(X i) > an

}
is non-negative

one can use once more Markov’s inequality to conclude that

1

n

n∑

i=1

1
{
Uji 6∈ [δn, 1− δn] or Mj(X i) > an

}
= OP (pn).

�
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A.1. Some results on statistics with ranks calculated from residuals.

Lemma 2. Suppose that assumptions (Fjε) and (ms) hold and that ϕ is a J -function.

Then
1

n

n∑

i=1

ϕ(Ûi)
P−−−→

n→∞
Eϕ(U).

Proof. As ϕ is a J -function, it is easy to show that the expectation Eϕ(U) exists and is

finite. Thus thanks to the law of large numbers it is sufficient to show

(A3) Dn =

∣∣∣∣∣
1

n

n∑

i=1

ϕ(Ûi)−
1

n

n∑

i=1

ϕ(Ui)

∣∣∣∣∣
P−−−→

n→∞
0.

Let JXjn and δn be as in (A1) and (A2), where λ and λx are chosen so that they satisfy the

assumptions of Lemma 6. Then this lemma together with the standard Glivenko-Cantelli

theorem for the empirical distribution function F̂jε implies that

max
j∈{1,...,d}

max
i∈JXjn

∣∣Ûji − Uji
∣∣

≤ max
j∈{1,...,d}

max
i∈JXjn

∣∣Ûji − Ũji
∣∣ + max

j∈{1,...,d}
max
i∈JXjn

∣∣Ũji − Uji
∣∣ = oP

(
1
)
.(A4)

Now introduce

(A5) JXn = ∩dj=1J
X
jn, and KX

n = {1, . . . , n} \ JXn
and note that with the help of (A4)

(A6) max
i∈JXn

∥∥Ûi −Ui

∥∥ = oP (1).

As the above equation is not guaranteed for i ∈ KX
n , we need to take care about the sets

of indices JXn and KX
n separately. That is why we bound Dn given by (A3) as

(A7) Dn ≤ 1

n

∑

i∈KX
n

∣∣ϕ(Ûi)
∣∣ + 1

n

∑

i∈KX
n

∣∣ϕ(Ui)
∣∣+

∣∣∣∣
1

n

∑

i∈JXn

ϕ(Ûi)−
1

n

∑

i∈JXn

ϕ(Ui)

∣∣∣∣.

In what follows we show that each term on the right-hand side of (A7) is asymptotically

negligible.

Dealing with the first term in (A7)

As ϕ is a J -function one can bound

1

n

∑

i∈KX
n

∣∣∣ϕ(Ûi)
∣∣∣ ≤

d∑

j=1

M1

n

∑

i∈KX
n

1[
min{Ûji, 1− Ûji}

]η .
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Now by Lemma 1 (with probability going to one) there are at most dn1−1/λ logn indices i

for which there exists j ∈ {1, . . . , d} such that Uji 6∈ [δn, 1 − δn] or Mj(X i) > an. Thus

one can choose the indices i for which 1

[min{Ûji,1−Ûji}]η
takes the biggest values and gets that

(with probability going to one)

1

n

∑

i∈KX
n

∣∣∣ϕ(Ûi)
∣∣∣ ≤

d∑

j=1

M1

n

[ ⌈ d
2
n1−1/λ logn⌉∑

i=1

1(
i

n+1

)η +

n∑

i=⌊n− d
2
n1−1/λ logn⌋

1(
1− i

n+1

)η

]

≤ 2 d2M1 n
−(1−η)/λ(log n)1−η (1 + o(1)) = o(1).(A8)

Dealing with the second term in (A7)

Note that E
∣∣ϕ(Ui)

∣∣ <∞ implies that

E

[
1

n

∑

i∈KX
n

∣∣ϕ(Ui)
∣∣
]
= E

[∣∣ϕ(Ui)
∣∣ 1

{
Ui 6∈ [δn, 1− δn]

d or max
1≤j≤d

Mj(X i) > an
}]

≤ E

[∣∣ϕ(Ui)
∣∣ 1

{
Ui 6∈ [δn, 1− δn]

d
}]

+ E
∣∣ϕ(Ui)

∣∣P
(
max
1≤j≤d

Mj(X i) > an

)
−−−→
n→∞

0.

Thus 1
n

∑
i∈KX

n

∣∣ϕ(Ui)
∣∣ = oP (1) follows from Markov’s inequality.

Dealing with the third term in (A7)

We use the continuity of the function ϕ. To be able to do that we need to stay in the

interior of [0, 1]d. Thus for a given δ ∈ (0, 1/2) (that will be specified later on), consider

the set

(A9) Iδ = {u : u ∈ [δ, 1− δ]d}.

and introduce the corresponding sets of indices

(A10) Jδ =
{
i ∈ {1, . . . , n} : Ui ∈ Iδ

}
, Kδ = {1, . . . , n} \ Jδ,

where for simplicity of notation we do not stress that both Jδ and Kδ depends on n. Now

one can bound∣∣∣∣
1

n

∑

i∈JXn

ϕ(Ûi)−
1

n

∑

i∈JXn

ϕ(Ui)

∣∣∣∣

≤ 1

n

∑

i∈JXn ∩Jδ

∣∣ϕ(Ûi)− ϕ(Ui)
∣∣ + 1

n

∑

i∈JXn ∩Kδ

∣∣ϕ(Ûi)
∣∣+ 1

n

∑

i∈JXn ∩Kδ

∣∣ϕ(Ui)
∣∣.(A11)

Note that by the uniform continuity of the function ϕ(·) on [δ/2, 1 − δ/2]d and (A6) one

gets that the first term on the right-hand side of (A11) converges to zero in probability.
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To deal with the second term on the right-hand side of (A11) note that thanks to (A6)

with probability going to one

JXn ∩Kδ ⊆
{
i ∈ {1, . . . , n} : Ûi 6∈ [2δ, 1− 2δ]d

}

Thus one can bound

1

n

∑

i∈JXn ∩Kδ

∣∣ϕ(Ûi)
∣∣ ≤

d∑

j=1

M1

n

[ ⌈(n+1)2δ⌉∑

i=1

1(
i

n+1

)η +

n∑

i=⌊n−(n+1)2δ⌋

1(
1− i

n+1

)η

]

≤ 2 dM1
(2δ)1−η

1−η
(
1 + o(1)

)
,

which can be made arbitrarily small by taking δ small enough.

Finally with the help of law of large numbers the third term on the right-hand side of

(A11) can be bounded by

1

n

∑

i∈JXn ∩Kδ

|ϕ(Ui)| ≤
1

n

∑

i∈Kδ

|ϕ(Ui)|

≤
d∑

j=1

M1

n

[
n∑

i=1

1

Uη
ji

1{Uji ≤ δ}+
n∑

i=1

1

(1− Uji)η
1{Uji ≥ 1− δ}

]

= 2 dM1

(
δ1−η

1−η + oP (1)
)
,

which can be also made arbitrarily small by taking δ sufficiently small and n sufficiently

large. �

Lemma 3. Suppose that assumptions (Fjε) and (ms) hold. Let ϕ be a J̃ β1,β2-function

such that E {ϕ(U)} = 0 and β > max{β1 + 1
r−1

, β2}. Then

(A12)
1√
n

n∑

i=1

ϕ(Ûi) =
1√
n

n∑

i=1

ϕ(Ũi) + oP (1).

Proof. Let JXn and KX
n be defined as in (A5). Then similarly as in (A8) of the proof of

Lemma 2 one can bound

(A13)
1√
n

∑

i∈KX
n

ϕ(Ûi) = OP (n
1
2
− 1−β1

λ logn),
1√
n

∑

i∈KX
n

ϕ(Ũi) = OP (n
1
2
− 1−β1

λ log n),

where the role of η is now taken by β1.

In what follows we take λ so that

2(1− β + 1
r−1

) < λ < 2(1− β1)
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and λx satisfies (B30). Such choices of λ and λx guarantee that the right-hand sides of

(A13) are of order oP (1) and at the same time the assumptions of Lemma 5 are satisfied

and one can make use of Lemmas 6 and 7.

It is sufficient to show that

1√
n

∑

i∈JXn

ϕ(Ûi) =
1√
n

∑

i∈JXn

ϕ(Ũi) + oP (1).

Note that

JXn =
{
i ∈ {1, . . . , n} : Ui ∈ [δn, 1− δn]

d, max
1≤j≤d

Mj(X i) ≤ an
}
,

where δn and an are given in (A2).

