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Abstract

In the extreme value analysis of time series, not only the tail behavior is of interest, but
also the serial dependence plays a crucial role. Drees and Rootzén (2010) established limit
theorems for a general class of empirical processes of so-called cluster functionals which can be
used to analyse various aspects of the extreme value behavior of mixing time series. However,
usually the limit distribution is too complex to enable a direct construction of confidence
regions. Therefore, we suggest a multiplier block bootstrap analog to the empirical processes
of cluster functionals. It is shown that under virtually the same conditions as used by Drees
and Rootzén (2010), conditionally on the data, the bootstrap processes converge to the same
limit distribution. These general results are applied to construct confidence regions for the
empirical extremogram introduced by Davis and Mikosch (2009). In a simulation study, the
confidence intervals constructed by our multiplier block bootstrap approach compare favorably
to the stationary bootstrap proposed by Davis et al. (2012).
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1 Introduction

Time series of observations in environmetrics, (financial) risk management and other fields often
exhibit a non-negligible serial dependence between extremes. For example, stable areas of low (or
high) pressure may lead to consecutive days of high precipitation (or high temperature). Likewise,
large losses to a financial investment tend to occur in clusters.

The statistical analysis of the serial dependence structure between extreme observations is still a
challenging task. Yet even if one is only interested in marginal parameters, like extreme quantiles,
it is crucial to take into account the serial dependence when assessing the estimation error; see,
e.g., Drees (2003) for a simulation study which demonstrates how misleading confidence intervals
may be if the serial dependence is ignored.
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In most applications, no parametric time series model for the extremal behavior suggests itself.
Hence, one should resort to non-parametric procedures to avoid the risk of an unquantifiable, but
potentially large modeling error. In this context, a general class of empirical processes that can
capture a wide range of different aspects of the extremal behavior of time series prove a powerful
tool.

To be more concrete, assume that a stationary time series (Xt)1≤t≤n with values in E = R
d is

observed, from which we construct mn := ⌊n/rn⌋ blocks

Yn,j := (Xn,i)(j−1)rn<i≤jrn , 1 ≤ j ≤ mn, (1.1)

of “standardized extreme observations” Xn,i, 1 ≤ i ≤ n. A typical choice for univariate time series
is

Xn,i := (Xi − un)+/an := a−1n (Xi − un)1{Xi>un} (1.2)

for suitable normalizing constants un ∈ R and an > 0. Later on, we will use a different notion of
extreme observation in our application to the analysis of the extremogram, for a multivariate time
series.

Denote by E∪ :=
⋃

l∈NEl the set of vectors of arbitrary length with components in E, which
is equipped with the σ-field E∪ induced by the Borel-σ-fields on El, l ∈ N. Let F be a fam-
ily of so-called cluster functionals, i.e. functions f : (E∪,E∪) → (R,B) such that f(0) = 0 and
f(y1, . . . , yl) = f(0, . . . , 0, y1, . . . , yl, 0, . . . , 0) for all (y1, . . . , yl) ∈ E∪ where the numbers of coor-
dinates equal to 0 in the beginning and in the end of the argument on the right-hand side can
be arbitrary. Thus the value of the cluster functional depends only on the core of the argument,
which is the smallest subvector of consecutive coordinates that contains all non-zero values (resp.
it equals 0 if the argument only consists of zeros). Then, the pertaining empirical process of cluster
functionals is defined by

Zn(f) :=
1√
nvn

mn∑

j=1

(
f(Yn,j) − Ef(Yn,j)

)
, f ∈ F , (1.3)

with vn := P{Xn,1 6= 0}. Drees and Rootzén (2010) established sufficient conditions for Zn to
converge to a Gaussian process in the space ℓ∞(F) of bounded functions on F . The following
theorem summarizes their main results; the conditions are recalled in the appendix.

1.1 Theorem (i) If the conditions (B1), (B2) and (C1)–(C3) are fulfilled, the finite-dimen-
sional marginal distributions (fidis) of the empirical process Zn converge to the pertaining
fidis of a Gaussian process Z with covariance function c (defined in (C3)).

(ii) Under the conditions (B1), (B2) and (D1)–(D4) the empirical process Zn is asymptotically
tight in ℓ∞(F). If, in addition, the conditions (C1)–(C3) are met, then Zn weakly converges
to Z.

(iii) If the assumptions (B1), (B2), (D1), (D2’), (D3) and (D5) are satisfied and, in addition,
(D6) (or the more restrictive condition (D6’)) holds, then Zn is asymptotically equicontinu-
ous. Hence, Zn weakly converges to Z in ℓ∞(F) if also the conditions (C1)–(C3) hold. ✷
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For certain types of families F of cluster functionals, Drees and Rootzén (2010) also gave sets of
conditions that are sufficient for (Zn(f))f∈F to converge and easier to verify than the abstract
conditions listed in the appendix.

We will demonstrate their usefulness by improving on limit results on an empirical version of the
so-called extremogram introduced by Davis and Mikosch (2009) in the framework of time series
with regularly varying marginals. To be more precise, assume that (Xt)t∈Z is a stationary R

d-
valued time series such that for all h ∈ N the vector (X0,Xh) ∈ R

2d is regularly varying. Recall
that a random vector W ∈ R

l is regularly varying if there exists a non-null measure ν on R
l \ {0}

such that
P{W ∈ xB}
P{‖W‖ > x} −→ ν(B) < ∞

for all ν-continuity sets B ∈ B
l that are bounded away from the origin 0. Note that, while this

definition of regular variation does not depend on the choice of the norm ‖ · ‖, the specific form
of the limiting measure ν does. In any case, the limiting measure is homogeneous of order −α for
some α > 0, the so-called index of regular variation.

Then, with F←‖X‖ denoting the quantile function of ‖X0‖ and an := F←‖X‖(1 − 1/n) → ∞, to each

lag h ∈ N there exists a measure ν(0,h) on R
2d \ {0} such that

nP{a−1n (X0,Xh) ∈ B} −→ ν(0,h)(B) (1.4)

for all ν(0,h)-continuity sets B ∈ B
2d bounded away from the origin. In particular, for all A,B ∈ B

d

bounded away from 0 such that νh(∂(A×B)) = 0 = νh(∂(A× R
d)) and νh(A×R

d) > 0 one has

P (Xh ∈ anB | X0 ∈ anA) =
P{a−1n (X0,Xh) ∈ A×B}

P{a−1n X0 ∈ A}
−→

ν(0,h)(A×B)

ν(0,h)(A×Rd)
=: ρA,B(h).

Davis and Mikosch (2009) called ρA,B (as a function of h) the extremogram of (Xt)t∈Z (pertaining
to A,B). It is worth mentioning that the extremogram is closely related to the concept of tail
processes introduced by Basrak and Segers (2008).

Based on the observations X1, . . . ,Xn, they proposed the following empirical counterpart as an
estimator of ρA,B(h):

ρ̂A,B(h) :=

∑n−h
i=1 1{Xi ∈ akA,Xi+h ∈ akB}∑n

i=1 1{Xi ∈ akA}
. (1.5)

Here k = kn is a sequence that tends to ∞ at a slower rate than n so that ak → ∞ at a slower
rate than an, and thus the number of extreme observations used for estimation tends to ∞. Under
suitable conditions, (ρ̂A,B(h))h∈{0,...,h0} is asymptotically normal (see Davis and Mikosch, 2009,
Corollary 3.4).

This result has two serious drawbacks. First, usually, the normalizing constants ak are unknown
and must hence be replaced with an empirical counterpart, like, e.g., the ⌊n/k⌋+1 largest observed
norm:

âk := âk,n := ‖X‖n−⌊n/k⌋:n. (1.6)

It is not obvious whether this modification influences the asymptotic behavior of the empirical
extremogram.

3



Secondly, the extremogram for a fixed pair of sets A and B conveys limited information on the
extremal dependence structure, in particular in a multivariate setting, i.e. if d > 1. To get a
fuller picture, one should consider the extremogram for a whole family of sets simultaneously. For
example, in the case d = 1, Drees et al. (2015) considered rays (−∞,−x) and (x,∞) for all x > 0
simultaneously. However, the techniques used by Davis and Mikosch (2009) are not applicable to
infinite families of sets.

We will show that both problems can be neatly solved using the theory of empirical processes of
cluster functionals. Indeed, if the families of sets A and B are suitably chosen and the bias of
ρ̂A,B(h) is asymptotically negligible, then the asymptotic normality of the empirical extremogram
with estimated normalizing sequence âk follows immediately.

If one wants to construct confidence regions using this limit theorem, then estimators of the
limiting covariance structure are needed. Since the direct estimation does not look promising,
Davis et al. (2012) proposed to use a so-called stationary bootstrap instead. Here we follow
a somewhat different approach. First, in the general setting considered by Drees and Rootzén
(2010), it is shown that the convergence of a multiplier block bootstrap version of the empirical
process of cluster functional conditionally given the data follows under the same conditions as the
convergence of Zn itself. From this powerful result it is easily concluded that a multiplier block
bootstrap version can be used to construct confidence regions for the extremogram.

Though in the present paper we focus on the extremogram as one possible measure for the extremal
dependence structure of the time series, the same approach using empirical processes of cluster
functionals can be used in a much wider context. For example, Drees (2011) analyzed block
estimators of the so-called extremal index of absolutely regular time series using empirical processes
of cluster functionals and suggested a bias corrected version thereof.

The paper is organized as follows. In Section 2 we introduce multiplier block bootstrap versions
of the empirical process Zn. Moreover, we give sufficient conditions under which, in probability
conditional on the data, this bootstrap processes weakly converge to the same limiting process as
Zn. In Section 3, it is demonstrated that the theory developed by Drees and Rootzén (2010) yields
limit theorems for the empirical extremogram with estimated normalizing sequence uniformly over
suitable families of sets. In the same setup, a bootstrap result easily follows from the general
theory developed in Section 2. The results of a small simulation study are reported in Section 3.
All proofs are postponed to Section 5.

Throughout the paper, we will use the notation x(k) for the vector (x1, . . . , xk) made up by the
first k components in the vector x, if x has at least k components, and otherwise x(k) = x. The
maximum norm of a vector x ∈ R

l for some l ∈ N is denoted by ‖x‖. We omit indices of random
variables to denote a generic random variable with the same distribution; for example, ξ is a generic
random variable with the same distribution as ξj and Yn is a generic random vector with the same
distribution as Yn,j.

2 Multiplier processes

In what follows, (Xn,i)1≤i≤n,n∈N is a row-wise stationary triangular scheme of E = R
d-valued

random vectors. Usually these vectors are derived from some fixed stationary time series (Xt)t∈Z
by a transformation which depends on the stage n and which sets all but the “extreme” observations
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to 0 in such a way that the probability that a transformed observation is non-zero tends to 0 as
n → ∞. For univariate time series, often definition (1.2) is used. In our application to the empirical
extremogram instead we define

X
(h,h̃)
n,i := a−1k

(
Xi1{Xi 6∈ (−∞, akx∗)

d},Xi+h1{Xi+h 6∈ (−∞, akx∗)
d},Xi+h̃1{Xi+h̃ 6∈ (−∞, akx∗)

d}
)

(2.1)
for some x∗ > 0 and h, h̃ ∈ N0.

According to Theorem 1.1, under suitable conditions, the empirical process Zn of cluster functionals
converge to a Gaussian process Z with covariance function c, which is defined in (C3) as the
limit of the covariance function of the cluster functionals applied to a block Yn of rn consecutive
“standardized extremes” Xn,i. One may try to estimate this covariance function by an empirical
covariance, but since most of the blocks Yn,j defined in (1.1) equal 0, a bootstrap approach seems
more promising.

Because the processes are defined via functionals applied to whole blocks Yn,j of “standardized
extremes”, it suggests itself to use some block bootstrap. More precisely, we consider the following
two versions of multiplier block bootstrap processes:

Zn,ξ(f) :=
1√
nvn

mn∑

j=1

ξj
(
f(Yn,j) −Ef(Yn,j)

)
, (2.2)

Z∗n,ξ(f) :=
1√
nvn

mn∑

j=1

ξj
(
f(Yn,j) − f(Yn)

)
, f ∈ F , (2.3)

where f(Yn) := m−1n

∑mn
j=1 f(Yn,j) and ξj, j ∈ N, are i.i.d. random variables with E(ξj) = 0 and

V ar(ξj) = 1 independent of (Xn,i)1≤i≤n,n∈N. Note that in the definition of the multiplier process
Zn,ξ expectations Ef(Yn) are used which are usually unknown to the statistician. Hence, in some

applications, it may be useful to replace them with the estimators f(Yn), which leads to the
bootstrap processes Z∗n,ξ.

