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Abstract. We analyze the joint extremal behavior of n random products of the form
∏m

j=1
X

aij

j , 1 ≤ i ≤ n, for
non-negative, independent regularly varying random variables X1, . . . , Xm and general coefficients aij ∈ R. Products
of this form appear for example if one observes a linear time series with gamma type innovations at n points in time.
We combine arguments of linear optimization and a generalized concept of regular variation on cones to show that
the asymptotic behavior of joint exceedance probabilities of these products is determined by the solution of a linear
program related to the matrix A = (aij).

Keywords: extreme value theory, linear programming, M-convergence, random products, regular variation.

1. Introduction

The tail behavior of products of powers of heavy-tailed positive random variables is of crucial importance
in many applications, particularly in finance, but e.g. in network modeling too. In stochastic volatility time
series, the log-volatilities are usually modelled as linear time series

log σt =

∞
∑

i=0

αiηt−i, t ∈ Z,

If the innovations ηi, i ∈ Z, have an exponential or gamma type tail, then the volatility σt at time t is a
product of powers of the regularly varying random variables Xi := eηi , i ∈ Z, with exponents depending on t.
To assess the risk of a volatile market at different time points t1, . . . , tn, one thus has to analyze probabilities
of the type P (

∏∞
j=1 X

aij

j > x, 1 ≤ i ≤ n) for suitable exponents aij . Using a new Breiman type result, it
was shown in Janßen and Drees (2016) that these probabilities also determine the risk of jointly large losses
over different periods.

Similarly, in a credit risk model for n risks with k independent factors Z1, . . . , Zk, the i-th risk is often
modeled as a multiple of exp(

∑k
j=1 aijZj + Yi) with Yi, 1 ≤ i ≤ n, denoting the idiosyncratic part (cf.

Embrechts et al. (2014)). If the Zj , 1 ≤ j ≤ k, and Yi, 1 ≤ i ≤ n, have an exponential or gamma type tail,
the analysis of the joint tail risk again leads to probabilities of the above type.

In network modeling, both transmission durations L and rates R arising from one source may be modeled
by regularly varying random variables with different indices αL and αR (see, e.g., Maulik et al. (2002)). The
total volume of traffic from one source can then be expressed as XαL

L XαR

R for random variables XL, XR

which are regularly varying with index −1. If one wants to determine the probability that different sources
contribute large volumes in the same period, then again probabilities of the above type arise. Moreover, one
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2 A. Janßen and H. Drees

may introduce dependencies between XL and XR for the same or for different sources by modeling them as
products of (partially) identical factors with different exponents.

As the example of log-volatilities demonstrates, the analysis of the joint tail behavior of power products is
equivalent to the corresponding analysis for linear combinations of random variables with exponential type
tails such that exponentials of these random variables are regularly varying. Hence the results given below
allow a tail analysis in such settings too.

Motivated by these examples, we analyze the asymptotic behavior of the probability of joint exceedances
of power products, i.e. of

P





m
∏

j=1

X
aij

j > cix, 1 ≤ i ≤ n



 , ci > 0, 1 ≤ i ≤ n, (1.1)

where Xj are independent, non-negative regularly varying random variables and aij are coefficients which
may be negative. We restrict the analysis to the case of a finite number m of factors, but extensions to
an infinite number of factors, using a Breiman-type argument, are possible. In Janßen and Drees (2016),
such probabilities were investigated under the restrictive assumption that no coefficient is negative. It was
shown there, that the probabilities behaved asymptotically like a multiple of

∏m
i=1 P (Xi > xκi), where

κ = (κ1, . . . , κm) is the solution to a linear program determined by the matrix A = (aij). While the
restriction to positive coefficients aij seems acceptable e.g. for multi-factor models, it is quite severe for log-
volatility time series. Moreover, essentially only the case n = 2 was considered in Janßen and Drees (2016)
and the techniques employed do not easily generalize to higher dimensions, which limits the applicability of
the established results further.

Using a recently introduced abstract concept of regular variation on cones based on the notion of M-
convergence (see Hult and Lindskog (2006), Lindskog et al. (2014)), we can avoid all these drawbacks.
To this end, we first introduce a non-standard form of regular variation on the cone (0,∞)m for the
random vector (X1, . . . , Xm), from which one may conclude the asymptotics of probabilities of the type
P ((X1/x

κ1 , . . . , Xm/xκm) ∈ B) for suitable coefficients κ1, . . . , κm and sets B ⊂ (0,∞)m that are bounded
away from the boundary of the cone. Unfortunately, in general the sets M = {x ∈ R

m :
∏m

j=1 x
aij

j > ci, 1 ≤
i ≤ n} pertaining to the probabilities (1.1) are not of this type. Hence, quite involved arguments are needed
to prove that the parts of M close to the boundary of the cone are asymptotically negligible. To this end,
auxiliary results are proved in Section 4.3 which are of interest on their own. In particular, Proposition 4.4
can be seen as a multivariate version of the direct half of Karamata’s Theorem, cf. Remark 4.5.

The outline of this paper is as follows: In Section 2 an abstract notion of regular variation on cones is
briefly recalled, with a view towards the later application of this concept. Our main results are stated in
Section 3, with Theorem 3.3 being the central conclusion. Proofs of the results are given in Section 4.2 while
some auxiliary results needed in the proofs are gathered in Section 4.3.

Notations and conventions

We write bold letters for vectors, i.e. x is short for (x1, . . . , xn) ∈ Rn if it is clear that x is of dimension n.
The i-th component of x is denoted by xi. We write 0 and 1 for a (column) vector of suitable dimension
which consists of only zeros or only ones. Inequalities for vectors are meant to hold componentwise. We
denote the complement of a set A by Ac and its boundary by ∂A. For x ∈ Rn and A ⊂ Rn we set d(x, A) =
infa∈A ‖x− a‖, where ‖ · ‖ denotes the Euclidean norm. Similarly, we set d(A,B) = infa∈A,b∈B ‖a−b‖. For
A ⊂ Rn and r > 0 set Ar := {x ∈ Rn : d(x, A) < r}. Denote the Borel sigma algebra on Rn by Bn and for
a set A ∈ Bn write Bn ∩ A = {B ∈ Bn : B ⊂ A}. We write λλ(·) for the Lebesgue measure on Bn.

2. General regular variation on cones

In the following, we will make frequent use of an extension of the concept of multivariate regular variation
which was introduced in Hult and Lindskog (2006) and Lindskog et al. (2014). For some m ∈ N, let ⊗ :
(0,∞)× [0,∞)m → [0,∞)m, (λ,x) 7→ λ⊗x be a “multiplicatish” mapping with the following two properties:
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Joint exceedances of random products 3

(A1) the mapping ⊗ is continuous,
(A2) 1⊗ x = x and for λ1, λ2 > 0 we have λ1 ⊗ (λ2 ⊗ x) = (λ1 · λ2)⊗ x for all x ∈ [0,∞)m.

Consider a closed subcone C of [0,∞)m w.r.t. this mapping, that is, λ⊗C := {λ⊗ x : x ∈ C} ⊂ C for all
λ > 0. We assume that the following condition holds:

(A3) d(x,C) < d(λ ⊗ x,C) if λ > 1 and x ∈ O.

The complement O := [0,∞)m \ C is an open cone, which is assumed not to be empty.
The notion of regular variation on O w.r.t. ⊗, which is introduced below, rests on the definition of

convergence in the space MO of Borel measures on (O,Bm ∩O) whose restrictions to [0,∞)m \Cr are finite
for each r > 0. Denote by C+(O) the class of non-negative, bounded and continuous functions f on O

vanishing on Cr for some r > 0. We endow MO with the topology that is generated by open sets of the form

{

ν ∈ MO :

∣

∣

∣

∣

∫

fidν −

∫

fidµ

∣

∣

∣

∣

< ǫ, 1 ≤ i ≤ k

}

with µ ∈ MO, fi ∈ C+(O), i = 1, . . . , k, and ǫ > 0. A Portmanteau Theorem (cf. Lindskog et al. (2014),
Theorem 2.1) shows that convergence of measures νn to a measure ν in this topology is equivalent to
the convergence νn(A) → ν(A) for all Borel sets A in O which are bounded away from C and for which
ν(∂A) = 0.

Definition 2.1 (see Lindskog et al. (2014), Definitions 3.1 and 3.2). A measure ν ∈ MO is called regularly
varying on O with respect to the mapping ⊗ if there exists an increasing, regularly varying function c :
[0,∞) → (0,∞) and a nonzero measure µ ∈ MO such that

c(x)ν(x ⊗ ·) → µ(·) in MO as x → ∞.

Lemma and Definition 2.2 (see Lindskog et al. (2014), Theorem 3.1). Definition 2.1 implies that there
exists an α ≥ 0 such that

µ(λ⊗A) = λ−αµ(A) (2.1)

for all λ > 0 and Borel sets A ⊂ O. We call −α the index of regular variation of the measure ν in Definition
2.1. The value of α in (2.1) is equal to the index of regular variation of the normalizing function c in Definition
2.1.

Proof. Equation (2.1) is stated in Lindskog et al. (2014), Theorem 3.1. By this and (A2), we have, for all
λ > 0 and A in O which are bounded away from C and for which ν(∂A) = 0, that

lim
x→∞

c(λx)

c(x)
= lim

x→∞

ν(x⊗A)

ν((λx) ⊗A)
= lim

x→∞

ν(x⊗ A)

ν(x⊗ (λ⊗A))
=

µ(A)

µ(λ⊗A)
= λα.

Therefore, c is (univariate) regularly varying with index α.

Definition 2.1 unifies several different concepts of regular variation of a random vector X = (X1, . . . , Xm)
with values in [0,∞)m and distribution ν.

Example 2.3 (Multivariate regular variation). If ⊗ denotes the usual scalar multiplication λ⊗x = λx and
C := {0}, then O = [0,∞)m \ {0} and Definition 2.1 reads as

c(x)P

((

X1

x
, . . . ,

Xm

x

)

∈ A

)

→ µ(A)

as x → ∞ for all µ-continuity sets A ⊂ Bm ∩ [0,∞)m bounded away from 0. This is the classical regular
variation of X (see e.g. Resnick (2007), Section 6.1.4).
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4 A. Janßen and H. Drees

Example 2.4 (Ledford-Tawn-model). If C := [0,∞)m \ (0,∞)m, then regular variation on O = (0,∞)m

w.r.t. the usual scalar multiplication has been considered by Ledford and Tawn (1997) in the bivariate case
m = 2 (after suitable marginal standardization). It is equivalent to the convergence

c̃(x)P

((

X1

x
, . . . ,

Xm

x

)

∈ A

)

→ µ(A)

as x → ∞ for all µ-continuity sets A ⊂ Bm ∩ [0,∞)m bounded away from both axes in the case m = 2 resp.
from {x : xi = 0 for some 1 ≤ i ≤ m} in the general case.