Now by the mean value theorem

(A14)
1√
n

∑

i∈JXn

ϕ(Ûi) =
1√
n

∑

i∈JXn

ϕ(Ũi) +
d∑

j=1

1√
n

∑

i∈JXn

ϕ(j)(U∗
i )
(
Ûji − Ũji

)
,

where U∗
ji lies between Ûji and Ũji. Thus to prove the lemma it is sufficient to show that

the second term on the right-hand side of (A14) diminishes in probability.

With the help of Lemma 6 for a fixed j ∈ {1, . . . , d} one gets

1√
n

∑

i∈JXn

ϕ(j)(U∗
i )
(
Ûji − Ũji

)
= An +Bn + Cn,

where

An =
1√
n

∑

i∈JXn

ϕ(j)(U∗
i )fjε(εji)

{
EX

[m′

j(X,θj)

sj(X;θj)

]
+ εji EX

[s′j(X;θj)

sj(X;θj)

]}T

(θ̂j − θj),(A15)

Bn =
1√
n

∑

i∈JXn

ϕ(j)(U∗
i )fjε(εji)

(
ε̂ji − εji

)
,(A16)

Cn =
oP (1)

n

∑

i∈JXn

ϕ(j)(U∗
i )U

β−γ
ji (1− Uji)

β−γ(1 +Mj(X i)
)
,(A17)

and γ > 0 is taken sufficiently small so that β − γ > β2. In what follows we show that Cn

and An +Bn are asymptotically negligible.

Dealing with Cn. With the help of Lemma A3 of Shorack (1972) and Lemma 7 for each

ε > 0 there exists a positive constant L such that the quantity Cn given by (A17) can be
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with probability at least 1− ε bounded by

∣∣Cn
∣∣ ≤ oP (1)

n

∑

i∈JXn

∣∣ϕ(j)(U∗
i )(U

∗
ji)

β2(1− U∗
ji)

β2
∣∣ U

β−γ
ji (1− Uji)

β−γ

(U∗
ji)

β2(1− U∗
ji)

β2

(
1 +Mj(X i)

)

≤ oP (1)

n

∑

i∈JXn

M1[
minj=1,...,dmin{U∗

ji, 1− U∗
ji}

]η
1

Lβ2

(
1 +Mj(X i)

)

=
oP (1)

n

∑

i∈JXn

M1[
minj=1,...,dmin{Uji, 1− Uji}

]η
1

Lβ2+η
(
1 +Mj(X i)

)

= oP (1)OP (1) = oP (1),

where the law of large numbers is used on the last line.

Thus one can concentrate on the quantities An and Bn.

Dealing with An. Note that An given by (A15) can be rewritten as

An =
√
n (θ̂j − θj)T EX

[m′

j(X,θj)

sj(X;θj)

] 1
n

∑

i∈JXn

ϕ(j)(U∗
i )fjε(εji)

+
√
n (θ̂j − θj)T EX

[s′j(X;θj)

sj(X;θj)

] 1
n

∑

i∈JXn

ϕ(j)(U∗
i )fjε(εji)εji.(A18)

Now analogously as in the proof of Lemma 2 one can show that

1

n

∑

i∈JXn

ϕ(j)(U∗
i )fjε(εji) =

1

n

∑

i∈JXn

ϕ(j)(U∗
i )fjε

(
F−1
jε (Uji)

)

= E
[
ϕ(j)(U)fjε

(
F−1
jε (Uj)

)]
+ oP (1)(A19)

and also

(A20)
1

n

∑

i∈JXn

ϕ(j)(U∗
i )fjε(εji) εji = E

[
ϕ(j)(U)fjε

(
F−1
jε (Uj)

)
F−1
jε (Uj)

]
+ oP (1).

Combining (A18), (A19), (A20) and the fact that the estimator θ̂j is
√
n-consistent yields

An =
√
n (θ̂j − θj)T E

[
ϕ(j)(U)fjε

(
F−1
jε (Uj)

)]
EX

[m′

j(X,θj)

sj(X;θj)

]

+
√
n (θ̂j − θj)T E

[
ϕ(j)(U)fjε

(
F−1
jε (Uj)

)
F−1
jε (Uj)

]
EX

[s′j(X;θj)

sj(X;θj)

]
+ oP (1).(A21)

Dealing with Bn. Now have a look at the term Bn defined in (A16). One can proceed

analogously as above and show that

(A22) Bn =
1√
n

∑

i∈JXn

ϕ(j)(Ui)fjε(εji)
(
ε̂ji − εji

)
+ oP (1) = Bn1 +Bn2 + oP (1),
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where

Bn1 =
1√
n

∑

i∈JXn

ϕ(j)(Ui)fjε
(
F−1
jε (Uji)

)[mj(Xi;θj)−mj(Xi;θ̂j)

sj(Xi;θ̂j)

]
,

Bn2 =
1√
n

∑

i∈JXn

ϕ(j)(Ui)fjε
(
F−1
jε (Uji)

)
F−1
jε (Uji)

[sj(Xi;θj)−sj(Xi;θ̂j)

sj(Xi;θ̂j)

]
.

Now similarly as in the proof of Lemma 5 one can show that

Bn1 =
√
n(θj − θ̂j)T

1

n

∑

i∈JXn

ϕ(j)(Ui)fjε
(
F−1
jε (Uji)

) m′

j(Xi;θj)

sj(Xi;θ̂j)
+ oP (1)

=
√
n
(
θj − θ̂j

)T
E
[
ϕ(j)(U)fjε

(
F−1
jε (Uj)

)]
E
[m′

j(X;θj)

sj(X;θj)

]
+ oP (1)(A23)

and analogously also

(A24) Bn2 =
√
n
(
θj − θ̂j

)T
E
[
ϕ(j)(U)fjε

(
F−1
jε (Uj)

)
F−1
jε (Uj)

]
E

[
s′j(X;θj)

sj(X;θj)

]
+ oP (1).

Now (A21), (A22), (A23) and (A24) yields that Bn = −An + oP (1), which was to be

proved.

�

The following lemma will be useful for copula families with ‘nicely bounded’ score func-

tions.

Lemma 4. Suppose that assumptions (Fjε) and (ms) hold. Let ϕ be a J̃ 0,0-function such

that E {ϕ(U)} = 0 and ϕ(j) is bounded for each j ∈ {1, . . . , p}. Then the statement of

Lemma 3 holds.

Proof. By the mean value theorem

1√
n

n∑

i=1

ϕ(Ûi) =
1√
n

n∑

i=1

ϕ(Ũi) +
d∑

j=1

1√
n

n∑

i=1

ϕ(j)(U∗
i )
(
Ûji − Ũji

)
.

Now take λ > 2(1 + 1
r
) and recall the sets of indices JXn of KX

n introduced in (A5). Then

1√
n

n∑

i=1

ϕ(j)(U∗
i )
(
Ûji − Ũji

)

=
1√
n

∑

i∈JXn

ϕ(j)(U∗
i )
(
Ûji − Ũji

)
+

1√
n

∑

i∈KX
n

ϕ(j)(U∗
i )
(
Ûji − Ũji

)
.(A25)



MPLE IN COPULA SEMIPARAMETRIC MODELS 23

Now with the help of Lemma 9 one can show that the second term on the right-hand side

of (A25) can be bounded as the preceding equation is oP (1)

1√
n

∑

i∈KX
n

∣∣ϕ(j)(U∗
i )
(
Ûji − Ũji

)∣∣ ≤ OP (1)

n

∑

i∈KX
n

(
1 +Mj(X i)

)
= oP (1),

where the last equation follows from Markov’s inequality and

E

[
1

n

∑

i∈KX
n

(
1 +Mj(X i)

)]
= E

[(
1 +Mj(X)

)
1
{
U 6∈ [δn, 1− δn]

d or max
1≤j≤d

Mj(X) > an
}]

= o(1).

Finally the first term on the right-hand side of (A25) can be handled analogously as in

the proof of Lemma 3. �

Corollary 2. Suppose that assumptions of Lemma 3 or Lemma 4 are satisfied. Then

1√
n

n∑

i=1

ϕ(Ûi) =
1√
n

n∑

i=1

ϕ̃(Ui) + oP (1),

where

ϕ̃(u) = ϕ(u) +

d∑

j=1

∫

[0,1]d

[
1{uj ≤ vj} − vj

]
ϕ(j)(v) dC(v).

