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Abstract

Consider a nonparametric regression model with one-sided errors and regression

function in a general Hölder class. We estimate the regression function via minimiza-

tion of the local integral of a polynomial approximation. We show uniform rates of

convergence for the simple regression estimator as well as for a smooth version. These

rates carry over to mean regression models with a symmetric and bounded error dis-

tribution. In such a setting, one obtains faster rates for irregular error distributions

concentrating sufficient mass near the endpoints than for the usual regular distribu-

tions. The results are applied to prove asymptotic
√
n-equivalence of a residual-based

(sequential) empirical distribution function to the (sequential) empirical distribution

function of unobserved errors in the case of irregular error distributions. This result is

remarkably different from corresponding results in mean regression with regular errors.

It can readily be applied to develop goodness-of-fit tests for the error distribution. We

present some examples and investigate the small sample performance in a simulation

study. We further discuss asymptotically distribution-free hypotheses tests for inde-

pendence of the error distribution from the points of measurement and for monotonicity

of the boundary function as well.

AMS 2010 Classification: Primary 62G08; Secondary 62G10, 62G30, 62G32

Keywords and Phrases: goodness-of-fit testing, irregular error distribution, one-sided
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1 Introduction

We consider boundary regression models of the form

Yi = g(xi) + εi, i = 1, . . . , n,
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with negative errors εi whose survival function 1−F (y) behaves like a multiple of |y|α for some

α > 0 near the origin. Such models naturally arise in image analysis, analysis of auctions

and records, or in extreme value analysis with covariates. For such a boundary regression

model with multivariate random covariates and twice differentiable regression function, Hall

and Van Keilegom (2009) establish a minimax rate for estimation of g(x) (for fixed x) under

quadratic loss and determine pointwise asymptotic distributions of an estimator which is

defined as a solution of a linear optimization problem (cf. Remark 2.6). Relatedly, Müller

and Wefelmeyer (2010) consider a mean regression model with (unknown) symmetric support

of the error distribution and Hölder continuous regression function. They discuss pointwise

MSE rates for estimators of the regression function that are defined as the average of local

maxima and local minima. Meister and Reiß (2013) consider a regression model with known

bounded support of the errors. They show asymptotic equivalence in the strong LeCam sense

to a continuous-time Poisson point process model when the error density has a jump at the

endpoint of its support. For a regression model with error distribution that is one-sided and

regularly varying at 0 with index α > 0, Jirak et al. (2014) suggest an estimator for the

boundary regression function which adapts simultaneously to the unknown smoothness of

the regression function and to the unknown extreme value index α. Reiß and Selk (2016+)

construct efficient and unbiased estimators of linear functionals of the regression function in

the case of exponentially distributed errors as well as in the limiting Poisson point process

experiment by Meister and Reiß (2013).

Closely related to regression estimation in models with one-sided errors is the estimation

of a boundary function g based on a sample from (X, Y ) with support {(x, y) ∈ [0, 1]×[0,∞] |
y ≤ g(x)}. For such models, Härdle et al. (1995) and Hall et al. (1998) proved minimax

rates both for g(x) and for the L1-distance between g and its estimator. Moreover, they

showed that an approach using local polynomial approximations of g yields this optimal

rate. Explicit estimators in terms of higher order moments were proposed and analyzed

by Girard and Jacob (2008) and Girard et al. (2013). Daouia et al. (2016) consider spline

estimation of a support frontier curve and obtain uniform rates of convergence.

The aim of the paper is to develop tests for model assumptions in boundary regression

models. In particular we will suggest asymptotically distribution-free tests for

• parametric classes of error distributions (goodness-of-fit)

• independence of the error distribution from the points of measurement

• monotonicity of the boundary function.

The test statistics are based on (sequential) empirical processes of residuals. To investigate

these, we need uniform rates of convergence for the regression estimator, which are of interest

on its own. To our knowledge, uniform rates so far have only been shown by Daouia et al.

(2016) who do not obtain optimal rates. Our results can also be applied to mean regression
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models with bounded symmetric error distribution. For regression functions g in a Hölder

class of order β, we obtain the rate ((log n)/n)β/(αβ+1). Thus, for tail index α ∈ (0, 2) of the

error distribution, the rate is faster than the typical rate one has in mean regression models

with regular errors. For pointwise and Lp-rates of convergence, it has been known in the

literature that faster rates are possible for nonparametric regression estimation in models

with irregular error distribution, see e.g. Gijbels and Peng (2000), Hall and Van Keilegom

(2009), or Müller and Wefelmeyer (2010).

The uniform rate of convergence for the regression estimator enables us to derive asymp-

totic expansions for residual-based empirical distribution functions and to prove weak conver-

gence of the residual-based (sequential) empirical distribution function. We state conditions

under which the influence of the regression estimation is negligible such that the same results

are obtained as in the case of observable errors. We apply the results to derive goodness-

of-fit tests for parametric classes of error distributions. Asymptotic properties of residual

empirical distribution functions in mean regression models were investigated by Akritas and

Van Keilegom (2001), among others. As the regression estimation strongly influences the

asymptotic behavior of the empirical distribution function in these regular models, asymp-

totic distributions of goodness-of-fit test statistics are involved, and typically bootstrap is

applied to obtain critical values, see Neumeyer et al. (2006). In contrast, in the present

situation with an irregular error distribution, standard critical values can be used.

In nonparametric frontier models, Wilson (2003) discusses several possible tests for as-

sumptions of independence, for instance independence between input levels and output in-

efficiency. Those assumptions are needed to prove validity of bootstrap procedures and are

thus crucial in applications, but they may be violated; see Simar and Wilson (1998). Wil-

son (2003) points out the analogy to tests for independence between errors and covariates

in regression models, but no asymptotic distributions are derived. Tests for independence

in nonparametric mean and quantile regression models that are similar to the test we will

consider are suggested by Einmahl and Van Keilegom (2008) and Birke et al. (2016+).

There is an extensive literature on regression with one-sided error distributions and sim-

ilar models (in particular production frontier models) which assume monotonicity of the

boundary function, see Gijbels et al. (1999), the literature cited therein and the monotone

nonparametric maximum likelihood estimator in Reiß and Selk (2016+). Monotonicity of

a production frontier function in each component is given under the strong disposability

assumption, but may often not be fulfilled; see e.g. Färe and Grosskopf (1983). We are

not aware of hypothesis tests for monotonicity or other shape constraints in the context of

boundary regression, but would like to mention Gijbels’ (2005) review on testing for mono-

tonicity in mean regression. Tests similar in spirit to the one we are suggesting here were

considered by Birke and Neumeyer (2013) and Birke et al. (2016+) for mean and quantile

regression models, respectively.

The remainder of the article is organized as follows. In Section 2 the regression model

3



under consideration is presented and model assumptions are formulated. The regression

estimator is defined and uniform rates of convergence are given. A smooth modification of

the estimator is considered and uniform rates of convergence for this estimator as well as its

derivative are shown. In Section 3 residual based empirical distribution functions based on

both regression estimators are investigated. Conditions are stated under which the influence

of regression estimation is asymptotically
√
n-negligible. Furthermore, an expansion of the

residual empirical distribution function is shown that is valid under more general conditions.

In Section 4 goodness-of-fit tests for the error distribution are discussed in general and in

some detailed examples. We investigate the finite sample performance of the tests in a small

simulation study. We further discuss hypotheses tests for independence of the error distri-

bution from the design points as well as a test for monotonicity of the boundary function.

All proofs are given in the appendix.

2 The regression function: uniform rates of conver-

gence

We consider a regression model with fixed equidistant design and one-sided errors,

Yi = g( i
n
) + εi, i = 1, . . . , n, (2.1)

under the following assumptions:

(F1) The errors ε1, . . . , εn are independent and identically distributed and supported on

(−∞, 0]. The error distribution function fulfills

F (y) = 1− c|y|α + r(y), y < 0,

for some α > 0, with r(y) = o(|y|α) for y ↗ 0.

(G1) The regression function g belongs to some Hölder class of order β ∈ (0,∞), i. e. g is

bβc-times differentiable on [0, 1] and the bβc-th derivative satisfies

cg := sup
t,x∈[0,1]
t 6=x

|g(bβc)(t)− g(bβc)(x)|
|t− x|β−bβc

<∞.

In Figure 1 some scatter plots of data according to model (2.1) are shown for different

tail indices α of the error distribution.

Remark 2.1 Strictly speaking, we consider a triangular scheme in (2.1), and the errors εi
depend on n too, as the ith regression point i/n varies with n. For notational simplicity, we

suppress the second index, because the distribution of the errors does not depend on n. �
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Figure 1: Scatter plots of ( i
n
, Yi), i = 1, . . . , n, and the true regression function g(x) =

−3(x− 0.4)3. The error distribution is Weibull F (y) = exp(−(|y|/θ)α)I(−∞,0)(y) + I[0,∞)(y)

with scale θ = 0.3 and shape parameter α.

We consider an estimator that locally approximates the regression function by a polyno-

mial while lying above the data points. More specifically, for x ∈ [0, 1], let

ĝn(x) := ĝ(x) := p(x)

where p is a polynomial of order dβe − 1 and minimizes the local integral∫ x+hn

x−hn
p(t) dt (2.2)

under the constraints p( j
n
) ≥ Yj for all j ∈ {1, . . . , n} such that | j

n
− x| ≤ hn. For the

asymptotic analysis of this estimator, we need the following assumption:

(H1) Let (hn)n∈N be a sequence of positive bandwidths that satisfies limn→∞ hn = 0 and

limn→∞ nhn/ log n =∞.