Our main goal is to prove weak convergence of Zn,ξ and Z∗n,ξ to Z in probability, conditionally on
the data. To this end, as usual, we metrize weak convergence in ℓ∞(F) using the bounded Lipschitz
metric on the space of probability measures on ℓ∞(F). That is, for two probability measures Q1

and Q2 we define

dBL(ℓ∞(F))(Q1, Q2) := sup
g∈BL1(ℓ∞(F))

∣∣∣
∫

g dQ1 −
∫

g dQ2

∣∣∣,

where

BL1(ℓ
∞(F)) :=

{
g : ℓ∞(F) → R | ‖g‖∞ := sup

z∈ℓ∞(F)
|g(z)| ≤ 1,

|g(z1) − g(z2)| ≤ ‖z1 − z2‖F := sup
f∈F

|z1(f) − z2(f)| for all z1, z2 ∈ ℓ∞(F)
}
.

Likewise, for the convergence of the fidis, we use the distance

dBL(Rl)(Q1, Q2) := sup
g∈BL1(Rl)

∣∣∣
∫

g dQ1 −
∫

g dQ2

∣∣∣,
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between two probability measures Q1 and Q2 on R
l, where

BL1(R
l) :=

{
g : Rl → R | sup

v∈Rl

|g(v)| ≤ 1, |g(v1) − g(v2)| ≤ ‖v1 − v2‖ for all v1, v2 ∈ R
l
}
.

By Eξ (resp. E∗ξ ) we denote the (outer) expectation with respect to (ξj)j∈N, i.e.

Eξ

(
f(ξ1, . . . , ξmn ,Xn,1, . . . ,Xn,n)

)
= E

(
f(ξ1, . . . , ξmn ,Xn,1, . . . ,Xn,n) | Xn,1, . . . ,Xn,n

)
is the ex-

pectation of the function conditionally on the observations. Likewise, we denote by Pξ the probabil-
ity measure w.r.t. (ξj)j∈N. (Cf. Kosorok, 2003, for a precise definition using a special construction
of probability spaces.)

Our first result shows that the asymptotic behavior of the fidis of Zn,ξ, conditionally on the data,
is the same as the (unconditional) behavior of the fidis of Zn.

2.1 Theorem Under the conditions (B1), (B2) and (C1)–(C3) one has for all f1, . . . , fl ∈ F

sup
g∈BL1(Rl)

∣∣∣Eξg
(
(Zn,ξ(fk))1≤k≤l

)
− Eg

(
(Z(fk))1≤k≤l

)∣∣∣ −→ 0 (2.4)

in probability. ✷

Since the supremum in (2.4) is bounded by 2, it readily follows that

sup
g∈BL1(Rl)

∣∣∣Eg
(
(Zn,ξ(fk))1≤k≤l

)
− Eg

(
(Z(fk))1≤k≤l

)∣∣∣

≤ E sup
g∈BL1(Rl)

∣∣∣Eξg
(
(Zn,ξ(fk))1≤k≤l

)
− Eg

(
(Z(fk))1≤k≤l

)∣∣∣ −→ 0,

that is, the (unconditional) weak convergence of the fidis of Zn,ξ = (Zn,ξ(f))f∈F to the correspond-
ing fidis of Z.

Following the ideas developed by Kosorok (2003), the following result establishes the asymptotic
tightness of Zn,ξ under a bracketing entropy condition, and thus also the weak convergence of Zn,ξ

under the same conditions as the convergence of the original empirical process in Theorem 1.1(ii).

2.2 Proposition Suppose that the conditions (B1), (B2), (D1), (D3) and (D4) hold and

(i) (D2) holds and ξ is bounded, or

(ii) (D2’) holds and E∗(F 2(Yn)) = O(rnvn).

Then Zn,ξ is asymptotically tight in l∞(F). Hence it converges to Z if, in addition, the conditions
(C1)–(C3) are met. ✷

Now a modification of the arguments given in the proof of Theorem 2 of Kosorok (2003) yields the
desired convergence result for the multiplier process conditionally on the data.
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2.3 Theorem If condition (D3) and convergence (2.4) hold and Zn,ξ weakly converges to Z,
then

sup
g∈BL1(ℓ∞(F))

∣∣Eξg(Zn,ξ) − Eg(Z)
∣∣ −→ 0 (2.5)

in outer probability. ✷

A combination of this result with Theorem 2.1 and Proposition 2.2 leads to

2.4 Corollary If the conditions (B1), (B2), (C1)-(C3) and (D1)-(D4) are satisfied and ξ is
bounded, then convergence (2.5) holds. ✷

According to Theorem 2.3, under (D3) the weak convergence of the multiplier process Zn,ξ to Z
conditionally on the data follows from the weak convergence of the fidis conditionally on the data
and the (unconditional) convergence of Zn,ξ to Z. The latter assertion may also be derived by
establishing the asymptotic equicontinuity of Zn,ξ using a metric entropy condition (instead of
verifying tightness using a bracketing entropy condition as in Proposition 2.2).

2.5 Proposition Suppose that the conditions (B1), (B2), (D1), (D2’), (D3) and

(D5’) For all δ > 0, n ∈ N, (ei)1≤i≤⌊mn/2⌋ ∈ {−1, 0, 1}⌊mn/2⌋ and k ∈ {1, 2} the map

supf,g∈F ,ρ(f,g)<δ

∑⌊mn/2⌋
j=1 ej

(
ξj(f(Y ∗n,j) − g(Y ∗n,j))

)k
is measurable

are fulfilled and

(i) (D6) holds and ξ is bounded, or

(ii) (D6’) holds.

Then Zn,ξ is asymptotically equicontinuous. Hence, it converges to Z if, in addition, the conditions
(C1)–(C3) are met. ✷

Using Theorem 2.3 and Corollary 2.6.12 of van der Vaart and Wellner (1996), we obtain as an
immediate consequence

2.6 Corollary If the conditions (B1), (B2), (C1)-(C3), (D1), (D2’), (D3) and (D5’) are met,
if F is measurable with E(F 2(Yn)) = O(rnvn) and F is a VC-hull class, then convergence (2.5)
holds. ✷

To sum up, we have shown that, roughly under the same conditions as used in Theorem 1.1,
the multiplier process Zn,ξ shows the same asymptotic behavior conditionally on the data as
the empirical process Zn unconditionally. The following result gives conditions under which the
convergence of Zn,ξ implies the convergence of the bootstrap process Z∗n,ξ conditionally on the
data.

2.7 Corollary If convergence (2.4) of the fidis of Zn,ξ holds conditionally on the data, condition
(D3) is satisfied and Zn → Z and Zn,ξ → Z weakly, then

Eξ sup
f∈F

|Z∗n,ξ(f) − Zn,ξ(f)| −→ 0 (2.6)
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in outer probability, Z∗n,ξ → Z weakly and

sup
g∈BL1(ℓ∞(F))

∣∣Eξg(Z∗n,ξ) − Eg(Z)
∣∣ −→ 0 (2.7)

in outer probability. In particular, these assertions hold under the conditions of Corollary 2.4 and
under the assumptions of Corollary 2.6. ✷

2.8 Remark Note that also the normalizing factor (nvn)−1/2 in the definition of Z∗n,ξ may be
unknown. In most applications of multiplier processes, though, this is not problematic, because this
factor is not needed to construct confidence regions. Nevertheless, it is noteworthy that assertion
(2.7) remains valid if vn is replaced with some estimator v̂n that is consistent in the sense that
v̂n/vn → 1 in probability. ✷

For specific types of cluster functionals, Drees and Rootzén (2010) gave simpler sufficient conditions
for the convergence of the corresponding empirical process which carry over to the multiplier
processes considered here. In the next section we will use the conditions of Corollary 3.6 of
that paper, which deals with so-called generalized tail array sums, i.e. empirical processes with
functionals of the form fφ(y1, . . . , yr) =

∑r
i=1 φ(yi) for functions φ : (E,E) → (R,B) such that

φ(0) = 0.

3 Processes of Extremograms

In this section we employ the general theory to analyze the asymptotic behavior of the empirical
extremogram ρ̂n,A,B, a version with empirical normalization and a bootstrap version thereof, uni-
formly over suitable families of sets A and B and over lags h ∈ {0, . . . , h0} for some fixed h0 ∈ N.
Throughout this section we are only interested in the behavior for vectors with at least one large
component. We thus consider families C of pairs of measurable subsets of Rd such that

x∗ := inf
(A,B)∈C

inf
x∈A

max
1≤j≤d

xj > 0,

i.e. A ⊂ R
d\(−∞, x∗)

d for all (A,B) ∈ C. However, the results below can be generalized to families
of sets that are uniformly bounded away from 0 so that inf(A,B)∈C infx∈A max1≤j≤d |xj | > 0. For

the sake of notational simplicity, we assume that n + h0 (instead of n) R
d-valued random vectors

X1, . . . ,Xn+h0 are observed.

3.1 Remark To keep the presentation simple, we will assume that X0 is regularly varying on
the full cone Rd\{0} with a limiting measure ν0 which is not concentrated on (−∞, 0]d; see Theorem
3.2 below. This assumption could be weakened to the regular variation on the cone R

d \ (−∞, 0]d

defined in the spirit of Das et al. (2013), i.e. there exists a normalizing sequence ãn > 0 and a
measure ν̃0 such that

nP{X0/ãn ∈ B} −→ ν̃0(B)

for all ν̃0-continuity sets B ∈ B bounded away from (−∞, 0]d, where the limit has to be finite. Here
one may choose ãn as the (1− 1/n)-quantile of max1≤j≤dX0,j . Under the slightly more restrictive

8



assumption used in the results below, one has

P{max1≤j≤dX0,j > u}
P{‖X0‖ > u} −→ ν0

(
R
d \ (−∞, 1]d

)

as u → ∞, and hence ãn ∼ an
(
ν0
(
R
d \ (−∞, 1]d

))1/α
and ν̃0 = ν0/ν0

(
R
d \ (−∞, 1]d

)
, where −α is

the degree of homogeneity of ν0, i.e. ν0(λB) = λ−αν0(B). ✷

For some intermediate sequence k = kn (i.e. kn → ∞, kn/n → 0), we define the empirical ex-
tremogram to the sets A and B and lag h as

ρ̂n,A,B(h) :=

∑n
i=1 1A×B(Xi/ak,Xi+h/ak)∑n

i=1 1A(Xi/ak)
.

Note that this is a slight modification of the definition given by Davis and Mikosch (2009) in that
we do not use the maximal number of summands in the denominator. However, it is easily seen
that all results given below carry over to the original definition.

The uniform asymptotic behavior of the empirical extremogram will easily follow from that of the
stochastic process

Z̃n(h,A,B) :=
1√
nvn

n∑

i=1

(
1A×B(Xi/ak,Xi+h/ak) − P{Xi ∈ akA,Xi+h ∈ akB}

)
,

h ∈ {0, . . . , h0}, (A,B) ∈ C, with

vn := P{X0 6∈ (−∞, akx∗)
d}.