Proof. With the help of (A12) it is sufficient to show that

1√
n

n∑

i=1

ϕ(Ũi) =
1√
n

n∑

i=1

ϕ̃(Ui) + oP (1).

But this can be proved component-wise by mimicking the proof of Lemma 2 of Gijbels et al.

(2017), where the situation with d = 2 but a more general ϕ depending possibly also on

X i is considered. �

A.2. Proofs of Theorems 1 and 2.

Proof of Theorem 1. With the help of Lemmas 2 and 3 the proof can closely follow the

proof of Lemma 3 in Gijbels et al. (2017). In order to do that define

(A26) W n(a) =
1

n

n∑

i=1

ψ
(
Ûi; a

)
and W (a) = Eψ

(
U; a

)
.

In what follows we show that assumptions of Theorem A.10.2 of Bickel et al. (1993) are

satisfied for W n and W given by (A26).
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It follows from the standard maximum likelihood theory that Assumption (GM0) is

satisfied thanks to Assumption C1. Moreover, Assumptions C4 and C5 imply Assump-

tion (GM3). Assumption (GM2) is also satisfied as thanks to assumption C3 one can for

each k ∈ {1, . . . , p} apply Corollary 2 to ϕ(u) = ψk(u;α) and get

1

n

n∑

i=1

ψ
(
Ûi;α

)
=

1

n

n∑

i=1

ψ̃(Ui) + oP (n
−1/2),

where ψ̃(u) was introduced in Corollary 1.

Thus, it remains to check Assumption (U) from Theorem A.10.2. Therefore for each

ε > 0 and for each k, ℓ ∈ {1, . . . , p}, it is sufficient to find a neighborhood Uε = {a ∈ U :

‖a−α‖ < ε} such that

sup
a∈Uε

∣∣∣∣∣
1

n

n∑

i=1

∂ψk(Ûi; a)

∂aℓ
− I(j,ℓ)(a)

∣∣∣∣∣ ≤ ǫ+ oP (1),

where I(j,ℓ)(a) stands for the (j, ℓ) element of I(a).

For simplicity of notation, let us put gk,ℓ(u; a) = ∂ψk(u; a)/∂aℓ. Assumption C4 allows

to adapt Lemma 2, which gives

1

n

n∑

i=1

gk,ℓ(Ûi;α)− I(k,ℓ)(α) = oP (1).

Hence, it remains to show

(A27) Dn = sup
a∈Uε

∣∣∣∣∣
1

n

n∑

i=1

gk,ℓ(Ûi; a)−
1

n

n∑

i=1

gk,ℓ(Ûi;α)

∣∣∣∣∣ ≤ ǫ+ oP (1).

For a given δ ∈ (0, 1/4) (that will be specified later on), let us introduce the sets Iδ and Jδ

as in (A9) and (A10). Then the left-hand side of (A27) can be bounded by

(A28) Dn ≤ sup
a∈Uε

∣∣∣∣∣∣
1

n

∑

i∈Jδ∩JXn

gk,ℓ(Ûi; a)−
1

n

∑

i∈Jδ∩JXn

gk,ℓ(Ûi;α)

∣∣∣∣∣∣
+

2

n

∑

i 6∈Jδ∩JXn

h(Ûi),

where JXn was introduce in (A5) and h in Assumption C4. Now with probability going to

one for each sufficiently large n, if Ui ∈ Iδ, then Ûi ∈ Iδ/2. Thus for each δ ∈ (0, 1/4) the

term on the right-hand side of (A28) can be made arbitrarily small (Assumption C4) up

to oP (1) term by considering a sufficiently small neighbourhood Uε.
Finally, analogously as in the proof of Lemma 2, one can show that

1

n

∑

i 6∈Jδ∩JXn

h(Ûi) ≤ r(δ),
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where r(δ) → 0 as δ → 0+.

Thus we have verified the assumptions of Theorem A.10.2 of Bickel et al. (1993) which

yields that there exists a consistent root (say α̂n) of the estimating equation (5) which has

the following asymptotic representation

√
n
(
α̂n −α

)
= {I(α)}−1 1√

n

n∑

i=1

ψ̃
(
Ui) + oP (1),

where the elements of the vector function ψ̃ are given in (11). Note that completely

analogously one can show that there exists a consistent root (say α̃n) of the estimating

equation (6) which has the same asymptotic representation. This finally implies the state-

ment of the theorem. �

Proof of Theorem 2. The proof is completely analogous to the proof of Theorem 2. The

only difference is that one uses Lemma 4 instead of Lemma 3. In fact the proof is even

simpler as thanks to assumption C6 one can take a finite constant instead of the function h.

�

Appendix B. Some results on F̂jε̂ and Ûji

In what follows let x+ = max{x, 0}.

Lemma 5. Suppose that assumptions (Fjε) and (ms) hold. Then for δn = n−1/λ where

λ > 2(1− β + 1
r−1

) it holds uniformly in u ∈ [δn/2, 1− δn/2]

F̂jε̂
(
F−1
jε (u)

)
= F̂jε

(
F−1
jε (u)

)
+ fjε(F

−1
jε (u))EX

[
m′

j(X;θj)

sj(X;θj)
+ F−1

jε (u)
s′j(X;θj)

sj(X;θj)

]T
(θ̂j − θj)

+ u(β−γ)+(1− u)(β−γ)+oP
(

1√
n

)
(B1)

for each γ > 0 and j ∈ {1, . . . , d}.

Proof. We will show the statement for u ∈ [ δn
2
, 1
2
]. The proof would be completely analogous

for u ∈ [1
2
, 1− δn

2
].

Note that

F̂jε̂
(
F−1
jε (u)

)
=

1

n

n∑

i=1

1
{
εji ≤ mj(Xi;θ̂j)−mj(Xi;θj)

sj(Xi,θj)
+

F−1
jε (u)sj(Xi;θ̂j)

sj(Xi;θj)

}
.

In what follows we need to take care of the fact that the majorant Mj(x) from assump-

tion (ms) can be unbounded. Let an = n1/(λxr), where λx will be specified later. Then
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similarly as in the proof of Lemma 1 one can use Markov’s inequality to bound

∣∣∣F̂jε̂
(
F−1
jε (u)

)
− 1

n

n∑

i=1

1
{
εji ≤ mj(Xi;θ̂j)−mj(Xi;θj)

sj(Xi,θj)
+

F−1
jε (u)sj(Xi;θ̂j)

sj(Xi;θj)
,Mj(X i) ≤ an

}∣∣∣

≤ 1

n

n∑

i=1

1
{
Mj(X i) > an

}
≤ 1

n

n∑

i=1

Mr
j (Xi)

arn
1
{
Mj(X i) > an

}
= oP

(
1

n1/λx

)
.

Note that thanks to the assumption λ > 2(1− β + 1
r−1

) it is straightforward to verify that
1
2
+ β

λ
< r

(
1
2
− 1−β

λ

)
. In the following we will take λx such that

(B2) 1
2
+ β

λ
< 1

λx
< r

(
1
2
− 1−β

λ

)
.

Now with the help of (B2) one can conclude that

F̂jε̂
(
F−1
jε (u)

)
=

1

n

n∑

i=1

1
{
Uji ≤ Fjε

(mj(Xi;θ̂j)−mj(Xi;θj)

sj(Xi;θj)
+

F−1
jε (u)sj(Xi;θ̂j)

sj(Xi;θj)

)
,Mj(X i) ≤ an

}

+ u(β−γ)+(1− u)(β−γ)+oP (n
−1/2),(B3)

for u ∈ [δn/2, 1/2].

Now for simplicity of notation introduce

(B4) yjx(t, u) =
mj(x;t)−mj(x;θj)

sj(x;θj)
+ F−1

jε (u)
sj(x;t)

sj(x;θj)
.

Further for u ∈ (0, 1] and t ∈ R
pj put

w(u) = min{u, 1− u}(β−γ)+ , and t(n) = θj + t/n1/2−η,

where η > 0 is sufficiently small. Note that the function w is increasing on (0, 1
2
) and

decreasing on (1
2
, 1) for β − γ > 0. Finally let

u(n) = max{u, δn/2}

and for i ∈ {1, . . . , n} introduce the processes

Zni(t, u) =
1

w(u(n))
√
n
1
{
Uji ≤ Fjε

(
yjXi

(t(n), u(n))
)
, |Mj(X i)| ≤ an

}

that are indexed by the set F = T1 × (0, 1/2], where T1 =
{
t ∈ R

pj : ‖t‖ ≤ 1
}
.