Note that a random vector X may be regularly varying in the classical sense of Example 2.3 and in the
present sense with different normalizing functions c resp. c̃. If c(x) = o(c̃(x)) as x → ∞, then X is said to
exhibit hidden regular variation (cf. Resnick (2007), Section 9.4.1).

Here, we consider a different mapping ⊗ and different cones as well. Let, for κ ∈ [0,∞)m,

⊗κ : (0,∞)× [0,∞)m → [0,∞)m,

(λ, (x1, . . . , xm)) 7→ λ⊗κ (x1, . . . , xm) := (λκ1x1, . . . , λ
κmxm).

We want to analyze the asymptotic behavior of m-dimensional non-negative random vectors that have ex-
treme values in n ∈ {1, . . . ,m} of their components. For ease of notation, assume that the first n components
of κ are positive and the last m− n components are equal to zero, so that xκi → ∞ as x → ∞ only for 1 ≤
i ≤ n. Define the cones Cn = ([0,∞)n \ (0,∞)n)× [0,∞)m−n and On = [0,∞)m \Cn = (0,∞)n× [0,∞)m−n

w.r.t. the mapping ⊗κ. Since

d(x,Cn) = min{x1, . . . , xn} < min{λκ1x1, . . . , λ
κnxn} = d(λ⊗κ x,Cn)

for all λ > 1 and x ∈ On, the assumptions (A1)–(A3) are satisfied. Note that in the case n = m and κ = 1,
the regular variation on On w.r.t. ⊗κ is equivalent to the concept of regular variation considered in Example
2.4.

Lemma 2.5. Let κ ∈ [0,∞)m with κi > 0, 1 ≤ i ≤ n, and κi = 0, n < i ≤ m, for some n ≤ m. Furthermore,
let X1, . . . , Xm be independent, non-negative random variables such that X1, . . . , Xn are regularly varying
with index −1. Then, P (Xj)1≤j≤m is regularly varying on On w.r.t. ⊗κ with index −α = −

∑m
i=1 κi.

Proof. From the independence of X1, . . . , Xm and the regular variation of X1, . . . , Xn it follows that

lim
x→∞

P (Xj)1≤j≤m

(

x⊗κ

((

×
1≤i≤n

(ai,∞)

)

×

(

×
n<j≤m

[bj ,∞)

)))

∏n
i=1 P (Xi > xκi)

= lim
x→∞

∏n
i=1 P (Xi > aix

κi)
∏m

j=n+1 P (Xj ≥ bj)
∏n

i=1 P (Xi > xκi)

=

n
∏

i=1

a−1
i

m
∏

j=n+1

P (Xj ≥ bj) =: µ

((

×
1≤i≤n

(ai,∞)

)

×

(

×
n<j≤m

[bj,∞)

))

(2.2)

for all ai > 0, 1 ≤ i ≤ n, and bj ≥ 0, n < j ≤ m. Since these limits are finite, we have shown that the
family of measures c(x)P (Xj)1≤j≤m (x⊗κ ·), x > 0, is relatively compact in MOn (cf. Theorems 2.4 and 2.5

in Lindskog et al. (2014)), where c(x) = (
∏n

i=1 P (Xi > xκi))
−1

. Furthermore, all accumulation points of
this family agree on a generating π-system. Thus, P (Xj)1≤j≤m is regularly varying on On w.r.t. ⊗κ. The
index of regular variation follows from Lemma and Definition 2.2, since c is regularly varying with index
∑n

i=1 κi =
∑m

i=1 κi.

imsart ver. 2014/10/16 file: randomproductsjanssendreesarxivv2.tex date: October 26, 2018



Joint exceedances of random products 5

3. Joint extremal behavior of random power products

In the following, let X1, . . . , Xm,m ∈ N, be independent, non-negative random variables, not necessarily
with the same distribution. We will give asymptotics for the joint exceedance probabilities (1.1) of n ≤ m
“power products”

m
∏

j=1

X
aij

j , 1 ≤ i ≤ n, (3.1)

over the same threshold x as x → ∞ for rather general values of aij ∈ R, 1 ≤ i ≤ n, 1 ≤ j ≤ m. A product
may take the value +∞ if Xj = 0 and aij < 0 for some i, j, but throughout we use the convention that
+∞ · 0 = 0 and 00 = 1.

In order to derive our results we make some assumptions about the tail behavior of the Xj , 1 ≤ j ≤ m. We
assume that all or at least the “relevant” (in a sense specified below) Xj , 1 ≤ j ≤ m, are regularly varying
with index −1. We will see that the joint extremal behavior of the products in (3.1) is closely related to the
solution of the linear optimization problem

find x ≥ 0 such that Ax ≥ 1,

m
∑

i=1

xi → min! (3.2)

with A = (aij)1≤i≤n,1≤j≤m ∈ Rn×m. Before we give proofs for the asymptotic behavior of the joint ex-
ceedances, we want to motivate the connection of our question to the linear optimization problem in (3.2).
To this end, assume for simplicity that aij ≥ 0 for all 1 ≤ i ≤ n, 1 ≤ j ≤ m. Let y ≥ 0 be a feasible solution
to (3.2), i.e. Ay ≥ 1. Note that for all x ≥ 1

Xj > xyj , 1 ≤ j ≤ m ⇒
m
∏

j=1

X
aij

j ≥ x
∑m

j=1 aijyj ≥ x, 1 ≤ i ≤ n,

by (3.2) and thus

P





m
∏

j=1

X
aij

j ≥ x, 1 ≤ i ≤ n



 ≥
m
∏

j=1

P (Xj > xyj ). (3.3)

If all Xj , 1 ≤ j ≤ m, are independent and regularly varying with index −1, the right hand side is a regularly
varying function in x, with index α = −

∑m
j=1 yj . Now, the smaller the value of |α|, the slower is the decay

of the function on the right hand side as x → ∞. So, heuristically, if the value of |α| and thus the value of
∑m

j=1 yj is minimized, this is the most likely combination of extremal events for the single Xj which leads
to joint extremal behavior of the power products (3.1). We will see in Theorem 3.3 that the right hand side
of (3.3) is not only a lower bound for the joint exceedance probabilities but also, under some additional
assumptions about real valued A, tail equivalent to it. For a general (not necessarily non-negative) matrixA,
the next theorem gives upper and lower bounds for the order of decay of the joint exceedance probabilities.

Theorem 3.1. Let X1, . . . , Xm be independent non-negative random variables. Let κ = (κ1, . . . , κm)T be
an optimal solution to (3.2).

(a) Assume that all Xj , 1 ≤ j ≤ m, are regularly varying with index -1. Then for all ǫ > 0,

x−
∑m

i=1 κi−ǫ = o



P





m
∏

j=1

X
aij

j > x, 1 ≤ i ≤ n







 , x → ∞. (3.4)
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6 A. Janßen and H. Drees

(b) Assume that E(X1−δ
j ) < ∞, 1 ≤ j ≤ m, for all δ ∈ (0, 1), and additionally that there exists c > 0 such

that P (Xj ≥ c) = 1 for all 1 ≤ j ≤ m with κj = 0. Then for all ǫ > 0,

P





m
∏

j=1

X
aij

j > x, 1 ≤ i ≤ n



 = o(x−
∑m

i=1 κi+ǫ), x → ∞. (3.5)

Remark 3.2. In contrast to the other results of this and the following section, the assumptions of Theorem
3.1 (b) do not include regular variation of at least some of the Xj , 1 ≤ j ≤ m. Note, however, that regular
variation with index −1 of X1, . . . , Xm implies that E(X1−δ

j ) < ∞, 1 ≤ j ≤ m, for all δ ∈ (0, 1).

The proof is given in Section 4.1. Under some additional assumptions about the structure of A, the
following Theorem 3.3 gives precise asymptotics for the joint exceedance probabilities of the random power
products.

Theorem 3.3. Let A = (aij) ∈ Rn×m, n ≤ m, be such that the optimal solution κ to the linear optimization
problem (3.2) is unique and non-degenerate (i.e. it has n positive components) and denote by Aκ ∈ R

n×n

the matrix which is derived from A by deleting all columns 1 ≤ j ≤ m for which κj = 0. Then this matrix
is invertible.

Let X1, . . . , Xm be independent non-negative random variables and assume that there exists ǫ > 0 such
that for

1 ≤ j ≤ m with κj > 0 : Xj is regularly varying with index − 1

1 ≤ j ≤ m with κj = 0 :
E
(

X
(1TA−1

κ
A)j+ǫ

j

)

< ∞ and

E
(

X
(1TA−1

κ
A)j−ǫ

j

)

< ∞
. (3.6)

Then

lim
x→∞

P
(

∏m
j=1 X

aij

j > cix, 1 ≤ i ≤ n
)

∏

{1≤j≤m:κj>0}

P (Xj > xκj )
(3.7)

= | detAκ|
−1

∏n
i=1 c

−(1TA−1
κ

)i
i

∏n
i=1(1

TA−1
κ )i

∏

j:κj=0

E
(

X
(1TA−1

κ
A)j

j

)

=: µ

(

×
1≤i≤n

(ci,∞)

)

(3.8)

for all ci > 0, 1 ≤ i ≤ n. In particular, the distribution of (
∏m

j=1 X
aij

j )1≤i≤n is regularly varying on (0,∞)n

w.r.t. scalar multiplication (in the sense of Example 2.4). The normalizing function can be chosen as c(x) =
(
∏

{1≤j≤m:κj>0} P (Xj > xκj ))−1 and the corresponding limit measure is µ as above. The index of regular

variation is equal to −
∑m

j=1 κj = −1TA−1
κ

1.

Remark 3.4. Given the expression in (3.8), it is obviously necessary to assume that E
(

X
(1TA−1

κ
A)j

j

)

< ∞ for

all 1 ≤ j ≤ m with κj = 0 in order to ensure that the limit in (3.7) is finite. The actual assumption about the
moments of those Xj with κj = 0 which is stated in Theorem 3.3 is similar to the assumption in Breiman’s

lemma (cf. Breiman (1965)) in that we need a little more than the finiteness of the moments E
(

X
(1TA−1

κ
A)j

j

)

in order to apply a dominated convergence theorem. Furthermore, note that for (1TA−1
κ

A)j > 0 only the
first moment assumption is necessary, the second follows for ǫ > 0 chosen small enough. On the other hand,
if (1TA−1

κ
A)j < 0, then only the second assumption is necessary. Only in the case (1TA−1

κ
A)j = 0 both

assumptions are necessary.

Remark 3.5. (a) Under the given assumptions the vector 1TA−1
κ

which appears in the statement of The-
orem 3.3 is the transposed of the unique optimal solution to the so-called dual problem to (3.2), which
is given by

find x ≥ 0 such that ATx ≤ 1,
m
∑

i=1

xi → max!, (3.9)
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Joint exceedances of random products 7

see the proof of Theorem 3.3 and (4.18) for details. This implies that (1TA−1
κ

A)T = AT
(

1TA−1
κ

)T
≤ 1

and by the assumed uniqueness and non-degeneracy of the solution even (1TA−1
κ

A)j < 1 for those j
with κj = 0, cf. the remark after (4.27) in the proof of Theorem 3.3. Therefore, the assumptions in
(3.6) are always satisfied if all Xj , 1 ≤ j ≤ m, are regularly varying with index −1 and bounded away
from 0 (or their distributions concentrate sufficiently little mass around 0).