We obtain the following uniform rates of convergence.

Theorem 2.2 In model (2.1), under the assumptions (F1), (G1), and (H1), we have

sup
x∈[hn,1−hn]

|ĝ(x)− g(x)| = O(hβn) +OP

(( | log hn|
nhn

)1/α)
.

Note that the deterministic part O(hβn) arises from approximating the regression function

by a polynomial, whereas the random part originates from the observational error. Balancing

the two sources of error by setting hn � ((log n)/n)
1

αβ+1 gives

sup
x∈[hn,1−hn]

|ĝ(x)− g(x)| = OP

(( log n

n

) β
αβ+1

)
. (2.3)

(Here an � bn means that 0 < lim infn→∞ |an/bn| ≤ lim supn→∞ |an/bn| <∞.)

This result is of particular interest in the case of irregular error distributions, i. e. α ∈
(0, 2), when the rate improves upon the typical optimal rate OP (((log n)/n)

β
2β+1 ) for esti-

mating mean regression functions in models with regular errors.
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Remark 2.3 Jirak et al. (2014) consider a similar boundary regression estimator while

replacing the integral in (2.2) by its Riemann approximation
∑n

i=1 p(
i
n
)I{| i

n
− x| ≤ hn}. In

particular, they use the Lepski method to construct a data-driven bandwidth that satisfies

hn � ((log n)/n)
1

αβ+1 in probability. For this modified estimator, we obtain the same uniform

rate of convergence as in Theorem 2.2 by replacing Proposition A.1 in the proof of Theorem

2.2 by Theorem 3.1 in Jirak et al. (2014). �

Remark 2.4 For Hölder continuous regression functions with exponent β ∈ (0, 1] the es-

timator reduces to a local maximum, i. e. ĝ(x) = max{Yi | i = 1, . . . , n s. t. | i
n
− x| ≤ hn}.

In this case we obtain the rate of convergence as given in Theorem 2.2 uniformly over the

whole unit interval. �

Remark 2.5 Müller and Wefelmeyer (2010) consider a mean regression model Yi = m(Xi)+

ηi, i = 1, . . . , n, with symmetric error distribution supported on [−a, a] (with a unknown);

see the left panel of Figure 2. The error distribution function fulfills F (a− y) ∼ 1− yα for

y ↘ 0. The local empirical midrange of responses, i. e.

m̂(x) =
1

2

(
min

i∈{1,...,n}
|Xi−x|≤hn

Yi + max
i∈{1,...,n}
|Xi−x|≤hn

Yi

)
is shown to have pointwise rate of convergence O(hβn) + OP ((nhn)−1/α) to m(x) if m is

Hölder continuous with exponent β ∈ (0, 1]. Theorem 2.2 enables us to extend Müller’s

and Wefelmeyer’s (2010) results in two ways (in a model with fixed design Xi = i
n
): we

consider more general Hölder classes with general index β > 0, and we obtain uniform rates

of convergence. To this end, we use the mean regression estimator m̂ = (ĝ − ˆ̃g)/2 with ĝ as

before and ˆ̃g defined analogously, but based on ( i
n
,−Yi), i = 1, . . . , n; see the right panel of

Figure 2. The rates obtained for supx∈[hn,1−hn] |m̂(x) − m(x)| are the same as in Theorem

2.2. �
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Figure 2: Example for data as in Remark 2.5.
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Remark 2.6 For β ∈ (1, 2], Hall and Van Keilegom (2009) consider the following local

linear boundary regression estimator:

ǧ(x) = inf
{
α0

∣∣∣ (α0, α1) ∈ R2 : Yi ≤ α0 + α1

(
i
n
− x
)
∀i ∈ {1, . . . , n} s. t.

∣∣ i
n
− x
∣∣ ≤ hn

}
.

(2.4)

Because of
∫ x+hh
x−hn (α0 + α1(t − x)) dt = 2α0hn this estimator coincides with ĝ for β ∈ (1, 2].

However, in the case β > 2 replacing the linear function in (2.4) by a polynomial of order

dβe − 1 renders the estimator ǧ useless. One obtains ǧ(x) = −∞ for x 6∈ { j
n
| j = 1, . . . , n}

while ǧ( j
n
) = Yj, j = 1, . . . , n. This was already observed by Jirak et al. (2014). �

Note that typically the estimator ĝ is not continuous. One might prefer to consider

a smooth estimator by convoluting ĝ with a kernel. Such a modified estimator will also

be advantageous when deriving an expansion for the residual based empirical distribution

function in the next section. Therefore we define

g̃(x) =

∫ 1−hn

hn

ĝ(z)
1

bn
K

(
x− z
bn

)
dz (2.5)

and formulate some additional assumptions.

(K1) K is a continuous kernel with support [−1, 1] and order bβc + 1, i.e.
∫
K(u) du = 1,∫

urK(u) du = 0 ∀r = 1, . . . , bβc. Furthermore, K is differentiable with Lipschitz-

continuous derivative K ′ on (−1, 1).

(B1) The sequence (bn)n∈N of positive bandwidths satisfies limn→∞ bn = 0.

(B2.δ) hβn +
( log n

nhn

)1/α

= o
(
b(1+2δ)∨(3−(β−1)(1/δ−1))
n

)
=

{
o
(
b1+2δ
n

)
if δ ≤ β−1

2

o
(
b

3−(β−1)(1/δ−1)
n

)
if δ > β−1

2
.

Here we assume that the parameter δ, which quantifies the minimal required smoothness of

the estimator of g′, lies in (0, 1∧ (β− 1)). For example, if β < 3 and the optimal bandwidth

hn � ((log n)/n)1/(αβ+1) is chosen, then (B2.δ) is fulfilled with δ = (β− 1)/2 for any bn that

satisfies hn = o(bn).

The estimator g̃ is differentiable and we obtain the following uniform rates of convergence

for g̃ and its derivative g̃′.

Theorem 2.7 If the model assumptions (2.1), (F1), (G1) with β > 1, (H1), (K1), and

(B1) hold, then for In = [hn + bn, 1− hn − bn]

(i) sup
x∈In
|g̃(x)− g(x)| = O(bβn) +O(hβn) +OP

(( | log hn|
nhn

) 1
α
)

(ii) sup
x∈In
|g̃′(x)− g′(x)| = O(bβ−1

n ) +O
(
b−1
n hβn

)
+OP

(
b−1
n

( | log hn|
nhn

) 1
α
)
.

If hβn + (log n/(nhn))1/α = o(bn), then supx∈In |g̃′(x)− g′(x)| = oP (1); in particular this

holds if (B2.δ) is fulfilled for some δ ∈ (0, 1 ∧ (β − 1)).
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(iii) For all δ ∈ (0, 1 ∧ (β − 1)), under the additional assumption (B2.δ),

sup
x,y∈In,x 6=y

|g̃′(x)− g′(x)− g̃′(y) + g′(y)|
|x− y|δ

= oP (1).

3 The error distribution

3.1 Estimation

In this section we consider estimators of the error distribution in model (2.1). For the

asymptotic analysis we need the following additional assumption.

(F2) The cdf F of the errors is Hölder continuous of order α ∧ 1.

We define residuals ε̂i = Yi − ĝ( i
n
), and a resulting modified sequential empirical distri-

bution function by

F̂n(y, s) =
1

mn

bnsc∑
i=1

I{ε̂i ≤ y}I{hn < i
n
≤ 1− hn},

where mn = ]{i ∈ {1, . . . , n} | hn < i
n
≤ 1 − hn} = n − bnhnc − dnhne. We consider the

sequential process, because it will be useful for testing hypotheses in section 4. With slight

abuse of notation, let F̂n(y) = F̂n(y, 1) denote the corresponding estimator for F (y).

We first treat a simple case where the influence of the regression estimation on the residual

empirical process is negligible. To this end, let Fn denote the standard empirical distribution

function of the unobservable errors ε1, . . . , εn. Furthermore, define s̄n =
(
bn(s∧ (1−hn))c−

bn(s∧ hn)c
)
/mn and interpret s̄n/bnsc as 0 for s = 0. Note that s̄n = 1 if s = 1 and sn → s

as n→∞, for each fixed s.

Theorem 3.1 Assume that the conditions (F1), (G1), and (F2) are fulfilled with β > 1.

Furthermore, assume 1
β
< α < 2− 1

β
and hn � ((log n)/n)1/(αβ+1). Then we have

sup
y∈R,s∈[0,1]

|F̂n(y, s)− s̄nFbnsc(y)| = oP (n−1/2).

Thus the process {
√
n(F̂n(y, s) − s̄nF (y)) | s ∈ [0, 1], y ∈ R} converges weakly to a Kiefer

process KF , a centered Gaussian process with covariance function ((s1, y1), (s2, y2)) 7→ (s1 ∧
s2)(F (y1 ∧ y2)− F (y1)F (y2)).