Note that assumption (ms) guarantees that n1/2−η(θ̂j − θj) P−−−→
n→∞

0 for each η ∈ (0, 1
2
),

which further implies that P(‖n1/2−η(θ̂j − θj)‖ ≤ 1) −−−→
n→∞

1. Put

ϑ̂n = n1/2−η(θ̂j − θj).
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Then with the help of (B3) one can (with probability going to one) write that for u ∈
[δn/2, 1/2]

(B5) F̂jε̂
(
F−1
jε (u)

)
=
w(u)√
n

n∑

i=1

Zni(ϑ̂n, u) + w(u) oP (n
−1/2).

Now equip the space F with the semimetric ρ given by

(B6) ρ
(
(t1, u1), (t2, u2)

)
= K

√
‖t1 − t2‖+ u2−u1

w2(u2)
+
(

1
w(u1)

− 1
w(u2)

)2
u1, for u1 ≤ u2,

where K is a finite constant that will be specified afterwards.

Later we show that the assumptions of Theorem 2.11.11 of van der Vaart and Wellner

(1996) are satisfied for the empirical process indexed by F , which implies that the pro-

cess is asymptotically tight. Further as supu∈(0, 1
2
] ρ
(
(ϑ̂n, u), (0, u)

)
= oP (1), one gets that

uniformly in u ∈ (0, 1/2]

(B7)

n∑

i=1

Zni(ϑ̂n, u)−
n∑

i=1

Zni(0, u)−
n∑

i=1

EU,X

[
Zni(ϑ̂n, u)− Zni(0, u)

]
= oP (1),

where EU,X stands for the expectation with respect to Uji’s and X i’s (while considering

ϑ̂n being fixed).

In what follows we concentrate on u ∈ [δn/2, 1/2]. If not stated otherwise all the following

results hold uniformly for u from this interval.

Note that similarly as in (B5) one can argue that

F̂jε
(
F−1
jε (u)

)
=
w(u)√
n

n∑

i=1

Zni(0, u) + w(u) oP
(

1√
n

)
.

This together with (B3) and (B7) implies

(B8) F̂jε̂
(
F−1
jε (u)

)
= F̂jε

(
F−1
jε (u)

)
+w(u)

√
nEU,X

[
Zn1(ϑ̂n, u)−Zn1(0, u)

]
+w(u) oP

(
1√
n

)
.

Thus to finish the proof it remains to deal with the second term on the right-hand side

of (B8). As
√
n (θ̂j − θj) = OP (1) one can use the mean value theorem which guarantees

that (with probability going to one) there exists t∗ ∈ T1 such that

w(u)
√
nEU,X

[
Zn1(ϑ̂n, u)− Zn1(0, u)

]

= EX

[[
Fjε

(
yjX(θ̂j , u)

)
− u

]
1
{
Mj(X) ≤ an

}]

= EX

[
fjε(yjX(t(n)∗ , u))

(
m′

j(X;t
(n)
∗ )

sj(X;θj)
+ F−1

jε (u)
s′j(X;t

(n)
∗ )

sj(X;θj)

)T
1
{
Mj(X) ≤ an

}](
θ̂j − θj

)
.(B9)
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Note that for x such that Mj(x) ≤ an one has

(B10)
∣∣mj(x;t

(n))−mj (x;θj)

sj(x;θj)

∣∣ ≤Mj(x)‖t(n) − θj‖ ≤ an n
−1/2+η = n1/(λxr)−1/2+η

and also

(B11)
∣∣ sj(x;t(n))

sj(x;θj)
− 1

∣∣ ≤Mj(x)‖t(n) − θj‖ ≤ an n
−1/2+η = n1/(λxr)−1/2+η,

where both inequalities hold uniformly in t ∈ T1 and x ∈ {x̃ : Mj(x̃) ≤ an}. Thus with

the help of Lemma 11

(B12) sup
t∗∈T1

sup
x∈{x̃:Mj(x̃)≤an}

sup
u∈[δn/2,1/2]

∣∣fjε(yjx(t(n)∗ , u))− fjε(F
−1
jε (u))

∣∣
u(β−γ)+(1− u)(β−γ)+

= oP (1)

and also

(B13)

sup
t∗∈T1

sup
x∈{x̃:Mj(x̃)≤an}

sup
u∈[δn/2,1/2]

∣∣fjε(yjx(t(n)∗ , u))F−1
jε (u)− fjε(F

−1
jε (u))F−1

jε (u)
∣∣

u(β−γ)+(1− u)(β−γ)+
= oP (1).

Now combining the above findings with assumption (ms) yields that (B9) can be simplified

to

w(u)
√
nEU,X

[
Zn1(ϑ̂n, u)− Zn1(0, u)

]

= fjε
(
F−1
jε (u)

)
EX

[
m′

j(X;θj)

sj(X;θj)
+ F−1

jε (u)
s′j(X;θj)

sj(X;θj)

]T(
θ̂j − θj

)
+ w(u) oP (n

−1/2),

which together with (B8) implies (B1).

Verifying assumptions of Theorem 2.11.11 of van der Vaart and Wellner (1996)

First of all we need to show that the semimetric ρ defined in (B6) is Gaussian-dominated.

To prove that it is sufficient to show that (see p. 212 of van der Vaart and Wellner, 1996)

(B14)

∫ ∞

0

√
logN(ǫ,F , ρ) dǫ <∞,

where N(ǫ,F , ρ) is the covering number of F .

It is known (see Example 2.11.15 of van der Vaart and Wellner, 1996) that (B14) holds

true if F is replaced with (0, 1/2] and ρ with

(B15) ρ0(u1, u2) =
√

u2−u1
w2(u2)

+
(

1
w(u1)

− 1
w(u2)

)2
u1, for u1 ≤ u2,
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as ρ0 is Gaussian. But from the definition of ρ in (B6) it follows that one can bound

N
(
ǫ,F , ρ

)
≤ N

(
ǫ2/(4K2), T1, ‖ · ‖

)
N
(
ǫ/(2K), (0, 1/2], ρ0

)

= O(ǫ−2pj)N
(
ǫ/(2K), (0, 1/2], ρ0

)
,

thus also (F , ρ) satisfies (B14).

Next we need to check the three assumptions of Theorem 2.11.11 of van der Vaart and Wellner

(1996). As in our situations the processes Zn1, . . . , Znn are identically distributed, the as-

sumptions can be rewritten as follows.

(I) For each ζ > 0

(B16) nE
[
‖Zn1‖F 1

{
‖Zn1‖F > ζ

}]
−−−→
n→∞

0.

(II) For each (t1, u1), (t2, u2) ∈ F

(B17) nE
(
Zn1(t2, u2)− Zn1(t1, u1)

)2 ≤ ρ2
(
(t2, u2), (t1, u1)

)
.

(III) For every ρ-ball B(ǫ) ⊂ F of radius less than ǫ

(B18) n sup
v>0

v2 P

(
sup

(t1,u1),(t2,u2)∈B(ǫ)

∣∣Zn1(t2, u2)− Zn1(t1, u1)
∣∣ > v

)
≤ ǫ2.

Note that the first assumption (B16) is easy to check as

‖Zn1‖F ≤ sup
(t,u)∈F

|Zn1(t, u)| ≤ sup
u∈(0, 1

2
]

1√
nw(u(n))

≤ 1√
nw(δn/2)

−−−→
n→∞

0.