(b) For a general linear program of the form

find x ≥ 0 such that Ax ≥ 1,
m
∑

j=1

zjxj → min! (3.10)

with optimal solution κ, the value of zj − (1TA−1
κ

A)j is sometimes called the reduced cost of variable
1 ≤ j ≤ m. If κj = 0 in the optimal solution, then this solution is not affected by a change of zj in the
objective function in (3.10) as long as zj > (1TA−1

κ
A)j , cf. Section 2.5.1 in Sierksma (1996). In the

context of Theorem 3.3, the values of (1TA−1
κ

A)j for j with κj = 0 can be interpreted in a similar
way, since the left or right tail behavior of these Xj does not influence the extremal behavior of the
random products (except for a possible change in the multiplicative constant of the limit) as long as
there exists ǫ > 0 such that

P (Xj > x) = O(x−(1T A−1
κ

A)j−ǫ), if (1TA−1
κ

A)j ≥ 0

P (X−1
j > x) = O(x(1T A−1

κ
A)j−ǫ), if (1TA−1

κ
A)j ≤ 0

.

The proof of Theorem 3.3 is given in detail in Section 4.2, but we want to lay out briefly the main idea
here. To this end, assume w.l.o.g. that the first n components of κ are positive and the last m−n components
are equal to zero. The main idea is to use the regular variation of the measure ν :=

⊗m
i=1 P

Xi (where PXi

stands for the law of Xi) on On w.r.t. ⊗κ, cf. Lemma 2.5. Furthermore, we show that under our assumptions
the equality Aκ = 1 holds. Then,

P





m
∏

j=1

X
aij

j > cix, 1 ≤ i ≤ n





= P





m
∏

j=1

(

Xj

xκj

)aij

> ci, 1 ≤ i ≤ n



 = ν(x ⊗κ M) (3.11)

for

M = M(A, c) :=







x ∈ [0,∞)m :

m
∏

j=1

x
aij

j > ci, 1 ≤ i ≤ n







.

The next step is to apply the Portmanteau Theorem (cf. Theorem 2.1 in Lindskog et al. (2014)) to show
convergence of the right hand side in (3.11) under suitable normalization as x → ∞. Note, however, that
the set M is not bounded away from Cn (cf. Section 2), so we cannot directly apply this argument. As an
intermediate step, we therefore have to show that we can replace M by M ∩ (δ,∞)n × [0,∞)m−n, δ > 0, in
(3.11) and that under the necessary normalization the difference is negligible as δ ց 0.

The following example illustrates the statements of Theorem 3.3 and in particular the role of negative
coefficients aij . It also demonstrates applications of Theorem 3.3 for the extreme value analysis of time
series.

Example 3.6. Let (Yt)t∈Z be a log-linear time series of the form

ln(Yt) = ln(Xt)− 0.5 ln(Xt+1), t ∈ Z,

where Xt, t ∈ Z, are i.i.d. and regularly varying with index −1. Using Theorem 3.3, we can derive the
asymptotics for the probability that three consecutive extreme observations of similar magnitude occur, i.e.
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8 A. Janßen and H. Drees

for P (Y1 > c1x, Y2 > c2x, Y3 > c3x), ci > 0, i = 1, 2, 3. Rewrite this probability as

P (X1X
−0.5
2 > c1x,X2X

−0.5
3 > c2x,X3X

−0.5
4 > c3x) = P





4
∏

j=1

X
aij

j > cix, 1 ≤ i ≤ 3





with

A = (aij)1≤i≤3,1≤j≤4 =





1 −0.5 0 0
0 1 −0.5 0
0 0 1 −0.5



 .

The optimal solution to (3.2) is then given by κ = (7/4, 3/2, 1, 0) and this solution is unique and non-
degenerate. Furthermore,

(1TA−1
κ

A)4 =






1T





1 −0.5 0
0 1 −0.5
0 0 1





−1

A







4

= ((1, 3/2, 7/4)A)4 = −7/8.

Let us first additionally assume that E(X
−7/8−ǫ
4 ) < ∞ for some ǫ > 0. Then all assumptions of Theorem

3.3 are satisfied and the random vector (Y1, Y2, Y3) is regularly varying on (0,∞)3 with respect to scalar

multiplication. The index of regular variation is equal to −
∑4

j=1 κj = −17/4 and the limit measure µ is
given by

µ(×3
i=1(ci,∞)) =

8

21
c−1
1 c

−3/2
2 c

−7/4
3 E(X

−7/8
4 ).

Note that the negative exponents do influence the solution of the optimization problem and hence the index
of regular variation. If, for instance, in the matrix A −0.5 is replaced with −0.25 everywhere, the optimal
solution is given by (21/16, 5/4, 1, 0) and the index of regular variation equals −57/16.

If the assumption E(X
−7/8−ǫ
4 ) < ∞ is not satisfied, Theorem 3.3 may still be helpful. For instance, let us

assume that X−1
4 is regularly varying with index −1/2, so that the above moment assumption does not hold.

But since this assumption implies that X
−1/2
4 is regularly varying with index −1, we can write the above

joint exceedance probability as P (
∏4

j=1 X̃
ãij

j > cix, 1 ≤ i ≤ 3) for X̃j = Xj , 1 ≤ j ≤ 3, X̃4 = X
−1/2
4 and

Ã = (ãij)1≤i≤3,1≤j≤4 =





1 −0.5 0 0
0 1 −0.5 0
0 0 1 1



 .

If we replace A in (3.2) by Ã, then the optimal solution is given by κ̃ = (3/2, 1, 0, 1) and this solution is
unique and non-degenerate. Furthermore,

(1T Ã−1
κ̃

Ã)3 =






1T





1 −0.5 0
0 1 0
0 0 1





−1

Ã







3

=
(

(1, 3/2, 1)Ã
)

3
= 1/4.

Since E(X
1/4+ǫ
3 ) < ∞ for ǫ ∈ (0, 3/4) by our above assumptions, we can apply Theorem 3.3 also in this case

to obtain again that (Y1, Y2, Y3) is regularly varying on (0,∞)3 with respect to scalar multiplication. But now

the index of regular variation is equal to −
∑4

j=1 κ̃j = −7/2 and the limit measure µ̃ is given by

µ̃(×3
i=1(ci,∞)) =

2

3
c−1
1 c

−3/2
2 c−1

3 E(X
1/4
3 ).
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4. Proofs and auxiliary results

4.1. Proof of Theorem 3.1

Proof. We start with the proof of (a). The optimal solution κ to (3.2) lies in the closure of

N(A) := {z ∈ R
m : Az > 1} .

Since the ray {z ∈ Rm : z = (1 + δ)κ, δ > 0} is a subset of the open set N(A), for all ǫ > 0 there exists
ǫ′ > 0 such that

m
⊗

j=1

(

κj

(

1 +
ǫ

2
∑m

j=1 κj

)

− ǫ′, κj

(

1 +
ǫ

2
∑m

j=1 κj

)

+ ǫ′

)

⊂ N(A).

Thus, for x > 1,

P





m
∏

j=1

X
aij

j > x, 1 ≤ i ≤ n





≥ P





m
∏

j=1

X
aij

j > x, 1 ≤ i ≤ n, and Xj > 0, 1 ≤ j ≤ m





= P

(

(

ln(Xj)

ln(x)

)

1≤j≤m

∈ N(A)

)

≥
m
∏

j=1

P

(

x
κj

(

1+ ǫ
2
∑m

j=1
κj

)

−ǫ′

< Xj < x
κj

(

1+ ǫ
2
∑m

j=1
κj

)

+ǫ′
)

.

By the regular variation of X1, . . . , Xm, the expression on the right-hand side is of larger order than

m
∏

j=1

x
−κj

(

1+ ǫ
2
∑m

j=1
κj

)

+ǫ′− ǫ
2m

= x−
∑m

j=1 κj−
ǫ
2+mǫ′− ǫ

2 ≥ x−
∑m

j=1 κj−ǫ, x ≥ 1,

which proves (a).
For the proof of (b) let us for simplicity assume that c ≥ 1 so that P (Xj ≥ 1) = 1 for those 1 ≤ j ≤ m

with κj = 0. The modifications for general c > 0 (substitute Xj/c for Xj) are simple. Let Ã be as in Lemma
4.2 (a) (see Section 4.3 below), so that we have

m
∏

j=1

X
aij

j > x, 1 ≤ i ≤ n

⇒
m
∏

j=1

X
ãij

j > x, 1 ≤ i ≤ n

⇒
m
∏

j=1

max(Xj , 1)
ãij > x, 1 ≤ i ≤ n,

where we have used that ãij > 0 for all 1 ≤ j ≤ m with κj > 0 and Xj ≥ 1 for 1 ≤ j ≤ m with κj = 0. The
last inequalities imply that for x > 1

m
∑

j=1

ãij
ln(max(Xj , 1))

ln(x)
> 1, 1 ≤ i ≤ n
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10 A. Janßen and H. Drees

⇒
m
∑

j=1

ln(max(Xj , 1))

ln(x)
≥

m
∑

j=1

κj ,

because otherwise κ could not be an optimal solution to (4.36), in contrast to Lemma 4.2 (a) and our
assumptions. Thus, for x > 1,

P





m
∏

j=1

X
aij

j > x, 1 ≤ i ≤ n



 ≤ P





m
∏

j=1

max(Xj , 1) ≥ x
∑m

j=1 κj



 . (4.1)

By our assumptions, for all δ ∈ (0, 1),

E











m
∏

j=1

max(Xj , 1)





1−δ





=

m
∏

j=1

E
(

max(Xj , 1)
1−δ
)

< ∞

and by the Markov inequality and (4.1) we conclude

P





m
∏

j=1

X
aij

j > x, 1 ≤ i ≤ n



 = O
(

x−(
∑m

j=1 κj)(1−δ)
)

for all δ ∈ (0, 1). Choosing δ < ǫ/
∑m

j=1 κj yields (3.5).

4.2. Proof of Theorem 3.3

In order to prove Theorem 3.3, we first deal with a setting that covers a slightly more general case for the
solution of the linear program (3.2) than the one assumed in the statement of Theorem 3.3. The proof of
this result is by induction on the number of positive components in the unique optimal solution to (3.2).
Several auxiliary results needed for the proof can be found in Section 4.3.

Proposition 4.1. Let A = (aij) ∈ Rn×m with n,m ∈ N be such that the solution κ to the linear optimization
problem (3.2) is unique with Aκ = 1. Define J = {j ∈ {1, . . . ,m} : κj > 0}.

