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Abstract. We analyze the joint extremal behavior of n random products of the form H;’;l X;”, 1 < i <n, for
non-negative, independent regularly varying random variables X1, ..., X;, and general coefficients a;; € R. Products
of this form appear for example if one observes a linear time series with gamma type innovations at n points in time.
We combine arguments of linear optimization and a generalized concept of regular variation on cones to show that
the asymptotic behavior of joint exceedance probabilities of these products is determined by the solution of a linear
program related to the matrix A = (a4;).
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1. Introduction

The tail behavior of products of powers of heavy-tailed positive random variables is of crucial importance
in many applications, particularly in finance, but e.g. in network modeling too. In stochastic volatility time
series, the log-volatilities are usually modelled as linear time series

S
].Og Ot = Z QT —is te Za
=0

If the innovations 7;,7 € Z, have an exponential or gamma type tail, then the volatility o, at time ¢ is a
product of powers of the regularly varying random variables X; := e i € Z, with exponents depending on ¢.
To assess the risk of a volatile market at different time points ¢4, ..., ¢,, one thus has to analyze probabilities
of the type P(H;il X;-“j >z, 1 <14 < n) for suitable exponents a;;. Using a new Breiman type result, it
was shown in Janflen and Drees (2016) that these probabilities also determine the risk of jointly large losses
over different periods.

Similarly, in a credit risk model for n risks with k£ independent factors Zi, ..., Zy, the i-th risk is often
modeled as a multiple of exp(Z?zl a;; Z; +Y;) with Y;,1 < i < n, denoting the idiosyncratic part (cf.
Embrechts et al. (2014)). If the Z;,1 < j < k, and ¥;,1 < i < n, have an exponential or gamma type tail,
the analysis of the joint tail risk again leads to probabilities of the above type.

In network modeling, both transmission durations L and rates R arising from one source may be modeled
by regularly varying random variables with different indices «y, and ar (see, e.g., Maulik et al. (2002)). The
total volume of traffic from one source can then be expressed as X" Xp" for random variables X, Xr
which are regularly varying with index —1. If one wants to determine the probability that different sources
contribute large volumes in the same period, then again probabilities of the above type arise. Moreover, one
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2 A. Janflen and H. Drees

may introduce dependencies between X and Xy for the same or for different sources by modeling them as
products of (partially) identical factors with different exponents.

As the example of log-volatilities demonstrates, the analysis of the joint tail behavior of power products is
equivalent to the corresponding analysis for linear combinations of random variables with exponential type
tails such that exponentials of these random variables are regularly varying. Hence the results given below
allow a tail analysis in such settings too.

Motivated by these examples, we analyze the asymptotic behavior of the probability of joint exceedances
of power products, i.e. of

PII[X" >cm1<i<n|, ¢;>0,1<i<n, (1.1)
j=1

where X; are independent, non-negative regularly varying random variables and a;; are coefficients which
may be negative. We restrict the analysis to the case of a finite number m of factors, but extensions to
an infinite number of factors, using a Breiman-type argument, are possible. In Janfen and Drees (2016),
such probabilities were investigated under the restrictive assumption that no coefficient is negative. It was
shown there, that the probabilities behaved asymptotically like a multiple of ", P(X; > 2"), where
K = (K1,...,Km) is the solution to a linear program determined by the matrix A = (a;;). While the
restriction to positive coefficients a;; seems acceptable e.g. for multi-factor models, it is quite severe for log-
volatility time series. Moreover, essentially only the case n = 2 was considered in Jan8en and Drees (2016)
and the techniques employed do not easily generalize to higher dimensions, which limits the applicability of
the established results further.

Using a recently introduced abstract concept of regular variation on cones based on the notion of M-
convergence (see Hult and Lindskog (2006), Lindskog et al. (2014)), we can avoid all these drawbacks.
To this end, we first introduce a non-standard form of regular variation on the cone (0,00)™ for the
random vector (Xi,...,X,,), from which one may conclude the asymptotics of probabilities of the type
P((Xy1/x", ..., X /x") € B) for suitable coefficients k1, ..., iy, and sets B C (0,00)™ that are bounded
away from the boundary of the cone. Unfortunately, in general the sets M = {x € R™ : H;nzl x?” >l <
i < n} pertaining to the probabilities (1.1) are not of this type. Hence, quite involved arguments are needed
to prove that the parts of M close to the boundary of the cone are asymptotically negligible. To this end,
auxiliary results are proved in Section 4.3 which are of interest on their own. In particular, Proposition 4.4
can be seen as a multivariate version of the direct half of Karamata’s Theorem, cf. Remark 4.5.

The outline of this paper is as follows: In Section 2 an abstract notion of regular variation on cones is
briefly recalled, with a view towards the later application of this concept. Our main results are stated in
Section 3, with Theorem 3.3 being the central conclusion. Proofs of the results are given in Section 4.2 while
some auxiliary results needed in the proofs are gathered in Section 4.3.

Notations and conventions

We write bold letters for vectors, i.e. x is short for (z1,...,2,) € R™ if it is clear that x is of dimension n.
The i-th component of x is denoted by x;. We write 0 and 1 for a (column) vector of suitable dimension
which consists of only zeros or only ones. Inequalities for vectors are meant to hold componentwise. We
denote the complement of a set A by A¢ and its boundary by dA. For x € R™ and A C R" we set d(x, A) =
infaeca ||x — a||, where || - | denotes the Euclidean norm. Similarly, we set d(A4, B) = infaca ber|la— b||. For
ACR"and r > 0set A" := {x € R" : d(x, A) < r}. Denote the Borel sigma algebra on R” by B" and for
aset A€ B” write B"NA={BecB":BC A}. We write A(:) for the Lebesgue measure on B”".

2. General regular variation on cones
In the following, we will make frequent use of an extension of the concept of multivariate regular variation

which was introduced in Hult and Lindskog (2006) and Lindskog et al. (2014). For some m € N, let ® :
(0,00) x [0,00)™ = [0,00)™, (A, x) — A®x% be a “multiplicatish” mapping with the following two properties:
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(Al) the mapping ® is continuous,
(A2) 1®@x =x and for A1, A2 > 0 we have A1 ® (A2 @ x) = (A1 - A2) @ x for all x € [0, 00)™.

Consider a closed subcone C of [0, 00)™ w.r.t. this mapping, that is, \@ C:= {A®x:x € C} C C for all
A > 0. We assume that the following condition holds:

(A3) d(x,C) <d(A®x,C) if A > 1 and x € Q.

The complement O := [0,00)™ \ C is an open cone, which is assumed not to be empty.

The notion of regular variation on Q@ w.r.t. ®, which is introduced below, rests on the definition of
convergence in the space Mg of Borel measures on (O, B™ N Q) whose restrictions to [0, 00)™ \ C" are finite
for each r > 0. Denote by C*(0) the class of non-negative, bounded and continuous functions f on O
vanishing on C” for some r > 0. We endow Mg with the topology that is generated by open sets of the form

{VEM@:‘/fidy—/fidu‘<e,1§i§k}

with 4 € Mg, fi € CY(0),i = 1,...,k, and ¢ > 0. A Portmanteau Theorem (cf. Lindskog et al. (2014),
Theorem 2.1) shows that convergence of measures v, to a measure v in this topology is equivalent to
the convergence v, (A) — v(A) for all Borel sets A in O which are bounded away from C and for which
v(0A) = 0.

Definition 2.1 (see Lindskog et al. (2014), Definitions 3.1 and 3.2). A measure v € Mg is called regularly
varying on O with respect to the mapping ® if there exists an increasing, regularly varying function c¢ :
[0,00) — (0,00) and a nonzero measure p € Mg such that

clxw(z®-) = pu(-)in Mgy asz — oco.

Lemma and Definition 2.2 (see Lindskog et al. (2014), Theorem 3.1). Definition 2.1 implies that there
exists an o > 0 such that

HA® A) = A" u(A) (2.1)

for all A > 0 and Borel sets A C Q. We call —« the index of reqular variation of the measure v in Definition
2.1. The value of v in (2.1) is equal to the index of regular variation of the normalizing function ¢ in Definition
2.1.