To verify the second assumption (B17) fix t1, t2 and u1, u2 (so that u1 ≤ u2) and

calculate

nE
(
Zn1(t2, u2)− Zn1(t1, u1)

)2

= E

[(
1{Uj≤Fjε(yjX (t

(n)
2 ,u

(n)
2 ))}

w(u
(n)
2 )

− 1{Uj≤Fjε(yjX (t
(n)
1 ,u

(n)
1 ))}

w(u
(n)
1 )

)2

1{Mj(X) ≤ an}
]

≤ 2E
[(

1{Uj≤Fjε(yjX (t
(n)
2 ,u

(n)
2 ))}

w(u
(n)
2 )

− 1{Uj≤Fjε(yjX (t
(n)
1 ,u

(n)
1 ))}

w(u
(n)
2 )

)2

1{Mj(X) ≤ an}
]

+ 2E
[(

1{Uj≤Fjε(yjX(t
(n)
1 ,u

(n)
1 ))}

w(u
(n)
2 )

− 1{Uj≤Fjε(yjX (t
(n)
1 ,u

(n)
1 ))}

w(u
(n)
1 )

)2

1{Mj(X) ≤ an}
]
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= 2

w2(u
(n)
2 )

E
[∣∣Fjε

(
yjX(t

(n)
2 , u

(n)
2 )

)
− Fjε

(
yjX(t

(n)
1 , u

(n)
1 )

)∣∣1{Mj(X) ≤ an}
]

(B19)

+ 2
(

1

w(u
(n)
2 )

− 1

w(u
(n)
1 )

)2

E
[
Fjε(yjX

(
t
(n)
1 , u

(n)
1 )

)
1{Mj(X) ≤ an}

]
.

Now we will have a look at the first term on the right-hand side of (B19). For a given

u ∈ [δn/2, 1/2] by the mean value theorem there exists t∗ between t1 and t2 such that

E
[∣∣Fjε(yjX

(
t
(n)
2 , u)

)
− Fjε(yjX

(
t
(n)
1 , u)

)∣∣1{Mj(X) ≤ an}
]

≤ E

[
fjε(yjX(t(n)∗ , u))

(
Mj(X) +

∣∣F−1
jε (u)

∣∣Mj(X)
)]

‖t(n)1 − t
(n)
2 ‖(B20)

Now with the help of (B4), (B10), (B11) and Lemma 10 one can conclude that with

probability going to one

(B21) sup
t∈T1

sup
x∈{x̃:Mj(x̃)≤an}

yjx(t
(n), u) ≤ F−1

jε (2 u),

which together with (B20) implies that

E
[∣∣Fjε(yjX

(
t
(n)
2 , u(n))

)
− Fjε(yjX

(
t
(n)
1 , u(n))

)∣∣1{Mj(X) ≤ an}
]

≤ O(n−1/2+η)EMj(X) ‖t1 − t2‖O
(
(u(n))β

)
≤ O(n−1/2+η) ‖t1 − t2‖w(u(n))(B22)

uniformly in u.

Now fix t and x. Then by the mean value theorem there exists ũ between u
(n)
1 and u

(n)
2

such that

(B23)
∣∣Fjε

(
yjx(t

(n), u
(n)
1 )

)
− Fjε

(
yjx(t

(n), u
(n)
2 )

)∣∣

≤ fjε(yjx(t
(n), ũ))

sj(x;t
(n))

sj(x;θj)
1

fjε(F
−1
jε (ũ))

|u(n)1 − u
(n)
2 |,

which together with

∣∣∣sj(x; t
(n))

sj(x; θj)

∣∣∣ =
∣∣∣1 + sj(x; t

(n))− sj(x; θj)

sj(x; θj)

∣∣∣ ≤ 1 +Mj(x)‖t(n) − θj‖ ≤ 1 + an n
−1/2+η,

assumption (Fjε) and (B23) implies that

(B24)
∣∣Fjε

(
yjx(t

(n), u
(n)
1 )

)
− Fjε

(
yjx(t

(n), u
(n)
2 )

)∣∣ ≤ O(1) |u(n)1 − u
(n)
2 |

uniformly in t and x.

Now combining the inequalities (B21), (B22) and (B24) implies that

(B25) 1

w2(u
(n)
2 )

E
[∣∣Fjε(yjX

(
t
(n)
2 , u

(n)
2 )

)
− Fjε(yjX

(
t
(n)
1 , u

(n)
1 )

)∣∣1{Mj(X) ≤ an}
]
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≤ O(n−1/2+η)‖t1−t2‖w(u(n)
2 )

w2(u
(n)
2 )

+
O(1)(u

(n)
2 −u(n)

1 )

w2(u
(n)
2 )

= O(1)
(
‖t1 − t2‖+ u

(n)
2 −u(n)

1

w2(u
(n)
2 )

)
.

Now turn our attention to the second term on the right-hand side of (B19). Analogously

as above one can bound

E
[
Fjε(yjX

(
t
(n)
1 , u

(n)
1 )

)
1{Mj(X) ≤ an}

]

≤ E
[∣∣Fjε(yjX

(
t
(n)
1 , u

(n)
1 )

)
− Fjε(yjX

(
θj, u

(n)
1 )

)∣∣1{Mj(X) ≤ an}
]

+ E
[
Fjε(yjX

(
θj, u

(n)
1 )

)
1{Mj(X) ≤ an}

]

≤ O(1)‖t(n)1 − θj‖+ u
(n)
1 = O(n−1/2+η) + u

(n)
1 ≤ 2 u

(n)
1 .

Combining this with (B19) and (B25) one gets

nE
(
Zn1(t2, u2)− Zn1(t1, u1)

)2 ≤ O(1)
[
‖t1 − t2‖+ u

(n)
2 −u(n)

1

w2(u
(n)
2 )

+
(

1

w(u
(n)
2 )

− 1

w(u
(n)
1 )

)2

u
(n)
1

]

≤ O(1)
[
‖t1 − t2‖+ ρ20

(
u
(n)
1 , u

(n)
2

)]
≤ O(1)

[
‖t1 − t2‖+ 2ρ20

(
u1, u2

)]
,

where the last inequality follows by Lemma 13(iii) in Appendix D.

Finally we show that also the third assumption (B18) is satisfied. Let B(ǫ) be a

fixed ǫ-ball. Then from the properties of the Euclidean norm and the function ρ0 (see

Lemma 13(iv) in Appendix D), there exist t0 ∈ T1 and uL, uU ∈ (0, 1
2
] such that

B(ǫ) ⊂ Tǫ × [uL, uU ], where Tǫ =
{
t :

√
‖t− t0‖ ≤ ǫ

K

}
and ρ0(uL, uU) <

2ǫ
K
.

Then one can bound

n sup
v>0

v2 P

(
sup

(t1,u1),(t2,u2)∈B(ǫ)

∣∣Zni(t2, u2)− Zni(t1, u1)
∣∣ > v

)

≤ 2 sup
v>0

v2 P

(
sup

(t,u)∈Tǫ×[uL,uU ]

√
n
∣∣Zni(t, u)− Zni(t0, uU)

∣∣ > v/2

)
(B26)

To deal with the last probability introduce

G
(L)
jx = inf

(t,u)∈Tǫ×[uL,uU ]
Fjε

(
yjx(t

(n), u(n))
)
, G

(U)
jx = sup

(t,u)∈Tǫ×[uL,uU ]

Fjε
(
yjx(t

(n), u(n))
)
.

Then one can bound

sup
(t,u)∈Tǫ×[uL,uU ]

√
n
∣∣Zni(t, u)− Zni(t0, uU)

∣∣

= sup
(t,u)∈Tǫ×[uL,uU ]

∣∣∣1{Uji≤Fjε(yjXi
(t(n),u(n)))}

w(u(n))
− 1{Uji≤Fjε(yjXi

(t
(n)
0 ,u

(n)
U ))}

w(u
(n)
U )

∣∣∣ 1
{
Mj(X i) ≤ an

}
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≤ sup
(t,u)∈Tǫ×[uL,uU ]

∣∣∣1{Uji≤Fjε(yjXi
(t(n),u(n)))}−1{Uji≤Fjε(yjXi

(t
(n)
0 ,u

(n)
U ))}

w(u
(n)
U )

∣∣∣ 1
{
Mj(X i) ≤ an

}

+ sup
(t,u)∈Tǫ×[uL,uU ]

∣∣∣1{Uji ≤ Fjε(yjXi
(t(n), u(n)))}

(
1

w(u(n))
− 1

w(u
(n)
U )

)∣∣∣ 1
{
Mj(X i) ≤ an

}

≤
[
1{G(L)

jXi
≤Uji≤G(U)

jXi
}

w(u
(n)
U )

+ 1{Uji ≤ uL}
(

1

w(u
(n)
L )

− 1

w(u
(n)
U )

)]
1
{
Mj(X i) ≤ an

}
.

(B27)

+ sup
(t,u)∈Tǫ×[uL,uU ]

1{uL ≤ Uji ≤ Fjε(yjXi
(t(n), u(n)))}

(
1

w(u(n))
− 1

w(u
(n)
U )

)
1
{
Mj(X i) ≤ an

}

= Vn1 + Vn2,

where Vn1, Vn2 stand for the first and second term on the right-hand side of (B27) respec-

tively.