Let X1, . . . , Xm be independent non-negative random variables. Assume that

for j ∈ J : Xj is regularly varying with index −1,

for j ∈ {1, . . . ,m} \ J : P (Xj ≥ 1) = 1 and E(X1−δ
j ) < ∞ for all δ ∈ (0, 1).

Then,

lim
x→∞

P
(

∏m
j=1 X

aij

j > x, 1 ≤ i ≤ n
)

∏

j∈J

P (Xj > xκj )

=

∫

M(A)

∏

j∈J

x−2
j λλ(d(xj)j∈J )⊗ P (Xj)j /∈J (d(xj)j /∈J) ∈ [0,∞)

with M(A) := {(x1, . . . , xm) ∈ [0,∞)m :
∏m

j=1 x
aij

j > 1, 1 ≤ i ≤ n}.

Proof. The proof is by induction on the number l of positive components in the unique optimal solution
κ. Note that κ ≥ 0 and that at least one component of κ has to be positive in order to satisfy Aκ ≥ 1.
In the following, we assume w.l.o.g. that the first l ∈ N components of κ are positive and the last m − l
components are equal to zero (if this is not the case, interchange the Xi’s and the corresponding columns
of A accordingly).
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We start now with the case l = 1, i.e. κ1 > 0 and κj = 0 for 2 ≤ j ≤ m. Our assumptions imply that
ai1κ1 = 1 for all 1 ≤ i ≤ n, i.e. a11 = . . . = an1 and κ1 = a−1

i1 , 1 ≤ i ≤ n. Thus,

P





m
∏

j=1

X
aij

j > x, 1 ≤ i ≤ n



 = P



X1 min
1≤i≤n





m
∏

j=2

X
aijκ1

j



 > xκ1



 . (4.2)

If the linear program

find x ∈ [0,∞)m−1 such that







a12 · · · a1m
...

. . .
...

an2 · · · anm






x ≥ 1,

m−1
∑

i=1

xi → min! (4.3)

has no feasible solution, then

min
1≤i≤n

m
∑

j=2

aijxj−1 < 1, ∀x ∈ [0,∞)m−1,

and thus

min
1≤i≤n





m
∏

j=2

X
aijκ1

j



 < eκ1 a.s., (4.4)

because ln(X2), . . . , ln(Xm) ≥ 0 almost surely by our assumptions. On the other hand, if there exists
a feasible solution to (4.3), then there exists ǫ > 0 such that all feasible solutions x to (4.3) satisfy
∑m−1

i=1 xi > κ1 + ǫ, since otherwise there would exist a solution x′ = (0, x′
1, . . . , x

′
m−1)

T 6= (κ1, 0, . . . , 0)
T to

(3.2) with
∑m

j=1 x
′
j ≤ κ1, in contradiction to our assumptions. Hence, an optimal solution to (4.3) exists

with
∑m−1

i=1 xi > κ1 + ǫ. By Theorem 3.1 (b) we have

P



 min
1≤i≤n





m
∏

j=2

X
aijκ1

j



 > x



 = o
(

x−1−ǫ/(2κ1)
)

, x → ∞.

So, whether there exists a solution to (4.3) or not, we have

E









 min
1≤i≤n





m
∏

j=2

X
aijκ1

j









1+ǫ/(4κ1)





< ∞

and we may thus apply Breiman’s Lemma, cf. Breiman (1965), to derive the asymptotic behavior of (4.2)
as x → ∞. This gives us

lim
x→∞

P
(

∏m
j=1 X

aij

j > x, 1 ≤ i ≤ n
)

P (X1 > xκ1)

= E



 min
1≤i≤n





m
∏

j=2

X
aijκ1

j









=

∫

{x∈[0,∞)m:x1>max1≤i≤n

(

∏

m
j=2 x

−aijκ1
j

)

}

x−2
1 λλ(dx1)⊗ P (Xj)2≤j≤m(d(xj)2≤j≤m)

imsart ver. 2014/10/16 file: randomproductsjanssendreesarxivv2.tex date: October 26, 2018



12 A. Janßen and H. Drees

=

∫

{x∈[0,∞)m:
∏

m
j=1 x

aij
j >1,1≤i≤n}

x−2
1 λλ(dx1)⊗ P (Xj)2≤j≤m (d(xj)2≤j≤m),

which concludes the proof in the case l = 1.
For the induction step, assume that Proposition 4.1 holds for all matrices A∗ ∈ Rn∗×m∗

, n∗,m∗ ∈ N, for
which the corresponding linear program (3.2) (with A replaced by A∗) has a unique solution κ

∗ and for
which A∗

κ
∗ = 1 and at most l − 1 ≥ 1 components of κ∗ are positive. In the following, assume that κ has

l positive components, again w.l.o.g. the first l ones.
Define the map ⊗κ as in Section 2. From Lemma 2.5 we get that P (Xj)1≤j≤m is regularly varying on On

with respect to ⊗κ.
Now, with Aκ = 1 we have

P





m
∏

j=1

X
aij

j > x, 1 ≤ i ≤ n



 = P





m
∏

j=1

(

Xj

xκj

)aij

> 1, 1 ≤ i ≤ n





= P (X ∈ x⊗κ M),

where X = (X1, . . . , Xm) and

M = M(A) :=







x ∈ [0,∞)m :

m
∏

j=1

x
aij

j > 1, 1 ≤ i ≤ n







.

For δ > 0 write

P (X ∈ x⊗κ M)
∏l

i=1 P (Xi > xκi)
=

P
(

X ∈ x⊗κ (M ∩
(

(δ,∞)l × [0,∞)m−l)
))

∏l
i=1 P (Xi > xκi)

+
P
(

X ∈ x⊗κ

(

M ∩
(

(δ,∞)l × [0,∞)m−l
)c))

∏l
i=1 P (Xi > xκi)

. (4.5)

We will first show that the second summand in (4.5) tends to zero as first x → ∞ and then δ ց 0. Note
that

lim
δց0

lim sup
x→∞

P
(

X ∈ x⊗κ

(

M ∩
(

(δ,∞)l × [0,∞)m−l
)c))

∏l
i=1 P (Xi > xκi)

≤
l
∑

k=1

lim
δց0

lim sup
x→∞

P (X ∈ x⊗κ M,Xk ≤ δxκk)
∏l

i=1 P (Xi > xκi)
. (4.6)

We will show that all summands in (4.6) equal zero. To this end, note first that we may apply Lemma 4.2
(b) to the matrix A, i.e. there exists a matrix Ã such that κ as above is the unique solution to the linear
program (4.36) with ãij > 0 for 1 ≤ i ≤ n and 1 ≤ j ≤ l and Ãκ = 1. We have

P (X ∈ x⊗κ M,Xk ≤ δxκk) = P





m
∏

j=1

X
aij

j > x, 1 ≤ i ≤ n,Xk < δxκk





≤ P





m
∏

j=1

X
ãij

j > x, 1 ≤ i ≤ n,Xk < δxκk



 (4.7)
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by Lemma 4.2 (b). For ease of notation, we restrict ourselves to the analysis for the summand k = 1 in (4.6).
For C > 0, use (4.7), ãi1 > 0, 1 ≤ i ≤ n, and Ãκ = 1 to write

P (X ∈ x⊗κ M,X1 ≤ δxκ1)
∏l

i=1 P (Xi > xκi)

≤
P
(

∏m
j=1 X

ãij

j > x, 1 ≤ i ≤ n,X1 ≤ δxκ1

)

∏l
i=1 P (Xi > xκi)

=

∫

[0,∞)

P
(

X1

xκ1
> z−1, X1 ≤ δxκ1

)

P
min

1≤i≤n

m
∏

j=2

(

Xj

x
κj

)ãij/ãi1

(dz)

∏l
i=1 P (Xi > xκi)

≤

∫

(δ−1,xκ1/C]

P
(

X1

xκ1
> z−1

)

/P (X1 > xκ1)P
min

1≤i≤n

m
∏

j=2

(

Xj

x
κj

)ãij/ãi1

(dz)

∏l
i=2 P (Xi > xκi)

+

∫

(xκ1/C,∞)

P
(

X1

xκ1
> z−1, X1 ≤ δxκ1

)

P
min

1≤i≤n

m
∏

j=2

(

Xj

x
κj

)ãij/ãi1

(dz)

∏l
i=1 P (Xi > xκi)

=: I(x, δ, C) + II(x, δ, C). (4.8)

We deal first with I = I(x, δ, C). Use ãij/ãi1 > 0, 1 ≤ i ≤ n, 2 ≤ j ≤ l, and κj = 0 and P (Xj ≥ 1) = 1, l <
j ≤ m, to obtain

min
1≤i≤n

m
∑

j=2

ãij
ãi1

ln

(

Xj

xκj

)

≤ min
1≤i≤n

m
∑

j=2

ãij
ãi1

(

ln

(

Xj

xκj

))

+

a.s. (4.9)

Choose ǫ ∈ (0, 1) according to Lemma 4.3 such that the expression on the right hand side of (4.9) is a.s.
bounded by

1− ǫ

1 + ǫ

m
∑

j=2

(

ln

(

Xj

xκj

))

+

.

For this ǫ > 0, there exists C > 0 such that

P
(

X1

xκ1
> z−1

)

P (X1 > xκ1)
≤ (1 + ǫ)z1+ǫ ∀ 1 ≤ z ≤ xκ1/C, x > C

by Potter’s bounds applied to x 7→ P (X1 > x) (cf. Bingham et al. (1987), Theorem 1.5.6). So, for δ ≤ 1,
the numerator of I(x, δ, C) is bounded by

∫

(δ−1,∞)

(1 + ǫ)z1+ǫP
min

1≤i≤n

m
∏

j=2

(

Xj

x
κj

)ãij/ãi1

(dz)

=

∫

M̃(Ã,δ)

(1 + ǫ) min
1≤i≤n

m
∏

j=2

z
(1+ǫ)ãij/ãi1

j P

(

Xj

x
κj

)

2≤j≤m(dz)

≤

∫

M̃(Ã,δ)

(1 + ǫ)
m
∏

j=2

max(1, zj)
1−ǫP

(

Xj

x
κj

)

2≤j≤m(dz)
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≤
∑

(βj)2≤j≤m∈{0,1−ǫ}m−1

∫

M̃(Ã,δ)

(1 + ǫ)

m
∏

j=2

z
βj

j P

(

Xj

x
κj

)

2≤j≤m(dz)

with

M̃(Ã, δ) :=







(z2, . . . , zm) ∈ [0,∞)m−1 : min
1≤i≤n

m
∏

j=2

z
ãij/ãi1

j > δ−1







.

Note that
∑m

k=2 ãikκk > 0, 1 ≤ i ≤ n, by our assumptions about Ã and κ and let

D(δ) := min
1≤i≤n

δ−ãi1/
∑m

k=2 ãikκk > 0 (4.10)

and

Ã′ := (ã′ij)1≤i≤n,2≤j≤m =

(

ãij
∑m

k=2 ãikκk

)

1≤i≤n,2≤j≤m

. (4.11)

Hence,

M̃(Ã, δ) ⊂







(z2, . . . , zm) ∈ [0,∞)m−1 : min
1≤i≤n

m
∏

j=2

z
ã′
ij

j > D(δ)







.