Proof. Equation (2.1) is stated in Lindskog et al. (2014), Theorem 3.1. By this and (A2), we have, for all
A >0 and A in O which are bounded away from C and for which v(9A) = 0, that

i QD _ gy M@SA) oy, vleed)  pd) e
z—o0 ¢(x) z—o0 V(A) ® A) oo vz @ (A® A)) wA® A) '

Therefore, ¢ is (univariate) regularly varying with index a. O

Definition 2.1 unifies several different concepts of regular variation of a random vector X = (X1, ..., X;;,)
with values in [0, 00)™ and distribution v.

Example 2.3 (Multivariate regular variation). If ® denotes the usual scalar multiplication A@x = A\x and
C := {0}, then O =[0,00)™ \ {0} and Definition 2.1 reads as

()P ((ﬁ%> e A) s u(A)

T

as x — oo for all p-continuity sets A C B™ N [0,00)™ bounded away from 0. This is the classical regular
variation of X (see e.g. Resnick (2007), Section 6.1.4).
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4 A. Janflen and H. Drees

Example 2.4 (Ledford-Tawn-model). If C := [0,00)™ \ (0,00)™, then regular variation on @ = (0,00)™
w.r.t. the usual scalar multiplication has been considered by Ledford and Tawn (1997) in the bivariate case
m = 2 (after suitable marginal standardization). It is equivalent to the convergence

&P ((ﬁﬁ> e A) s u(A)

€T €T

as x — oo for all p-continuity sets A C B"™ N [0,00)™ bounded away from both axes in the case m = 2 resp.
from {x :2; =0 for some 1 <1i < m} in the general case.

Note that a random vector X may be reqularly varying in the classical sense of Fxample 2.3 and in the
present sense with different normalizing functions ¢ resp. ¢. If c¢(x) = o(é(x)) as x — oo, then X is said to

exhibit hidden reqular variation (cf. Reswick (2007), Section 9.4.1).

Here, we consider a different mapping ® and different cones as well. Let, for k € [0, 00)™,

(1o 2m)) P A Qi (X1, oy T ) 1= (N g, o, A ay,).

We want to analyze the asymptotic behavior of m-dimensional non-negative random vectors that have ex-
treme values in n € {1,...,m} of their components. For ease of notation, assume that the first n components
of k are positive and the last m — n components are equal to zero, so that " — co as x — oo only for 1 <
i < n. Define the cones C,, = ([0, 00)™ \ (0,00)™) x [0,00)™ ™ and O,, = [0,00)™\ C,, = (0,00)" x [0, 00)™ ™
w.r.t. the mapping ®,. Since

d(x,C.) = min{xy, ...,z < min{\"'zq,... , N7z, } = d(A @, x,C,,)

for all A > 1 and x € O, the assumptions (A1)—(A3) are satisfied. Note that in the case n =m and kK =1,
the regular variation on Q,, w.r.t. ®, is equivalent to the concept of regular variation considered in Example
2.4.

Lemma 2.5. Let k € [0,00)™ with k; > 0,1 <i <n, and k; = 0,n < i < m, for somen < m. Furthermore,

let Xq,...,Xm be independent, non-negative random wvariables such that X1,..., X, are regularly varying
with index —1. Then, PXih<ism s reqularly varying on Q, w.r.t. @, with index —o = — St ki

Proof. From the independence of X1, ..., X,, and the regular variation of X1,..., X, it follows that

PXi)i<i<m (:v =R (( >< (ai,oo)> X < X [bj,00)>>>

wli)ngo [T=, P(X; > ame)

— Iim [T P(Xi > aix™) [TL, 1 P(X; > b))

s H?:l P(X; > ari)

= Ha;l H P(X; >b;)=:p << X (ai,oo)> X < X [bj,oo)>> (2.2)
=1 j=n+1 1<i<n n<j<m

for all a; > 0,1 < i < m, and b; > 0,n < j < m. Since these limits are finite, we have shown that the
family of measures ¢(x)P(Xi)i<ism (v ®, -), x > 0, is relatively compact in Mg, (cf. Theorems 2.4 and 2.5
in Lindskog et al. (2014)), where c¢(z) = ([, P(X; > x’“))_l. Furthermore, all accumulation points of
this family agree on a generating m-system. Thus, P(Xi)i<i<m is regularly varying on O, w.r.t. ®,. The
index of regular variation follows from Lemma and Definition 2.2, since c¢ is regularly varying with index

Z?:l Ki = 221 Ki- 0
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Joint exceedances of random products 5
3. Joint extremal behavior of random power products

In the following, let Xi,...,X,,,m € N, be independent, non-negative random variables, not necessarily
with the same distribution. We will give asymptotics for the joint exceedance probabilities (1.1) of n < m
“power products”

[[x5% 1<i<n, (3.1)

over the same threshold x as x — oo for rather general values of a;; € R,1 <i <n,1 <j <m. A product
may take the value +oo if X; = 0 and a;; < 0 for some 14, j, but throughout we use the convention that
+00-0=0and 0= 1.

In order to derive our results we make some assumptions about the tail behavior of the X;,1 < j < m. We
assume that all or at least the “relevant” (in a sense specified below) X;,1 < j < m, are regularly varying
with index —1. We will see that the joint extremal behavior of the products in (3.1) is closely related to the
solution of the linear optimization problem

find x > 0 such that Ax > 1, le — min! (3.2)
i=1

with A = (aij)1<i<n,i<j<m € R™*™. Before we give proofs for the asymptotic behavior of the joint ex-
ceedances, we want to motivate the connection of our question to the linear optimization problem in (3.2).
To this end, assume for simplicity that a;; > 0 for all 1 <7 <mn,1 <j <m. Let y > 0 be a feasible solution
to (3.2), i.e. Ay > 1. Note that for all z > 1

m
X;>a%, 1<j<m = XY =29 >2 1<i<n,

j=1
by (3.2) and thus
PII[X/" =2 1<i<n| =[] P&, >a%). (3.3)
j=1 j=1

If all X;,1 < j < m, are independent and regularly varying with index —1, the right hand side is a regularly
varying function in x, with index o = — Z;n:l y;. Now, the smaller the value of |a|, the slower is the decay
of the function on the right hand side as x — oo. So, heuristically, if the value of |a| and thus the value of
Z;—n:l y; is minimized, this is the most likely combination of extremal events for the single X; which leads
to joint extremal behavior of the power products (3.1). We will see in Theorem 3.3 that the right hand side
of (3.3) is not only a lower bound for the joint exceedance probabilities but also, under some additional
assumptions about real valued A, tail equivalent to it. For a general (not necessarily non-negative) matrix A,
the next theorem gives upper and lower bounds for the order of decay of the joint exceedance probabilities.

Theorem 3.1. Let X1,...,X,, be independent non-negative random variables. Let k = (k1,...,km)" be
an optimal solution to (3.2).

(a) Assume that all X;,1 < j < m, are regularly varying with index -1. Then for all € > 0,

pmlimrime — o p HX;ij>x,1§i§n , T — 00. (3.4)
j=1
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6 A. Janflen and H. Drees

(b) Assume that E(X}f‘s) < 00,1 <j<m, forallé € (0,1), and additionally that there exists ¢ > 0 such
that P(X; > ¢) =1 for all 1 < j <m with k; = 0. Then for all € > 0,

m
H Xj" >z 1<i<n|=o(x" LRty g o0, (3.5)
j=1
Remark 3.2. In contrast to the other results of this and the following section, the assumptions of Theorem
3.1 (b) do not include regular variation of at least some of the X;,1 < j < m. Note, however, that regular
variation with index —1 of X7, ..., X,, implies that E(X;_‘S) < 00,1 <j<m,forallée(0,1).
The proof is given in Section 4.1. Under some additional assumptions about the structure of A, the
following Theorem 3.3 gives precise asymptotics for the joint exceedance probabilities of the random power
products.

Theorem 3.3. Let A = (a;5) € R™*™ n <m, be such that the optimal solution k to the linear optimization
problem (3.2) is unique and non-degenerate (i.e. it has n positive components) and denote by A, € R™*"
the matriz which is derived from A by deleting all columns 1 < j < m for which k; = 0. Then this matriz
is invertible.