This process, in turn, can be analyzed using the theory for empirical processes of cluster functionals
developed by Drees and Rootzén (2010). In order to use conditions on the joint distribution of the
Xt as weak as possible, it is useful to consider such processes indexed by (A,B) ∈ C and just two
lags h, h̃ ∈ {0, . . . , h0}. Let

X̃n,i :=
Xi

ak
1Rd\(−∞,x∗)d

(Xi

ak

)
, 1 ≤ i ≤ n + h0,

X
(h,h̃)
n,i := (X̃n,i, X̃n,i+h, X̃n,i+h̃), 1 ≤ i ≤ n,

Y
(h,h̃)
n,j := (X

(h,h̃)
n,i )(j−1)rn<i≤jrn , 1 ≤ j ≤ mn,

v(h,h̃)n := P{X(h,h̃)
n,i 6= 0} = P{(X0,Xh,Xh̃) 6∈ (−∞, x∗)

3d},
D := {A×B × R

d, A× R
d ×B | (A,B) ∈ C},

fD(y1, . . . , yr) :=

r∑

i=1

1D(yi), yi ∈ R
3d, D ∈ D,

F := {fD | D ∈ D}, and

Z(h,h̃)
n (fD) :=

1√
nv

(h,h̃)
n

mn∑

j=1

(
fD(Y

(h,h̃)
n,j ) − EfD(Y

(h,h̃)
n,j )

)

=
1√

nv
(h,h̃)
n

mnrn∑

i=1

(
1D(X

(h,h̃)
n,i ) − P{X(h,h̃)

n,i ∈ D}
)
, D ∈ D.
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Note that, for n = mnrn, we have Z̃n(h,A,B) = (v
(h,h̃)
n /vn)1/2Z

(h,h̃)
n (fA×B×Rd) and Z̃n(h̃, A,B) =

(v
(h,h̃)
n /vn)1/2Z

(h,h̃)
n (fA×Rd×B); under the conditions of Theorem 3.2 the difference between these

processes is asymptotically negligible even if mnrn < n.

Using Corollary 3.6 of Drees and Rootzén (2010) and Drees and Rootzén (2015), we obtain the
following set of sufficient conditions for the convergence of Z̃n.

3.2 Theorem Suppose that all four-dimensional marginal distributions of the stationary time
series (Xt)t∈N0 are regularly varying, i.e. for all index vectors I ∈ N

l
0 of dimension l ≤ 4 there

exists a measure νI such that

nP{a−1n XI ∈ B} −→ νI(B) < ∞ (3.1)

for all Borel sets B bounded away from 0 ∈ R
ld, and that ν0(Rd \ (−∞, x∗)d) > 0. In addition,

assume that the conditions (B1), (B2) and (B̃3) are fulfilled, and rn = o(
√
nvn). Finally, assume

that there exists a bounded semi-metric ¯̺ on C such that C is totally bounded w.r.t. ¯̺, and a function
u : (0,∞) → (0,∞) such that limt↓0 u(t) = 0 and

E
( rn∑

i=1

1(A×B)∆(Ã×B̃)(Xi/ak,Xi+h/ak)
)2

≤ u
(

¯̺
(
(A,B), (Ã, B̃)

))
rnvn (3.2)

for all (A,B), (Ã, B̃) ∈ C, h ∈ {0, . . . , h0}, and that the conditions (D5) and (D6) hold for
̺
(
fD, fD̃

)
:= ¯̺

(
(A,B), (Ã, B̃)

)
if D = A × B × R

d, D̃ = Ã × B̃ × R
d, or D = A × R

d × B,

D̃ = Ã × R
d × B̃, and ̺

(
fD, fD̃

)
:= L else for some sufficiently large constant L > 1. (Here

C1∆C2 denotes the symmetric difference of the two sets C1 and C2.)

Then Z̃n converges weakly to a Gaussian process Z̃ with covariance function

c̃
(
(h,A,B), (h̃, Ã, B̃)

)
:=

∞∑

i=−∞

ν(0,h,i,i+h̃)(A×B × Ã× B̃)

ν0
(
Rd \ (−∞, x∗)d

) < ∞.

✷

Observe that in (3.1) necessarily the following consistency condition holds: for vectors I0 =
(ij)1≤j≤l and I = (ij)1≤j≤4 of indices and νI0-continuity sets A ∈ B

ld bounded away from the
origin one has νI0(A) = νI(A× R

(4−l)d).

Usually the moment condition (3.2) and the entropy condition (D6) are most difficult to ver-
ify. The proof of Theorem 3.2 shows that the process Z̃n indexed by F̃ := {(h,A,B) | h ∈
{0, . . . , h0}, (A,B) ∈ C} is asymptotically tight if and only if the empirical processes Z

(h,h̃)
n in-

dexed by {fA×B×Rd | (A,B) ∈ C} resp. {fA×Rd×B | (A,B) ∈ C} are asymptotically tight for all

h, h̃ ∈ {0, . . . , h0}. Thus we may replace condition (D6) by the assumption that these families are
VC-subgraph class of functions, which in turn is equivalent to the assumption that

F̄ := {f̄A×B | (A,B) ∈ C} with f̄D(y1, . . . , yr) :=

r∑

i=1

1D(yi) for yi ∈ R
2d, 1 ≤ i ≤ r, (3.3)

is a VC-subgraph class of functions. Likewise, one may divide the family C into a finite number of
subfamilies Cj and check that F̄j := {f̄A×B | (A,B) ∈ Cj} is a VC-subgraph class of functions.
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For applications to the asymptotic analysis of empirical extremograms, we shall consider families C
such that for (A,B) ∈ C also (A,Rd) belongs to C. The following simple example exhibits another
closedness property of C which is important to prove convergence of the empirical extremogram
with estimated normalizing constant.

3.3 Example Fix some λ0 > 0 and measurable sets A0, B0 ⊂ R
d bounded away from 0 such

that x ∈ A0 implies λx ∈ A0 for all λ > 1 and likewise for x ∈ B0. (In particular, one may
choose a set A0 ⊂ [0,∞)d \ [0, 1]d such that x ∈ A0 and y ≥ x imply y ∈ A0.) Then, for
C1 := {λ(A0, B0) | λ > λ0}, the family F̄1 is a VC-subgraph class of functions. To see this, note
that f̄λ(A×B) ≤ fλ̃(A×B) if λ > λ̃, i.e. the functions are linearly ordered. Hence no set of size 2 can be

shattered by the subgraphs of F̄1. Likewise, the family F̄2 pertaining to C2 := {λ(A0,R
d) | λ > λ0}

is a VC-subgraph class of functions.

Condition (3.2) can be reformulated as follows. There exists a semi-metric ˜̺ on [λ0,∞) such

that [λ0,∞) is totally bounded w.r.t. ˜̺ and E
(∑rn

i=1 1(λ(A0×B0))\(λ̃(A0×B0))
(Xi/ak,Xi+h/ak)

)2 ≤
u(˜̺(λ, λ̃))rnvn and E

(∑rn
i=1 1(λA0)\(λ̃A0)

(Xi/ak)
)2 ≤ u(˜̺(λ, λ̃))rnvn hold for all λ0 < λ < λ̃ and all

n ∈ N. ✷

The families of sets A and B most widely discussed in the literature are sets of upper right orthants
(x,∞) and complements R

d \ (−∞, x] of lower left orthants.

3.4 Example Consider the family C1 :=
{(

(xA,∞), (xB ,∞)
)
| xA, xB 6∈ (−∞, x∗]

d
}

of pairs
of upper right orthants bounded away from the origin. Then condition (D6) holds for C :=
C1 ∪

{(
(xA,∞),Rd

)
|xA 6∈ (−∞, x∗]

d
}

if condition (B1) is satisfied and

E
( rn∑

i=1

1{Xi 6∈(−∞,akx∗)d}

)2+δ
= O(rnvn), (3.4)

for some δ > 0. (see Section 5).

By the same arguments one can show that condition (D6) is fulfilled for the family C :=
{(

R
d \

(−∞, xA],Rd \ (−∞, xB ]
)
,
(
R
d \ (−∞, xA],Rd

)
| xA, xB ∈ (x∗,∞)d

}
. ✷

From Theorem 3.2 one may easily conclude the uniform asymptotic normality of the empirical
extremogram centered at the pre-asymptotic extremogram

ρt,A,B(h) := P (Xh/t ∈ B | X0/t ∈ A).

3.5 Corollary Suppose that the conditions of Theorem 3.2 are met, that (A,Rd) ∈ C for all
(A,B) ∈ C and inf(A,B)∈C ν0(A) > 0, and that suph∈{0,...,h0},(A,B)∈C |ρak ,A,B(h) − ρA,B(h)| → 0.
Then

√
nvn

(
ρ̂n,A,B(h) − ρak ,A,B(h)

)
h∈{0,...,h0},(A,B)∈C

→
(ν0

(
R
d \ (−∞, x∗)

d
)

ν0(A)

(
Z̃(h,A,B) − ρA,B(h)Z̃(h,A,Rd)

))
h∈{0,...,h0},(A,B)∈C

=: (R(h,A,B))h∈{0,...,h0},(A,B)∈C (3.5)
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weakly. Hence if, in addition,

sup
h∈{0,...,h0},(A,B)∈C

√
n

k
|ρak,A,B(h) − ρA,B(h)| → 0, (3.6)

then √
nvn

(
ρ̂n,A,B(h) − ρA,B(h)

)
h∈{0,...,h0},(A,B)∈C

→ (R(h,A,B))h∈{0,...,h0},(A,B)∈C

weakly. ✷

We have already mentioned in the introduction that the empirical extremogram ρ̂n,A,B(h) is not
a valid estimator if the normalizing constants ak are unknown. In this case we replace them by
some estimator âk which is consistent in the sense that âk/ak → 1 in probability. Noting that

ˆ̂ρn,A,B(h) :=

∑n
i=1 1A×B(Xi/âk,Xi+h/âk)∑n

i=1 1A(Xi/âk)
= ρ̂n,(âk/ak)A,(âk/ak)B(h),

the asymptotic normality of ˆ̂ρn,A,B(h) is an easy consequence of Corollary 3.5, provided that
ρt,A,B(h) is a sufficiently regular function of t.

3.6 Corollary Assume that the conditions of Corollary 3.5 (except (3.6)) are fulfilled and, in
addition, âk/ak → 1 in probability, that (A,B) ∈ C implies (λA, λB) ∈ C for all λ in a neighborhood
of 1 and that sup(A,B)∈C ¯̺

(
(A,B), (λA, λB)

)
→ 0 as λ → 1. Then

√
nvn

(
ˆ̂ρn,A,B(h) − ρâk,A,B(h)

)
h∈{0,...,h0},(A,B)∈C

→ (R(h,A,B))h∈{0,...,h0},(A,B)∈C

weakly. Hence, if the following second order condition holds

ρt,A,B(h) = ρA,B(h) + Φh(t)Ψh(A,B) + o(Φh(t)) (3.7)

uniformly for h ∈ {0, . . . , h0}, (A,B) ∈ C, and some extended regularly varying function Φh (see
Bingham et al., 1987, Section 2.0) satisfying Φh(t) → 0 as t → ∞ and some functions Ψh such
that sup(A,B)∈C |Ψh(A,B)| < ∞, then

√
nvn

(
ˆ̂ρn,A,B(h) − ρak,A,B(h)

)
h∈{0,...,h0},(A,B)∈C

→ (R(h,A,B))h∈{0,...,h0},(A,B)∈C

weakly, provided Φh(ak) = O((k/n)1/2). If Φh(ak) = o((k/n)1/2), then this convergence holds with
ρA,B(h) instead of ρak ,A,B(h). ✷

3.7 Remark (i) If (X0,Xh) satisfies the second order condition

a←(t)P{(X0,Xh)/t ∈ A×B} = ν(0,h)(A×B) + Φh(t)Ψ̃h(A×B) + o(Φh(t)) (3.8)

uniformly for all (A,B) ∈ C with sup(A,B)∈C |Ψ̃h(A×B)| < ∞, then under the conditions of
Corollary 3.6 direct calculations show that ρt,A,B(h) = P{(X0,Xh)/t ∈ A×B}/P{(X0,Xh)/t ∈
A×R

d} satisfies condition (3.7) with Ψh(A,B) =
(
Ψ̃h(A×B)−ρA,B(h)Ψ̃h(A×R

d)
)
/ν0(A).
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(ii) If the conditions of Theorem 3.2 hold when (3.2) is replaced with

E
( rn∑

i=1

1[−y,y]d\[−x,x]d(Xi/ak)
)2

≤ u(y − x)rnvn

for all 1 − δ ≤ x < y ≤ 1 + δ, n ∈ N, and some function u satisfying u(t) → 0 as t ↓ 0, then
the same arguments as used in the proof of Theorem 3.2 show that

1√
n/k

n∑

i=1

(
1{‖Xi‖/ak > x}−P{‖Xi‖/ak > x}

)
=

√
kvnZ̃n(0,Rd\[−x, x]d,Rd), x ∈ [1−δ, 1+δ],

converges weakly to a continuous Gaussian process. From P{‖X0‖/ak > x} ∼ x−α/k and

‖X‖n−⌊n/k⌋:n
ak

= inf
{
x
∣∣∣

n∑

i=1

1{‖Xi‖/ak > x} ≤ ⌊n/k⌋
}

= inf
{
x
∣∣∣
√

kvnZ̃n(0,Rd \ [−x, x]d,Rd) ≤ (k/n)1/2
(
⌊n/k⌋ − nP{‖X0‖/ak > x}

)}
,

one can easily conclude that ‖X‖n−⌊n/k⌋:n/ak → 1 in probability, i.e. ‖X‖n−⌊n/k⌋:n is consis-
tent for ak.