Note that a feasible solution to the linear program

find x = (x2, . . . , xm)T ≥ 0 such that Ã′x ≥ 1,

m
∑

i=2

xi → min! (4.12)

is given by κ̃
′ = (κ2, . . . , κm)T with Ã′

κ
′ = 1. Furthermore, this is also the unique optimal solution to

(4.12), because if there would be another feasible solution (x2, . . . , xm)T to it with
∑m

j=2 xj ≤
∑m

j=2 κj,

then x′ := (κ1, x2, . . . , xm)T would be a solution to (4.36) as well because of

Ãx′ =







ãi1κ1 +

m
∑

j=2

ãijxj





1≤i≤n





T

≥





(

ãi1κ1 +

m
∑

k=2

ãikκk

)

1≤i≤n





T

= 1,

as Ãκ = 1. This would lead to a contradiction to our assumption about the uniqueness of κ and Lemma
4.2 (b). Thus,

I ≤
∑

(βj)2≤j≤m∈{0,1−ǫ}m−1

∫

{

z: min
1≤i≤n

m
∏

j=2

z
ã′
ij

j >D(δ)

}

(1 + ǫ)
∏m

j=2 z
βj

j P

(

Xj

x
κj

)

2≤j≤m(dz)

∏l
i=2 P (Xi > xκi)

=
∑

(βj)2≤j≤m∈{0,1−ǫ}m−1

∫

{

z: min
1≤i≤n

m
∏

j=2

z
ã′
ij

j >1

}

∏m
j=2 z

βj

j P

(

Xj

(D(δ)x)
κj

)

2≤j≤m(dz)

∏l
i=2 P (Xi > (D(δ)x)κi )
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·

∏l
i=2 P (Xi > (D(δ)x)κi )
∏l

i=2 P (Xi > xκi)
(1 + ǫ)

l
∏

j=2

D(δ)βjκj .

Now, by Proposition 4.4 combined with the induction hypothesis and the properties of Ã′, the first factor
of each summand in the above expression converges to the finite expression

∫

M(Ã′)

m
∏

j=2

x
βj

j

l
∏

j=2

x−2
j λλ(d(xj)2≤j≤l)⊗ P (Xj)l<j≤m(d(xj)l<j≤m),

as x → ∞, whereas the remainder of the expression converges to

(1 + ǫ)

l
∏

j=2

D(δ)−κj(1−βj)

with κj(1− βj) > 0 for 2 ≤ j ≤ l by our assumptions. The first limit does not depend on the value of δ > 0,
while the second converges to 0 as δ ց 0 and thus D(δ) → ∞ by (4.10). We have thus shown that

lim
δց0

lim sup
x→∞

I(x, δ, C) = 0

for C large enough. Let us now deal with II = II(x, δ, C) from (4.8). We have

II ≤

P

(

min
1≤i≤n

m
∏

j=2

(

Xj

xκj

)ãij/ãi1

> xκ1/C

)

∏l
i=1 P (Xi > xκi)

≤

P

(

m
∏

j=2

max(1, Xj)
ãij > x/C ãi1 , 1 ≤ i ≤ n

)

∏l
i=1 P (max(1, Xi) > xκi)

·

∏l
i=1 P (max(1, Xi) > xκi)
∏l

i=1 P (Xi > xκi)

≤

P

(

m
∏

j=2

max(1, Xj)
ãij > xD′(C), 1 ≤ i ≤ n

)

∏l
i=1 P (max(1, Xi) > xκi)

·

∏l
i=1 P (max(1, Xi) > xκi)
∏l

i=1 P (Xi > xκi)
, (4.13)

where we set

D′(C) := min
1≤i≤n

C−ãi1 > 0

for abbreviation. Set

Ã′′ := (ãij)1≤i≤n,2≤j≤m ∈ R
n×(m−1)

and consider the linear program

find x = (x2, . . . , xm)T ≥ 0 such that Ã′′x ≥ 1,

m
∑

i=2

xi → min! (4.14)

If this linear program has no feasible solution then

min
1≤i≤n

m
∏

j=2

max(1, Xj)
ãij < e a.s.
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16 A. Janßen and H. Drees

(cf. (4.4) for analogous reasoning), so the first factor in (4.13) equals 0 for x large enough. On the other
hand, if there exists a feasible solution to (4.14), then there exists ǫ > 0 such that all feasible solutions
(x2, . . . , xm)T to (4.14) satisfy

∑m
j=2 xj >

∑m
j=1 κj + ǫ, since otherwise there would exist a solution x′

= (0, x2, . . . , xm)T 6= κ to (4.36) with
∑m

j=1 x
′
j ≤

∑m
j=1 κj , in contradiction to our assumptions and Lemma

4.2 (b). In the latter case, the numerator of the first factor in (4.13) is of smaller order than x−
∑m

j=1 κj−ǫ/2

as x → ∞ by Theorem 3.1 (b), while the denominator is regularly varying in x with index −
∑m

j=1 κj and
the second factor in (4.13) equals 1 for x ≥ 1. So, in both cases, and for all C > 0

lim
δց0

lim sup
x→∞

II(x, δ, C) = lim sup
x→∞

II(x, δ, C) = 0,

and the first summand in (4.6) is equal to zero. All other summands can be treated analogously.
Taken together, we have shown that

lim
δց0

lim sup
x→∞

P
(

X ∈ x⊗κ

(

M ∩
(

(δ,∞)l × [0,∞)m−l
)c))

∏l
i=1 P (Xi > xκi)

= 0. (4.15)

With µ(·) as defined in (2.2) we have

lim
x→∞

P
(

∏m
j=1 X

aij

j > x, 1 ≤ i ≤ n
)

∏l
i=1 P (Xi > xκi)

= lim
x→∞

P (X ∈ x⊗κ M)
∏l

i=1 P (Xi > xκi)

= lim
δց0

lim
x→∞

P
(

X ∈ x⊗κ (M ∩
(

(δ,∞)l × [0,∞)m−l)
))

∏l
i=1 P (Xi > xκi)

= lim
δց0

µ
(

M ∩
(

(δ,∞)l × [0,∞)m−l)
))

= lim
δց0

∫

M∩((δ,∞)l×[0,∞)m−l)

l
∏

j=1

x−2
l λλ(d(xj)1≤j≤l)⊗ P (Xj)l<j≤m(d(xj)l<j≤m)

=

∫

M

l
∏

j=1

x−2
l λλ(d(xj)1≤j≤l)⊗ P (Xj)l<j≤m(d(xj)l<j≤m),

by monotone convergence where we used that

M ∩
(

(0,∞)l × [0,∞)m−l
)

= M,

because κj > 0 for 1 ≤ j ≤ l implies that at least one 1 ≤ i ≤ n exists with aij > 0. But then
min1≤i≤n

∏m
l=1 X

ail

l = 0 as soon as Xj = 0, 1 ≤ j ≤ l, so M ⊂
(

(0,∞)l × [0,∞)m−l
)

.
This concludes the proof of Proposition 4.1.

Proof of Theorem 3.3. Let us again assume w.l.o.g. that the first n ≥ 1 components of κ are positive and
the last m−n ≥ 0 components are equal to zero. We start with some implications of our assumptions about
the matrix A. Since the optimal solution κ to (3.2) is unique it must be a vertex of the polygon defined by
{x ≥ 0 : Ax ≥ 1}, cf. Sierksma (1996), Theorem 1.5. Each vertex of {x ≥ 0 : Ax ≥ 1} corresponds to a
so-called basic feasible solution (cf. Sierksma (1996), Theorem 1.2) of the standard form linear program

find x ∈ R
m+n such that (A; (−1) · En)x = 1, x ≥ 0,

m
∑

i=1

xi → min!, (4.16)

where the matrix (A, (−1) ·En) ∈ Rn×(m+n) consists of the columns of A in its first m columns and of the
columns of the n-dimensional unit matrix, En, multiplied with −1 in its last n columns. The basic feasible
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Joint exceedances of random products 17

solutions of (4.16) can be found by choosing n linearly independent columns of (A; (−1) · En) with indices
B ⊂ {1, . . . ,m + n}, denoting the resulting matrix by (A; (−1) · En)B and deriving sB = ((sj)j∈B)

T :=
((A; (−1) ·En)B)

−11. If sB ≥ 0, then we call

xB = (x1, . . . , xm+n)
T with

{

xj = sj , if j ∈ B,

xj = 0, if j ∈ {1, . . . ,m+ n} \B

a basic feasible solution to (4.16). The corresponding solution to (3.2) is given by the first m components
of xB, the remaining last n components of xB are called slack variables. Since we assumed that the first n
components of κ are positive and that the optimal solution is unique, it can only correspond to the basic
feasible solution with B = {1, . . . , n} which implies that Aκ, the matrix which consists of only the first n
columns of A, is invertible and (κ1, . . . , κn)

T = (Aκ)
−11 which leads to Aκ = 1. Thus, the assumptions

about A of Theorem 3.3 are a special case of the assumptions about A of Proposition 4.1. Furthermore, the
optimal value of (3.2) equals

m
∑

j=1

κj =

n
∑

j=1

κj = 1T (A−1
κ

)1. (4.17)

Since we assumed κ to be unique and non-degenerate, the optimal solution to the dual problem (3.9) is
unique and non-degenerate as well, cf. Sierksma (1996), Theorem 2.11. Furthermore, the optimal solution κ̂

to (3.9) is in our case given by

κ̂ = (A−1
κ

)T1, (4.18)

cf. Sierksma (1996), Theorem 2.2. This explains Remark 3.5 (a).
Again w.l.o.g. assume in the following that (1TA−1

κ
A)j = 0 for n < j ≤ n′ with n ≤ n′ ≤ m and that

(1TA−1
κ

A)j 6= 0 for n′ < j ≤ m. Define now for 1 ≤ j ≤ m

X̂j =























Xj , for j ≤ n,

Xǫ
j , for n < j ≤ n′,

X
(1TA−1

κ
A)j+ǫ

j , for j > n′, (1TA−1
κ

A)j > 0,

X
(1TA−1

κ
A)j−ǫ

j , for j > n′, (1TA−1
κ

A)j < 0,

(4.19)

with ǫ > 0 as in the statement of Theorem 3.3 and set furthermore Â with

âij =























aij , for 1 ≤ i ≤ n, j ≤ n,
aij

ǫ , for 1 ≤ i ≤ n, n < j ≤ n′,
aij

(1TA
−1
κ

A)j+ǫ
, for 1 ≤ i ≤ n, j > n′, (1TA−1

κ
A)j > 0,

aij

(1TA
−1
κ

A)j−ǫ
, for 1 ≤ i ≤ n, j > n′, (1TA−1

κ
A)j < 0.