Remark 3.2 The assertion of Theorem 3.1 holds true under the following weaker conditions

on the (possibly random) bandwidth:

hn = oP
(
n−1/(2(α∧1)β)

)
, n(α∨1)/2−1 log n = oP (hn). (3.1)

8



In particular, one may use the adaptive bandwidth proposed by Jirak et al. (2014).

Condition (3.1) can be fulfilled if and only if 1
β
< α < 2− 1

β
, which in turn can be satisfied

for all α ∈ (0, 2), provided the regression function g is sufficiently smooth. It ensures that

one can choose a rate an of larger order than the uniform bound on the estimation error

established in Theorem 2.2 such that

|F (y + an)− F (y)| = O(aα∧1
n ) = o(n−1/2). �

Remark 3.3 Theorem 3.1 implies that for α ∈ (1/β, 2− 1/β) the estimation of the regres-

sion function has no impact on the estimation of the irregular error distribution. This is

remarkably different from corresponding results on the estimation of the error distribution

in mean regression models with regular error distributions. Here the empirical distribution

function of residuals, say F̌n, is not asymptotically
√
n-equivalent to the empirical distribu-

tion function of true errors. The process
√
n(F̌n−F ) converges to a Gaussian process whose

covariance structure depends on the error distribution in a complicated way; cf. Theorem 2

in Akritas and Van Keilegom (2001). In the simple case of a mean regression model with

equidistant design and an error distribution F with bounded density f one has

√
n(F̌n(y)− Fn(y)) =

f(y)√
n

n∑
i=1

εi + oP (1)

uniformly with respect to y ∈ R when the regression function is estimated by a local poly-

nomial estimator, under appropriate bandwidth conditions (see Proposition 3 in Neumeyer

and Van Keilegom (2009)). �

In order to obtain asymptotic results for estimators of the error distribution for α ≥ 2− 1
β
,

a finer analysis is needed. In what follows, we will use the smooth regression estimator

g̃ defined in (2.5). Let F̃n denote the empirical distribution function based on residuals

ε̃j = Yj − g̃( j
n
), i. e.

F̃n(y) =
1

mn

n∑
j=1

I{ε̃j ≤ y}I{ j
n
∈ In}

where In = [hn + bn, 1− hn − bn] and mn = ]{j ∈ {1, . . . , n} | hn + bn ≤ j
n
≤ 1− hn − bn} =

n− 2dn(hn + bn)e+ 1. Then the following asymptotic expansion is valid.

Theorem 3.4 If the conditions (F1), (F2), (G1) with β > 1, (H1), (K1), (B1), and

(B2.δ) for some δ ∈ (1/α− 1, 1 ∧ (β − 1)) are fulfilled, then

F̃n(y) =
1

n

n∑
j=1

I{εj ≤ y}+
1

mn

n∑
j=1

(
F
(
y + (g̃ − g)( j

n
)
)
− F (y)

)
I{ j

n
∈ In}+oP

( 1√
n

)
(3.2)

uniformly for all y ∈ R.
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Remark 3.5 One can choose bandwidths hn and bn such that the conditions (H1), (B1)

and (B2.δ) are fulfilled for some δ ∈ (1/α−1, 1∧ (β−1)) if this interval is not empty, which

in turn is equivalent to α > 1/(β∧2). Thus the expansion given in Theorem 3.4 is also valid

for regular error distributions.

If one assumes (B2.δ) for some δ ∈ (0, 1∧ (β−1)), but drops the condition δ > 1/α−1 and,

in addition, replaces (F2) with the assumption that F is Lipschitz continuous on (−∞, κ]

for some κ < 0, then expansion (3.2) still holds uniformly on (−∞, κ̃] for all κ̃ < κ. In

particular, this holds if F has a bounded density on (−∞, κ]. �

Next we examine under which conditions the additional term in (3.2) depending on the

estimation error is asymptotically negligible. We focus on those arguments y which are

bounded away from 0, because in this setting weaker conditions on α and β are needed.

Moreover, for the analysis of the tail behavior of the error distribution at 0, tail empirical

processes are better suited and will be considered in future work.

Note that the estimator ĝ tends to underestimate the true function because it is defined

via a polynomial which is minimal under the constraint that it lies above all observations

(i/n, Yi), which in turn all lie below the true boundary function. As this systematic under-

estimation does not vanish from (local or global) averaging, we first have to introduce a bias

correction.

Let Eg≡0 denote the expectation if the true regression function is identical 0. For the

remaining part of this section, we assume that Eg≡0(ĝ(1/2)) is known or that it can be esti-

mated sufficiently accurately. For example, if the empirical process of residuals shall be used

to test a simple null hypothesis, then one may calculate or simulate this expectation under

the given null distribution. We define a bias corrected version of the smoothed estimator by

g̃∗n(x) := g̃(x)− Eg≡0(ĝ(1/2)),

for x ∈ In. The following lemma ensures that the above results for g̃ carry over to this

variant if the following condition on the lower tail of F holds:

(F3) There exists τ > 0 such that F (−t) = o(t−τ ) as t→∞.

Lemma 3.6 If model (2.1) holds with g identical 0 and the conditions (F1), (F3), (G1),

and (H1) are fulfilled, then for all x ∈ [hn, 1− hn]

Eg≡0(|ĝn(x)|) = Eg≡0(|ĝn(1/2)|) = O
(( log n

nhn

)1/α)
.

We need some additional conditions on the rates at which the bandwidths hn and bn tend

to 0:

(H2) hn = o
(
n−1/(2β) ∧ n−1/(αβ+1)

)
, nα/4−1 log n = o(hn)

10



(B3) bn = o

(
n−1/(2β) ∧

(
h−2β
n n−1

)
∧
(( nhn

log n

)2/α

n−1
))

In particular, these assumptions ensure that the bias terms of order hβn+bβn are of smaller

order than n−1/2 and (nhn)−1/α and hence asymptotically negligible, and that quadratic

terms in the estimation error are uniformly negligible, that is, supx∈In |g̃∗n(x) − g(x)|2 =

oP (n−1/2).

Theorem 3.7 Suppose the model assumptions (2.1) with α ∈ (0, 2), β > 1, (F1), (F3),

(G1), (H1), (H2), (K1), (B1), (B2.δ) for some δ > 0, and (B3) hold and F has a

bounded density on (−∞, κ] for some κ < 0. Then

sup
y∈(−∞,κ]

∣∣∣∣ 1

mn

n∑
j=1

(
F
(
y + (g̃∗n − g)( j

n
)
)
− F (y)

)
I{ j

n
∈ In}

∣∣∣∣ = oP (n−1/2).

Remark 3.8 The conditions on hn and bn used in Theorem 3.7 can be fulfilled if and only

if α < 2β − 1. In particular, this theorem is applicable if β ≥ 3/2 and the error distribution

is irregular, i.e., α < 2. A possible choice of bandwidths is

hn �
(
n−1/(2β) ∧ n−1/(αβ+1)

)
/ log n, bn � n−λ for some λ ∈

( 1

2β
,

β

αβ + 1
∧ 2β − 1

2αβ

)
. �

We obtain asymptotic equivalence of the empirical process of residuals (restricted to

(−∞, κ]) to the empirical process of the errors. To formulate the result, let F̃ ∗n be defined

analogously to F̃n, but with g̃ replaced by g̃∗.

Corollary 3.9 Under the assumptions of Theorems 3.4 and 3.7, we have supy∈(−∞,κ] |F̃ ∗n(y)−
Fn(y)| = oP (n−1/2). Thus the process (

√
n(F̃ ∗n(y) − F (y)))y∈(−∞,κ] converges weakly to a

centered Gaussian process with covariance function (y1, y2) 7→ F (y1 ∧ y2) − F (y1)F (y2),

y1, y2 ∈ (−∞, κ].

Note that for the Corollary one needs the condition 1/(β ∧ 2) < α < (2β − 1) ∧ 2.

4 Hypotheses testing

4.1 Goodness-of-fit testing

Let F = {Fϑ | ϑ ∈ Θ} denote a continuously parametrized class of error distributions such

that for each ϑ ∈ Θ, Fϑ(y) = 1− cϑ|y|αϑ + rϑ(y) with rϑ(y) = o(|y|αϑ) for y ↗ 0. Our aim is

to test the null hypothesis H0 : F ∈ F . We assume that αϑ ∈ (1/β, 2 − 1/β) for all ϑ ∈ Θ,

such that Theorem 3.1 can be applied under H0. Let ϑ̂ denote an estimator for ϑ based

on residuals ε̂i = Yi − ĝ( i
n
), i = 1, . . . , n. The goodness-of-fit test is based on the empirical

process

Sn(y) =
√
n(F̂n(y)− Fϑ̂(y)), y ∈ R,

11



where, as before, F̂n(y) = F̂n(y, 1). Under any fixed alternative that fulfills (F1) for some α,

ĝ still uniformly consistently estimates g, and thus F̂n is a consistent estimator of the error

distribution F . If ϑ̂ converges to some ϑ∗ ∈ Θ under the alternative, too, then a consistent

hypothesis test is obtained by rejecting H0 for large values of, e. g., a Kolmogorov-Smirnov

test statistic supy∈R |Sn(y)|. Note that under H0 it follows from Theorem 3.1 that

Sn(y) =
√
n(Fn(y)− Fϑ(y))−

√
n(Fϑ̂(y)− Fϑ(y)) + oP (1),

where ϑ denotes the true parameter. We consider two examples.