Indeed, a refined analysis shows that under the second order condition (3.8) one even has
‖X‖n−⌊n/k⌋:n/ak − 1 = OP ((k/n)1/2) if Φ(ak) = OP ((k/n)1/2). ✷

As the distribution of the limit process arising in Corollary 3.6 is difficult to estimate, we use
the bootstrap approach discussed in Section 2 to approximate the distribution of the empirical
extremogram. Let

ρ̂∗n,A,B(h) :=

∑mn
j=1(1 + ξj)

∑rn
i=1 1A×B

(
a−1k (X(j−1)rn+i,X(j−1)rn+i+h)

)
∑mn

j=1(1 + ξj)
∑rn

i=1 1A
(
a−1k X(j−1)rn+i

)

ˆ̂ρ∗n,A,B(h) :=

∑mn
j=1(1 + ξj)

∑rn
i=1 1A×B

(
â−1k (X(j−1)rn+i,X(j−1)rn+i+h)

)
∑mn

j=1(1 + ξj)
∑rn

i=1 1A
(
â−1k X(j−1)rn+i

)

= ρ̂∗n,(âk/ak)A,(âk/ak)B
(h)

Rn,ξ(h,A,B) :=
√
nvn

(
ρ̂∗n,A,B(h) − ρ̂n,A,B(h)

)

R̂n,ξ(h,A,B) :=
√
nvn

(
ˆ̂ρ∗n,A,B(h) − ˆ̂ρn,A,B(h)

)
= Rn,ξ(h, (âk/ak)A, (âk/ak)B).

3.8 Theorem Suppose that all conditions of Corollary 3.6 are fulfilled and that ξj, j ∈ N, are
i.i.d. random variables with E(ξ1) = 0 and V ar(ξ1) = 1 independent of (Xt)t∈N0 . Then,

sup
g∈BL1(ℓ∞({0,...,h0}×C))

∣∣Eξg(Rn,ξ) − Eg(R)
∣∣ → 0 (3.9)

sup
g∈BL1(ℓ∞({0,...,h0}×C))

∣∣Eξg(R̂n,ξ) − Eg(R)
∣∣ → 0 in probability. (3.10)

✷
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Let F̃ := {0, . . . , h0} × C. In view of Theorem 3.8, approximate confidence regions for the ex-
tremogram (ρA,B(h))(h,A,B)∈F̃ can be obtained from Monte Carlo simulations of ˆ̂ρ∗n,A,B(h). To

this end, suppose D is a family of subsets of ℓ∞(F̃) such that supD∈D P{R ∈ Uε(∂D)} → 0 as
ε ↓ 0, where Uε(A) denotes the open ε-neighborhood of a set A w.r.t. the supremum norm ‖ · ‖F̃
on ℓ∞(F̃). Then all indicator functions 1D, D ∈ D, can be uniformly well approximated from
above and from below by functions of the form gε,A := (1 − dA/ε)

+ with dA(z) := inf z̃∈A ‖z − z̃‖.
Since the functions εgε,A belong to BL1(ℓ

∞(F̃)), it is easily seen that (3.9) and (3.10) imply

supD∈D

∣∣Pξ{Rn,ξ ∈ D} − P{R ∈ D}
∣∣ → 0 and supD∈D

∣∣Pξ{R̂n,ξ ∈ D} − P{R ∈ D}
∣∣ → 0 as

n → ∞, respectively.

In particular, if for sufficiently large n ∈ N, Dα is a subset of ℓ∞(F̃) such that

Pξ

{
(ˆ̂ρ∗n,A,B(h) − ˆ̂ρn,A,B(h))(h,A,B)∈F̃ ∈ Dα

}
= α, (3.11)

then under the conditions of Corollary 3.6 with Φ(ak) = o((k/n)1/2), for sufficiently large n, we
have

P
{

(ˆ̂ρn,A,B(h) − ρA,B(h))(h,A,B)∈F̃ ∈ Dα

}
≈ α. (3.12)

To find such a set (or rather an approximation to it), one may simulate B independent realizations

(ˆ̂ρ
∗(b)
n,A,B(h))(h,A,B)∈F̃ , 1 ≤ b ≤ B, of the bootstrap version of the empirical extremogram. For some

fixed set D ⊂ ℓ∞(F̃) let Dα := λαD with λα denoting the smallest λ ≥ 0 such that

1

B

B∑

b=1

1{( ˆ̂ρ
∗(b)
n,A,B(h) − ˆ̂ρn,A,B(h)

)
(h,A,B)∈F̃

∈ λD
} ≥ α.

Here D ought to be star-shaped, i.e. z ∈ D implies λz ∈ D for all λ ∈ [0, 1]. The shape of D
determines the emphasis which is laid on particular features of the extremogram. See Section 4
for an example.

4 Finite sample performance of bootstrapped extremograms

In this section we investigate the finite sample performance of confidence intervals which are
constructed using the multiplier block bootstrap approach, the stationary bootstrap proposed by
Davis et al. (2012) and a modified version of the latter.

Davis et al. (2012) suggested to construct bootstrap samples from an observed time series (Xt)1≤t≤n
as follows. Let Ki, 1 ≤ i ≤ n, be iid random variables uniformly distributed on {1, . . . , n}, and Li,
1 ≤ i ≤ n, iid random block lengths with a geometric distribution with expectation r, independent
of (Ki)1≤i≤n. Define Sj :=

∑j
i=1 Li, 0 ≤ j ≤ n, N := min{j|Sj ≥ n}, and L∗j := Lj for 1 ≤ j < N

and L∗N := n − SN−1. For i ∈ {Sj−1 + 1, Sj−1 + 2, . . . , Sj}, 1 ≤ j ≤ N , let X∗i := XKj−1+i−Sj−1 ,
where Xt for t > n is interpreted as X(t mod (n−1))+1. This means that blocks of length Lj starting
from the observation at Kj are glued together until one obtains a new time series (X∗t )1≤t≤n of
length n; in this process one repeats the original time series after the last observation as often

as necessary. Now denote by ρ̂
(∗DMC)
n,A,B (h) the bootstrap estimator of ρA,B(h) calculated from

(X∗t )1≤t≤n. Davis et al. (2012) proved that under suitable conditions, conditionally on the data,

the limit distribution of ρ̂
(∗DMC)
n,A,B (h) − ρ̂n,A,B(h) is the same as the one of ρ̂n,A,B(h) − ρak ,A,B(h),

so that bootstrap confidence intervals can be constructed.
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One disadvantage of this approach is that for indices i near the end of a block such that i ≤
Sj < i+ h for some 1 ≤ j < N the indicator 1{X∗i ∈ akA,X

∗
i+h ∈ akB} has a completely different

behavior than 1{Xi ∈ akA,Xi+h ∈ akB}, because (X∗i ,X
∗
i+h) does not correspond to a pair of

observations with lag h in the original time series.

To overcome this drawback, we suggest the following modification of the stationary bootstrap
estimator. For simplicity, we assume that the time series has been observed at n + h time points
(in other words, we redefine n). Then we define

ρ̂
(∗stat)
n,A,B (h) :=

∑N
j=1

∑L∗
j

i=1 1{XKj−1+i ∈ akA,XKj−1+i+h ∈ akB}
∑N

j=1

∑L∗
j

i=1 1{XKj−1+i ∈ akA}

which has the same asymptotic behavior as ρ̂
(∗DMC)
n,A,B (h), but only observations are compared which

are lagged by h. In essence, this mean that we apply the stationary bootstrap technique to the
bivariate time series (Xt,Xt+h)1≤t≤n.

In addition to these two version of stationary bootstrap estimators, we consider the multiplier
bootstrap. Here we have drawn multipliers ξj from a Student t-distribution with 5 degrees of
freedom and scale parameter such that V ar(ξj) = 1. However, this particular choice is not crucial
as in further simulations we have obtained a similar performance of the multiplier block bootstrap
for other distributions which are symmetric about 1 with an unbounded support (e.g., for normally
distributed multiplier).

Here we report the results for three different models:

(i) a GARCH model Xt = σtεt, σ
2
t = α0 +α1X

2
t−1 + β1σ

2
t−1 with α0 = 10−4, α1 = 0.08, β1 = 0.9

and t-distributed innovations εt with 8 degrees of freedom, independent of σt

(ii) an autoregressive model of order 1: Xt = ϕXt−1 + εt with ϕ = 0.8 and symmetrized Fréchet
distribution of the innovations, i.e., P{εt > x} = P{εt < −x} = (1 − exp(−x−3))/2 for all
x > 0

(iii) a moving average time series of order 3, namely Xt = εt + 0.5εt−1 + 0.8εt−2 with εt as in (ii).

For each model we simulated 10 000 time series of length n = 2000.

We consider the extremogram for A = B = (1,∞), i.e., limu→∞ P (Xh > u|X0 > u), which is often
also called tail dependence coefficient, and lags 1 ≤ h ≤ 10. As normalizing constants ak (thresh-
olds) we have chosen the (1 − p)-quantile of the stationary distribution for p ∈ {0.01, 0.025, 0.05}
which have been estimated by the corresponding empirical quantiles. The true pre-asymptotic
extremograms have been determined by simulation (based on 1000 time series of length 107). An-
alytic expression for the (asymptotic) extremograms are known for the linear models (ii) and (iii)
(see e.g., Meinguet and Segers, 2010, Example 9.2). For the GARCH model, they were determined
using a simulation algorithm suggested by Ehlert et al. (2015).

In each simulation we have drawn b = 1000 bootstrap replicas according to each of the three
bootstrap procedures. If, for fixed h, the upper and lower empirical α/2-quantile of the resulting
b bootstrap estimates of the extremogram are denoted by ub and lb then, according to (3.11) and
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(3.12), [
2ρ̂n,A,B(h) − ub, 2ρ̂n,A,B(h) − lb

]
∩ [0, 1] (4.1)

is a confidence interval for the (pre-asymptotic) extremogram with nominal coverage probability
1 − α.

We first discuss the results for the t-GARCH model in detail, before we show the results for the
linear time series in abbreviated form. For this model, Figure 1 shows the empirical coverage prob-
abilities of all three bootstrap procedures as a function of h for the pre-asymptotic extremogram.
The three rows correspond to the three thresholds with ascending exceedance probabilities. The
left column shows the results for (average) block length r = 100, the right column for r = 20.
For all bootstrap procedures, the actual coverage probabilities are much smaller than the nomi-
nal value 0.95 if the threshold is chosen too high. For the estimator based on the largest 5% of
the observations and blocks of length r = 100, the coverage probability of the multiplier block
bootstrap is reasonably close to the nominal size while both versions of the stationary bootstrap
have a considerably lower coverage probability. In all simulations, the multiplier block bootstrap
yields the highest coverage probability, while the stationary bootstrap proposed by Davis et al.
(2012) performs worst. Moreover, in most cases the performance is better for larger block sizes.
In particular, the stationary bootstrap proposed by Davis et al. is sensitive to too small a block
size, as was to be expected from the above discussion.

The main reason for the disappointing performance for high thresholds is that then for very few or
even none time instants both Xt and Xt+h exceed the threshold. If there are no joint exceedances
in the original time series (leading to an estimate 0 for the extremogram) then also the bootstrap
estimate equals 0 if one uses the multiplier block bootstrap or the modified stationary bootstrap
(and it equals 0 for the original stationary bootstrap with very high probability). Hence the
confidence intervals do not cover the true value if this is not exactly equal to 0, which is neither
the case for the pre-asymptotic nor the asymptotic extremogram, leading to a high non-coverage
probability. Indeed, for p = 0.01, Figure 2 shows that if one considers only those simulations when
the estimated extremogram does not equal 0, then the empirical coverage probability is rather
close to the nominal value.