Now similarly as in (B25) one can bound the second moment of Vn1 as

EV 2
n1 ≤ E

[
2(G

(U)
jXi

−G(L)
jXi

)

w2(u
(n)
U )

1
{
Mj(X i) ≤ an

}]
+ 2 uL

(
1

w(u
(n)
L )

− 1

w(u
(n)
U )

)2

≤ O(1)

w2(u
(n)
U )

sup
(t,u)∈Tǫ×[uL,uU ]

[
‖t− t0‖w(u(n)U )O(n−1/2+η) + |uU − uL|

]

+ 2 uL

(
1

w(u
(n)
L )

− 1

w(u
(n)
U )

)2

= O
(
1
)[

ǫ2

K
+ uU−uL

w2(uU )

]
+ 2 uL

(
1

w(uL)
− 1

w(uU )

)2

= O
(
ǫ2

K

)
+O

(ρ20(uL,uU )

K

)
≤ ǫ2

64
,

provided that K in the definition of the semimetric (B6) is taken sufficiently large.

Thus also by Markov’s inequality

(B28) sup
v>0

v2 P(Vn1 >
v
4
) ≤ ǫ2

4
.

Now we can concentrate on the second term in (B27). To do so note that from the

definition of the semimetric ρ0 in (B15) it follows that for each u ∈ [uL, uU ]
(

1
w(u)

− 1
w(uU )

)2 ≤ ρ20(u,uU )

u
≤ 4ǫ2

K2 u
,

which further implies that (
1

w(u(n))
− 1

w(u
(n)
U )

)
≤ 2ǫ

K
√
u
.

Using the above inequality one can bound (with probability going to one)

Vn2 ≤
2ǫ sup(t,u)∈Tǫ×[uL,uU ] 1{uL≤Uji≤Fjε(yjXi

(t(n),u(n)))}
K
√
u(n)

1
{
Mj(X i) ≤ an

}

≤ 2ǫ sup(t,u)∈Tǫ×[uL,uU ] 1{uL≤Uji≤Fjε(yjXi
(t(n),u(n)))}

K
√
Fjε(yjXi

(t(n),u(n)))

√
Fjε(yjXi

(t(n),u(n)))

u(n) 1
{
Mj(X i) ≤ an

}
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≤ 2ǫ

K
√
Uji

√
2,

where we have used that thanks to (B21)
√

Fjε(yjXi
(t(n),u(n)))

u(n) ≤
√

2u(n)

u(n) ≤
√
2

and for each t, u

1{uL≤Uji≤Fjε(yjXi
(t(n),u(n)))}√

Fjε(yjXi
(t(n),u(n)))

≤ 1{uL≤Uji≤Fjε(yjXi
(t(n),u(n)))}√

Uji
≤ 1√

Uji
.

Thus we can bound

(B29) sup
v>0

v2 P
(
Vn2 >

v
4

)
≤ sup

v>0
v2 P

(
2ǫ

√
2

K
√
Uji

> v
4

)
= sup

v>0
v2 P

(
Uji <

128 ǫ2

K2 v2

)
≤ ǫ2

4

for a sufficiently large K. Now combining (B28) and (B29) yields that

2 sup
v>0

v2 P

(
sup

(t,u)∈Tǫ×[uL,uU ]

√
n
∣∣Zni(t, u)− Zni(t0, uU)

∣∣ > v/2

)
≤ ǫ2,

which together with (B26) implies that also (B18) is satisfied.

�

Note that while λx is only a cleverly chosen constant in Lemma 5 that is not involved

in the statement, in the following lemmas we will speak about JXjn and thus we need to be

more specific about λx. Thus in what follows we often assume that

(B30) 1
λxr

< 1
2
− 1−β

λ
.

Lemma 6. Suppose that the assumptions of Lemma 5 are satisfied and λx satisfies (B30).

Then it holds uniformly in k ∈ JXjn

Ûjk − Ũjk = fjε(εjk)EX

[
m′

j(X;θj)

sj(X;θj)
+ εjk

s′j(X;θj)

sj(X;θj)

]T
(θ̂j − θj) + fjε(εjk)

(
ε̂jk − εjk

)

+ U
(β−γ)+
jk (1− Ujk)

(β−γ)+ [Mj(Xk) + 1] oP
(

1√
n

)

for each γ > 0 and j ∈ {1, . . . , d}.

Proof. The lemma will be shown by substitution of u = Fjε(ε̂jk) into the approximation

(B1) stated in Lemma 5. Note that all the following statements holds uniformly in k ∈ JXjn.

The proof will be divided into four steps. First we show that with probability going to

one

(B31) Fjε(ε̂jk) ∈ [δn/2, 1− δn/2]
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to justify the substitution into (B1). Second

(B32) Fjε(ε̂jk)
(β−γ)+(1− Fjε(ε̂jk)

)(β−γ)+ oP (1) = U
(β−γ)+
jk (1− Ujk)

(β−γ)+oP (1).

Next we show that

fjε(ε̂jk) = fjε(εjk) + U
(β−γ)+
jk (1− Ujk)

(β−γ)+oP (1),(B33)

fjε(ε̂jk)ε̂jk = fjε(εjk)F
−1
jε (Ujk) + U

(β−γ)+
jk (1− Ujk)

(β−γ)+oP (1),(B34)

and finally we derive

F̂jε(ε̂jk) = F̂jε(εjk) + fjε(εjk)(ε̂jk − εjk)

+ U
(β−γ)+
jk (1− Ujk)

(β−γ)+(Mj(Xk) + 1)oP
(

1√
n

)
(B35)

and realise that Ûjk = F̂jε̂(ε̂jk) and Ũjk = F̂jε(εjk).

Showing (B31).

Analogously as in (B22) for k ∈ JXjn
∣∣Fjε(ε̂jk)− Ujk

∣∣ =
∣∣Fjε(yjXk

(
θ̂j , F

−1
jε (Ujk))

)
− Fjε(yjXk

(
θj, F

−1
jε (Ujk))

)∣∣

≤ OP (1)Mj(Xk)‖θ̂j − θj‖Uβ
jk(1− Ujk)

β

≤ OP (n
1/(λxr)−1/2)Uβ

jk(1− Ujk)
β,

This further implies that

(B36)
|Fjε(ε̂jk)−Ujk|
Ujk(1−Ujk)

≤ OP (n
1/(λxr)−1/2) δβ−1

n = OP (n
1/(λxr)−1/2+(1−β)/λ) = oP (1),

where we have used that λx satisfies (B30). Thus for a sufficiently large n one gets that

Fjε(ε̂jk) ≥ Ujk

2
≥ δn

2

and analogously also

Fjε(ε̂jk) ≤ Ujk +
1
2
(1− Ujk) ≤ 1− δn +

δn
2
= 1− δn

2
.

Showing (B32).

Note that with the help of (B36) one can conclude that

Fjε(ε̂jk) ∈
(
1
2
Ujk,

3
2
Ujk

)
, and 1− Fjε(ε̂jk) ∈

(
1
2
(1− Ujk),

3
2
(1− Ujk)

)
,

which implies (B32).

Showing (B33) and (B34). This follows from (B31), (B12) and (B13).
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Showing (B35).

Without loss of generality consider only those k ∈ JXjn for which Ujk ≤ 1
2
. Now for

η ∈ (0, 1
2
− β

λ
− 1

λxr
) introduce

rn = n1/2−1/(λxr)−η .

Similarly as in the proof of Lemma 5 define for i ∈ {1, . . . , n} the processes

Zni(t, u) =
1

w(u(n))
√
n
1
{
Uji ≤ Fjε

(
F−1
jε (u(n))

(
1 + t1

rn

)
+ t2

rn

)}

that are indexed by the set F = [−1, 1]2 × (0, 1
2
]. Now one can write F̂jε(ε̂jk) as

F̂jε(ε̂jk) =
w(û(n))√

n

n∑

i=1

Zni(t̂n, û),

where

t̂n =
(
rn

[
sj(Xk;θj)

sj(Xk;θ̂j)
− 1

]
,
rn[mj(Xk;θj)−mj(Xk;θ̂j)]

sj(Xk;θ̂j)

)
, û = Fjε(εjk).