Example 4.1 Consider the mean regression model Yi = m( i
n
) + ηi, i = 1, . . . , n, with

symmetric error cdf F and β > 1, and define m̂ with some bandwidth hn � ((log n)/n)1/(αβ+1)

as in Remark 2.5. We want to test the null hypothesis H0 : F ∈ F = {Fϑ | ϑ ∈ Θ} for

some Θ ⊂ (0,∞), where Fϑ denotes the distribution function of the uniform distribution on

[−ϑ, ϑ] (with αϑ = 1 for all ϑ > 0). Define residuals η̂i = Yi − m̂( i
n
), i = 1, . . . , n, and let

ϑ̂n = max
(

max
nhn≤i≤n−nhn

η̂i,− min
nhn≤i≤n−nhn

η̂i

)
= max

nhn≤i≤n−nhn
|η̂i|.

Then |ϑ̂n − ϑ| is bounded by |maxnhn≤i≤n−nhn |ηi| − ϑ| + supx∈[hn,1−hn] |m̂(x) − m(x)| =

oP (n−1/2). Since Fϑ(y) = y+ϑ
2ϑ
I[−ϑ,ϑ](y) + I(ϑ,∞)(y), one may conclude supy∈R |Fϑ̂n(y) −

Fϑ(y)| = oP (n−1/2). Thus the process Sn converges weakly to a Brownian bridge B composed

with F . The Kolmogorov-Smirnov test statistic supy∈R |Sn(y)| converges in distribution to

supt∈[0,1] |B(t)|. Thus although our testing problem requires the estimation of a nonpara-

metric function and we have a composite null hypothesis, the same asymptotic distribution

arises as in the Kolmogorov-Smirnov test for the simple hypothesis H0 : F = F0 based on

an iid sample with distribution F . �

Example 4.2 Again assume that the Hölder coefficient β is greater than 1. Consider the

null hypothesis H0 : F ∈ F = {Fϑ | ϑ ∈ (0,∞)}, where Fϑ(y) = e−(−ϑy)αI(−∞,0)(y)+I[0,∞)(y)

denotes a Weibull distribution with some fixed shape parameter α ∈ (1/β, 2 − 1/β) and

unknown scale parameter ϑ. Note that Fϑ satisfies (F1) with c = ϑ.

Define the moment estimator ϑ̂n =
(

1
mn

∑n
j=1(−ε̂j)αI{hn < j

n
≤ 1− hn}

)− 1
α

which is

motivated by Eϑ[(−ε1)α] = ϑ−α. A Taylor expansion of x 7→ xα at x = −εj yields

ϑ̂αn − ϑα = −(ϑ̂nϑ)α
( 1

mn

n∑
j=1

((−εj)α − ϑ−α)I{hn <
j

n
≤ 1− hn}

+
α

mn

n∑
j=1

(−ξj)α−1
(
ĝ(
j

n
)− g(

j

n
)
)
I{hn <

j

n
≤ 1− hn}

)
= −ϑ2α 1

mn

n∑
j=1

((−εj)α − ϑ−α)I{hn <
j

n
≤ 1− hn}+ oPϑ(n−1/2)

12



= OPϑ(n−1/2)

for some ξj between ε̂j and εj, where in the last steps we have applied Theorem 2.2, the law

of large numbers and a central limit theorem.

For all z, z̃ ∈ R one has |e−z− e−z̃− (z− z̃)e−z| = e−z|ez−z̃− 1− (z− z̃)| ≤ e−z∧z̃(z− z̃)2.

Thus∣∣Fϑ̂n(y)− Fϑ(y)− e−(−ϑy)α
(
ϑ̂αn − ϑα

)2| ≤ e−(−(ϑ̂n∧ϑ)y)α
(
(ϑ̂αn − ϑα)(−y)α

)2
= OPϑ(n−1)

uniformly for all y ∈ (−∞, 0]. Now analogously to the proof of Theorem 19.23 in van der

Vaart (2000) we can conclude weak convergence of

Sn(y) =
√
n(Fn(y)− F (y))− e−(−ϑy)αϑ2α(−y)α

√
n

mn

n∑
j=1

((−εj)α −
1

ϑα
)I{hn <

j

n
≤ 1− hn}

+ oPϑ(1),

y ∈ R, to a Gaussian process with covariance function (y1, y2) 7→ Fϑ(y1∧y2)−Fϑ(y1)Fϑ(y2)−
e−(−ϑ)α(yα1 +yα2 )(y1y2)αϑ2α, where the covariance function follows by simple calculations and

the fact that Eϑ[I{ε1 ≤ y}((−ε1)α − ϑ−α)] = (−y)αe−(−ϑy)α .

For the special case of a test for exponentially distributed errors (α = 1), the asymptotic

quantiles for the Cramér-von-Mises test statistic
∫
Sn(y)2dFϑ̂n(y) are tabled in Stephens

(1976). �

Simulations

To study the finite sample performance of our goodness-of-fit test, we investigate its be-

haviour on simulated data according to Examples 4.1 and 4.2 for samples of size 50, 100, 200

and 500. In both settings the regression function is given by g(x) = 0.5 sin(2πx) + 4x. We

use the local linear estimator (corresponding to β = 2) with bandwidth n−
1
3 , which is up

to a log term of optimal rate for α = 1 and β = 2. The hypothesis tests are based on the

adjusted Cramér-von-Mises test statistic mn
n

∫
Sn(y)2dFϑ̂n(y) and have nominal size 5%. The

results reported below are based on 200 Monte Carlo simulations for each model.

In the situation of Example 4.1, the errors are drawn according to the density fε(y) =

0.5(ζ + 1)(1− |y|)ζI[−1,1](y) for different values of ζ ∈ (−1, 0] . Note that the null hypothesis

H0 : ∃ϑ : εi ∼ U [−ϑ, ϑ] holds if and only if ζ = 0. Figure 3 shows the empirical power of

the Cramér-von-Mises type test. The actual size is close to the nominal level for all sample

sizes and the power function is monotone both in ζ and the sample size n. For parameter

values ζ ∈ [−0.2,0), one needs rather large sample sizes to detect the alternative, as the error

distribution is too similar to the uniform distribution.

In the setting of Example 4.2 we simulate Weibull(ϑ, α) distributed errors for ϑ = 1

and different values of α > 0. We test the null hypothesis H0 : ∃ϑ : −εi ∼ Exp(ϑ) of

13



exponentiality, which is only fulfilled for α = 1. In Figure 4 the empirical power function of

our test is displayed for different sample sizes. Again the actual size is close to the 5% and

the power increases with α departing from one as well as with increasing n.

To examine the influence of the bandwidth choice, in addition we have simulated the

same models with hn = c · n− 1
3 for different values of c ranging from c = 0.2 to c = 1.2. The

results for the test of uniformity in Example 4.1 are similar to those displayed in Figure 3

for all these bandwidths. In the situation of Example 4.2 we obtain similar power functions

as reported above for c between 0.8 and 1.2, whereas for smaller bandwidths the actual size

of the test exceeds its nominal value substantially.
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Figure 3: Monte-Carlo simulations for Example 4.1

4.2 Test for independence

In model (2.1) we assume that the distributions of the errors εi (i = 1, . . . , n) do not depend

on the point of measurement xi = i/n. We can test this assumption by comparing the se-

quential empirical distribution function F̂n(y, s) for the residuals with the estimator s̄nF̂n(y),

which should behave similarly if the errors are iid. The following corollary to Theorem 3.1

describes the asymptotic behavior of the Kolmogorov-Smirnov type test statistic

Tn = sup
s∈[0,1],y∈R

√
n|F̂n(y, s)− s̄nF̂n(y)|
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Figure 4: Monte-Carlo simulations for Example 4.2

under the null hypothesis of iid errors.

Corollary 4.3 Assume model (2.1) with (F1), (F2), (G1), and 1
β
< α < 2− 1

β
. Choose a

bandwidth hn � ((log n)/n)1/(αβ+1).

Then Tn converges in distribution to sups∈[0,1],z∈[0,1] |G(s, z)| where G is a completely

tucked Brownian sheet, i. e. a centered Gaussian process with covariance function

((s1, z1), (s2, z2)) 7→ (s1 ∧ s2 − s1s2)(z1 ∧ z2 − z1z2).

The proof is given in the appendix. Note that under the assumptions of the corollary the

limit of the test statistic Tn is distribution free. The asymptotic quantiles tabled by Picard

(1985) can be used to determine the critical value for a given asymptotic size of the test.

4.3 Test for monotone boundary functions

We consider model (2.1) and aim at testing the null hypothesis

H0 : g is increasing,

which is a common assumption in boundary models. Let g̃ denote the smooth local poly-

nomial estimator for g defined in (2.5). Such an unconstrained estimator can be modified

15



to obtain an increasing estimator g̃I . To this end, for any function h : [0, 1]→ R define the

increasing rearrangement on [a, b] ⊂ [0, 1] as the function Γ(h) : [a, b]→ R with

Γ(h)(x) = inf
{
z ∈ R

∣∣∣a+

∫ b

a

I{h(t) ≤ z} dt ≥ x
}
.