(4.20)

Obviously, this leads to

P





m
∏

j=1

X
aij

j > cix, 1 ≤ i ≤ n



 = P





m
∏

j=1

X̂
âij

j > cix, 1 ≤ i ≤ n



 . (4.21)

In order to apply Proposition 4.1 we will distinguish between events where X̂j ≥ 1 and those where X̂j < 1

for n < j ≤ n′. Therefore, for J ⊂ {n+1, . . . , n′} denote the event {X̂j ≥ 1 for j ∈ {n+1, . . . , n′} \ J, X̂j <
1 for j ∈ J} by B(J), and write

P





m
∏

j=1

X̂
âij

j > cix, 1 ≤ i ≤ n
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18 A. Janßen and H. Drees

=
∑

J⊂{n+1,...,n′}

P





m
∏

j=1

X̂
âij

j > cix, 1 ≤ i ≤ n

∣

∣

∣

∣

∣

B(J)



P (B(J)). (4.22)

For J with P (B(J)) > 0 define now independent random variables X̂
(J)
j , 1 ≤ j ≤ m, with

P X̂
(J)
j =











P X̂j , for j ∈ {1, . . . , n, n′ + 1, . . . ,m},

P X̂−1
j |X̂j<1, for j ∈ J,

P X̂j |X̂j≥1, for j ∈ {n+ 1, . . . , n′} \ J.

(4.23)

Furthermore, set Â(J) with

â
(J)
ij =

{

âij , for 1 ≤ i ≤ n, j ∈ {1, . . . ,m} \ J,

−âij , for 1 ≤ i ≤ n, j ∈ J.
(4.24)

By independence of the X̂j ’s and of the X̂
(J)
j ’s, the first factor of each summand in (4.22) is equal to

P





m
∏

j=1

(

X̂
(J)
j

)â
(J)
ij

> cix, 1 ≤ i ≤ n



 (4.25)

for all J ⊂ {n+ 1, . . . , n′} with P (B(J)) > 0. The vector κ is a basic feasible solution to

find x ≥ 0 such that Â(J)x ≥ 1,

m
∑

i=1

xi → min!, (4.26)

because Â(J)
κ = 1, as the first n columns of Â(J) are identical to those of A. Furthermore,

(1TA−1
κ

Â(J))j =



































(1TA−1
κ

A)j = 1, if j ≤ n,

ǫ−1(1TA−1
κ

A)j = 0, if j ∈ {n+ 1, . . . , n′} \ J

ǫ−1(1TA−1
κ

(−A))j = 0, if j ∈ J
(1TA−1

κ
A)j

(1TA
−1
κ A)j+ǫ

∈ (0, 1), if j > n′, (1TA−1
κ

A)j > 0,

(1A−1
κ

A)j

(1A−1
κ

A)j−ǫ
∈ (0, 1), if j > n′, (1TA−1

κ
A)j < 0,

(4.27)

which proves that κ is the unique optimal solution to (4.26), because 1− (1TA−1
κ

Â(J))j is strictly positive
for all non-basic variables n < j ≤ m (cf. the analogue of Theorem 1.6 and the remark after the proof of
this theorem in Sierksma (1996) for a linear minimization problem instead of a maximization problem).

Let now J ⊂ {n + 1, . . . , n′} and let
˜̂
A(J) be the matrix described in Lemma 4.2 (c), corresponding to

Â(J) with ˜̂a
(J)
ij > 0 for all 1 ≤ i ≤ n, j ∈ {1, . . . , n, n′ + 1, . . . ,m}. Then, for c > 0,

P





m
∏

j=1

(

X̂
(J)
j

)â
(J)
ij

> cix, 1 ≤ i ≤ n





=P





m
∏

j=1

(

X̂
(J)
j

)â
(J)
ij

> cix, 1 ≤ i ≤ n, X̂
(J)
j ≥ c, n′ < j ≤ m





+P





m
∏

j=1

(

X̂
(J)
j

)â
(J)
ij

> cix, 1 ≤ i ≤ n, ∃ n′ < j ≤ m : X̂
(J)
j < c



 (4.28)
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Joint exceedances of random products 19

and for the second summand we have

P





m
∏

j=1

(

X̂
(J)
j

)â
(J)
ij

> cix, 1 ≤ i ≤ n, ∃ n′ < j ≤ m : X̂
(J)
j < c





≤
∑

∅6=K⊂{n′+1,...,m}

P

(

m
∏

j=1

(

X̂
(J)
j

)˜̂a
(J)
ij

> x min
1≤k≤n

ck,

X̂
(J)
j < c, j ∈ K, X̂

(J)
j ≥ c, j ∈ {n′ + 1, . . . ,m} \K

)

≤
∑

∅6=K⊂{n′+1,...,m}

P

(

∏

j∈{1,...,n′}

(

X̂
(J)
j

)˜̂a
(J)
ij

∏

j∈{n′+1,...,m}\K

max
(

1, X̂
(J)
j

)˜̂a
(J)
ij

> x min
1≤k≤n

ck

(

min
1≤i≤n

c
−

∑

j∈K

˜̂a
(J)
ij

)

, 1 ≤ i ≤ n

)

.

Set

D(c) = D(c, c1, . . . , cn) :=

(

min
1≤k≤n

ck

)

(

min
1≤i≤n

c
−

∑

j∈K

˜̂a
(J)
ij

)

> 0

for abbreviation and note that by our assumptions and Lemma 4.2 (c) κ is the unique optimal solution to

find x ≥ 0 such that
˜̂
A(J)x ≥ 1,

m
∑

i=1

xi → min!,

with
˜̂
A(J)

κ = 1, that P X̂
(J)
j = PXj , 1 ≤ j ≤ n, that X̂

(J)
n+1, . . . , X̂

(J)
n′ ≥ 1 a.s. with E(X̂

(J)
j ) < ∞, n < j ≤ n′,

and that E(max(1, X̂
(J)
j )) < ∞, n′ < j ≤ m. Therefore, apply Proposition 4.1 to obtain for ∅ 6= K ⊂

{n′ + 1, . . . ,m}

P
(

∏

j∈{1,...,n′}

(

X̂
(J)
j

)˜̂a
(J)
ij ∏

j∈{n′+1,...,m}\K

max
(

1, X̂
(J)
j

)˜̂a
(J)
ij

> D(c)x, 1 ≤ i ≤ n
)

∏n
j=1 P (Xj > xκj )

→ (D(c))−
∑n

j=1 κjD(J),

as x → ∞ for some finite constant D(J) which does not depend on c. As D(c) → ∞ for c ց 0 we conclude
from (4.28) that

lim
x→∞

P

(

m
∏

j=1

(

X̂
(J)
j

)â
(J)
ij

> cix, 1 ≤ i ≤ n

)

∏n
j=1 P (Xj > xκj )

= lim
cց0

lim
x→∞

P

(

m
∏

j=1

(

X̂
(J)
j

)â
(J)
ij

> cix, 1 ≤ i ≤ n, X̂
(J)
j ≥ c, n′ < j ≤ m

)

∏n
j=1 P (Xj > xκj )

(4.29)

Let now

ci(c) = cic
−

∑m
j=n′+1

â
(J)
ij = cic

−
∑m

j=n′+1
âij , 1 ≤ i ≤ n.
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20 A. Janßen and H. Drees

Then

lim
x→∞

P

(

m
∏

j=1

(

X̂
(J)
j

)â
(J)
ij

> cix, 1 ≤ i ≤ n, X̂
(J)
j ≥ c, n′ < j ≤ m

)

∏n
j=1 P (Xj > xκj )

= lim
x→∞

m
∏

j=n′+1

P (X̂
(J)
j ≥ c)





n
∏

j=1

P (Xj > xκj )





−1

(4.30)

P







n′
∏

j=1

(

X̂
(J)
j

)â
(J)
ij

m
∏

j=n′+1

(

X̂
(J)
j

c

)â
(J)
ij

> ci(c)x, 1 ≤ i ≤ n

∣

∣

∣

∣

∣

min
n′<j≤m

X̂
(J)
j ≥ c






.

The last factor in the above expression can be written as

P





m
∏

j=1

(

X̂
(J,c)
j

)â
(J)
ij

> ci(c)x, 1 ≤ i ≤ n





where X̂
(J,c)
j , 1 ≤ j ≤ m, denote independent random variables with

P X̂
(J,c)
j =

{

P X̂
(J)
j , for 1 ≤ j ≤ n′,

P c−1X̂
(J)
j |X̃

(J)
j ≥c, for n′ < j ≤ m.

Set

ĉj(c) =

{

∏n
i=1 ci(c)

(A−1
κ

)ji , 1 ≤ j ≤ n,

1, n < j ≤ m,

which implies that

m
∏

j=1

ĉj(c)
â
(J)
ij =

m
∏

j=1

ĉj(c)
aij = exp





n
∑

j=1

aij

n
∑

k=1

(A−1
κ

)jk ln(ck(c))



 = ci(c), 1 ≤ i ≤ n.

Then we have

P

(

m
∏

j=1

(

X̂
(J,c)
j

)â
(J)
ij

> ci(c)x, 1 ≤ i ≤ n

)

∏n
j=1 P (Xj > xκj )

(4.31)

=

P





m
∏

j=1

(

X̂
(J,c)
j

ĉj(c)

)â
(J)
ij

> x, 1 ≤ i ≤ n





∏n
j=1 P (Xj > ĉj(c)xκj )

·

∏n
j=1 P (Xj > ĉj(c)x

κj )
∏n

j=1 P (Xj > xκj )
. (4.32)

As x → ∞, in view of (4.18), the second factor of (4.32) converges to

n
∏

j=1

(ĉj(c))
−1 =

n
∏

j=1

n
∏

i=1

(ci(c))
−(A−1

κ
)ji =

n
∏

i=1

(ci(c))
−((A−1

κ
)T 1)i =

n
∏

i=1

(ci(c))
−κ̂i
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=

n
∏

i=1

(

c−κ̂i

i cκ̂i

∑m
j=n′+1

â
(J)
ij

)

= c
∑n

i=1

∑m
j=n′+1

â
(J)
ij κ̂i

n
∏

i=1

c−κ̂i

i . (4.33)

Note that P X̂
(J,c)
j = PXj for 1 ≤ j ≤ n and

X̂
(J,c)
j

ĉj(c)
= X̂

(J,c)
j ≥ 1 a.s., E

(

X̂
(J,c)
j

ĉj(c)

)

< ∞ for n < j ≤ m.