Let X1, ..., X, be independent non-negative random variables and assume that there exists € > 0 such
that for
1<j<m with k; >0: X; is reqularly varying with index —1
E X<1TA’:1A)j+6 < 00 and
. . . J
1< 7<m with Kj = 0: B (X(_lTA,ZlA)j*E) < o (36)
J
Then
P (H;n:lXJa] >cr, 1<i < n)
lim (3.7)

T—00 H P(Xj > xti)
{1<j<mir; >0}

i [ (ATA'A);
= |detA|” HZ# H E( ) =y 1<>§ (ci,00) (3.8)

for all ¢; > 0,1 <i < n. In particular, the distribution of (HTzl X;”)lgign is reqularly varying on (0, 00)™
w.r.t. scalar multiplication (in the sense of Example 2.4). The normalizing function can be chosen as c¢(x) =
(H{1§j§m:;~¢j>o} P(X; > x%9))~! and the corresponding limit measure is yu as above. The index of reqular

variation is equal to — E;nzl Kj = —-1TA 1.

(1TA'A);

Remark 3.4. Given the expression in (3.8), it is obviously necessary to assume that E (X j ) < oo for

all 1 < j < m with x; = 0 in order to ensure that the limit in (3.7) is finite. The actual assumption about the
moments of those X; with x; = 0 which is stated in Theorem 3.3 is similar to the assumption in Breiman’s

T aA—1AN.
lemma (cf. Breiman (1965)) in that we need a little more than the finiteness of the moments F (X<1 AnA);
in order to apply a dominated convergence theorem. Furthermore, note that for (17 A 1A); > 0 only the
first moment assumption is necessary, the second follows for € > 0 chosen small enough. On the other hand,
if (1TA'A); < 0, then only the second assumption is necessary. Only in the case (1T A 'A); = 0 both
assumptions are necessary.

Remark 3.5. (a) Under the given assumptions the vector 17 A which appears in the statement of The-
orem 3.3 is the transposed of the unique optimal solution to the so-called dual problem to (3.2), which
is given by

find x > 0 such that ATx <1, Z x; — max!, (3.9)
i=1
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Joint exceedances of random products 7

see the proof of Theorem 3.3 and (4.18) for details. This implies that (1TA1A)T = AT (lTA,gl)T <1
and by the assumed uniqueness and non-degeneracy of the solution even (17 A 1A); < 1 for those j
with k; = 0, cf. the remark after (4.27) in the proof of Theorem 3.3. Therefore, the assumptions in
(3.6) are always satisfied if all X;,1 < j <m, are regularly varying with index —1 and bounded away
from 0 (or their distributions concentrate sufficiently little mass around 0).

(b) For a general linear program of the form

find x > 0 such that Ax > 1, sz:rj — min! (3.10)
j=1

with optimal solution &, the value of z; — (1T A_1A); is sometimes called the reduced cost of variable
1 <7 <m.If k; = 0 in the optimal solution, then this solution is not affected by a change of z; in the
objective function in (3.10) as long as z; > (1TA 1A);, cf. Section 2.5.1 in Sierksma (1996). In the
context of Theorem 3.3, the values of (1T A_'A); for j with x; = 0 can be interpreted in a similar
way, since the left or right tail behavior of these X; does not influence the extremal behavior of the
random products (except for a possible change in the multiplicative constant of the limit) as long as
there exists € > 0 such that

P(X; > z) = Oz~ ATA) =) if 1TAZ1A); >0
P(X;!'>a) =0 A=) if 1TALTA); <0
The proof of Theorem 3.3 is given in detail in Section 4.2, but we want to lay out briefly the main idea
here. To this end, assume w.l.o.g. that the first n components of k are positive and the last m —n components
are equal to zero. The main idea is to use the regular variation of the measure v := @/, PXi (where P*:

stands for the law of X;) on Q,, w.r.t. ®,, cf. Lemma 2.5. Furthermore, we show that under our assumptions
the equality Ax = 1 holds. Then,

m
a;i .
P HXj]>ci:v,1§z§n

Jj=1
m ){7 Qjj )
= P 1_[1<:1:J) >c, 1<i<n| =ve®,M) (3.11)
j=
for
M=M(A,c):={x€[0,00)": H:v;l] >¢, 1<i<n
j=1

The next step is to apply the Portmanteau Theorem (cf. Theorem 2.1 in Lindskog et al. (2014)) to show
convergence of the right hand side in (3.11) under suitable normalization as  — oo. Note, however, that
the set M is not bounded away from C,, (cf. Section 2), so we cannot directly apply this argument. As an
intermediate step, we therefore have to show that we can replace M by M N (§,00)™ x [0,00)™ ™, § > 0, in
(3.11) and that under the necessary normalization the difference is negligible as 6 0.

The following example illustrates the statements of Theorem 3.3 and in particular the role of negative
coefficients a;;. It also demonstrates applications of Theorem 3.3 for the extreme value analysis of time
series.

Example 3.6. Let (Y:)iez be a log-linear time series of the form
In(Y;) =In(X;) — 0.5In(Xy41), tE€Z,

where Xi,t € Z, are i.i.d. and reqularly varying with index —1. Using Theorem 3.3, we can derive the
asymptotics for the probability that three consecutive extreme observations of similar magnitude occur, i.e.
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8 A. Janflen and H. Drees
for P(Y1 > c12,Ys > cox, Y3 > c3x), ¢; > 0,i = 1,2,3. Rewrite this probability as

4
P(X1X5%% > 12, Xo X570 > cow, X3 X, 0% > c32) = P H X >, 1<i<3
j=1

with
A = (aj)<i<sigj<a=| 0 1 -05 0

The optimal solution to (3.2) is then given by k = (7/4,3/2,1,0) and this solution is unique and non-
degenerate. Furthermore,

-1

1 —05 0
aATA'A), =111 0 1 -05 Al =((1,3/2,7/4)A), = -7/8.
0 0 1

4

Let us first additionally assume that E(X477/87€) < oo for some € > 0. Then all assumptions of Theorem
3.8 are satisfied and the random vector (Y1,Ya,Y3) is regqularly varying on (0,00)% with respect to scalar
multiplication. The index of reqular variation is equal to — 2?21 kj = —17/4 and the limit measure 1 is
given by

(X3 (ci,00)) = %01—162—3/2657/4E(X4—7/8).

Note that the negative exponents do influence the solution of the optimization problem and hence the index
of reqular variation. If, for instance, in the matrix A —0.5 is replaced with —0.25 everywhere, the optimal
solution is given by (21/16,5/4,1,0) and the index of reqular variation equals —57/16.

If the assumption E(X4_7/8_6) < 00 is not satisfied, Theorem 3.3 may still be helpful. For instance, let us
assume that X;l is regularly varying with index —1/2, so that the above moment assumption does not hold.

But since this assumption implies that X, 12 4 regqularly varying with index —1, we can write the above
joint exceedance probability as P(H?:1 X]a” >cx, 1<i<3) for Xj =X,,1<j<3, X4 = )(4_1/2 and

B e

If we replace A in (3.2) by A, then the optimal solution is given by & = (3/2,1,0,1) and this solution is
unique and non-degenerate. Furthermore,

—1

1 —05 0
1TA'A); =170 1 o | A :((1,3/2,1)A)3:1/4.
0 0 1

3

Since E(X§/4+E) < oo for e € (0,3/4) by our above assumptions, we can apply Theorem 3.3 also in this case
to obtain again that (Y1, Ya,Y3) is regqularly varying on (0,00)% with respect to scalar multiplication. But now
the index of reqular variation is equal to — ijl Rj = —7/2 and the limit measure i is given by

. 2 4 32 _ 1/4
u(xf’zl(ci,oo)) = 501 162 / C3 1E(X3/ )-
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Joint exceedances of random products 9
4. Proofs and auxiliary results
4.1. Proof of Theorem 3.1

Proof. We start with the proof of (a). The optimal solution & to (3.2) lies in the closure of
N(A):={zeR": Az > 1}.