To overcome this weakness, we suggest to estimate the error distribution using a bootstrap based on
a lower threshold if one wants to construct confidence intervals for the pre-asymptotic extremogram
for a high threshold (or even the extremogram). Denote by ρ̂n,p the empirical extremogram based
on the exceedances over the threshold with exceedance probability p, and by ρ̂∗n,p some bootstrap
version thereof. Then, according to Theorem 3.8, conditional on the data, for 0 < p1 < p2, the
bootstrap error ρ̂∗n,p1 − ρ̂n,p1 has approximately the same distribution as (p2/p1)

1/2
(
ρ̂∗n,p2 − ρ̂n,p2).

So if ub and lb denote the empirical bootstrap quantiles as defined above, calculated from the
bootstrap for the threshold with the higher exceedance probability p2, then

[
ρ̂n,p1 − (p2/p1)

1/2
(
ub − ρ̂n,p2), ρ̂n,p1 − (p2/p1)1/2

(
lb − ρ̂n,p2)

]
∩ [0, 1] (4.2)

is a confidence interval with nominal coverage probability 1 − α.

Figure 3 displays the empirical coverage probabilities of this confidence interval for the pre-
asymptotic extremogram, p1 ∈ {0.01, 0.025} and p2 = 0.05, which are now much closer to the
nominal size 0.95. (Indeed, for p1 = 0.01 the new confidence intervals are a bit too conservative.)
As for small p1 the pre-asymptotic extremograms are closer to the limit extremograms, for these
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thresholds one may also be interested in the coverage probability for the latter, which are shown in
Figure 4. The confidence intervals based on the threshold with exceedance probabilities p1 = 0.01
are still a bit conservative, while for p1 = 0.025, when the bias is larger and the confidence intervals
more narrow, the actual coverage probabilities are too low.

Finally, we briefly discuss the linear time series models. As overall the conclusions are similar,
we present just the most important findings for block size r = 100. Figure 5 shows the coverage
probabilities for the autoregressive model (ii) in the left column and for the moving average (iii)
in the right column, both for the confidence intervals (4.1) (solid lines) and (4.2) (dashed lines).
In order to not overload the plot, the results for the original stationary bootstrap (which again
performed worst) are not shown. Again the multiplier block bootstrap gives the highest coverage
probabilities, which are nevertheless not satisfactory if one uses the direct bootstrap interval (4.1)
for a high threshold for the extremogram at lags not close to 0. This is particularly true, if the
true value is small (e.g., for large lags in the autoregressive model). In these cases, it helps a lot
to borrow strength from the bootstrap for a lower threshold as in (4.2).

5 Proofs

Proof of Theorem 2.1. We combine ideas from the proofs of Theorem 2.3 of Drees and
Rootzén (2010) and of Theorem 2 by Kosorok (2003). Denote by Y ∗n,j, 1 ≤ j ≤ mn, independent
copies of Yn,j that are independent of (ξi)i∈N. As in Drees and Rootzén (2010), we define ∆∗n,j(f) :=

f(Y ∗n,j) − f((Y ∗n,j)
(rn−ln)), 1 ≤ j ≤ mn. (Recall that x(l) := (x1, . . . , xl) for x = (x1, . . . , xr) with

r ≥ l.)

We first analyze the asymptotic behavior of

1√
nvn

⌊mn/2⌋∑

j=1

(
∆∗n,2j(f) − E∆∗n,2j(f)

)

conditionally given (Y ∗n,j)1≤j≤mn . Note that Eξ

(
ξ2j(∆

∗
n,2j(f) − E∆∗n,2j(f))

)
= E

(
ξ2j(∆

∗
n,2j(f) −

E∆∗n,2j(f)) | (Y ∗n,j)1≤j≤mn

)
= 0. Moreover, because of Eξ22j = 1

1

nvn

⌊mn/2⌋∑

j=1

Eξ

(
ξ22j(∆

∗
n,2j(f) − E∆∗n,2j(f))21{|ξ2j(∆∗n,2j(f) − E∆∗n,2j(f))| ≤ √

nvn}
)

≤ 1

nvn

⌊mn/2⌋∑

j=1

(∆∗n,2j(f) − E∆∗n,2j(f))2. (5.1)

Now by condition (C1)

P
{ ⌊mn/2⌋∑

j=1

(∆∗n,2j(f) − E∆∗n,2j(f))21{|∆∗n,2j(f) − E∆∗n,2j(f)| > √
nvn} 6= 0

}

≤ ⌊mn/2⌋P{|∆∗n(f) − E∆∗n(f)| > √
nvn}

→ 0 (5.2)
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and

E
( 1

nvn

⌊mn/2⌋∑

j=1

(∆∗n,2j(f) − E∆∗n,2j(f))21{|∆∗n,2j(f) − E∆∗n,2j(f)| ≤ √
nvn}

)

≤ mn

2nvn
E
(

(∆∗n(f) − E∆∗n(f))21{|∆∗n(f) − E∆∗n(f)| ≤ √
nvn}

)

= o
(rnvnmn

nvn

)

= o(1). (5.3)

Combining (5.1)–(5.3), we see that the left-hand side of (5.1) tends to 0 in probability.

Next check that from (5.2) and (5.3) we may conclude

⌊mn/2⌋∑

j=1

Pξ

{
|ξ2j(∆∗n,2j(f) −E∆∗n,2j(f))| > √

nvn
}

≤
⌊mn/2⌋∑

j=1

(E(ξ22j)(∆
∗
n,2j(f) − E∆∗n,2j(f))2

nvn
1{|∆∗n,2j(f) −E∆∗n,2j(f)| ≤ √

nvn}

+1{|∆∗n,2j(f) − E∆∗n,2j(f)| > √
nvn}

)

→ 0 (5.4)

in probability. Therefore, to each subsequence n′ there exists a subsubsequence n′′ such that the
convergence of the left-hand side of (5.1) and the convergence of the left-hand side of (5.4) hold
almost surely. By Theorem 4.10 of Petrov (1995), on the corresponding set of probability 1, for
all η > 0,

Pξ

{ 1√
n′′vn′′

∣∣∣
⌊mn′′/2⌋∑

j=1

ξ2j
(
∆∗n′′,2j(f) − E∆∗n′′,2j(f)

)∣∣∣ > η
}

−→ 0. (5.5)

We can argue the same way to obtain convergence (5.5) uniformly for a finite number of cluster
functionals f1, . . . , fl and for the analogous sum over the odd numbered blocks.

By Lemma 3 of Kosorok (2003) and the conditions (C2) and (C3), the subsubsequence n′′ can be
chosen such that on a set with probability 1

sup
g∈BL1(Rl)

∣∣∣Eξg
( 1√

n′′vn′′

mn′′∑

j=1

ξj
(
fk(Y ∗n′′,j) − Efk(Y ∗n′′,j)

)
1≤k≤l

)
− Eg(Z((fk)1≤k≤l))

∣∣∣ → 0.

Because of the aforementioned generalizations of (5.5) it follows that

sup
g∈BL1(Rl)

∣∣∣Eξg
( 1√

n′′vn′′

mn′′∑

j=1

ξj
(
fk((Y ∗n′′,j)

(rn′′−ln′′ )) − Efk((Y ∗n′′,j)
(rn′′−ln′′ ))

)
1≤k≤l

−Eg
(
Z((fk)1≤k≤l)

)∣∣∣ → 0.
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Since, by (B2),

∥∥P (Y
(rn−ℓn)
n,j )1≤j≤mn − P ((Y ∗

n,j)
(rn−ℓn))1≤j≤mn

∥∥
TV

≤ mnβn,ln −→ 0

(see Drees and Rootzén, 2010, proof of Lemma 5.1), the last convergence in turn implies

sup
g∈BL1(Rl)

∣∣∣Eξg
( 1√

n′′vn′′

mn′′∑

j=1

ξj
(
fk(Y

(rn′′−ln′′ )
n′′,j )−Efk(Y

(rn′′−ln′′ )
n′′,j )

)
1≤k≤l

)
−Eg(Z((fk)1≤k≤l))

∣∣∣ −→ 0

(5.6)
in probability. Hence, along a further subsequence of n′′, the convergence holds almost surely and
w.l.o.g. we may assume almost sure convergence along n′′.

By the above arguments, one easily sees that the analog to (5.5) also holds for ∆n,2j(f) instead of
∆∗n,2j(f). Together with the same argument for the odd numbered blocks it follows that n′′ can
be chosen such that on a set with probability 1, for all η > 0,

Pξ

{∥∥∥
( 1√

n′′vn′′

mn′′∑

j=1

ξj
(
∆n′′,j(fk) − E∆n′′,j(fk)

))
1≤k≤l

∥∥∥ > η
}

−→ 0.

Thus from (5.6) we can conclude that for all subsequences n′ there exists a subsubsequence n′′

such that almost surely

sup
g∈BL1(Rl)

∣∣∣Eξg
( 1√

n′′vn′′

mn′′∑

j=1

ξj
(
fk(Yn′′,j) −Efk(Yn′′,j)

)
1≤k≤l

)
− Eg

(
Z((fk)1≤k≤l)

)∣∣∣ −→ 0,

which is equivalent to the assertion. ✷

Proof of Proposition 2.2. The asymptotic tightness of Zn,ξ follows if we can prove asymp-

totic tightness of
(
(nvn)−1/2

∑⌊mn/2⌋
j=1 ξ2j(f(Yn,2j) − Ef(Yn,2j))

)
f∈F

and the analogous assertion
for the sum over the odd numbered blocks. Similarly as in the proof of Theorem 2.8 of Drees and
Rootzén (2010), it suffices to prove tightness of

(
(nvn)−1/2

∑m̃n
j=1 ξj(f(Y ∗n,j) − Ef(Y ∗n,j))

)
f∈F

with

m̃n ∈ {⌊mn/2⌋, ⌈mn/2⌉} and Y ∗n,j denoting independent copies of Yn,j, because the total variation
distance between the distribution of the processes with dependent blocks (which are separated in
time) resp. with independent blocks tends to 0. To this end, we verify that the conditions of van der
Vaart and Wellner (1996), Theorem 2.11.9, are fulfilled for Zni := (nvn)−1/2ξi(f(Y ∗n,i) −Ef(Y ∗n,i))
which are centered random variables because of the independence of ξi and Y ∗n,i.

The second displayed formula of this theorem is an immediate consequence of condition (D3), since

Eξ2i = 1 implies E
(
ξi(f(Y ∗n,i)−g(Y ∗n,i))

)2
= E

(
f(Y ∗n,i)−g(Y ∗n,i)

)2
. Likewise, the bracketing number

for the multiplier process considered here is the same as the bracketing number for the original
process so that the bracketing entropy condition (i.e. the third displayed formula in Theorem
2.11.9) follows from (D4).

It remains to verify that

m̃n√
nvn

E∗
∣∣ξF (Yn)1{|ξF (Yn)| > η

√
nvn}

∣∣ −→ 0, ∀ η > 0. (5.7)

If ξ is bounded, then this convergence is obvious from (D2).
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Under the conditions of part (ii), one has for all un > 0

E∗
∣∣ξ2F 2(Yn)1{|ξF (Yn)| > η

√
nvn}

∣∣

≤ E
(
ξ21{|ξ| > un}

)
E∗(F 2(Yn)) + E

(
ξ21{|ξ| ≤ un}

)
E∗

(
F 2(Yn)1{F (Yn) > η

√
nvn/un}

)
.

By condition (D2’) one can find a sequence un → ∞ such that

E
(
F 2(Yn)1{F (Yn) > η

√
nvn/un}

)
= o(rnvn).

Moreover, also the first term is of smaller order than rnvn, because E
(
ξ21{|ξ| > un}

)
→ 0 and, by

assumption, E∗(F 2(Yn)) = O(rnvn). Now, by the Cauchy-Schwarz inequality and the Chebyshev
inequality, the left-hand side of (5.7) can be bounded by

m̃n√
nvn

(
E∗

∣∣ξ2F 2(Yn)1{|ξF (Yn)| > η
√
nvn}

∣∣ · E∗1{|ξF (Yn)| > η
√
nvn}

)1/2

≤ o
( m̃n√

nvn
(rnvn)1/2

)(E∗(ξ2F 2(Yn))

η2nvn

)1/2
−→ 0.