Hence, we can apply Proposition 4.1 to see that the first factor of (4.32) converges to

∫

M(Â(J))

n
∏

j=1

x−2
j λλ(d(xj)1≤j≤n)⊗ P (X̂

(J,c)
j )n<j≤m(d(xj)n<j≤m)

Write x1 = (x1, . . . , xn),x2 = (xn+1, . . . , xm) for abbreviation and use the substition y = ln(x1) :=
(ln(x1), . . . , ln(xn)) to see that the above expression equals

∫

[0,∞)m−n

∫

{

y∈Rn:exp(Aκy)>(
∏m

j=n+1 x
−â

(J)
ij

j )1≤i≤n

}

exp(−
n
∑

i=1

yi)λλ(dy)P
(X̂

(J,c)
j )n<j≤m(dx2)

=

∫

[0,∞)m−n

∫

{

z∈Rn:exp(z)>(
∏

m
j=n+1 x

−â
(J)
ij

j )1≤i≤n

}

| det(Aκ)|
−1

exp

(

−
n
∑

k=1

n
∑

l=1

(A−1
κ

)klzl

)

λλ(dz)P (X̂
(J,c)
j )n<j≤m(dx2)

= | det(Aκ)|
−1

∫

[0,∞)m−n

n
∏

l=1

∫

(ln(
∏

m
j=n+1 x

−â
(J)
lj

j ),∞)

exp

(

−zl

n
∑

k=1

(A−1
κ

)kl

)

dzlP
(X̂

(J,c)
j )n<j≤m(dx2)

=
| det(Aκ)|−1

∏n
i=1((A

−1
κ )T1)i

∫

[0,∞)m−n

n
∏

l=1

m
∏

j=n+1

x
â
(J)
lj

∑n
k=1(A

−1
κ

)kl

j P (X̂
(J,c)
j )n<j≤m(dx2)

=
| det(Aκ)|−1

∏n
i=1 κ̂i

m
∏

j=n+1

E

(

(

X̂
(J,c)
j

)

∑n
l=1 â

(J)
lj ((A−1

κ
)T1)l

)

=
| det(Aκ)|

−1

∏n
i=1 κ̂i

m
∏

j=n′+1

(

E

(

(

X̂
(J)
j

)

∑n
i=1 â

(J)
ij κ̂i

∣

∣

∣X̂
(J)
j ≥ c

)

c−
∑n

i=1 â
(J)
ij κ̂i

)

, (4.34)

where we used in the final step that
∑n

i=1 â
(J)
ij κ̂i = (1TA−1

κ
Â(J))j = 0 for n < j ≤ n′, cf. (4.27). Combine

(4.33) and (4.34) to see that the expression in (4.32) converges to

| det(Aκ)|−1
∏n

i=1 c
−κ̂i

i
∏n

i=1 κ̂i

m
∏

j=n′+1

E

(

(

X̂
(J)
j

)

∑n
i=1 â

(J)
ij κ̂i

∣

∣

∣X̂
(J)
j ≥ c

)

(4.35)

as x → ∞. Now, (4.35) together with (4.29) and (4.30) yields that

lim
x→∞

P

(

m
∏

j=1

(

X̂
(J)
j

)â
(J)
ij

> cix, 1 ≤ i ≤ n

)

∏n
j=1 P (Xj > xκj )
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= lim
cց0

| det(Aκ)|−1
∏n

i=1 c
−κ̂i

i
∏n

i=1 κ̂i

m
∏

j=n′+1

E

(

(

X̂
(J)
j

)

∑n
i=1 â

(J)
ij κ̂i

1
{X̂

(J)
j ≥c}

)

=
| det(Aκ)|−1

∏n
i=1 c

−κ̂i

i
∏n

i=1 κ̂i

m
∏

j=n′+1

E

(

(

X̂
(J)
j

)

∑n
i=1 â

(J)
ij κ̂i

)

=
| det(Aκ)|−1

∏n
i=1 c

−κ̂i

i
∏n

i=1 κ̂i

m
∏

j=n′+1

E
(

X
∑n

i=1 aij κ̂i

j

)

,

where we used
∑n

i=1 â
(J)
ij κ̂i = ((Â(J))T (A−1

κ
)T1)j = (1TA−1

κ
Â(J))j > 0, n′ < j ≤ m (cf. (4.27)) in the

penultimate equality and (4.19), (4.20), (4.23) and (4.24) in the final equality. This expression no longer
depends on J ⊂ {n+ 1, . . . n′} and therefore (4.21), (4.22) and (4.25) lead to

lim
x→∞

P
(

∏m
j=1 X

aij

j > cix, 1 ≤ i ≤ n
)

∏n
j=1 P (Xj > xκj )

= lim
x→∞

P
(

∏m
j=1 X̂

âij

j > cix, 1 ≤ i ≤ n
)

∏n
j=1 P (Xj > xκj )

=
| det(Aκ)|−1

∏n
i=1 c

−κ̂i

i
∏n

i=1 κ̂i

m
∏

j=n′+1

E
(

X
∑n

i=1 aij κ̂i

j

)

= | detAκ|
−1

∏n
i=1 c

−(1TA−1
κ

)i
i

∏n
i=1(1

TA−1
κ )i

∏

j:κj=0

E
(

X
(1TA−1

κ
A)j

j

)

,

and so the limit in (3.7) equals the expression in (3.8). By Theorems 2.4 and 2.5 of Lindskog et al. (2014),

this shows that c(x)P
(

(x−1
∏m

j=1 X
aij

j )1≤i≤n ∈ ·
)

, x > 0, with c(x) = (
∏n

j=1 P (Xj > xκj ))−1, is relatively

compact in M(0,∞)n . Furthermore, all accumulation points of this family agree on a generating π-system.

Thus, P (
∏m

j=1 X
aij
j )1≤i≤n is regularly varying on (0,∞)n w.r.t. scalar multiplication, cf. Example 2.4. The

index of regular variation follows from Lemma and Definition 2.2 since c is regularly varying with index
−
∑n

j=1 κj = −
∑m

j=1 κj = −1TA−1
κ

1, cf. (4.17).

4.3. Auxiliary results

In the following, we collect two lemmas and a proposition which are needed for the proofs in Sections 4.1
and 4.2.

Lemma 4.2. Let κ = (κ1, . . . , κm)T be an optimal solution to (3.2).

(a) There exists a matrix Ã = (ãij) ∈ Rn×m such that

– the columns j in Ã for which κj > 0 have all positive entries,

– κ is an optimal solution to the linear program

find x ≥ 0 such that Ãx ≥ 1,

m
∑

i=1

xi → min! (4.36)

– for all x, x1, x2, . . . , xm ≥ 0,

m
∏

j=1

x
aij

j > x, 1 ≤ i ≤ n ⇒
m
∏

j=1

x
ãij

j > x, 1 ≤ i ≤ n. (4.37)

(b) Moreover, if the assumptions of Proposition 4.1 hold, then the matrix Ã can be chosen such that
additionally
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– κ is the unique optimal solution to the linear program (4.36),

– Ãκ = 1.

(c) If the assumptions of Theorem 3.3 hold, then there exists a matrix Ã = (ãij) ∈ Rn×m such that

– the columns j in Ã for which (1TA−1
κ

A)j > 0 have all positive entries,

– κ is the unique optimal solution to the linear program (4.36),

– Ãκ = 1,

– for all x, x1, x2, . . . , xm ≥ 0 (4.37) holds.

Proof. First note that if aij > 0 for all 1 ≤ i ≤ n and all j such that κj > 0 (cases (a) and (b)) or

(1TA−1
κ

A)j > 0 (case (c)), then we may simply set Ã = A. So, assume the contrary in the following. Set
J := {j ∈ {1, . . . ,m} : κj > 0}. Since we have assumed an optimal solution κ to (3.2), there also exists
an optimal (not necessarily unique) solution κ̂ = (κ̂1, . . . , κ̂n)

T to the dual problem (3.9) and this solution
satisfies

∑n
i=1 κ̂i =

∑m
j=1 κj , cf. Theorem 2.2 in Sierksma (1996). Furthermore, by the Complementary

Slackness Theorem (cf. Sierksma (1996), Theorem 2.4) we have (AT
κ̂)j = 1 for all j ∈ J . For assertions (a)

and (b) let amin := −(min1≤i≤n,j∈J aij) + ǫ for some ǫ > 0. By our assumptions, amin is positive. Define

Ã = (ãij)1≤i≤n,1≤j≤m with ãij =
aij + amin

∑n
k=1 akj κ̂k

1 + amin

∑m
k=1 κk

.

As seen above, we have
∑n

k=1 akj κ̂k = 1 and thus ãij > 0 for j ∈ J and all 1 ≤ i ≤ n.
Note that

Ãκ =

(

1 + amin

m
∑

i=1

κi

)−1

((aij + amin)1≤i≤n,j∈J ) ((κj)j∈J )
T

≥

(

1 + amin

m
∑

i=1

κi

)−1(

1+ amin

m
∑

i=1

κi1

)

= 1, (4.38)

so κ is a feasible solution to (4.36). Furthermore, if there would exist a κ
′ ≥ 0 with Ãκ

′ ≥ 1 and
∑m

i=1 κ
′
i <

∑m
i=1 κi, then

m
∑

j=1

(

aij + amin

n
∑

k=1

akj κ̂k

)

κ′
j ≥ 1 + amin

m
∑

k=1

κk, 1 ≤ i ≤ n, (4.39)

and thus

m
∑

j=1

aijκ
′
j ≥ 1 + amin

m
∑

k=1

κk − amin

n
∑

k=1

m
∑

j=1

akj κ̂kκ
′
j

≥ 1 + amin





m
∑

k=1

κk −
m
∑

j=1

κ′
j





≥ 1, 1 ≤ i ≤ n, (4.40)

where we used in the penultimate inequality that
∑n

k=1 akj κ̂k ≤ 1 and κ′
j ≥ 0, 1 ≤ j ≤ m. But this implies

that κ
′ with

∑m
i=1 κ

′
i <

∑m
i=1 κi would also be a feasible solution to (3.2), in contrast to the assumption

about the optimality of κ. Thus, κ is also an optimal solution to (4.36).
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We are thus left to show (4.37) for the proof of (a). For x, x1, x2, . . . , xm ≥ 0 such that
∏m

j=1 x
aij

j > x, 1 ≤
i ≤ n, we have

m
∏

j=1

x
aijaminκ̂i

j ≥ xaminκ̂i , 1 ≤ i ≤ n,

with strict inequality if κ̂i > 0, which must be the case for at least one 1 ≤ i ≤ n. So by multiplication of
left hand sides and right hand sides we obtain





m
∏

j=1

x
aij

j





n
∏

k=1

m
∏

j=1

x
akjaminκ̂k

j > x

n
∏

k=1

xaminκ̂k = x1+amin

∑n
k=1 κ̂k , 1 ≤ i ≤ n

⇔
m
∏

j=1

x
aij+amin

∑n
k=1 akj κ̂k

j > x1+amin

∑n
k=1 κ̂k , 1 ≤ i ≤ n

⇔
m
∏

j=1

x

aij+amin
∑n

k=1 akj κ̂k
1+amin

∑n
k=1

κ̂k

j > x, 1 ≤ i ≤ n

⇔
m
∏

j=1

x
ãij

j > x, 1 ≤ i ≤ n.