Since the ray {z € R™ : z = (1 +0)K,0 > 0} is a subset of the open set N(A), for all € > 0 there exists
€’ > 0 such that

- € €
ki [14+ ——=m—— | =€k [ 1+ =——=m—— | +€ | C N(A).
§<J< 223-_1@) J( 221—1’%‘) )

Thus, for z > 1,

m
P HX;”>x,1§i§n
j=1
m
> P HX;ij>x,1§i§n, and X; >0,1<j<m

<.
Il
—

P((5) __ evw)

m e o X e ’
> [Ir (fr (st ) < X; < G o >+> .
j=1
By the regular variation of Xy, ..., X,,, the expression on the right-hand side is of larger order than

m . /e
Hx—w(Hizzy;l Nj)+€ o g Yl mmstme —§ 5 = Y, Kime >,
Jj=1
which proves (a).
For the proof of (b) let us for simplicity assume that ¢ > 1 so that P(X; > 1) = 1 for those 1 < j <m

with #; = 0. The modifications for general ¢ > 0 (substitute X;/c for X;) are simple. Let A be as in Lemma
4.2 (a) (see Section 4.3 below), so that we have

m
HX;”>ZE, 1<i:<n

j=1
m ~
= HX;-Z”>$, 1<i<n
j=1
m
= Hmax(Xj,l)d” >z, 1<i<n,

Jj=1

where we have used that a;; > 0 for all 1 < j <m with x; >0 and X; > 1 for 1 < j <m with x; = 0. The
last inequalities imply that for z > 1
U X;,1
Zdijw>1, 1<i<n
In(x)

j=1
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10 A. Janflen and H. Drees

N i In(max(X i

j=1

because otherwise K could not be an optimal solution to (4.36), in contrast to Lemma 4.2 (a) and our
assumptions. Thus, for z > 1,

[[X/%>2 1<i<n|<P|]]max(X;,1)> a5 ). (4.1)
j=1 =1
By our assumptions, for all § € (0,1),
1-5
E Hmax(Xj,l) = HE(max(Xj,l)l_‘s) < oo

j=1 j=1

and by the Markov inequality and (4.1) we conclude

H X;-“j >z, 1<i<n| =0 (:C_(Z;nzl “f)(l_‘s))
j=1

for all § € (0,1). Choosing § < ¢/ 37", k; yields (3.5). O
4.2. Proof of Theorem 3.3

In order to prove Theorem 3.3, we first deal with a setting that covers a slightly more general case for the
solution of the linear program (3.2) than the one assumed in the statement of Theorem 3.3. The proof of
this result is by induction on the number of positive components in the unique optimal solution to (3.2).
Several auxiliary results needed for the proof can be found in Section 4.3.

Proposition 4.1. Let A = (a;;) € R™*™ withn,m € N be such that the solution K to the linear optimization
problem (3.2) is unique with Ak = 1. Define J = {j € {1,...,m} : k; > 0}.
Let Xq,...,X,, be independent non-negative random variables. Assume that

forjeJ : Xj is regularly varying with index —1,
forje{l,....om}\J : P(X;>1)=1 andE(X;75)<oofor all 6 € (0,1).
Then,
P(H;n:lX;” >, 1§i§n)
lim

T—00 H P(Xj > I”f)
jeg

= [ =2 A(d(z;)je.0) ® PEDis (d(s) j4.) € [0,00)
M(A) I€7

with M(A) := {(21,...,2m) € [0,00)™ : []}_, xi7 >1,1<i<n}.

Proof. The proof is by induction on the number [ of positive components in the unique optimal solution
k. Note that k > 0 and that at least one component of x has to be positive in order to satisfy Ax > 1.
In the following, we assume w.l.o.g. that the first [ € N components of k are positive and the last m — [
components are equal to zero (if this is not the case, interchange the X;’s and the corresponding columns
of A accordingly).
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Joint exceedances of random products 11

We start now with the case [ = 1, i.e. k1 > 0 and x; = 0 for 2 < j < m. Our assumptions imply that

a1k =1foralll1 <i<n,ie a1 =...=ay and kK1 = ai_ll,l <4 < n. Thus,
m m
aij . o . aijk1 K1
HXj >z, 1<i<n| =P Xllglil?n l_IX7 >z . (4.2)
=1 ==

If the linear program

aiz - Aim
find x € [0,00)™ ! such that x> 1, Z 2; — min! (4.3)

Qp2 Gnm

has no feasible solution, then

—1
1I<1111£1n2a”:17] 1<1, ¥Vxel0,00)"",

and thus
m
. aijR1 K1
nin. H X; <€ as, (4.4)
because In(X2),...,In(X,,) > 0 almost surely by our assumptions. On the other hand, if there exists
a feasible solution to (4.3), then there exists € > 0 such that all feasible solutions x to (4.3) satisfy
Zmzl T; > K1 + €, since otherwise there would exist a solution x’ = (0,24, ...,2,, )T # (k1,0,...,0)T to

(3.2) with E _; 2 < K1, in contradiction to our assumptions. Hence, an optimal solution to (4. 3) exists
with Zi:l x; > K1 + €. By Theorem 3.1 (b) we have

min H Xa”Nl >z | =o0 (177176/(2“1)) T — 00.
1<i<n . ’

So, whether there exists a solution to (4.3) or not, we have

1+¢/(4K1)
m
E min I_IX{WN1 < 00
1<i<n | £1°7

and we may thus apply Breiman’s Lemma, cf. Breiman (1965), to derive the asymptotic behavior of (4.2)
as  — oo. This gives us

P(H;.nle;-l” >, 1§i§n)
i ‘ ‘
200 P(X1 > z%1)

a;iK
min HX i

1<i<n

— / 272N (dzy) @ PXD2sism (d(25)2< j<m)

—Q;ikK
{xE[O,oo)m:m1>max1§i§n(H] 27, ij 1)}
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12 A. Janflen and H. Drees

- / 27 ?A(dzy) @ P22 (d())a<j<m),

{x€[0,00)™: T, @ >1,1<i<n}

which concludes the proof in the case [ = 1.

For the induction step, assume that Proposition 4.1 holds for all matrices A* € R™ *™" n* m* € N, for
which the corresponding linear program (3.2) (with A replaced by A*) has a unique solution k* and for
which A*k* =1 and at most [ — 1 > 1 components of k* are positive. In the following, assume that k has
[ positive components, again w.l.o.g. the first [ ones.

Define the map ®, as in Section 2. From Lemma 2.5 we get that P(Xi)i<i<m is regularly varying on O,
with respect to ®y.

Now, with Ax = 1 we have

m

s X3\
P X >z 1<i< = P —_ >1,1<i<
I1x" > o 1sisn H@) <i<n

PXex®, M),

where X = (X4, ..., X,,) and

M= M(A) = XE[O,oo)m:H:r?”>1, 1<i<n

j=1

For § > 0 write
PXecrx®, M) P(Xegc®,.c (M N ((6,oo)l X [O,oo)m_l)))
[Tiey P(Xi > ) [Ty P(Xi > %)

L P(Xezes (M ((3,00) x [0,00" "))

1., P(X; > a) (4.5)

We will first show that the second summand in (4.5) tends to zero as first # — oo and then ¢ \, 0. Note
that

o P(Xex®s (M0 ((6,00) x 0,00 1))
lim lim sup 7
O 300 [T, P(X; > an4)

P (X w M, Xy < Oxfk
< Z lim lim sup ( Glaf © k < 0™)
=1 00 a0 [liz) P(Xi > %)

. (4.6)

We will show that all summands in (4.6) equal zero. To this end, note first that we may apply Lemma 4.2
(b) to the matrix A, i.e. there exists a matrix A such that x as above is the unique solution to the linear
program (4.36) with @;; >0 for 1 <i<nand1<j<!and Ak =1. We have

P(X €x®x M, X}, <6z = P]]X/" >2 1<i<n Xi < da™
j=1
< PIT[ X > e, 1<i<n, Xy < d2™ (4.7)
j=1
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Joint exceedances of random products 13

by Lemma 4.2 (b). For ease of notation, we restrict ourselves to the analysis for the summand & = 1 in (4.6).
For C' > 0, use (4.7), a;; > 0,1 <i <n, and Ak =1 to write
P(Xex®eM, X, <dz")
[Ty P(X > )
P (H;nzl X?” >z, 1<i<n,X; < 5x”‘1)

= l
Loy P(Xi > an)
L X\ @ig/dq
P X1 —1 X <5 K1 P12111£n11;[2(m) d
[ P& >z X <orm) (dz)
o [0,00)
[TI_, P(X; > ane)
. moX; \@ij/di1
P (3% > =) /P(X > o™ pr2z L
Tkl 1 X ) (Z)
_ Gtanye)
> 7 :
[Lics P(X; > am)
LM X @i/ da
P ﬁ —1 X < 5 K1 Plrgnilgnjl;lz(zﬁj) d
f (1N1>Z y 1_17) (z)
L @1/C0)
[T_, P(X; > ar)
= I(x,0,C)+II(x,0,C). (4.8)