Denote by Γn the operator Γ with [a, b] = In. We define the increasing rearrangement of

g̃ as g̃I = Γn(g̃), so that g̃I = g̃ if g̃ is nondecreasing (see Anevski and Fougères, 2007,

and Chernozhukov et al., 2009). We now consider residuals obtained from the monotone

estimator: ε̂I,i = Yi − g̃I( in), i = 1, . . . , n. Under the null hypothesis, these residuals should

be approximately iid, whereas under the alternative they show a varying behavior for i
n

in

different subintervals of [0, 1]. For illustration see Figure 5 where we have generated a data

set (upper panel) with true non-monotone boundary curve g (dashed curve). The solid curve

is the increasing rearrangement gI . The lower left panel shows the errors εi, i = 1, . . . , n,

with iid-behaviour. The lower right panel shows εI,i = Yi − gI( in), i = 1, . . . , n, with a clear

non-iid pattern.
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Figure 5: The upper panel shows data points and the true boundary function (dashed curve)

as well as the increasing rearrangement (solid curve). The lower left panel shows the errors.

The lower right panel shows residuals built with respect to the increasing rearrangement.
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Similarly as in Subsection 4.2, we compare the sequential empirical distribution function

F̃I,n(y, s) =
1

mn

bnsc∑
j=1

I{ε̃I,j ≤ y}I{ j
n
∈ In}

based on the increasing estimator g̃I with the product estimator s̄nF̃n(y, 1), where again

In := [hn + bn, 1− hn − bn] and mn := n− 2dn(hn + bn)e+ 1. Let

G̃n(s, y) =
√
n(F̃I,n(y, s)− s̄nF̃n(y)), s ∈ [0, 1], y ∈ R.

To derive its limit distribution under the null hypothesis, we need an additional assumption:

(I1) Let infx∈[0,1] g
′(x) > 0.

Theorem 4.4 Assume model (2.1) with (F1), (F2), (G1), (K1), (I1), β > 1 and 1
β
<

α < 2− 1
β

. If hn � ((log n)/n)1/(αβ+1) and bn � ((log n)/n)1/(αβ+1), then

sup
y∈R,s∈[0,1]

|F̃I,n(y, s)− s̄nFbnsc(y)| = oP (n−1/2). (4.1)

Thus the Kolmogorov-Smirnov test statistic sups∈[0,1],y∈R |G̃n(s, y)|, converges in distribution

to sups∈[0,1],z∈[0,1] |G(s, z)| where G is the completely tucked Brownian sheet (see Corollary

4.3).

The conditions on the bandwidths can be substantially relaxed; cf. Remark 3.2.

Remark 4.5 A test that rejects H0 for large values of the Kolmogorov-Smirnov test statistic

Tn = sups∈[0,1],y∈R |G̃n(s, y)| is consistent. To see this note that by Theorem 1 of Anevski and

Fougères (2007), supx∈In |g̃I(x) − gI(X)| ≤ supx∈In |g̃(x) − g(x)| = oP (1) with gI denoting

the increasing rearrangement of g. Thus n−1/2Tn converges to

T = sup
s∈[0,1],y∈R

∣∣∣ ∫ s

0

Fε(y + (gI − g)(x)) dx− sFε(y)
∣∣∣.

Since T > 0 under the alternative hypothesis g 6= gI , the test statistic Tn converges to

infinity. �

A Appendix: Proofs

A.1 Auxiliary results

Proposition A.1 Assume that model (2.1) holds and that the regression function g fulfills

condition (G1) for some β ∈ (0, β∗] and some cg ∈ [0, c∗]. Then there exist constants

Lβ∗,c∗ , Lβ∗ > 0 and a natural number jβ∗ (depending only on the respective subscripts) such

that

|ĝ(x)− g(x)| ≤ Lβ∗,c∗h
β
n + Lβ∗ max

1≤j≤2jβ∗

(
min

i:−1+(j−1)/jβ∗≤|i/n−x|/hn≤−1+j/jβ∗
|εi|
)
.
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This proposition can be verified by an obvious modification of the proof of Theorem 3.1

by Jirak et al. (2014).

Lemma A.2 Under assumptions (F1) and (H1) for any fixed set I1, . . . , Im of disjoint

non-degenerate subintervals of [−1, 1] we have

sup
x∈[hn,1−hn]

max
1≤j≤m

min
i∈{1,...,n}

(i/n−x)/hn∈Ij

|εi| = OP

(( | log hn|
nhn

)1/α)
.

Proof. Let rn :=
(
| log hn|/(nhn)

)1/α
. Obviously it suffices to prove that for all non-

degenerate subintervals I ⊂ [−1, 1] there exists a constant L such that

lim
n→∞

P
{

sup
x∈[hn,1−hn]

min
i∈{1,...,n}

(i/n−x)/hn∈I

|εi| > Lrn

}
= 0.

Denote by d = sup I− inf I > 0 the diameter of I and let dn := dnhnde−1 and ln := bn/dnc.
Then for all x > 0

P
{

sup
x∈[hn,1−hn]

min
i∈{1,...,n}

(i/n−x)/hn∈I

|εi| > x
}
≤ P

{
max

j∈{1,...,n−dn}
min

i∈{j,...,j+dn}
|εi| > x

}
≤ P

{
max

l∈{0,...,ln}
l even

Mn,l > x
}

+ P
{

max
l∈{0,...,ln}

l odd

Mn,l > x
}

with

Mn,l := max
j∈{ldn+1,...,(l+1)dn}

min
i∈{j,...,j+dn}

|εi|.

Since the random variables Mn,l for l even are iid, we have

P
{

max
l∈{0,...,ln}
l even

Mn,l > x
}

= 1−
(
1− P{Mn,0 > x}

)bln/2c+1
,

and an analogous equation holds for the maxima over the odd numbered block maxima Mn,l.

Let G be the cdf of |εi|. If Mn,0 exceeds x, then there is a smallest index j ∈ {1, . . . , dn}
for which mini∈{j,...,j+dn} |εi| > x. Hence

P{Mn,0 > x} = P
{

min
i∈{1,...,1+dn}

|εi| > x
}

+
dn∑
j=2

P
{
|εj−1| ≤ x, min

i∈{j,...,j+dn}
|εi| > x

}
= (1−G(x))dn+1 + (dn − 1)G(x)(1−G(x))dn+1

≤ (1 + dnG(x))(1−G(x))dn .

To sum up, we have shown that

P
{

sup
x∈[hn,1−hn]

min
i∈{1,...,n}

(i/n−x)/hn∈I

|εi| > Lrn

}
≤ 2

(
1−

(
1− (1 + dnG(Lrn))(1−G(Lrn))dn

)bln/2c+1
)
.
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It remains to be shown that the right hand side tends to 0 for sufficiently large L which is

true if and only if

(1 + dnG(Lrn))(1−G(Lrn))dn = o(1/ln).

This is an immediate consequence of 1/ln ∼ dhn and

G(Lrn) = cLα
| log hn|
nhn

(1 + o(1))

=⇒ (1−G(Lrn))dn = exp
(
− nhndcLα

| log hn|
nhn

(1 + o(1))
)

=⇒ (1 + dnG(Lrn))(1−G(Lrn))dn = O
(
| log hn| exp

(
− cdLα| log hn|(1 + o(1))

))
= o(hn)

if cdLα > 1. 2

A.2 Proof of Theorem 2.2

The assertion directly follows from Proposition A.1 and Lemma A.2. 2

A.3 Proof of Theorem 2.7

(i) Using Theorem 2.2, a Taylor expansion of g of order bβc and assumption (K1), one can

show by direct calculations that for some τu ∈ (0, 1)

sup
x∈In
|g̃(x)− g(x)| ≤ sup

x∈In

∣∣∣∣∫ 1−hn

hn

(ĝ(z)− g(z))
1

bn
K

(
x− z
bn

)
dz

∣∣∣∣
+ sup

x∈In

∣∣∣∣∫ 1−hn

hn

(g(z)− g(x))
1

bn
K

(
x− z
bn

)
dz

∣∣∣∣
≤ sup

z∈[hn,1−hn]

|ĝ(z)− g(z)|O(1) + sup
x∈In

∣∣∣∣∫ 1

−1

(g(x− ubn)− g(x))K (u) du

∣∣∣∣
≤ O(hβn) +OP

(( | log hn|
nhn

) 1
α
)

+bbβcn sup
x∈In

∣∣∣∣ 1

bβc!

∫ 1

−1

ubβc(g(bβc)(x− τuubn)− g(bβc)(x))K(u)du

∣∣∣∣ .
Now the Hölder property of g combined by (K1) yields the desired result.