Note that for k ∈ JXjn

(B37) F̂jε(ε̂jk)− F̂jε(εjk) =
w(ûn)√

n

n∑

i=1

[
Zni(t̂n, ûn)− Zni(0, ûn)

]
.

Now equip the space F with the semimetric ρ given by

ρ
(
(t1, u1), (t2, u2)

)
= K

√
‖t1 − t2‖+ u2−u1

w2(u2)
+
(

1
w(u1)

− 1
w(u2)

)2
u1, for u1 ≤ u2,

where K is a sufficiently large but finite constant. Then completely analogously as in the

proof of Lemma 5 one can verify the assumptions of Theorem 2.11.11 of van der Vaart and Wellner

(1996). Thus supu∈(0, 1
2
] ρ
(
(t̂n, u), (0, u)

)
= oP (1), implies that

n∑

i=1

Zni(t̂n, ûn)− Zni(0, ûn) =

n∑

i=1

EU,X

[
Zni(t̂n, ûn)− Zni(0, ûn)

]
+ oP (1)

=

√
n

w(Ujk)

[
Fjε(ε̂jk)− Fjε(εjk)

]
+ oP (1),

which together with (B37) implies that

(B38) F̂jε(ε̂jk)− F̂jε(εjk) = Fjε(ε̂jk)− Fjε(εjk) + w(Ujk) oP
(

1√
n

)
.

Now the right-hand side of the above equations can be with the help of (B12) and (B13)

rewritten as

Fjε(ε̂jk)− Fjε(εjk) = fjε(εjk)
(
ε̂jk − εjk

)
+ w(Ujk)Mj(Xk)oP

(
1√
n

)
,

which combined with (B38) implies (B35). �
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Lemma 7. Suppose that the assumptions of Lemma 6 are satisfied and β > 0. Then for

each ǫ > 0 there exists Lǫ > 0 such that for each j ∈ {1, . . . , d} for all sufficiently large n

P
(
∀k∈JXjn Lǫ Ujk ≤ Ûjk ≤ 1− Lǫ (1− Ujk)

)
≥ 1− ǫ.

Proof. We concentrate on the inequality Lǫ Ujk ≤ Ûjk. Showing the upper inequality for

Ûjk would be analogous.

By Lemma 6 one gets Ûjk ≥ Ũjk − |Rjk|, where

Rjk = fjε(εjk)EX

[
m′

j(X;θj)

sj(X;θj)
+ εjk

s′j(X;θj)

sj(X;θj)

]T
(θ̂j − θj) + fjε(εjk)

(
ε̂jk − εjk

)

+ Uβ−γ
jk (1− Ujk)

β−γ[Mj(Xk) + 1]oP
(

1√
n

)
.(B39)

and γ > 0 can be taken arbitrarily small.

Now by Lemma A3 of Shorack (1972) for each ǫ > 0 there exists L̃ ∈ (0, 1) such that

P
(
∀k∈{1,...,n} : Ũjk ≥ L̃ Ujk

)
≥ 1− ǫ/2.

Thus one can take Lǫ = L̃/2 provided we show that

P
(
∀k∈JXjn : |Rjk| ≤ L̃ Ujk

2

)
≥ 1− ǫ/2.

To do that one can consider each of the summands on the right-hand side of (B39) sepa-

rately. Thus for instance one has that uniformly in k ∈ JXjn
∣∣∣fjε(εjk)(ε̂jk−εjk)Ujk

∣∣∣ ≤ Uβ−1
jk Mj(Xk)OP

(
1√
n

)
≤ n(1−β)/λ anOP

(
1√
n

)

= OP

(
n(1−β)/λ+1/(λxr)−1/2

)
= oP (1),

as λx satisfies (B30). The other summands on the right-hand side of (B39) can be handled

analogously. �

Some results useful when (Fjε) holds with β = 0.

Lemma 8. Suppose that assumptions (Fjε) and (ms) hold. Then for each j ∈ {1, . . . , d}

(B40) sup
u∈(0,1)

√
n
∣∣F̂jε̂

(
F−1
jε (u)

)
− F̂jε

(
F−1
jε (u)

)∣∣ = OP (1).

Proof. Let U(θj) be the neighborhood of θj introduced in (ms). Now consider the set of

functions

F =
{
(x, e) 7→ 1

{
e ≤ mj(x;t)−mj(x;θj)

sj(x;θj)
+ F−1

jε (u)
sj(x;t)

sj(x;θj)

}
; u ∈ (0, 1), t ∈ U(θj)

}
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and denote its elements as ft,u. Then one can write

F̂jε̂
(
F−1
jε (u)

)
=

1

n

n∑

i=1

f
θ̂j ,u

(X i, εji)
Say
= Pn

(
f
θ̂j ,u

)
.

Similarly as in the proof of Theorem 4 of Gijbels et al. (2015) one can argue that the set F
is P -Donsker. Further similarly as in the proof of Lemma 5 one can show that

sup
u∈(0,1)

varU,X

(
f
θ̂j ,u

− fθj ,u

)
≤ EX

∣∣Fjε(yjX(θ̂j, u))− Fjε(yjX(θj , u))
∣∣ = oP (1),

which further implies that uniformly in u ∈ (0, 1)

(B41)
√
n
[
F̂jε̂

(
F−1
jε (u)

)
− F̂jε

(
F−1
jε (u)

)]
=

√
n
[
P
(
f
θ̂j ,u

)
− P

(
fθj ,u

)]
+ oP

(
1√
n

)
.

Now by the mean value theorem there exists t∗ between θ̂j and θj such that

sup
u∈(0,1)

∣∣∣
√
n
[
P
(
f
θ̂j ,u

)
− P

(
fθj ,u

)]∣∣∣

=
√
n sup
u∈(0,1)

EX

[∣∣Fjε(yjX
(
θ̂j , u)

)
− Fjε(yjX

(
θj, u)

)∣∣

≤
√
n sup
u∈(0,1)

EX

[
fjε(yjX(t∗, u))

(
Mj(X) +

∣∣F−1
jε (u)

∣∣Mj(X)
)]

‖θ̂j − θj‖

≤
√
n ‖θ̂j − θj‖ sup

u∈(0,1)
EX

[
fjε(yjX(t∗, u))(1 + |yjX(t∗, u)|)Mj(X)(1+|F−1

jε (u)|)
1+|yjX(t∗,u)|

]

≤ OP (1)EMj(X) = OP (1)O(1) = OP (1),

which together with (B41) implies (B40). �

Lemma 9. Suppose that the assumptions of Lemma 8 are satisfied. Then for each j ∈
{1, . . . , d}

max
k∈{1,...,n}

∣∣∣ Ûjk − Ũjk
1 +Mj(Xk)

∣∣∣ = OP

(
1√
n

)
.

Proof. The proof follows by substitution of u = Fjε(ε̂jk) into (B40) and following the proof

of Lemma 6. �

Appendix C. Further auxiliary results

Lemma 10. Suppose that assumption (Fjε) holds. Let λ satisfy λ > 2(1 − β + 1
r−1

) and

λx satisfies (B30). Further for η > 0 introduce bn = n
1

λxr
− 1

2
−η. Then there exists η > 0

such that for all sufficiently large n for all u ∈ [ δn
2
, 1
2
] for each j ∈ {1, . . . , d}

F−1
jε (u

2
) ≤ bn +

[
1 + bn sign

(
F−1
jε (u)

)]
F−1
jε (u) ≤ F−1

jε (2u),
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and

F−1
jε (1− u

2
) ≥ −bn +

[
1− bn sign

(
F−1
jε (1− u)

)]
F−1
jε (1− u) ≥ F−1

jε (1− 2u).

Proof. We show only that

bn +
[
1 + bn sign

(
F−1
jε (u)

)]
F−1
jε (u) ≤ F−1

jε (2u),

as the remaining inequalities could be proved analogously. Thus we need to show that

(C1) bn + bn |F−1
jε (u)| ≤ F−1

jε (2u)− F−1
jε (u).

Now by the mean value theorem

F−1
jε (2u)− F−1

jε (u) =
u

fjε
(
F−1
jε (ũ)

) ,

where ũ is between u and 2u. Thus with the help of (C1) it remains to show that

fjε
(
F−1
jε (ũ)

)
(1 + |F−1

jε (u)|)
u

≤ 1

bn
= n

1
2
− 1

λxr
−η.