We deal first with I = I(z,6,C). Use a;j/a;n > 0,1<i<n,2<j<l,and k; =0and P(X; >1)=1,1<
7 < 'm, to obtain

mo o~ mo o~
. ai; (X, , i X;
min —ZIn | =L ) < min — (In | =2 a.s. (4.9)
1<i<n 4 a1 ki 1<i<n 4 a1 ki
j=2 j=2 +

Choose € € (0,1) according to Lemma 4.3 such that the expression on the right hand side of (4.9) is a.s.
bounded by

In _
1"’5; i n

For this € > 0, there exists C' > 0 such that

P>
L <1 e vVi<z<a™/C C
PX: > o) <(l+4+e¢):z <z<zM/C x>

by Potter’s bounds applied to x — P(X; > z) (cf. Bingham et al. (1987), Theorem 1.5.6). So, for ¢ < 1,
the numerator of I(x,d,C) is bounded by

L )dij/dil

min [ (=&
/(51 )(1 +€)21+EP1SIS”:2<I ’ (dz)

m X
_ / (1+¢) min Z(.Hﬁ)d”/d“P(ITjj)%jSm(dz)
M(A,J) 1§i§nj:2 J

IN

" EER
/ (1+¢) H max(1, zj)lféP(zNJ )2SiSm (dz)
M(A,5)

Jj=2
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14 A. Janflen and H. Drees

j.

s Z /~ - (149 H ijP(ITJ)Kjgm (dz)

(B1)2<i<m€{0,1—eym—1 7/ M(A0) j=2
with
(A L m—1 . = aij/ai1 —1
M(A,0) := 1 (z2,...,2m) € [0,00) H min 11 z; >0

Note that 2?22 aixkr > 0,1 <1i <n, by our assumptions about A and k and let

D(5) := in, 5/ Xkzp dinkr () (4.10)
and
A= () 1<i<n2<icm = (%) : (4.11)
Do Qikkk 1<i<n,2<j<m
Hence,
M(A5) € 3 (z-es2m) €[0,00)" 7"t min 15 > D()

Note that a feasible solution to the linear program

m
find x = (a2, ... ,:cm)T > 0 such that A'x > 1, sz — min! (4.12)
i=2
is given by &' = (kg,...,km)7 with A’k’ = 1. Furthermore, this is also the unique optimal solution to
(4.12), because if there would be another feasible solution (xa,...,z,)T to it with diaxy < D0 Ky
then x' := (k1,%2,...,7m)’ would be a solution to (4.36) as well because of
T T
~ m m
Ax' = | [ airy + Zdijxj > (dmﬁ + Z%k%) =1,
Jj=2 1<i<n k=2 1<i<n

as Ak = 1. This would lead to a contradiction to our assumption about the uniqueness of kK and Lemma
4.2 (b). Thus,

1+¢€) ™ z@jP(m”)%iSm dz
Jj=27j
(Bi)2s<me{01—c}m—1 [Tizp P(Xi > %)
(i)
TR T R
{z lglélnjl;lzz]”>l}

(Bj)2<j<m€{0,1—e}m—1
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Joint exceedances of random products 15

1Iis P(X > (D(3)2)") l

€ Bikj
1., P(X; > ar0) (1+ )jZHQD(&

Now, by Proposition 4.4 combined with the induction hypothesis and the properties of A’, the first factor
of each summand in the above expression converges to the finite expression

m l
IT =5 T 257 2A@(@))2< <0) @ PEDr<s=m (d(a;)1<j<m)

~ =2 =2
M(A" J J

as r — 00, whereas the remainder of the expression converges to
1
(1+e) [ D(s)=rs =5
j=2

with £;(1— ;) > 0 for 2 < j <1 by our assumptions. The first limit does not depend on the value of § > 0,
while the second converges to 0 as § \, 0 and thus D(d) — oo by (4.10). We have thus shown that

%im limsup I(x,6,C) =0

0 2z

for C large enough. Let us now deal with 17 = II(x,0,C') from (4.8). We have

P(&% I () 1>x“1/c>
II < =

- [T , P(X; > )

J

P ﬁ max(1, X;)% > x/C% 1<i<n
< =2 ! [T'_, P(max(1, X;) > z)

[Tiey P(max(1, X;) > a%) [Ties P(Xi > )

IN

P ﬁ max(1, X;)% > aD'(C), 1<i<n
<j_2 ! [T, P(max(1, X;) > ")

<
- [Tiey P(max(1, X;) > an) [T, P(Xi > 2n)

, (4.13)

where we set

D'(C):= min C~%* >0

1<i<n

for abbreviation. Set

A" = (@ij)1<i<n2<j<m € RP¥(M~D

XN, a7

and consider the linear program

m
find x = (a2, ... ,:cm)T > 0 such that A”x > 1, Z r; — min! (4.14)
i=2
If this linear program has no feasible solution then
m
min max(1l, X;)% <e as.

1<i<n 4
J:
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16 A. Janflen and H. Drees

(cf. (4.4) for analogous reasoning), so the first factor in (4.13) equals 0 for x large enough. On the other
hand, if there exists a feasible solution to (4.14), then there exists ¢ > 0 such that all feasible solutions
(T2, xm)" to (4.14) satisfy 37", a5 > YU kj + €, since otherwise there would exist a solution x’
=(0,22,...,2m)" # Kk to (4.36) with dojeyay < 370 Ky, in contradiction to our assumptions and Lemma
4.2 (b). In the latter case, the numerator of the first factor in (4.13) is of smaller order than 2~ =1 %1 ~¢/2
as © — oo by Theorem 3.1 (b), while the denominator is regularly varying in z with index — Z;n:l k; and
the second factor in (4.13) equals 1 for & > 1. So, in both cases, and for all C' > 0 ‘

lim limsup I1(x,d,C) = limsup I1(x,§,C) =0,

OINO 200 Z—00

and the first summand in (4.6) is equal to zero. All other summands can be treated analogously.
Taken together, we have shown that

lim lim sup P (X €79 (M n ((5’ 20)' x [0, oo)mil)c))

: —0. (4.15)
INO 20 Hi:l P(Xl > (EM)

With p(-) as defined in (2.2) we have

P(H;-n:linj>:17,1§i§n) P(X €z @, M)

lim = lim

woee Hli:1 P(X; > %) rree Hli:1 P(X; > xri)

L P(Xcwe, (N (600 x 009" 1))
= lim lim ;

N0 z—00 Hi:l P(Xi > Ini)
_ s l m—1
= %{%M (M N ((8,00)" x [0,00)™71))

1

= / [ e A@d(z)1<<0) @ PE<osm (d()1<j<m)

MA((8,00)! % [0,00)m—1) I=1
l
N /H 2 A (d(25)1<5<1) @ PO (d())i<j<m),
M oI=t
by monotone convergence where we used that
M N ((0,00)" x [0,00)™ ") = M,

because £; > 0 for 1 < j < [ implies that at least one 1 < i < n exists with a;; > 0. But then
ming<i<, [[;7; X;"" =0 assoon as X; =0,1<j <1, s0 M C ((0,00)" x [0,00)™").
This concludes the proof of Proposition 4.1. |

Proof of Theorem 3.3. Let us again assume w.l.o.g. that the first n > 1 components of k are positive and
the last m —n > 0 components are equal to zero. We start with some implications of our assumptions about
the matrix A. Since the optimal solution  to (3.2) is unique it must be a vertex of the polygon defined by
{x >0:Ax > 1}, cf. Sierksma (1996), Theorem 1.5. Each vertex of {x > 0 : Ax > 1} corresponds to a
so-called basic feasible solution (cf. Sierksma (1996), Theorem 1.2) of the standard form linear program

find x € R™"" such that (A;(-1)-E,)x=1, x>0, in — minl!, (4.16)
i=1

where the matrix (A, (—1) - E,) € R**(™+7) consists of the columns of A in its first m columns and of the
columns of the n-dimensional unit matrix, E,,, multiplied with —1 in its last n columns. The basic feasible
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Joint exceedances of random products 17

solutions of (4.16) can be found by choosing n linearly independent columns of (A;(—1) - E,) with indices
B C {1,...,m + n}, denoting the resulting matrix by (A;(—1) - E,)p and deriving sp = ((s;)jen)’ =
((A;(=1)-E,)p) 1. If sg > 0, then we call