(ii) Since g is bounded on [hn, 1 − hn] and supx∈[hn,1−hn] |ĝ(x) − g(x)| = oP (1), ĝ is

eventually bounded on [hn, 1 − hn] too. Note that the partial derivative of ĝ(z)b−1
n K((x −

z)/bn) with respect to x is continuous and bounded (for fixed n). Thus we can exchange

integration and differentiation and obtain

sup
x∈In
|g̃′(x)− g′(x)| = sup

x∈In

∣∣∣∣∫ 1−hn

hn

ĝ(z)
1

b2
n

K ′
(x− z

bn

)
dz − g′(x)

∣∣∣∣ .
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Integration by parts yields∫ 1−hn

hn

g(z)
1

b2
n

K ′
(
x− z
bn

)
dz =

∫ 1−hn

hn

g′(z)
1

bn
K

(
x− z
bn

)
dz

since K(−1) = K(1) = 0. Therefore

sup
x∈In
|g̃′(x)− g′(x)| ≤ sup

x∈In

∣∣∣∣∫ 1−hn

hn

(ĝ(z)− g(z))
1

b2
n

K ′
(
x− z
bn

)
dz

∣∣∣∣
+ sup

x∈In

∣∣∣∣∫ 1−hn

hn

(g′(z)− g′(x))
1

bn
K

(
x− z
bn

)
dz

∣∣∣∣
≤ sup

z∈[hn,1−hn]

|ĝ(z)− g(z)|O(b−1
n ) + sup

x∈In

∣∣∣∣∫ 1

−1

(g′(x− ubn)− g′(x))K (u) du

∣∣∣∣ .
Similarly as in the proof of (i), assertion (ii) follows by Theorem 2.2, a Taylor expansion of

g′ of order bβc − 1 and the assumptions (K1) and (G1).

(iii) We distinguish the cases |x − y| > an and |x − y| ≤ an for some suitable sequence

(an)n∈N with limn→∞ an = 0 specified later. In the first case, we obtain

sup
x,y∈In,|x−y|>an

|g̃′(x)− g′(x)− g̃′(y) + g′(y)|
|x− y|δ

≤ 2 sup
x∈In
|g̃′(x)− g′(x)|a−δn

=

(
O(bβ−1

n ) +

(
O(hβn) +OP

((
| log hn|
nhn

) 1
α

))
b−1
n

)
a−δn . (A.1)

In the second case, we use a decomposition like in the proof of (ii):

sup
x,y∈In,0<|x−y|≤an

|g̃′(x)− g′(x)− g̃′(y) + g′(y)|
|x− y|δ

≤ sup
x,y∈In,0<|x−y|≤an

∣∣∣∫ 1−hn
hn

(ĝ(z)− g(z)) 1
b2n

(
K ′
(
x−z
bn

)
−K ′

(
y−z
bn

))
dz
∣∣∣

|x− y|δ

+ sup
x,y∈In

0<|x−y|≤an

|g′(x)− g′(y)|
|x− y|δ

+ sup
x,y∈In

0<|x−y|≤an

∣∣∣∫ 1−hn
hn

g′(z) 1
bn

(
K
(
x−z
bn

)
−K

(
y−z
bn

))
dz
∣∣∣

|x− y|δ
.

By Lipschitz continuity of K ′ and Theorem 2.2, the first term on the right hand side is of

the order (
O(hβn) +OP

(( | log hn|
nhn

) 1
α
)) 1

b3
n

O(a1−δ
n ). (A.2)

For β ≥ 2, the second term is of the order a1−δ
n as g′ is Lipschitz continuous, while for

β ∈ (1, 2) assumption (G1) yields the rate aβ−1−δ
n . In both cases, condition (B2.δ) ensures
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that the second term converges to 0.

The last term on the right hand side can be rewritten as

sup
x,y∈In

0<|x−y|≤an

∣∣∣∫ 1

−1
(g′(x− hnu)− g′(y − hnu))K(u) du

∣∣∣
|x− y|δ

and is thus of the same order as the second term by assumption (G1).

To conclude the proof, one needs to find a sequence an = o(1) such that (A.1) and (A.2)

tend to 0 in probability, i.e.

bβ−1
n +

ϑn
bn

= o(aδn) and a1−δ
n = o

( b3
n

ϑn

)
with ϑn := hβn + (| log hn|/(nhn))1/α. Obviously, such a sequence an exists if and only if

bβ−1
n +

ϑn
bn

= o
(( b3

n

ϑn

) δ
1−δ
)
,

which in turn is equivalent to condition (B2.δ). 2

A.4 Proof of Theorem 3.1

The assumptions about α ensure that β/(αβ + 1) > 1/(2(α ∧ 1)), and so in view of (2.3)

the uniform estimation error of ĝ is stochastically of smaller order than n−1/(2(α∧1)). Hence

there exists a sequence

an = o(n−
1

2(α∧1) ) (A.3)

such that

P
(

sup
x∈[hn,1−hn]

|ĝ(x)− g(x)| ≤ an

)
−−−→
n→∞

1.

Let F̄n(y, s) := 1
mn

∑bnsc
j=1 I{εj ≤ y}I{hn < j

n
≤ 1− hn}. Since

F̂n(y, s) =
1

mn

bnsc∑
j=1

I{εj ≤ y + (ĝ − g)( j
n
)}I{hn < j

n
≤ 1− hn}

we may conclude

√
n(F̄n(y − an, s)− s̄nFbnsc(y)) ≤

√
n(F̂n(y, s)− s̄nFbnsc(y))

≤
√
n(F̄n(y + an, s)− s̄nFbnsc(y))

for all y ∈ R and s ∈ [0, 1] with probability converging to 1.

We take a closer look at the bounds. The sequential empirical process

En(y, s) = n−1/2

bnsc∑
j=1

(I{εj ≤ y} − F (y)), y ∈ R, s ∈ [0, 1], (A.4)
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converges weakly to a Kiefer process; see e.g. Theorem 2.12.1 in van der Vaart and Wellner

(1996). Now, n ∼ mn, the asymptotic equicontinuity of the process En, the Hölder continuity

(F2) and (A.3) imply

√
n
(
F̄n(y ± an, s)− s̄nFbnsc(y)

)
=

n

mn

(
En(y ± an, s ∧ (1− hn))− En(y, s ∧ (1− hn))− En(y ± an, s ∧ hn) + En(y, s ∧ hn)

)
+
√
ns̄n(F (y ± an)− F (y)) +

√
n(F̄n(y, s)− s̄nFbnsc(y))

= oP (1) +
√
n(F̄n(y, s)− s̄nFbnsc(y))

uniformly for all y ∈ R, s ∈ [0, 1].

It remains to be shown that

√
n(F̄n(y, s)− s̄nFbnsc(y))

=

√
n

mn

bnsc∑
j=1

(I{εj ≤ y} − F (y))I{hn <
j

n
≤ 1− hn} −

√
ns̄n
bnsc

bnsc∑
j=1

(I{εj ≤ y} − F (y))

=
( n

mn

− 1
)(
En(y, s ∧ (1− hn))− En(y, s ∧ hn)

)
−
( ns̄n
bnsc

− 1
)
En(y, s)

+
(
En(y, s ∧ (1− hn))− En(y, s ∧ hn)− En(y, s)

)
(A.5)

tends to 0 in probability uniformly for all y ∈ R, s ∈ [0, 1].

The first term vanishes asymptotically, because En is uniformly stochastically bounded

and n ∼ mn.

Next note that s̄n = 0 for s < hn, while for s ≥ hn

ns̄n
bnsc

− 1 =
bn(s ∧ (1− hn)c − bnhnc
(1− 2hn +O(n−1))bnsc

− 1 =
O(nhn)

(1− 2hn +O(n−1))bnsc
, (A.6)

which is uniformly bounded for all s ∈ [hn, 1] and tends to 0 uniformly with respect to s ∈
[h

1/2
n , 1]. Moreover, En is uniformly stochastically bounded and sup

0≤s≤h1/2n ,y∈R |En(y, s)| =

oP (1), because En is asymptotically equicontinuous with En(y, 0) = 0. Hence, the second

term in (A.5) converges to 0 in probability, too. Likewise, the convergence of the last term

to 0 follows from the asymptotic equicontinuity of En, which concludes the proof. 2

A.5 Proof of Theorem 3.4 and of Remark 3.5

For any interval I ⊂ R and constant k > 0, define the following class of differentiable

functions:

C1+δ
k (I) =

{
d : I → R

∣∣∣max
{

sup
x∈I
|d(x)|, sup

x∈I
|d′(x)|, sup

x,y∈I,x 6=y

|d′(x)− d′(y)|
|x− y|δ

}
≤ k

}
.
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Then Theorem 2.7 yields P ((g̃ − g) ∈ C1+δ
1/2 (In)) → 1 as n → ∞. Hence there ex-

ist random functions dn : [0, 1] → R such that dn(x) = (g̃ − g)(x) for all x ∈ In and

P
(
dn ∈ C1+δ

1 ([0, 1])
)
→ 1 for n→∞. (For instance, one may extrapolate g̃ − g linearly on

[0, hn] and on [1− hn, 1].)

On the space F := R× C1+δ
1 ([0, 1]) we define the semimetric

ρ((y, d), (y∗, d∗)) = max
{

sup
x∈[0,1]

sup
γ∈C1+δ

1 ([0,1])

|F (y + γ(x))− F (y∗ + γ(x))| , sup
x∈[0,1]

|d(x)−d∗(x)|
}
.

For ϕ = (y, d) ∈ F let

Znj(ϕ) :=

√
n

mn

I{εj ≤ y + d( j
n
)}I{ j

n
∈ In} −

1√
n
I{εj ≤ y}

and

Gn(ϕ) :=
n∑
j=1

(Znj(ϕ)− E[Znj(ϕ)]).