Thus, (4.37) holds.
For the proof of (b), we use that the additional assumption implies that κ is the unique optimal solution

to (3.2) and that Aκ = 1. Similar to (4.38) one shows that Ãκ = 1. Furthermore, if there would exist a
κ
′ 6= κ with Ãκ

′ ≥ 1 and
∑m

j=1 κ
′
j ≤

∑m
j=1 κj then one shows analogously to (4.40) that this would imply

that the optimal solution κ to (3.2) is not unique. This shows that κ is the unique optimal solution to (4.36)
and proves (b).

For the proof of (c), we use that the additional assumption implies that κ is the unique optimal solution
to (3.2) and that κ̂ = (A−1

κ
)T1 is the unique solution to (3.9), cf. the beginning of the proof of Theorem

3.3. Let for some ǫ > 0

a
(c)
min := − min

1≤i≤n,j:(1TA
−1
κ A)j>0

aij

(1TA−1
κ A)j

+ ǫ

= − min
1≤i≤n,j:(1TA

−1
κ

A)j>0

aij
∑n

k=1 akj κ̂k
+ ǫ

which is positive by our assumptions. Define

Ã(c) = (ã
(c)
ij )1≤i≤n,1≤j≤m with ãij =

aij + a
(c)
min

∑n
k=1 akj κ̂k

1 + a
(c)
min

∑m
k=1 κk

.

We have thus ã
(c)
ij > 0 for those j with (1TA−1

κ
A)j > 0 and all 1 ≤ i ≤ n. The rest of the proof for assertion

(c) follows analogously to the proof of (a) and (b) which did not depend on the value of amin > 0.

Lemma 4.3. Let the assumptions of Proposition 4.1 hold and assume in addition that aij > 0 for all
1 ≤ i ≤ n and those 1 ≤ j ≤ m for which κj > 0. Then for all j with κj > 0 there exists ǫ > 0 such that

min
1≤i≤n

∑

1≤k≤m,k 6=j

aik
aij

xk ≤ (1 − ǫ)
∑

1≤k≤m,k 6=j

xk (4.41)

for all (xk)1≤k≤m,k 6=j ∈ [0,∞)m−1.
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Proof. For ease of notation and w.l.o.g., let us assume that κ1 > 0 and treat only the case j = 1. For
(xk)2≤k≤m = 0 the inequality holds for all ǫ > 0. The rest of the proof is by contradiction. Let (ǫl)l∈N

be a sequence such that ǫl > 0 for all l ∈ N and ǫl ց 0 for l → ∞. Assume that for each l there exists

(x
(l)
k )2≤k≤m ∈ [0,∞)m−1 \ {0} such that

min
1≤i≤n

m
∑

j=2

aij
ai1

x
(l)
j ≥ (1 − ǫl)

m
∑

k=2

x
(l)
k

⇔
m
∑

j=2

aij
x
(l)
j

∑m
k=2 x

(l)
k

≥ (1 − ǫl)ai1, 1 ≤ i ≤ n, (4.42)

where we used that ai1 > 0, 1 ≤ i ≤ n, by our assumption. Define now

κ̃
(l) = (κ̃

(l)
1 , . . . , κ̃(l)

m )T =

(

0, κ2 +
x
(l)
2

∑m
k=2 x

(l)
k

κ1, . . . , κm +
x
(l)
m

∑m
k=2 x

(l)
k

κ1

)T

≥ 0

for all l ∈ N. We have
m
∑

j=1

κ̃
(l)
j =

m
∑

j=1

κj

for all l ∈ N. Furthermore,

m
∑

j=1

aij κ̃
(l)
j =

m
∑

j=2

aij

(

κj +
x
(l)
j

∑m
k=2 x

(l)
k

κ1

)

=

m
∑

j=2

aijκj +

m
∑

j=2

aij
x
(l)
j

∑m
k=2 x

(l)
k

κ1

≥ 1− ai1κ1 + (1 − ǫl)ai1κ1 = 1− ǫlai1κ1, (4.43)

for all l ∈ N, where we used Aκ ≥ 1 and (4.42) in the last step. For l → ∞, the bounded sequence κ̃(l) must
have an accumulation point κ̃ 6= κ (because κ̃1 = 0 < κ1) and κ̃ ≥ 0. But

m
∑

j=1

κ̃j =

m
∑

j=1

κj and

m
∑

j=1

aij κ̃j ≥ 1

by (4.43), so our optimal solution κ would not be unique, in contradiction to our assumptions. Thus, for
some ǫ > 0, the inequality (4.41) holds for all (xj)2≤j≤m ∈ [0,∞)m−1.

Proposition 4.4. Assume that

lim
y→∞

P ((Xj)1≤j≤m ∈ y ⊗κ M(A))
∏

j:κj>0

P (Xj > yκj )

=

∫

M(A)

∏

j:κj>0

x−2
j λλ(d(xj){j:κj>0})⊗ P

(Xj){j:κj=0}(d(xj){j:κj=0}) ∈ [0,∞) (4.44)

holds for all X1, . . . , Xm and all matrices A which satisfy the assumptions of Proposition 4.1, with κ being
the unique solution to (3.2) and M(A) as in Proposition 4.1. Then also

lim
y→∞

∫

M(A)

∏m
j=1 x

βj

j P (Xj/y
κj ){1≤j≤m}(dx)

∏

j:κj>0

P (Xj > yκj )
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=

∫

M(A)

m
∏

j=1

x
βj

j

∏

j:κj>0

x−2
j λλ(d(xj){j:κj>0})⊗ P (Xj){j:κj=0}(d(xj){j:κj=0}) ∈ [0,∞) (4.45)

for all X1, . . . , Xm,A and κ as above and all βj ∈ [0, 1), 1 ≤ j ≤ m.

Remark 4.5. As the preceding proposition is used in the induction step of the proof of Proposition 4.1,
the convergence (4.44) had to be assumed. However, since Proposition 4.1 shows that (4.44) holds for all
X1, . . . , Xm and all matrices A which satisfy the assumptions, the convergence in (4.45) follows. The result
may thus be regarded as a multivariate version of the direct half of Karamata’s Theorem.

Proof of Proposition 4.4. Define independent random variables X ′
j , 1 ≤ j ≤ m, such that X ′

j has PXj -

density x 7→ 1[0,∞)(x)x
βj (E(X

βj

j ))−1, 1 ≤ j ≤ m. This is possible because all βj ∈ [0, 1) and thus E(X
βj

j ) <
∞ by our assumptions. For those 1 ≤ j ≤ m with κj > 0 the random variable X ′

j is regularly varying with
index −(1− βj), because

lim
x→∞

P (X ′
j > x)

xβjP (Xj > x)
= lim

x→∞

∫∞

x
yβjPXj (dy)

E(Xβj )xβjP (Xj > x)
= (E(Xβj )(1 − βj))

−1

for all 1 ≤ j ≤ m by Karamata’s Theorem (cf. Cline (1983), Lemma 1.1). Thus, for 1 ≤ j ≤ m with κj > 0

the random variable X̃j := (X ′
j)

1−βj is regularly varying with index −1 and

lim
x→∞

P (X̃j > x1−βj )

xβjP (Xj > x)
= (E(Xβj )(1− βj))

−1. (4.46)

For 1 ≤ j ≤ m with κj = 0 we have X̃j ≥ 1 a.s. because we assumed Xj ≥ 1 a.s. Furthermore, we have for
all δ ∈ (0, 1] and all j with κj = 0 that

E(X̃1−δ
j ) =

∫∞

1 x(1−δ)(1−βj)xβjPXj (dx)

E(X
βj

j )
=

E(X
1−(1−βj)δ
j )

E(X
βj

j )
< ∞.

Thus, the random variables X̃j , 1 ≤ j ≤ m, satisfy the assumptions of Proposition 4.1. Set now

Ã = (ãij) := ((1 − βj)
−1aij) ∈ R

n×m.

Then κ̃ := ((1− βj)κj)1≤j≤m is the unique solution to the linear program

find x ≥ 0 such that Ãx ≥ 1,
m
∑

i=1

xi → min!

and Ãκ̃ = 1. Set

M(Ã) =







(x1, . . . , xm) :

m
∏

j=1

x
ãij

j > 1, 1 ≤ i ≤ n







.

Then,

(X̃j)1≤j≤m ∈ y ⊗κ̃ M(Ã)

⇔
m
∏

j=1

(

X̃j

yκ̃j

)ãij

> 1, 1 ≤ i ≤ n,
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⇔
m
∏

j=1

(

(X ′
j)

1−βj

y(1−βj)κj

)(1−βj)
−1aij

> 1, 1 ≤ i ≤ n,

⇔ (X ′
j)1≤j≤m ∈ y ⊗κ M(A),

and so

P
(

(X̃j)1≤j≤m ∈ y ⊗κ̃ M(Ã)
)

=

∫

y⊗κM(A)

P (X′
j)1≤j≤m(dx)

=

∫

y⊗κM(A)

m
∏

j=1

x
βj

j

E(X
βj

j )
P (Xj)1≤j≤m(dx)

=

∫

M(A)

m
∏

j=1

(yκjxj)
βj

E(X
βj

j )
P (Xj/y

κj )1≤j≤m(dx).

Thus,

lim
y→∞

∫

M(A)

∏m
j=1 x

βj

j P (Xj/y
κj )1≤j≤m(dx)

∏

j:κj>0

P (Xj > yκj )

= lim
y→∞

P
(

(X̃j)1≤j≤m ∈ y ⊗κ̃ M(Ã)
)

∏

j:κj>0

P (X̃j > yκ̃j )
·

m
∏

j=1

E(X
βj

j )
∏

j:κj>0

P (X̃j > yκ̃j )

m
∏

j=1

yκjβj
∏

j:κj>0

P (Xj > yκj )
, (4.47)

where the first factor converges to

∫

M(Ã)

∏

j:κj>0

x−2
j λλ(d(xj){j:κj>0})⊗ P (X̃j){j:κj=0}(d(xj){j:κj=0}) (4.48)

by the assumption. Substitute (y1, . . . , ym) := (x
(1−β1)

−1

1 , . . . , x
(1−βm)−1

m ) and note that (x1, . . . , xm) ∈ M(Ã)
is equivalent to (y1, . . . , ym) ∈ M(A), so the expression in (4.48) equals

∫

M(A)

∏

j:κj>0

(1− βj)y
βj−2
j λλ(d(yj){j:κj>0})⊗ P (X′

j){j:κj=0}(d(yj){j:κj=0})

=

∫

M(A)





∏

j:κj>0

(1− βj)y
βj−2
j









∏

j:κj=0

E(X
βj

j )−1y
βj

j





λλ(d(yj){j:κj>0})⊗ P (Xj){j:κj=0}(d(yj){j:κj=0}).

The second factor in (4.47) converges to

∏

j:κj=0 E(X
βj

j )
∏

j:κj>0(1− βj)

by (4.46). Taken together, this yields the statement of the proposition.
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