Tj = Sy, if jeB,

T .
XB = (T1,...,Tmin with
&= (= +n) {xj_o, if j€{1,...,m+n}\B

a basic feasible solution to (4.16). The corresponding solution to (3.2) is given by the first m components
of xp, the remaining last n components of xp are called slack variables. Since we assumed that the first n
components of kK are positive and that the optimal solution is unique, it can only correspond to the basic
feasible solution with B = {1,...,n} which implies that A, the matrix which consists of only the first n
columns of A, is invertible and (k1,...,k,)7 = (A,)~'1 which leads to Ak = 1. Thus, the assumptions
about A of Theorem 3.3 are a special case of the assumptions about A of Proposition 4.1. Furthermore, the
optimal value of (3.2) equals

S ori=> Ky =1"(A N1 (4.17)

Since we assumed K to be unique and non-degenerate, the optimal solution to the dual problem (3.9) is
unique and non-degenerate as well, cf. Sierksma (1996), Theorem 2.11. Furthermore, the optimal solution &
to (3.9) is in our case given by

k=(AHT1, (4.18)

cf. Sierksma (1996), Theorem 2.2. This explains Remark 3.5 (a).
Again w.l.o.g. assume in the following that (17A_1A); = 0 for n < j < n/ with n <n/ < m and that
(1TALA); #0 for n’ < j < m. Define now for 1 < j <m

X, for j < n,

. X5, form<j<n/,

X = X](.ITAEIA)J'“, for j >n',(1TA;'A); > 0, (4.19)
X](.ITAQIA)J'_E, for j >n',(1TA;'A); <0,

with € > 0 as in the statement of Theorem 3.3 and set furthermore A with

Qij, for1 <i<mn,j<n,

s for1<i<n,n<j<n,
i — . , . _ 4.20
Y m, for 1 <1< n,jy > TL/, (1;A,{1A)] > O, ( )

m’ f0r1§2§n7]>n/,(1 A; A)J<O

Obviously, this leads to
m m

PII[x/">co1<i<n|=P|][X]¥>cz1<i<n]|. (4.21)

j=1 j=1

In order to apply Proposition 4.1 we will distinguish between events where X j > 1 and those where X ;<1
for n < j < n'. Therefore, for J C {n+1,...,n'} denote the event {X; > 1for j € {n+1,....,n'}\ J, X, <
1 for j € J} by B(J), and write

m
P HX;] >cx, 1<i<n
j=1
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18 A. Janflen and H. Drees

- > P& > 1<i<n|B(J) | P(B()). (4.22)
JC{n+1,...,n"} j=1

For J with P(B(J)) > 0 define now independent random variables X;J), 1 <7 <m, with

PXj, fOI'j6{1,---,n7n/+17"'am}5
& ¢-11%
X ) pR< e (4.23)
PXilXiz1 forje{n+1,...,n'}\ J.

Furthermore, set A with

(4.24)

A(J) CALZ'J', forlSiﬁn,jE{l,...,m}\J,
i —Gi;, forl1<i<n,je..

By independence of the Xj’s and of the XJ(J)’S, the first factor of each summand in (4.22) is equal to

m ah)
P (X(”) Vs er, 1<i<n (4.25)

j
j=1
forall J C {n+1,...,n'} with P(B(J)) > 0. The vector k is a basic feasible solution to
find x > 0 such that A(/)x > 1, le — min!, (4.26)
i=1

because Ak = 1, as the first n columns of A) are identical to those of A. Furthermore,

1TAL'A); =1, if j <n,
e 1(1TATA); =0, ifje{n+1,....,0}\J
(1TATAW)Y), — e‘(llT(ii:;j(—A))j =0 ifje J, . (4.27)
(1(:AA:112));+€€€((§Oi1), 1f_7 > nl, (lTA,ilA){ >0
AATA), 1), itj>n',(1"A;'A); <0

which proves that & is the unique optimal solution to (4.26), because 1 — (lTA,zlA(J )), is strictly positive
for all non-basic variables n < j < m (cf. the analogue of Theorem 1.6 and the remark after the proof of
this theorem in Sierksma (1996) for a linear minimization problem instead of a maximization problem).

Let now J C {n+1,...,n'} and let A(/) be the matrix described in Lemma 4.2 (c), corresponding to
A with a( > 0 for all 1 < 1<n,je{l,...,n,n"+1,...,m}. Then, for ¢ > 0,

m (J)
P H(X(J)) >cx, 1<i1<n

=1
m (J) ~
=P H X(J) > ¢, 1§i§n,X§J)Zc,n’<j§m
]:1
m )
+P H X(J)) >cr, 1<i<n,In <j<m: X() (4.28)
Jj=1
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Joint exceedances of random products 19

and for the second summand we have

- a )
P H(XJ(J)) Ys e, 1§i§n,3n’<j§m:XJ(_J)<c

j=1
M () 3l
< ( J .
< Z P H(XJ ) >x1£nkl£nck,
0£KC{n'+1,....,m} Jj=1
5 (J ) 5 (J .
X_]()<C,]€K,X_]()ZC7]€{TL/+1,,m}\K)
. &l R &
< > p< 11 (X}”) i I e (1,X§‘”) g
0#KC{n'+1,...m} Jje€{l,....,n"} JE{n/ +1,.. mI\K
- ‘:11(;"])
> min c; [ min ¢ ek Y ,1<i<n ).
1<k<n 1<i<n

Set

- &l
D(c) = D(c,c1y...,cpn) = < min ck) <min c jek Y ) >0

1<k<n 1<i<n

for abbreviation and note that by our assumptions and Lemma 4.2 (¢)  is the unique optimal solution to

find x > 0 such that Ax >1, le — min!,
i=1
with A — 1, that Y7 = PXi 1< j <mn,that )A(T(l‘?l, . .,)A(fl‘,l) > 1 a.s. with E(X§J)) <oo,n<j<n,
and that E(max(l,X;’]))) < oo,n’ < j < m. Therefore, apply Proposition 4.1 to obtain for () # K C
{n+1,...,m}

— (D(¢))” == D(J),

as x — oo for some finite constant D(.J) which does not depend on ¢. As D(c) — oo for ¢ \, 0 we conclude
from (4.28) that

m R [15‘,.7)
P(H(XJ(J)) ! >cix,1§i§n>
j=1

T—00 H?:l P(Xj > 2)

m “ alh R

P(H (Xj(-‘])) Y >cix,1§i§n,X§J)20,n’<j§m>

j=1 ’

= lim lim = 4.29
e\ z—00 [T=, P(X; > am) (4.29)
Let now
—m ald) - Qi .

ci(c) = ¢ie” i/ +1 Y = ¢ Sa= M0 1 < <.

imsart ver. 2014/10/16 file: randomproductsjanssendreesarxivv2.tex date: October 26, 2018



20 A. Janflen and H. Drees

Then

m “ &E‘.]) N
Pl 1I (XJ(J)) > e, lgign,X;J)Zc,n’<j§m>
j=1

i
s T, P(X; > a)
—1
. >(J
= Im ] PXT > o | T[] P(x; > 2™ (4.30)
j=n'+1 Jj=1

4D

n’ . ‘3’5",) m X(]) @ij
P H(X7('J)) ’ H . >z, 1<i<n
: c

j=1 j=n'+1

. o (J
min X( ) >c
n'<j<m J

The last factor in the above expression can be written as

ﬁ( m)

al)
>ci(c)r, 1<i<n

where X JU"C), 1 < 5 < m, denote independent random variables with

X0 .
PX](M) {P i for 1 <j<n,

= —1 %) () .
peXTIXT e for ! < j < m.

Set

no VA 1< i<
éj(C) _ {Hz—l Cl(C) ; SJ=n,

1, n<j<m
which implies that

n

ﬁé]( (’) ﬁ U«u = exp ZGUZ ,: quln(ck( )) :Ci(C), 1< <n.
j=1 i1

Then we have

m o, ag'j’)
P (H (X;Jvc)) > ci(e)r, 1<i< n)
J

. _ (431)
Hj:lP(Xj > i)
NS
m X(.J,C) E%3
P H(cj—(c)> >z, 1<i<n
G T, POY, > &5 (0) )
II=, P(X; > &(c)ans) I P(X; >am) .