Note that

Gn(y, dn)

=

√
n

mn

n∑
j=1

I{εj ≤ y − g(j/n) + g̃(j/n)}I{j/n ∈ In}

−
√
n

mn

n∑
j=1

F (y + (g̃ − g)(j/n))I{j/n ∈ In} −
1√
n

n∑
j=1

I{εj ≤ y}+
√
nF (y)

=
√
n
(
F̃n(y)− 1

n

n∑
j=1

I{εj ≤ y} − 1

mn

n∑
j=1

(
F
(
y + (g̃ − g)( j

n
)
)
− F (y)

)
I{ j

n
∈ In}

)
.

We will apply Theorem 2.11.9 of van der Vaart and Wellner (1996) to show that the process

(Gn(ϕ))ϕ∈F converges to a (Gaussian) limiting process. In particular, Gn is asymptoti-

cally equicontinuous, which readily yields the assertion, because supy∈R ρ((y, dn), (y, 0)) =

supx∈[0,1] |dn(x)| = oP (1) and the variance of

Gn(y, 0) =
1√
n

n∑
j=1

( n

mn

− 1
)
I{εj ≤ y}I{j/n ∈ In} − I{εj ≤ y}I{j/n 6∈ In}

tends to 0, implying that Gn(y, 0) = oP (1) uniformly in y. Thus Gn(y, dn) = oP (1) uniformly

in y and the assertion holds.

One may proceed as in the proof of Lemma 3 in Neumeyer and Van Keilegom (2009) (see

the online supporting information to that article) to prove that the conditions of Theorem

2.11.9 of van der Vaart and Wellner (1996) are fulfilled. The proof of the first two displayed

formulas of this theorem are analogous. The only difference is that Neumeyer and Van
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Keilegom (2009) assume a bounded error density while we use Hölder continuity of F , see

assumption (F2). Next we show that the bracketing entropy condition (i.e., the last displayed

condition in Theorem 2.11.9 of van der Vaart and Wellner, 1996) is fulfilled and that (F , ρ)

is totally bounded.

To this end, let dLm ≤ dUm, m = 1, . . . ,M , be brackets for C1+δ
1 ([0, 1]) of length η2/(α∧1)

w.r.t. the supremum norm. According to van der Vaart and Wellner (1996), Theorem 2.7.1

and Corollary 2.7.2, M = O
(

exp(κη−2/((1+δ)(α∧1)))
)

brackets are needed. For each m define

FL
m(y) := n−1

∑n
j=1 F (y + dLm(j/n)) and choose yLm,k, k = 1, . . . , K = O(η−2) such that

FL
m(yLm,k)− FL

m(yLm,k−1) < η2 for all k ∈ {1, . . . , K + 1} with yLm,0 := −∞ and yLm,K+1 := ∞.

Define FU
m and yUm,k analogously, ỹLm,k := yLm,k and denote by ỹUm,k the smallest yUm,l larger

than or equal to yLm,k+1. Then F is covered by

Fmk := {(y, d) ∈ F | ỹLm,k ≤ y ≤ ỹUm,k, d
L
m ≤ d ≤ dUm}, m = 1, . . . ,M, k = 1, . . . , K.

Check that by condition (F2)

sup
y∈R
|FU
m(y)− FL

m(y)| ≤ sup
y∈R

n−1

n∑
j=1

|F (y + dUm(j/n))− F (y + dLm(j/n))|

≤ LF sup
x∈R
|dUm(x)− dLm(x)|α∧1 ≤ LFη

2 (A.7)

with LF denoting the Hölder constant of F . Thus

1

n

n∑
j=1

E
[

sup
(y,d),(y∗,d∗)∈Fmk

∣∣I{εj ≤ y + d(j/n)} − I{εj ≤ y∗ + d∗(j/n)}
∣∣]2

≤ 1

n

n∑
j=1

E
[
I{εj ≤ ỹUm,k + dUm(j/n)} − I{εj ≤ ỹLm,k + dLm(j/n)}

]2
≤ FU

m(ỹUm,k)− FL
m(ỹLm,k)

≤ |FU
m(ỹUm,k)− FU

m(ỹLm,k+1)|+ |FU
m(ỹLm,k+1)− FL

m(ỹLm,k+1)|+ |FL
m(ỹLm,k+1)− FL

m(ỹLm,k)|
≤ (2 + LF )η2

where the last step follows from (A.7) and the definitions of ỹLm,k and ỹUm,k. Hence we obtain

for the squared diameter of Fmk w.r.t. Ln2

n∑
j=1

E
[

sup
(y,d),(y∗,d∗)∈Fmk

|Znj(y, d)− Znj(y∗, d∗)|
]2

≤ 2
n

m2
n

n∑
j=1

E
[

sup
(y,d),(y∗,d∗)∈Fmk

∣∣I{εj ≤ y + d(j/n)} − I{εj ≤ y∗ + d∗(j/n)}
∣∣]2

I{j/n ∈ In}

+
2

n

n∑
j=1

E
[

sup
(y,d),(y∗,d∗)∈Fmk

∣∣I{εj ≤ y} − I{εj ≤ y∗}
∣∣]2
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≤ 3(2 + LF )η2

for sufficiently large n. This shows that the bracketing number satisfies logN[ ](η,F , Ln2 ) =

O(logM + logK) = O
(
η−2/((1+δ)(α∧1))

)
, and the last displayed condition of Theorem 2.11.9

of van der Vaart and Wellner (1996) follows from δ > 1/α− 1.

It remains to show that (F , ρ) is totally bounded, i.e. that, for all η ∈ (0, 1), the space

F can be covered by finitely many sets with ρ-diameter less than 5η. To this end, choose

dLm and dUm as above. For each m ∈ {1, . . . ,M} and j ∈ {0, . . . , J := dη−1e}, let sj :=

jη1/(α∧1) ∧ 1 and Fjm(y) := P (ε1 ≤ y + dLm(sj)), and choose an increasing sequence yjm,k,

k = 1, . . . , K := bη−1c, such that Fjm(yjm,k) − Fjm(yjm,k−1) < η for all k ∈ {1, . . . , K + 1}
with yjm,0 := −∞ and yjm,K+1 := ∞. Denote by ȳl, 1 ≤ l ≤ L, all points yjm,k, j ∈
{0, . . . , J}, m ∈ {1, . . . ,M}, k ∈ {1, . . . , K}, in increasing order. We show that all sets

Fml := {(y, d) | ȳl−1 ≤ y ≤ ȳl, d
L
m ≤ d ≤ dUm} have ρ-diameter less than 5η. Check that, for

all 1 ≤ l ≤ L, one has

sup
x∈[0,1]

sup
γ∈C1+δ

1 ([0,1])

|F (ȳl + γ(x))− F (ȳl−1 + γ(x))|

≤ max
1≤j≤J

sup
sj−1≤x≤sj

max
1≤m≤M

sup
dLm≤γ≤dUm

[
|F (ȳl + γ(x))− F (ȳl + γ(sj))|

+|F (ȳl + γ(sj))− F (ȳl + dLm(sj))|+ |F (ȳl + dLm(sj))− F (ȳl−1 + dLm(sj))|

+|F (ȳl−1 + dLm(sj))− F (ȳl−1 + γ(sj))|+ |F (ȳl−1 + γ(sj))− F (ȳl−1 + γ(x))|
]

< max
1≤j≤J

[
(sj − sj−1)α∧1 + η2 + η + η2 + (sj − sj−1)α∧1

]
≤ 5η.

Therefore, for all (y, d), (y∗, d∗) ∈ Fml

ρ((y, d), (y∗, d∗))

≤ max
{

sup
x∈[0,1]

sup
γ∈C1+δ

1 ([0,1])

|F (ȳl + γ(x))− F (ȳl−1 + γ(x))|, sup
x∈[0,1]

dUm(x)− dLm(x)
}

≤ max{5η, η2/(α∧1)} = 5η,

which concludes the proof of Theorem 3.4.

If we drop the assumption δ > 1/α − 1 but require F to be Lipschitz continuous, then

we use brackets for C1+δ
1 ([0, 1]) of length η2 (instead of η2/(α∧1)) and replace (A.7) with

sup
y∈R
|FU
m(y)− FL

m(y)| ≤ sup
y∈R

n−1

n∑
j=1

|F (y + dUm(j/n))− F (y + dLm(j/n))|

≤ LF sup
x∈R
|dUm(x)− dLm(x)| ≤ LFη

2

with LF denoting the Lipschitz constant of F to prove logN[ ](η,F , Ln2 ) = O
(
η−2/(1+δ)

)
,

which again yields the third condition of Theorem 2.11.9 of van der Vaart and Wellner
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(1996). Likewise, in the last part of the proof, one defines sj := jη ∧ 1 and replaces (A.8)

with max1≤j≤J
[
(sj − sj−1) + η2 + η + η2 + (sj − sj−1)

]
≤ 5η. 2

In the remaining proofs to Section 3, we use the index n for the estimators to emphasis

the dependence on the sample size and to distinguish between estimators and polynomials

corresponding to a given sample on the one hand and corresponding objects in a limiting

setting on the other hand.

A.6 Proof of Lemma 3.6

Proposition A.1 and the proof of Lemma A.2 show that there exist constants d, d̃ > 0

depending only on β and cg such that E(ĝn(x)) ≤ d̃E(Mn,0) and P{Mn,0 > t} ≤
(
1 +

dnhn(1− F (−t))
)
(F (−t))dnhn for all t > 0.