✷

Proof of Theorem 2.3. By (D3) the family F is totally bounded w.r.t. the metric ρ. Hence
there exists a sequence of finite δ-nets Fδ of F , i.e. finite sets such that to every f ∈ F there exists
πδ(f) ∈ Fδ whose ρ-distance to f is less than δ. Because Z has continuous sample paths w.r.t.
ρ and g ∈ BL1(ℓ

∞(F)) is bounded and Lipschitz-continuous with Lipschitz-constant 1, we may
conclude

lim
δ↓0

E∗ sup
g∈BL1(ℓ∞(F))

∣∣g(Z(πδ ◦ ·)) − g(Z(·))
∣∣ = 0. (5.8)

For fixed δ > 0, denote by l = ♯Fδ the cardinality of the δ-net. Theorem 2.1 gives

sup
g∈BL1(ℓ∞(F))

∣∣Eξg(Zn,ξ(πδ ◦ ·)) − Eg(Z(πδ ◦ ·))
∣∣

≤ sup
h∈BL1(Rl)

∣∣Eξh
(
(Zn,ξ(f))f∈Fδ

)
− Eh

(
(Z(f))f∈Fδ

)∣∣

→ 0 (5.9)

in outer probability (cf. van der Vaart and Wellner, 1996, p. 182).

Next note that by the definition of BL1(ℓ
∞(F))

sup
g∈BL1(ℓ∞(F))

∣∣Eξg(Zn,ξ(πδ ◦ ·)) − Eξg(Zn,ξ)
∣∣ ≤ Eξ min

(
sup
f∈F

|Zn,ξ(πδ(f)) − Zn,ξ(f)|, 2
)
.

Since Zn,ξ weakly converges to Z, it is asymptotically equicontinuous, that is, for all ε > 0 and all
sequences δn ↓ 0

P ∗
{

sup
f,g∈F ,ρ(f,g)<δn

|Zn,ξ(f) − Zn,ξ(g)| > ε
}

−→ 0.

Hence
E∗min

(
sup

f,g∈F ,ρ(f,g)<δn

|Zn,ξ(f) − Zn,ξ(g)|, 2
)

−→ 0,
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and thus by Fubini’s theorem (van der Vaart and Wellner, 1996, Lemma 1.2.6)

E∗
(
Eξ min

(
sup
f∈F

|Zn,ξ(πδn(f)) − Zn,ξ(f)|, 2
))

−→ 0.

This in turn implies

sup
g∈BL1(ℓ∞(F))

∣∣Eξg(Zn,ξ(πδn ◦ ·)) − Eξg(Zn,ξ)
∣∣ −→ 0 (5.10)

in outer probability for all δn ↓ 0.

By (5.8), for all ε > 0 and all δn ↓ 0, one has for sufficiently large n that E∗ supg∈BL1(ℓ∞(F))

∣∣g(Z(πδn◦
·)) − g(Z(·))

∣∣ < ε/3. Therefore, in view of (5.9) and (5.10), for all ε, η > 0 and sufficiently large n

P ∗
{

sup
g∈BL1(ℓ∞(F))

∣∣Eξg(Zn,ξ) − Eg(Z)| > ε
}

≤ P ∗
{

sup
g∈BL1(ℓ∞(F))

∣∣Eξg(Zn,ξ(·)) − Eξg(Zn,ξ(πδn ◦ ·))
∣∣ > ε/3

}

+P ∗
{

sup
g∈BL1(ℓ∞(F))

∣∣Eξg(Zn,ξ(πδn ◦ ·)) − Eg(Z(πδn ◦ ·))
∣∣ > ε/3

}

< η,

which proves the assertion. ✷

Proof of Proposition 2.5. For f ∈ F define Tf : R × E∪ → R, Tf(t, y) := tf(y) and
TF := {Tf | f ∈ F}. We are going to apply Theorem 2.11.1 of van der Vaart and Wellner (1996)
to the processes

Z̃n(g) :=
1√
nvn

m̃n∑

j=1

(
g(ξj , Y

∗
n,j) − Eg(ξj , Y

∗
n,j)

)
, g ∈ TF ,

with m̃n ∈ {⌊mn/2⌋, ⌈mn/2⌉} and Y ∗n,j denoting independent copies of Yn,j. The assertion then
follows by the same arguments as used in the proof of Drees and Rootzén (2010), Theorem 2.10
(cf. also the proof of Proposition 2.2 of the present paper).

Because |TF | is an envelope function of TF and

m̃n∑

j=1

E∗
((

(nvn)−1/2TF (ξj, Y
∗
n,j)

)2
1{(nvn)−1/2|TF (ξj , Y

∗
n,j)| > η}

)

≤ 1

rnvn
E∗

(
ξ2F 2(Yn)1{|ξF (Yn)| > η

√
nvn}

)
,

the first condition of Theorem 2.11.1 is obviously fulfilled if ξ is bounded and (D2’) holds, while it
follows from the arguments given at the end of the proof of Proposition 2.2 if E(F 2(Yn)) = O(rnvn)
holds.

The second condition of Theorem 2.11.1 is equivalent to our condition (D3), because E(ξ2j ) = 1

and the independence of ξj and Y ∗n,j imply E
(
Tf(ξj, Y

∗
n,j)−Tg(ξj , Y

∗
n,j)

)2
= E

(
f(Y ∗n,j)−g(Y ∗n,j)

)2
.
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It remains to verify the metric entropy condition (2.11.2) of van der Vaart and Wellner (1996),
which is equivalent to

lim
δ↓0

lim sup
n→∞

P ∗
{∫ δ

0

√
logN(ε, TF , d̃n) dε > η

}
= 0

for all η > 0 where

d̃n(Tf, Tg) :=
( 1

nvn

m̃n∑

j=1

ξ2j
(
f(Y ∗n,j) − g(Y ∗n,j)

)2)1/2
.

If |ξ| ≤ c, then d̃n(Tf, Tg) ≤ cdn(f, g) so that N(ε, TF , d̃n) ≤ N(ε/c,F , dn) and the entropy
condition readily follows from (D6).

If ξ is not necessarily bounded, but the uniform entropy condition (D6’) holds, then one may
proceed similarly as in the proof of Theorem 2.10 of Drees and Rootzén (2010). Let

Qn,ξ :=

∑m̃n
j=1 ξ

2
j εY ∗

n,j∑m̃n
j=1 ξ

2
j

∈ Q

with εy denoting the Dirac measure with mass 1 at y, and check that

d̃n(Tf, Tg) =

(∑m̃n
j=1 ξ

2
j

nvn

)1/2

dQn,ξ
(f, g).

Hence N(ε, TF , d̃n) ≤ N
(
ε(nvn/

∑m̃n
j=1 ξ

2
j )1/2,F , dQn,ξ

)
. Moreover, for all τ > 0

P
{(∫

F 2 dQn,ξ

)1/2
> τ

( nvn∑m̃n
j=1 ξ

2
j

)1/2}
= P

{ m̃n∑

j=1

ξ2jF
2(Y ∗n,j) > τ2nvn

}

≤ 1

τ2nvn
E
( m̃n∑

j=1

ξ2jF
2(Y ∗n,j)

)

≤ E(F 2(Yn))

τ2rnvn
.

Since E(F 2(Yn)) = O(rnvn), this probability can be made arbitrarily small for all n by choosing
τ sufficiently large. Thus, for all η > 0, there exists τ > 0 such that with outer probability of at
least 1 − η

∫ δ

0

√
logN(ε, TF , d̃n) dε = τ

∫ δ/τ

0

√
logN(ετ, TF , d̃n) dε

≤ τ

∫ δ/τ

0

√
logN

(
ετ

( nvn∑m̃n
j=1 ξ

2
j

)1/2
,F , dQn,ξ

)
dε

≤ τ

∫ δ/τ

0
sup
Q∈Q

√
logN

(
ε
( ∫

F 2 dQ
)1/2

,F , dQ

)
dε

→ 0
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as δ ↓ 0 by (D6’).

Hence, under both sets of conditions, the asymptotic equicontinuity follows from Theorem 2.11.1
of van der Vaart and Wellner (1996). ✷

Proof of Corollary 2.7. Because

Z∗n,ξ(f) − Zn,ξ(f) =
1√
nvn

mn∑

j=1

ξj(Ef(Yn,j) − f(Yn)) = − 1

mn

mn∑

j=1

ξj · Zn(f),

Eξ

∣∣∣ 1

mn

mn∑

j=1

ξj

∣∣∣ ≤
(
Eξ

( 1

mn

mn∑

j=1

ξj

)2)1/2
=

( 1

mn
V ar(ξ)

)1/2
=

1√
mn

and Zn → Z weakly in ℓ∞(F), one has

Eξ sup
f∈F

|Z∗n,ξ(f) − Zn,ξ(f)| ≤ Eξ

∣∣∣ 1

mn

mn∑

j=1

ξj

∣∣∣ · sup
f∈F

|Zn(f)| −→ 0,

which implies (2.6). Hence the weak convergence Z∗n,ξ → Z follows from the analogous convergence
of Zn,ξ.

Finally, by (2.6), the definition of BL1(ℓ
∞(F)) and Theorem 2.3

∣∣Eξg(Z∗n,ξ) −Eg(Z)
∣∣ ≤

∣∣Eξg(Z∗n,ξ) − Eξg(Zn,ξ)
∣∣ +

∣∣Eξg(Zn,ξ) − Eg(Z)
∣∣ −→ 0

in outer probability uniformly for all g ∈ BL1(ℓ
∞(F)). ✷

Proof of Theorem 3.2. The convergence of (Z
(h,h̃)
n (f))f∈F follows from Corollary 3.6(ii) and

Remark 3.7(i) of Drees and Rootzén (2010); see also Drees and Rootzén (2015). To see this, check
that Condition (D3) is fulfilled since for δ < 1

sup
̺(fD ,fD̃)<δ

1

rnvn
E
( rn∑

i=1

1D∆D̃(X
(h,h̃)
n,i )

)2

≤ max
h̄∈{0,...,h0}

sup
¯̺((A,B),(Ã,B̃))<δ

1

rnvn
E
( rn∑

i=1

1(A×B)∆(Ã×B̃)(Xi/ak,Xi+h̄/ak)
)2

≤ sup
0<t<δ

u(t).

Since, by (B̃3), for i > max(h, h̃)

P
(
X

(h,h̃)
n,i+1 6= 0 | X(h,h̃)

n,1 6= 0
)

≤
∑

j,l∈{0,h,h̃}

P (Xn,i+1+j 6= 0 | Xn,1+l 6= 0)

≤
∑

j,l∈{0,h,h̃}

sn(i + j − l),

(
X

(h,h̃)
n,i

)
1≤i≤n

satisfies the analog to (B̃3) if sn(i) is replaced with

s̃n(i) :=

{ ∑
j,l∈{0,h,h̃} sn(i + j − l), i > max(h, h̃),

1, i ≤ max(h, h̃).
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Moreover, (3.1) ensures that convergence (3.8) of Drees and Rootzén (2010) holds, because

1

v
(h,h̃)
n

E
(
1A×B×Rd(X

(h,h̃)
n,0 ), 1Ã×B̃×Rd(X

(h,h̃)
n,i )

)
=

kP{a−1k (X0,Xh,Xi,Xi+h) ∈ A×B × Ã× B̃}
kP{a−1k (X0,Xh,Xh̃) ∈ R3d \ (−∞, x∗)3d}

→
ν(0,h,i,i+h)(A×B × Ã× B̃)

ν(0,h,h̃)(R
3d \ (−∞, x∗)3d)

=: di
(
fA×B×Rd , fÃ×B̃×Rd

)
,

and likewise

1

v
(h,h̃)
n

E
(
1A×B×Rd(X

(h,h̃)
n,0 ), 1Ã×Rd×B̃(X

(h,h̃)
n,i )

)
→

ν(0,h,i,i+h̃)(A×B × Ã× B̃)

ν(0,h,h̃)(R
3d \ (−∞, x∗)3d)

=: di
(
fA×B×Rd , fÃ×Rd×B̃

)
,

1

v
(h,h̃)
n

E
(
1A×Rd×B(X

(h,h̃)
n,0 ), 1Ã×B̃×Rd(X

(h,h̃)
n,i )

)
→

ν(0,h̃,i,i+h)(A×B × Ã× B̃)

ν(0,h,h̃)(R
3d \ (−∞, x∗)3d)

=: di
(
fA×Rd×B , fÃ×B̃×Rd

)

1

v
(h,h̃)
n

E
(
1A×Rd×B(X

(h,h̃)
n,0 ), 1Ã×Rd×B̃(X

(h,h̃)
n,i )

)
→

ν(0,h̃,i,i+h̃)(A×B × Ã× B̃)

ν(0,h,h̃)(R
3d \ (−∞, x∗)3d)

=: di
(
fA×Rd×B , fÃ×Rd×B̃

)
.