Now by assumption (Fjε) and using the fact that u ≥ δn

fjε
(
F−1
jε (ũ)

)
(1 + |F−1

jε (u)|)
u

= O(uβ−1) ≤ O(n
1−β
λ ) = o(n

1
2
− 1

λxr
−η),

where we have used that λx satisfies (B30), which guarantees that one can find η > 0

sufficiently small so that 1
2
− 1

λxr
− η > 1−β

λ
holds.

�

Lemma 11. Suppose that the assumptions of Lemma 10 are satisfied. Then there exists

η > 0 such that for all γ > 0 for each j ∈ {1, . . . , d}

sup
s1,s2∈{−1,1}

sup
u∈[ δn

2
,1− δn

2
]

∣∣∣∣
fjε

(
s1bn + (1 + s2bn)F

−1
jε (u)

)
− fjε

(
F−1
jε (u)

)

u(β−γ)+(1− u)(β−γ)+

∣∣∣∣ = o(1)

and also

sup
s1,s2∈{−1,1}

sup
u∈[ δn

2
,1− δn

2
]

∣∣∣∣

[
fjε

(
s1bn + (1 + s2bn)F

−1
jε (u)

)
− fjε

(
F−1
jε (u)

)]
F−1
jε (u)

u(β−γ)+(1− u)(β−γ)+

∣∣∣∣ = o(1)

as n→ ∞.

Proof. We will prove only that

sup
s1,s2∈{−1,1}

sup
u∈[ δn

2
, 1
2
]

∣∣∣∣

[
fjε

(
s1bn + (1 + s2bn)F

−1
jε (u)

)
− fjε

(
F−1
jε (u)

)]
F−1
jε (u)

u(β−γ)+(1− u)(β−γ)+

∣∣∣∣ = o(1)

as the remaining cases can be shown analogously.
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First suppose that limu→0+ fjε
(
F−1
jε (u)

)
> 0. Then from Remark 2 one can conclude

that limu→0+ F
−1
jε (u) > −∞ and β = 0. Thus also (β − γ)+ = 0 and the statement follows

from the continuity of fjε.

Now suppose that limu→0+ fjε
(
F−1
jε (u)

)
= 0. Note that for a given uU ∈ (0, 1

2
)

sup
s1,s2∈{−1,1}

sup
u∈[uU

2
, 1
2
]

∣∣∣∣

[
fjε

(
s1bn + (1 + s2bn)F

−1
jε (u)

)
− fjε

(
F−1
jε (u)

)]
F−1
jε (u)

u(β−γ)+(1− u)(β−γ)+

∣∣∣∣ = o(1),

which follows from the continuity of the function fjε.

Now let ǫ > 0 be given and γ > 0 fixed. Thanks to assumption (Fjε) one can choose uU

so that

sup
u∈(0,2 uU ]

∣∣∣∣
fjε

(
F−1
jε (u)

)
F−1
jε (u)

u(β−γ)+(1− u)(β−γ)+

∣∣∣∣ <
ǫ

M
,

where M = supu∈(0,1/2)
fjε(F

−1
jε (2u))

fjε(F
−1
jε (u))

. Now thanks to Lemma 10 one can conclude that also

sup
s1,s2∈{−1,1}

sup
u∈[ δn

2
,uU ]

∣∣∣∣
fjε

(
s1bn + (1 + s2bn)F

−1
jε (u)

)
F−1
jε (u)

u(β−γ)+(1− u)(β−γ)+

∣∣∣∣

≤ sup
u∈(0,2uU ]

∣∣∣∣
Mfjε

(
F−1
jε (u)

)
F−1
jε (u)

u(β−γ)+(1− u)(β−γ)+

∣∣∣∣ < ǫ,

which finishes the proof of the lemma. �

Lemma 12. Suppose that the density fjε satisfies assumption (Fjε). Then

lim
|x|→∞

|x|fjε(x) = 0.

Proof. We will consider only x→ ∞. The remaining case would be handled analogously.

First, note that one can assume that limu→1− F
−1
jε (u) = ∞, otherwise the proof is trivial.

Now suppose that

lim
x→∞

xfjε(x) 6= 0.

Then one can find a positive constant a and a sequence {zn}∞n=1 monotonically going to

infinity such that

znf(zn) ≥ a, ∀n ∈ N.

Note that by assumption (Fjε) the function fjε(x) is non-increasing for x > F−1
jε (u2). In

what follows we will assume that z1 > F−1
jε (u2) and that zn+1 ≥ 2zn (otherwise one can
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take an appropriate subsequence of {zn}). Now one can bound

∫ ∞

z1

fjε(x)dx =
∞∑

n=1

∫ zn+1

zn

xfjε(x)

x
dx ≥

∞∑

n=1

∫ zn+1

zn

a
zn+1

dx

= a
∞∑

n=1

zn+1−zn
zn+1

= a
∞∑

n=1

(
1− zn

zn+1

)
≥ a

∞∑

n=1

(
1− 1

2

)
= ∞,

which is in contradiction with the fact, that fjε is a density. �

Appendix D. Some properties of ρ0 function

Recall the definition of ρ0 in (B15) and for simplicity of notation put b = (β−γ)+. Then
for each u1, u2 satisfying 0 < u1 ≤ u2 ≤ 1

2
one has ρ0(u1, u2) = r0(u1, u2), where

r0(u1, u2) =

√
u2−u1
u2b2

+
(

1
ub1

− 1
ub2

)2
u1 .

Lemma 13. Let u0 ∈ (0, 1
2
) and b ∈ [0, 1

2
) be fixed. Then the following statements hold.

(i). The function gR(u) = r20(u0, u) is increasing for u ∈ (u0,
1
2
).

(ii). For b > 0 the function gL(u) = r20(u, u0) is increasing on (0, u∗) and decreasing on

(u∗, u0), where u∗ = u0
(

1−2b
2(1−b)

)1/b
.

(iii). For each 0 ≤ u1 < u2 < u0 ≤ 1
2
it holds that r20(u2, u0) ≤ 2 r20(u1, u0).

(iv). For each ǫ > 0 the set U(u0, ǫ) =
{
u ∈ [0, 1

2
] : ρ0(u, u0) ≤ ǫ

}
is contained in a set

[uL, uU ] such that r0(uL, uU) ≤ 2ǫ.

Proof. The proof of (i) follows directly from the definition of the function g, as

gR(u) = r20(u0, u) =
u−u0
u2b

+
(

1
ub0

− 1
ub

)2
u0 = u1−2b + u1−2b

0 − 2u1−b
0

ub
,

which is evidently an increasing function on (u0,
1
2
].

For the proof of (ii) rewrite

gL(u) = r20(u, u0) =
u0−u
u2b0

+
(

1
ub0

− 1
ub0

)2
u = u1−2b

0 + u1−2b − 2u1−b

ub0
.

Now it is straightforward to find that the function gL has exactly one local maximum in

the point u∗ and meets the claimed properties.

Now we show (iii). Note that thanks to (ii) the function gL(u) is decreasing on (u∗, u0),

thus the inequality trivially holds if u∗ ≤ u1 < u2.
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Thus suppose that u1 < u∗. From (ii) we further know that u∗ = u0 a, where a < 1.

Thus we can bound

r20
(
u2, u0

)
≤ r20

(
u∗, u0

)
= u1−2b

0

[
1− a+ (1− ab)2a1−2b

]

≤ 2 u1−2b
0 = 2r20

(
0, u0

)
≤ 2r20

(
u1, u0

)
,

which was to be proved.

To prove (iv) first note that from (i) there exists uU such that

{
u ∈ [u0,

1
2
] : ρ0(u, u0) ≤ ǫ

}
= [u0, uU ] and ρ0(u, uU) ≤ ǫ.

When searching for uL one has to be more careful as the function gL is not decreasing on

(0, u0). We need to distinguish two cases. First, let ǫ < r0(0, u0). Then one can find uL in

a similar way as uU was found. Second, suppose that ǫ ≥ r0(0, u0). Then we take simply

uL = 0.

Now it remains to check that r0(uL, uU) ≤ 2ǫ. To do that bound

r20(uL, uU) =
uU−uL
u2bU

+
(

1
ubL

− 1
ubU

)2
uL

≤ uU−u0
u2bU

+ u0−uL
u2b0

+ 2
(

1
ubL

− 1
ub0

)2
uL + 2

(
1
ub0

− 1
ubU

)2
u0

≤ 2 r20(uL, u0) + 2 r20(u0, uU) ≤ 4ǫ2.

�
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