As x — oo, in view of (4.18), the second factor of (4.32) converges to
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ﬁ( RS DU s ):c g al) ch (4.33)

i=1

>(Je)
Note that PXJ'J = P%i for 1 <j<nand

XJ(J,C) ( o XJ(.J,C) .
_ j >las, E|—— | <ooforn<j<m.
¢i(c) ¢;(c)

Hence, we can apply Proposition 4.1 to see that the first factor of (4.32) converges to

U
/ HI d(xj)1<j<n) ® P m<ism (d() ne j<m)
(A
Write x; = (21,...,2p),X2 = (Tpt1,-..,%m) for abbreviation and use the substition y = In(x;) :=
(In(z1),...,In(z,)) to see that the above expression equals

" S(he)y
/ exp(— Y yi)A(dy) P Im<ism (dxy)
=1

[0,00)m—n e
yG]R":cXp(A,Qy)>(H;n:n+1 T, 1] )1§i§n

-/ / [det(A )|~

[0,00)m =™ —a{d)
ZGRH:CXP(Z)>(H?:7L+1 :ztj " )1§i§n

oxp ( Z Z I: klzl> A(dZ) P(XJ(JYC))n<j§m (ng)
=1
— | det(An)|71 H / exXp (—Zl Z ) leP(X§'7,C))n<jSm (dXQ)
" )

([T iy 2, Y )s00)

1 n T o (. n - N
- HLde(t((Aﬁl)ng) / 11 2 Zher A B ()
0 00)771 n 1—1 j n+1

|det ﬁ E (( JC))EL 1“LJ ((Ag 1)T1)1>
1’%

Jj=n+1
det(AL)|™' 5 () e @ R "
_ [detA)T eti T (E ((Xﬁ‘])) PR s o) e Tl s ) (4:34)
Hi:lﬁi j=n'+1

where we used in the final step that Y all g = (1TA;TAD)Y; =0 for n < j <, cf. (4.27). Combine

=1 zg
(4.33) and (4.34) to see that the expression in (4.32) converges to

| det(Aw)| T, ™ H E(( (J))Z?:1 0l

Hi:1 Ki j=n'41

as  — 0o. Now, (4.35) together with (4.29) and (4.30) yields that

m o, ag‘j’)
P<H (XJ(J)) > ¢, 1§i§n>

. Jj=1
lim

()
X = c) (4.35)
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22 A. Janflen and H. Drees

det(An T on Sl
b T, i I1 #((%”) Lixosqg

j=n'+1
*l%i m n 5 (J) o
_ [det(AR) T ¢ I E((X(_J)) S )
n i J
[Ty #i j=ni41
| det(A)| [T ¢ ™ ﬁ Sy i
— 1= 7 E(X i=1 "] 7')
n J I
[Ty A j=n' 41

where we used S a7 %, = (AUT(AZN)TL); = (1TAZTAWD); > 0,0/ < j < m (cf. (4.27)) in the

i=1 4

penultimate equality and (4.19), (4.20), (4.23) and (4.24) in the final equality. This expression no longer
depends on J C {n+1,...n'} and therefore (4.21), (4.22) and (4.25) lead to

P(H?:lX;ij > G, 1§i§n) P(H;’LX?” > ¢, 1§z’§n)

lim = . = lim = ‘
oo [L= P(X; > z%5) oo [[= P(X; > a5)
| det(Ay)| ' T, ™ ﬁ S aish
1= 3 E(X i=1 "] 7')
n j
ILiZ & j=ni 41
-1TA Y
T, (1TAZ'A);
— |det Ayl 1—171 i IT 2 (x; ),
[T, aATALY); jinjm0

and so the limit in (3.7) equals the expression in (3.8). By Theorems 2.4 and 2.5 of Lindskog et al. (2014),
this shows that c¢(z)P ((:1:*1 [T7% X7 )i<icn € -), x>0, with c(z) = ([T}, P(X; > 2"))~", is relatively
compact in Mg ,)». Furthermore, all accumulation points of this family agree on a generating m-system.

Thus, PALL X" iz g regularly varying on (0,00)" w.r.t. scalar multiplication, cf. Example 2.4. The
index of regular variation follows from Lemma and Definition 2.2 since c is regularly varying with index
— E?:l Kj = — Z;n:l Kj = _]_TA;l]_’ cf. (417) O

4.8. Auziliary results

In the following, we collect two lemmas and a proposition which are needed for the proofs in Sections 4.1
and 4.2.
Lemma 4.2. Let k = (K1,...,5m)T be an optimal solution to (3.2).

(a) There exists a matriz A = (a;;) € R™™ such that

— the columns j in A for which k; > 0 have all positive entries,

— K s an optimal solution to the linear program

find x > 0 such that Ax > 1, in—nnin! (4.36)
— for all x,x1,22,...,Tm >0,

H > 1<z<néHI”>x 1<i<n. (4.37)

i i

(b) Moreover, if the assumptions of Proposition 4.1 hold, then the matriz A can be chosen such that
additionally
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— K is the unique optimal solution to the linear program (4.36),
— Ak =1.
(¢) If the assumptions of Theorem 3.3 hold, then there exists a matriz A = (a;;) € R"*™ such that

the columns j in A for which (1TAZTA); > 0 have all positive entries,

K is the unique optimal solution to the linear program (4.36),
— Ak = 1,
for all x,x1,29,..., 2y >0 (4.37) holds.

Proof. First note that if a;; > 0 for all 1 < ¢ < n and all j such that x; > 0 (cases (a) and (b)) or
(1TA;'A); > 0 (case (c)), then we may simply set A = A. So, assume the contrary in the following. Set
J:={je{l,...,m}: k; > 0}. Since we have assumed an optimal solution x to (3.2), there also exists
an optimal (not necessarily unique) solution & = (&1, ..., #4,)” to the dual problem (3.9) and this solution
satisfies )" | &y = D71y, cf. Theorem 2.2 in Sierksma (1996). Furthermore, by the Complementary
Slackness Theorem (cf. Sierksma (1996), Theorem 2.4) we have (AT&); = 1 for all j € J. For assertions (a)
and (b) let amin := —(mini<i<n jes ai;) + € for some € > 0. By our assumptions, amin is positive. Define

I ~ . ~ Qg5 + Gmin Zk 1 ak]“k
A = (Gi)1<i<n,1<j<m With a;; =
1+ Gmin Zk 1 Rk

As seen above, we have 22:1 apjRr = 1 and thus a;; > 0 for j € J and all 1 <7 < n.
Note that

-1

Ak = (1 + min Y “i> ((aij + amin)1<i<n,jes) ((K5)jes)"
=1

m -1 m
(1 + Gmin Y m) (1 + Gmin Y m) =1, (4.38)
i=1 i=1

Y%

S0 k is a feasible solution to (4.36). Furthermore, if there would exist a £’ > 0 with Ak’ > 1 and 31" | &/ <
>t ki, then

5 ( +ammzam) K> 1t S e 1<i<n (4.89

= k=1 k=1
and thus
m m n m
D ik > 14 Gmin Y Kk~ Gmin Y Y Gkjhikk]
j=1 k=1 k=1 j=1
m m
SRR PILED DL
k=1 j=1

where we used in the penultimate inequality that Y ,_, agjir < 1 and Ii; > 0,1 <7 < m. But this implies
that &’ with >7" | K} < Y% k; would also be a feasible solution to (3.2), in contrast to the assumption
about the optimality of k. Thus, k is also an optimal solution to (4.36).
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24 A. Janflen and H. Drees

We are thus left to show (4.37) for the proof of (a). For z, x1, z2, ..., 2y > 0 such that H;nzl x;” >z,1<
i < n, we have

m
H x?ijamin’%i > xaminki7 1<t <n,
Jj=1

with strict inequality if £; > 0, which must be the case for at least one 1 < i < n. So by multiplication of
left hand sides and right hand sides we obtain

m n m . n
Hx?ij H H x;kjaminﬁk -~ H pOminRr — x1+amil)ZZ:1 Hk, 1 < i <n
Jj=1 k=1j=1 k=1
m n N
& H x?ﬁammzkzl WPk o pltamin TR Ar ] <G <
Jj=1
m  ajjtamin Zﬁnzl ks Rk
o H z 1+amin Xp—1 Rk >z, 1<i<n
j=1
m ~
& Ha:?”>a:,1§i§n.

j=1

Thus, (4.37) holds.