Hence, by Drees and Rootzén (2015), condition (C3) holds and Z
(h,h̃)
n converges to a Gaussian

process with the covariance function specified in formula (3.10) of Drees and Rootzén (2010) in
terms of the functions di.

Since

v
(h,h̃)
n

vn
=

kP{a−1k (X0,Xh,Xh̃) ∈ R
3d \ (−∞, x∗)

3d}
kP{a−1k X0 ∈ Rd \ (−∞, x∗)d}

→
ν(0,h,h̃)(R

3d \ (−∞, x∗)
3d)

ν0(Rd \ (−∞, x∗)d)
,

the convergence of (Z̃n(h̄, A,B))h̄∈{h,h̃),(A,B)∈C to a Gaussian process with covariance function c̃

follows from the approximation (3.6) of Drees and Rootzén (2010). Now the assertion is obvious.
✷

Proof of condition (D6) in Example 3.4. For fixed r ∈ N define functions f
(r)
D : R2rd → R,

f
(r)
D (y1, . . . , yr) :=

∑r
i=1 1D(yi) with D ∈ {A × B | (A,B) ∈ C} = {(x,∞) | x = (x1, . . . , xd) ∈

(x∗,∞)2d}. The subgraph of f
(r)
(x,∞) equals

{
(t, (y1, . . . , yr)) ∈ R

2rd+1 | t < f
(r)
(x,∞)(y1, . . . , yr)

}

=

r⋃

j=0

(−∞, j) × {y = (y1, . . . , yr) | f (r)
(x,∞)(y) = j}

=: Mx.
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Consider some fixed set S = {(t(l), (y
(l)
1 , . . . , y

(l)
r )) | 1 ≤ l ≤ m} of m points in R

2rd+1. If for x, x̃ ∈
R
2d the symmetric difference (x,∞)∆(x̃,∞) does not contain any of the y

(l)
i = (y

(l)
i,1, . . . , y

(l)
i,2d),

1 ≤ i ≤ r, 1 ≤ l ≤ m, then the intersections S ∩ Mx and S ∩ Mx̃ are identical. Since the

hyperplanes {x ∈ R
2d | xj = y

(l)
i,j}, 1 ≤ j ≤ 2d, 1 ≤ i ≤ r, 1 ≤ l ≤ m, divide R

2d into at

most (mr+1)2d hypercubes and for x, x̃ belonging to the same hypercube (x,∞)∆(x̃,∞) does not

contain any of the y
(l)
i , the family C can pick out at most (mr + 1)2d different subsets of S. Hence

it cannot shatter S if (mr + 1)2d < 2m, which is fulfilled if m ≥ 3d log r and r is sufficiently large.

To sum up, so far we have shown that, for some r0 ∈ N and all r ≥ r0, the VC-index of F (r) :=

{f (r)
A×B | (A,B) ∈ C} is less than 3d log r. By Theorem 2.6.7 of van der Vaart and Wellner (1996),

we conclude that

N
(
ε
( ∫

(F (r))2 dQ
)1/2

,F (r), L2(Q)
)
≤ K1r

K2ε−K3 log r (5.11)

for all ε ∈ (0, 1), all probability measures Q on R
2rd, and suitable universal constants K1, K2 and

K3 with F (r)(y) :=
∑r

i=1 1R2d\(−∞x∗]2d(yi) denoting the envelope function of F (r).

Next let H(y) :=
∑r

i=1 1{yi 6=0} for y = (y1, . . . , yr) ∈ R
2rd, X

(h)
n,i := (X̃n,i, X̃n,i+h) for 1 ≤ i ≤ n

and define independent copies Y
(h)∗
n,j of Y

(h)
n,j := (X

(h)
n,i )(j−1)rn<i≤jrn , 1 ≤ j ≤ mn. Consider the

non-zero values of the Nr :=
∑mn

j=1 1
{H(Y

(h)∗
n,j )≤r}

of these blocks with at most r non-zero X
(h)
n,i ’s; if

necessary, these are completed by zeros to obtain vectors Ȳj :=
(
Y

(h)∗
n,j,i1

, . . . , Y
(h)∗
n,j,ir

)
, i.e. Y

(h)∗
n,j,il

6= 0

for 1 ≤ l ≤ H(Y
(h)∗
n,j ) ≤ r and Y

(h)∗
n,j,il

= 0 for H(Y
(h)∗
n,j ) < l ≤ r. Let

Qn,r :=
1

Nr

mn∑

j=1

εȲj
1
{H(Y

(h)∗
n,j )≤r}

,

and consider the squared random L2-distance

d2n(f(x,∞), f(x̃,∞)) =
1

nv
(h,h̃)
n

mn∑

j=1

(
f(x,∞)(Y

(h)∗
n,j ) − f(x̃,∞)(Y

(h)∗
n,j )

)2

≤ Nr

nv
(h,h̃)
n

∫
(f(x,∞) − f(x̃,∞))

2 dQn,r +
1

nv
(h,h̃)
n

mn∑

j=1

H2(Y
(h)∗
n,j )1

{H(Y
(h)∗
n,j )>r}

for all r ∈ N. In particular,

d2n(f(x,∞), f(x̃,∞)) ≤
NRn,ε

nv
(h,h̃)
n

∫
(f(x,∞) − f(x̃,∞))

2 dQn,Rn,ε +
ε2

2

with

Rn,ε := max

(
min

{
r ∈ N

∣∣∣ 1

nv
(h,h̃)
n

mn∑

j=1

H2(Y
(h)∗
n,j )1

{H(Y
(h)∗
n,j )>r}

<
ε2

2

}
, r0

)
,

so that a ball with radius ε̃ :=
(
nv

(h,h̃)
n /(2NRn,ε)

)1/2
ε w.r.t. L2(Qn,Rn,ε) is contained in a ball with

radius ε w.r.t. dn. Note that

∫
(F (r))2 dQRn,ε ≤

1

NRn,ε

mn∑

j=1

H2(Y
(h)∗
n,j )1

{H(Y
(h)∗
n,j )≤Rn,ε}

.
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Hence, in view of (5.11), F̄ (defined in (3.3)) can be covered by

N
(
ε̃,F (Rn,ε), L2(Qn,Rn,ε)

)

≤ K1R
K2
n,ε

(
ε
( nv

(h,h̃)
n

2
∑mn

j=1H
2(Y

(h)∗
n,j )1

{H(Y
(h)∗
n,j )≤Rn,ε}

)1/2
)−K3 logRn,ε

≤ K1R
K2
n,ε

(
ε

Rn,ε

(2
∑mn

j=1 1
{Y

(h)∗
n,j 6=0}

nv
(h,h̃)
n

)−1/2)−K3 logRn,ε

balls with radius ε w.r.t. dn.

Next observe that (3.4) implies E
(
H2+δ(Y

(h)∗
n,1 )

)
= O(rnvn):

E
( rn∑

i=1

1
{X

(h)
n,i 6=0}

)2+δ
≤ E

(
2 max
l∈{0,h}

rn∑

i=1

1{X̃n,i+l 6=0}

)2+δ

≤ 22+δ
∑

l∈{0,h}

E
( rn∑

i=1

1{X̃n,i+l 6=0}

)2+δ

= 23+δE
( rn∑

i=1

1{Xi 6∈(−∞,akx∗)d}

)2+δ

= O(rnvn), (5.12)

where in the last but one line we have used the stationarity of the time series. Hence, E
(
H(Y

(h)∗
n,1 )

)
=

rnP{a−1k (X0,Xn) 6∈ (−∞, x∗)
2d} =: rnv

(h)
n = O(rnvn) implies that rnv

(h)
n = O

(
P{Y (h)∗

n,1 6= 0}
)
,

because else lim supn→∞E(H(Y
(h)∗
n,1 )|Y (h)∗

n,1 6= 0) = ∞ and thus

lim sup
n→∞

E(H2(Y
(h)∗
n,1 ))

E(H(Y
(h)∗
n,1 ))

= lim sup
n→∞

E(H2(Y
(h)∗
n,1 ) | Y (h)∗

n,1 6= 0)

E(H(Y
(h)∗
n,1 ) | Y (h)∗

n,1 6= 0)
≥ lim sup

n→∞
E(H(Y

(h)∗
n,1 ) | Y (h)∗

n,1 6= 0) = ∞,

in contradiction to (5.12). By Chebyshev’s inequality,

P
{ mn∑

j=1

1
{Y

(h)∗
n,j 6=0}

> 2mnP{Y (h)∗
n,1 6= 0}

}
≤ 1

mnP{Y (h)∗
n,1 6= 0}

→ 0.

Since vn, v
(h)
n and v

(h,h̃)
n are all of the same order (by the regular variation of (X0,Xh,Xh̃)), we

conclude that with probability tending to 1

N(ε, F̄ , dn) ≤ K1R
K2
n,ε(K4ε/Rn,ε)

−K3 logRn,ε .
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Finally, (5.12) implies that to each η > 0 there exist constants M, τ > 0 such that

P
{ 1

nv
(h,h̃)
n

mn∑

j=1

H2(Y
(h)∗
n,j )1

{H(Y
(h)∗
n,j )>Mε−(2+τ)/δ}

>
ε2

2
for some 0 < ε ≤ 1

}

≤
∞∑

l=0

P
{ 1

nv
(h,h̃)
n

mn∑

j=1

H2(Y
(h)∗
n,j )1

{H(Y
(h)∗
n,j )>M2l(2+τ)/δ}

>
2−2(l+1)

2

}

≤
∞∑

l=0

22l+3E
( 1

nv
(h,h̃)
n

mn∑

j=1

H2(Y
(h)∗
n,j )1

{H(Y
(h)∗
n,j )>M2l(2+τ)/δ}

)

≤
∞∑

l=0

22l+3

nv
(h,h̃)
n

·
mnE(H2+δ(Y

(h)∗
n,1 ))

(M2l(2+τ)/δ)δ

≤ K6

M δ

∞∑

l=0

2−2lτ

< η

with K6 denoting some universal constant. Hence Rn,ε ≤ Mε−(2+τ)/δ with probability greater
than 1 − η, so that

∫ ξ

0

(
logN(ε, F̄ , dn)

)1/2
dε ≤

∫ ξ

0

(
K7 + K8| log ε| + K9(log ε)2

)1/2
dε

tends to 0 as ξ tends to 0, which proves condition (D6). Hence, under the additional assumptions
of Theorem 3.2, the process Z̃n converges. ✷

Proof of Corollary 3.5. Check that

ρ̂n,A,B(h) =
nP{X0 ∈ akA,Xh ∈ akB} +

√
nvnZ̃n(h,A,B)

nP{X0 ∈ akA} +
√
nvnZ̃n(h,A,Rd)

=
ρak,A,B(h) +

√
vn/nZ̃n(h,A,B)/P{X0 ∈ akA}

1 +
√

vn/nZ̃n(h,A,Rd)/P{X0 ∈ akA}

= ρak,A,B(h) +

√
vn/n

P{X0 ∈ akA}
· Z̃n(h,A,B) − ρak ,A,B(h)Z̃n(h,A,Rd)

1 +
√

vn/nZ̃n(h,A,Rd)/P{X0 ∈ akA}
.

Since by the regular variation of X0

P{X0 ∈ akA}
vn

=
P{X0 ∈ akA}

P{X0 6∈ (−∞, x∗)d}
→ ν0(A)

ν0
(
Rd \ (−∞, x∗)d

) ,

the first assertion is an immediate consequence of Theorem 3.2 and the second follows from vn ∼
ν0
(
R
d \ (−∞, x∗)

d
)
/k. ✷

Proof of Corollary 3.6. The first assertion follows from ˆ̂ρn,A,B(h) − ρâk ,A,B(h) =
ρ̂n,(âk/ak)A,(âk/ak)B(h) − ρak,(âk/ak)A,(âk/ak)B(h), the uniform convergence in (3.5) and the conti-

nuity of Z̃(h, ·, ·) w.r.t. ¯̺.
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Under condition (3.7) we have by the extended regular variation of Φh and the consistency of âk

ρâk ,A,B(h) − ρak,A,B(h) = (Φh(âk) − Φh(ak))Ψh(A,B) + o(|Φh(âk)| + |Φ(ak)|)

≤ |Φh(ak)|
∣∣∣Φh(âk)

Φh(ak)
− 1

∣∣∣|Ψh(A,B)| + o(|Φh(ak)|)

= oP ((k/n)1/2),

which proves the second assertion. ✷

Proof of Theorem 3.8. For h ∈ {0, . . . , h0} and (A,B) ∈ C, let

Z̃n,ξ(h,A,B) :=

√
nv

(h,h̃)
n√

nvn
Z

(h,h̃)
n,ξ (fA×B×Rd)

=
1√
nvn

mn∑

j=1

(1 + ξj)

rn∑

i=1

(
1A×B

(
a−1k (X(j−1)rn+i,X(j−1)rn+i+h

)

− P
{
a−1k (X(j−1)rn+i,X(j−1)rn+i+h) ∈ A×B

})

with Z
(h,h̃)
n,ξ denoting the multiplier process pertaining to Z

(h,h̃)
n (cf. (2.2)). By Proposition 2.5,

Theorem 2.3 and the proof of Theorem 3.2 (in particular, the convergence of v
(h,h̃)
n /vn)

sup
g∈BL1(ℓ∞({0,...,h0}×C))

∣∣Eξg(Z̃n,ξ) − Eg(Z̃)
∣∣ −→ 0 (5.13)

in outer probability.

Let

gj(h,A,B) = fA×B×Rd(Y
(h,h̃)
n,j ) =

rn∑

i=1

1A×B
(
a−1k (X(j−1)rn+i,X(j−1)rn+i+h)

)
.

Recall from the proof of Theorem 3.2 that

ρ̂n,A,B(h) =

∑mn
j=1 gj(h,A,B)

∑mn
j=1 gj(h,A,R

d)
+ op((nvn)−1/2)

(cf. also Corollary 3.6 of Drees and Rootzén, 2010). Thus

Rn,ξ(h,A,B)

=
√
nvn

( ∑mn
j=1(1 + ξj)gj(h,A,B)

∑mn
j=1(1 + ξj)gj(h,A,Rd)

−
∑mn

j=1 gj(h,A,B)
∑mn

j=1 gj(h,A,R
d)

+ op((nvn)−1/2)

)

=
√
nvn

∑mn
j=1 ξjgj(h,A,B) −∑mn

j=1 ξjgj(h,A,R
d) ·∑mn

j=1 gj(h,A,B)/
∑mn

j=1 gj(h,A,R
d)

∑mn
j=1(1 + ξj)gj(h,A,Rd)

+ op(1).

Note that

mn∑

j=1

ξjgj(h,A,B) =
√
nvnZ̃n,ξ(h,A,B) +

mn∑

j=1

ξjrnP{(X0,Xh)/ak ∈ A×B},
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where according to the central limit theorem and the regular variation of (X0,Xh) the second term

is of the order OP

(
m
−1/2
n rnvn

)
= OP

(√
nvn

√
rnvn

)
= oP

(√
nvn

)
. Hence

Rn,ξ(h,A,B) = nvn
Z̃n,ξ(h,A,B) − ρ̂n,A,B(h)Z̃n,ξ(h,A,R

d) + oP (1)

mnrnP{X0/ak ∈ A} + OP (
√
nvn)

+ oP (1)

=
ν0
(
R
d \ (−∞, x∗)

d
)

ν0(A)

(
Z̃n,ξ(h,A,B) − ρ̂n,A,B(h)Z̃n,ξ(h,A,R

d)
)

+ oP (1)

uniformly for h ∈ {0, . . . , h0}, (A,B) ∈ C. In the last step we have used that by the regular
variation of X0 and the definition of vn

P{X0/ak ∈ A}
vn

→ ν0(A)

ν0
(
Rd \ (−∞, x∗)d

)

where, by assumption, ν0(A) is bounded away from 0. Now we can conclude (3.9) from (5.13) and
(3.5).

Finally, notice that
∣∣g(R̂n,ξ) − g(Rn,ξ)

∣∣ ≤ suph∈{0,...,h0},(A,B)∈C

∣∣Rn,ξ(h, (âk/ak)A, (âk/ak)B)−
Rn,ξ(h,A,B)

∣∣ → 0 in outer probability for all g ∈ BL1

(
ℓ∞({0, . . . , h0} × C)

)
, because âk/ak → 1

and Rn,ξ(h, ·, ·) is asymptotically equicontinuous w.r.t. ¯̺. Therefore, (3.10) is an immediate con-
sequence of (3.9). ✷

Appendix

The following conditions were used by Drees and Rootzén (2010, 2015). For the ease of reference,
we use the same numbering as in these papers.

(B1) The rows (Xn,i)1≤i≤n are stationary, ℓn = o(rn), ℓn → ∞, rn = o(n), rnvn → 0, nvn → ∞
(B2) βn,lnn/rn → 0.

(B̃3) For all n ∈ N and all 1 ≤ i ≤ rn there exists sn(i) ≥ P (Xn,i+1 6= 0 | Xn,1 6= 0) such that
s∞(i) := limn→∞ sn(i) exists and limn→∞

∑rn
i=1 sn(i) =

∑∞
i=1 s∞(i) < ∞.

Recall that for y = (y1, . . . , yr) and l < r we define y(r−l) := (y1, . . . , yr−l).

(C1) For ∆n(f) := f(Yn) − f(Y
(rn−ℓn)
n )

E
(

(∆n(f) − E∆n(f))21{|∆n(f) − E∆n(f)| ≤ √
nvn}

)
= o(rnvn)

P
{
|∆n(f) − E∆n(f)| > √

nvn
}

= o(rn/n)

for all f ∈ F .

(C2) E
(

(f(Yn) − Ef(Yn))21{|f(Yn) − Ef(Yn)| > ε
√
nvn}

)
= o(rnvn), ∀ ε > 0, f ∈ F .

(C3)
1

rnvn
Cov

(
f(Yn), g(Yn)

)
→ c(f, g), ∀ f, g ∈ F .
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(D1) The index set F consists of cluster functionals f such that E(f2(Yn)) is finite for all
n ≥ 1 and such that the envelope function

F (x) := sup
f∈F

|f(x)|

is finite for all x ∈ E∪.

(D2)

E∗
(
F (Yn)1{F (Yn) > ε

√
nvn}

)
= o

(
rn
√

vn/n
)
, ∀ ε > 0.

(D2’)

E∗
(
F 2(Yn)1{F (Yn) > ε

√
nvn}

)
= o(rnvn), ∀ ε > 0.

(D3) There exists a semi-metric ρ on F such that F is totally bounded (i.e., for all ε > 0 the
set F can be covered by finitely many balls with radius ε w.r.t. ρ) such that

lim
δ↓0

lim sup
n→∞

sup
f,g∈F , ρ(f,g)<δ

1

rnvn
E(f(Yn) − g(Yn))2 = 0.

Finally, we consider different entropy conditions, which measure the complexity of the family F .
The bracketing number N[·](ε,F , Ln

2 ) is defined as the smallest number Nε such that for each n ∈ N

there exists a partition (Fε
n,k)1≤k≤Nε of F such that

E∗ sup
f,g∈Fε

n,k

(
f(Yn) − g(Yn)

)2 ≤ ε2rnvn, ∀ 1 ≤ k ≤ Nε. (5.14)

For a given semi-metric d on F , the (metric) covering number N(ε,F , d) is the minimum number
of balls with radius ε w.r.t. d needed to cover F . The condition (D6) bounds the rate of increase
of N(ε,F , dn) as ε tends to 0 for the random semi-metric

dn(f, g) :=
( 1

nvn

mn∑

j=1

(
f(Y ∗n,j) − g(Y ∗n,j)

)2)1/2
,

that is the L2-semi-metric w.r.t. to empirical measure (nvn)−1
∑mn

j=1 εY ∗
n,j

, where Y ∗n,j, 1 ≤ j ≤ mn,

are i.i.d. copies of Yn,1. In (D6’) we instead use the supremum of all covering numbers N(ε,F , dQ)

where dQ(f, g) :=
( ∫

(f − g)2 dQ
)1/2

and Q ranges over the set of discrete probability measures Q
on (E∪,E∪).

(D4)

lim
δ↓0

lim sup
n→∞

∫ δ

0

√
logN[·](ε,F , Ln

2 ) dε = 0.

(D5) For all δ > 0, n ∈ N, (ei)1≤i≤⌊mn/2⌋ ∈ {−1, 0, 1}⌊mn/2⌋ and k ∈ {1, 2} the map

supf,g∈F ,ρ(f,g)<δ

∑⌊mn/2⌋
j=1 ej

(
f(Y ∗n,j) − g(Y ∗n,j)

)k
is measurable.
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(D6)

lim
δ↓0

lim sup
n→∞

P ∗
{∫ δ

0

√
logN(ε,F , dn) dε > τ

}
= 0, ∀τ > 0.

(D6’) The envelope function F is measurable with E(F 2(Yn)) = O(rnvn) and

∫ 1

0
sup
Q∈Q

√
logN(ε(

∫
F 2dQ)1/2,F , dQ) dε < ∞.
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Figure 1: Empirical coverage probability of confidence intervals (4.1) for ρak ,(1,∞),(1,∞)(h) as a
function of h, constructed using multiplier block bootstrap (blue ∗), stationary bootstrap suggested
by Davis et al. (red +) and the modification thereof (black ◦) with (average) block length r = 100
(left) and r = 20 (right) for the t-GARCH model (i), different thresholds ak with exceedance
probability p are used in the three rows; the nominal coverage probability 0.95 is indicated by the
horizontal line.
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Figure 2: Empirical coverage probability of confidence intervals (4.1) for the pre-asymptotic ex-
tremogram ρak,(1,∞),(1,∞)(h) as a function of h, constructed using multiplier block bootstrap (blue
∗), stationary bootstrap suggested by Davis et al. (red +) and the modification thereof (black ◦)
with (average) block length r = 100 (left) and r = 20 (right) for the t-GARCH model (i), based
only on those simulations in which for some t both Xt and Xt+h exceed the threshold ak.
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Figure 3: Empirical coverage probability of confidence intervals (4.2) for ρak ,(1,∞),(1,∞)(h) as a
function of h, constructed using multiplier block bootstrap (blue ∗), stationary bootstrap suggested
by Davis et al. (red +) and the modification thereof (black ◦) with (average) block length r = 100
(left) and r = 20 (right) for the t-GARCH model (i).
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Figure 4: Empirical coverage probability of confidence intervals (4.2) (4.1) for the exremogram
ρ(1,∞),(1,∞)(h) as a function of h, constructed using multiplier block bootstrap (blue ∗), stationary
bootstrap suggested by Davis et al. (red +) and the modification thereof (black ◦) with (average)
block length r = 100 (left) and r = 20 (right) for the t-GARCH model (i).
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Figure 5: Empirical coverage probability of confidence intervals (4.1) (solid lines) and (4.2) (dashed
lines) constructed using multiplier block bootstrap (blue ∗) and modified stationary bootstrap
(black ◦) with block length r = 100 for the AR(1) model (ii) (left) and MA(3) model (iii) (right)
and different thresholds with exceedance probability p; the nominal coverage probability 0.95 is
indicated by the horizontal line.

37


	1 Introduction
	2 Multiplier processes
	3 Processes of Extremograms
	4 Finite sample performance of bootstrapped extremograms
	5 Proofs