For the proof of (b), we use that the additional assumption implies that & is the unique optimal solution
to (3.2) and that Ak = 1. Similar to (4.38) one shows that Ak = 1. Furthermore, if there would exist a
k' # k with Ak’ > 1 and doiq Ky < 37U Ky then one shows analogously to (4.40) that this would imply
that the optimal solution & to (3.2) is not unique. This shows that & is the unique optimal solution to (4.36)
and proves (b).

For the proof of (c), we use that the additional assumption implies that & is the unique optimal solution
to (3.2) and that & = (A;1)T1 is the unique solution to (3.9), cf. the beginning of the proof of Theorem
3.3. Let for some € > 0

(©) - aij
as = = min — e
i 1<i<nj:1TAZ'A); >0 (1TALA);
aij

= - min ——— +¢€
1<i<n,j:(1T AR A); >0 Dog—y QkjRk

which is positive by our assumptions. Define

B (e) n A
Qij + Qi Dy Rk

77777 1+a'9 S il Kk

min

We have thus CNLZ(-;) > 0 for those j with (1A 1A); > 0 and all 1 <i < n. The rest of the proof for assertion
(c) follows analogously to the proof of (a) and (b) which did not depend on the value of ayi, > 0. O

Lemma 4.3. Let the assumptions of Proposition 4.1 hold and assume in addition that a;; > 0 for all
1 <i<n and those 1 < j <m for which k; > 0. Then for all j with k; > 0 there exists € > 0 such that

. ik
nin Z —a < (1—¢) Z Tk (4.41)

n a
1<k<m,k#j 1<k<m,k#j

for all (zk)1<k<m.k; € [0, oo)™ .
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Proof. For ease of notation and w.l.o.g., let us assume that x; > 0 and treat only the case j = 1. For
(xk)2<k<m = 0 the inequality holds for all ¢ > 0. The rest of the proof is by contradiction. Let (¢)ien
be a sequence such that ¢, > 0 for all [ € N and ¢ \, 0 for I — co. Assume that for each [ there exists
(") a<kem € [0,00)™ 1\ {0} such that

m m

. Qij 20 0]
2 2 T > (1))
j=2 k=2
m (E(l)
. J _ . ;
& Zau S 0 > (1 —¢€)ain, 1<i<n, (4.42)
Jj=2 k=2 "k
where we used that a;; > 0,1 <1 < n, by our assumption. Define now
l O O] r
/D =&Y, RHT = 0,n2++(l) O e L
k=2 Tk Zk 2T

for all [ € N. We have
-
DR =Dk
j=1 j=1

for all [ € N. Furthermore,

m (1)
~ (1) vy
=1 Zk 2T

= g a”lij—l—g Qijj —— v /{1
j=2 Zk 2T

> 1 —apnk1+ (1 —€)apk = 1 — €1G41K1, (4.43)

for all I € N, where we used Ak > 1 and (4.42) in the last step. For [ — oo, the bounded sequence 7Y must
have an accumulation point & # k (because i1 = 0 < k1) and £ > 0. But

m m m
E Kj = E k; and E a;jk; > 1
=1 =1 j=1

by (4.43), so our optimal solution & would not be unique, in contradiction to our assumptions. Thus, for
some € > 0, the inequality (4.41) holds for all (z;)a<j<m € [0,00)™ L. O

Proposition 4.4. Assume that
P((Xj)icjsm €y @x M(A))

;
yroe T PX; >y

Jik; >0
- / IT 72A(d(@)) s, s0y) © PEDER0 (d(5) (jun,—0y) € [0,00) (4.44)

M(A) jik; >0

holds for all Xy, ..., X, and all matrices A which satisfy the assumptions of Proposition 4.1, with k being
the unique solution to (3.2) and M(A) as in Proposition 4.1. Then also

[ ) POl 0z
lim M(4)
y—oo [ P(X;>y")

Jik; >0

imsart ver. 2014/10/16 file: randomproductsjanssendreesarxivv2.tex date: October 26, 2018



26 A. Janflen and H. Drees

= [ TL7 TT M) o) © P65 ) o, —op) € 0.00) (4.45)
M(A) =1 Jik; >0

for all X1,..., Xm, A and k as above and all B; € [0,1),1 < j <m.

Remark 4.5. As the preceding proposition is used in the induction step of the proof of Proposition 4.1,
the convergence (4.44) had to be assumed. However, since Proposition 4.1 shows that (4.44) holds for all
X1,...,Xm and all matrices A which satisfy the assumptions, the convergence in (4.45) follows. The result
may thus be regarded as a multivariate version of the direct half of Karamata’s Theorem.

Proof of Proposition 4.4. Define independent random variables XJ’-, 1 < j < m, such that XJ’- has PXi-
density @ — 1y o0)(2)2? (E(ij))_l, 1 < j < m. This is possible because all 3; € [0,1) and thus E(ij) <
oo by our assumptions. For those 1 < j < m with x; > 0 the random variable X J’ is regularly varying with
index —(1 — f3;), because

P(X > % B PXi(d
i (Xj>z) Iy (dy)

vm00 2B P(X; > 1) w00 B(XP) b P(X; > x)

= (B(X7)(1 - )"

for all 1 < j < m by Karamata’s Theorem (cf. Cline (1983), Lemma 1.1). Thus, for 1 < j < m with x; > 0
the random variable X; := (X J’»)l_'@f is regularly varying with index —1 and

. > pl=Bi
Tim % — (B(XP)(1 - ;) (4.46)

For 1 < j < m with x; = 0 we have XJ— > 1 a.s. because we assumed X; > 1 a.s. Furthermore, we have for

all 6 € (0,1] and all j with x; = 0 that

5 o0 (1-8)(1-6;) 285 pXi (4 E(x!~(-80
B(X17%) = L - (de) _ BX, - ) < .
E(X;7) E(X;7)

Thus, the random variables X 7,1 < j < m, satisfy the assumptions of Proposition 4.1. Set now

A = (ay) = ((1 - Bj) lay;) € RV™.
Then & := ((1 — 8j)K;)1<j<m is the unique solution to the linear program
find x > 0 such that Ax > 1, in — min!
i=1
and Ak = 1. Set

M(A): (xlw"axm):l_[x?ij>1,1§Z'§’]’L

Jj=1

(Xj)1<j<m € y @i M(A)

m X i
& H(;) >1, 1<i<n,
j=1

Y
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m )1 B; (1-B5) "ty .
& H 15]] >1, 1<i<n,
j=1
< (X)i<j<m € Yy @ M(A),
and so
P ((Xj)lgjgm cy Ri M(A)) — / P(Xé)lijgm (dX)
y®mM(A)
m xﬁj
- [ e
y@.M(A) 171
— / H MP(Xj/yﬁj)lgjgm (dx).
J
iy 1 B
Thus,
[, xBJ Py ) i<ism (dx)
iy M)
im
Y=o [I P(X;>y™)
Jik; >0
m B; ~ -
% x E(X: P(X; >y
. P((Xj)lgjgm €y i M(A)) 'jl;ll ( J )j:nlj_-[>0 ( J Y )
—00 P X R]‘ m "y N 9
! j::}_-[>0(J>y) _Hy]ﬁj_H P(X; > yri)
’ = Jik; >0
where the first factor converges to
IT 7M@) ge00) @ PEE (A o, 01)
M(A) Jik; >0

—1 —1
by the assumption. Substitute (y1, ..., ym) = (xgl_’@l) ) ) and note that (z1, . .

3 )

is equivalent to (y1,...,ym) € M(A), so the expression in (4.48) equals

IT (= 80y 2A@A()) Giny 50p) @ PG5 (A(y;) ms —0y)

M(A) Jik; >0
= [T} | T sy
M(A) gk >0 Jik; =0

A(d(yj){j:nj- >0}) Y P(Xj){j%j:[)} (d(yj){j:mj:O})-

The second factor in (4.47) converges to

Hj:ﬁj:O E(X_]Bj)
Hj:nj>0(1 - BJ)

by (4.46). Taken together, this yields the statement of the proposition.
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