Let an := a(log n/(nhn))1/α for a suitable constant a > 0 and fix some t0 > 0 such that

(1− F (−t))/(ctα) ∈ (1/2, 2) for all t ∈ (0, t0]. Then

E(Mn,0)

=

∫ ∞
0

P{Mn,0 > t} dt

≤ an +

∫ t0

an

(
1 + dnhn(1− F (−t))

)
(F (−t))dnhn dt+ (1 + dnhn)

∫ ∞
t0

((F (−t))dnhn dt.

Now, for sufficiently large n,∫ t0

an

(
1 + dnhn(1− F (−t))

)
(F (−t))dnhn dt

≤
∫ t0

an

(
1 + 2cdnhnt

α
)(

1− c

2
tα
)dnhn

dt

≤ (1 + 2cd)nhn

∫ t0

an

tα exp
(
− c

2
dnhnt

α
)
dt

≤ (1 + 2cd)nhn
t0
α

∫ tα0

aαn

exp
(
− c

2
dnhnu

)
du

≤ 2(1 + 2cd)nhnt0
αcdnhn

exp
(
− c

2
daα log n

)
= o(n−ξ)

for all ξ > 0 if a is chosen sufficiently large. Hence the assertion follows from (H1) and (F3)

which imply ∫ ∞
t0

(F (−t))dnhn dt ≤ nhn((F (−t0))dnhn +

∫ ∞
nhn

t−dτnhn dt = o(n−ξ)

for all ξ > 0. 2
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A.7 Proof of Theorem 3.7

As the density f is bounded and Lipschitz continuous, one has

∣∣F(y + (g̃∗n − g)(j/n))− F (y)− f(y)(g̃∗n − g)(j/n)
∣∣ =

∣∣∣ ∫ (g̃∗n−g)(j/n)

0

f(y + t)− f(y) dt
∣∣∣

= O
(
(g̃∗n − g)2(j/n)

)
uniformly for y ≤ y0 and j/n ∈ In. Hence the remainder term can be approximated by a

sum of estimation errors as follows:∣∣∣∣ 1

mn

n∑
j=1

(
F
(
y + (g̃∗n − g)(j/n))− F (y)

)
I{j/n ∈ In} −

f(y)

mn

n∑
j=1

(g̃∗n − g)(j/n)I{j/n ∈ In}
∣∣∣∣

= O

(
1

mn

n∑
j=1

(g̃∗n − g)2(j/n)I{j/n ∈ In} = OP

(
h2β
n + b2β

n +
( log n

nhn

)2/α)
= oP (n−1/2)

where for the last conclusions we have used Theorem 2.2, Lemma 3.6 and the assumptions

(H2) and (B3). Thus the assertion follows if we show that

1

mn

n∑
j=1

(g̃∗n − g)(j/n)I{j/n ∈ In} = oP (n−1/2).

To this end, note that g̃∗n(x) and g̃∗n(y) are independent for |x − y| > 2(hn + bn). For

simplicity, we assume that 2n(hn + bn) =: kn is a natural number. If we split the whole sum

into blocks with kn consecutive summands, then all blocks with odd numbers are independent

and all blocks with even numbers are independent. It suffices to show that

1

mn

bn/(2kn)c∑
`=1

∆n,2`−1 = oP (n−1/2)

1

mn

bn/(2kn)c∑
`=1

∆n,2` = oP (n−1/2)

where ∆n,l =
∑(l+2)kn−1

j=(l+1)kn
(g̃∗n − g)(j/n), 1 ≤ ` ≤ bn/knc. We only consider the second sum,

because the first convergence obviously follows by the same arguments.

It suffices to verify

E
(
∆2
n,2`

)
= o(kn) (A.8)

E
(
∆n,2`

)
= o

(
n−1/2kn

)
= o
(
n1/2(hn + bn)

)
(A.9)

uniformly for all 1 ≤ ` ≤ bn/(2kn)c, since then

E
( bn/(2kn)c∑

`=1

∆n,2`

)2

=

bn/(2kn)c∑
`=1

V ar(∆n,2`) +
( bn/(2kn)c∑

`=1

E(∆n,2`)
)2

= o(n),
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which implies the assertion.

To prove (A.8), note that according to Lemma 3.6, Proposition A.1 and the proofs of

Lemma A.2 and of Theorem 2.7(i), there exist constants c1, c2, c3 > 0 (depending only on β,

cg and the kernel K) such that

sup
x∈In
|g̃∗n(x)− g(x)| ≤ c1

(
hβn + bβn +

( log n

nhn

)1/α

+ max(M∗
1 ,M

∗
2 )
)

where M∗
1 ,M

∗
2 are independent random variables such that P{M∗

i > t} ≤ 1− (1−P{Mn,0 >

t})c2(hn+bn)/hn with

P{Mn,0 > t} ≤
(
1 + c3nhn(1− F (−t))

)
(F (−t))c3nhn .

Because kn
(
hβn + bβn + (log n/(nhn))1/α

)
= o(k

1/2
n ) by (H2) and (B3), it suffices to show that

E
(
(M∗

i )2
)

=

∫ ∞
0

P{M∗
i > t1/2} dt = o(1/kn). (A.10)

Fix some t0 ∈ (0, (2c)−2/α) such that (1 − F (−t))/(ctα) ∈ (1/2, 2) for all t ∈ (0, t0]. In

what follows, d denotes a generic constant (depending only on β, cg, c and K) which may

vary from line to line. Applying the inequalities exp(−2ρu) ≤ (1 − u)ρ ≤ exp(−ρu), which

holds for all ρ > 0 and u ∈ (0, 1/2), we obtain for (nhn/ log n)−2/α < t ≤ t0 and sufficiently

large n

P{M∗
i > t1/2} ≤ 1−

[
1− (1 + c3nhn2ctα/2)(1− ctα/2/2)c3nhn

]c2(hn+bn)/hn

≤ 1−
[
1− 3c3cnhnt

α/2 exp
(
− c3cnhnt

α/2/2
)]

≤ 1− exp
(
− dn(hn + bn)tα/2 exp

(
− c3cnhnt

α/2/2
))

≤ dn(hn + bn)tα/2 exp
(
− c3cnhnt

α/2/2
)
.

Therefore, for sufficiently large a > 0,∫ t20

0

P{M∗
i > t1/2} dt

≤ a
( nhn

log n

)−2/α

+ dt0n(hn + bn)

∫ t0

a(nhn/ logn)−2/α

tα/2−1 exp
(
− c3cnhnt

α/2/2
)
dt

≤ o(1/(n(hn + bn))) + dt0n(hn + bn) exp
(
− c3ca

α/2 log n/2
)

= o(1/(n(hn + bn))) (A.11)

where in the last but one step we apply the conditions (B3) and (H2). Now, assertion

(A.10) (and hence (A.8)) follows from∫ ∞
t20

P{M∗
i > t1/2} dt ≤

∫ ∞
t20

1−
[
1− c3nhn(F (−t1/2))c3nhn

]c2(hn+bn)/hn
dt
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≤
∫ ∞
t20

1− exp
(
− dn(hn + bn)(F (−t1/2))c3nhn

)
dt

≤ dn(hn + bn)
(
nhn(F (−t0))c3nhn +

∫ ∞
nhn

t−τc3nhn/2 dt
)

= o(n−ξ)

for all ξ > 0 and sufficiently large n, where we have used (H2) and (F3).

To establish (A.9), first note that for a kernel K of order d+ 1 with d := bβc

E(g̃n(x)− g(x)) = E
(∫ 1

−1

(
ĝn(x+ bnu)−

d∑
j=0

g(j)(x)

j!
(bnu)j

)
K(u) du

=

∫ 1

−1

E(ĝn(x+ bnu)− g(x+ bnu))K(u) du+O(bβn)

uniformly for all x ∈ [hn + bn, 1− hn − bn]. In view of (K1), (H2) and (B3), it thus suffices

to show that∣∣E(ĝn(x)− g(x))− Eg≡0(ĝn(1/2))
∣∣ =

∣∣E(ĝn(x)− g(x))− Eg≡0(ĝn(x))
∣∣ = o(n−1/2) (A.12)

uniformly for Lebesgue almost all x ∈ [hn, 1− hn]. Note that the distribution of ĝn(x) does

not depend on x if g equals 0.

Recall that ĝn(x) = p̃n(0) where p̃n is a polynomial on [−1, 1] of degree d that solves the

linear optimization problem ∫ 1

−1

p̃n(t) dt→ min!

under the constraints

p̃n

(i/n− x
hn

)
≥ Yi, ∀ i ∈ [n(x− hn), n(x+ hn)].

Define polynomials

qx(t) :=
d∑

k=0

1

k!
g(k)(x)(hnt)

k, pn(t) := (nhn)1/α(p̃n(t)− qx(t)), t ∈ [−1, 1].

Then qx((u−x)/hn) is the Taylor expansion of order d of g(u) at x and the estimation error

can be written as

ĝn(x)− g(x) = (nhn)−1/αpn(0). (A.13)

Note that pn is a polynomial of degree d that solves the linear optimization problem∫ 1

−1

pn(t) dt→ min!
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subject to

pn

(i/n− x
hn

)
≥ (nhn)1/αε̄i, ∀ i ∈ [n(x− hn), n(x+ hn)], (A.14)

with

ε̄i := εi + g(i/n)− qx
(i/n− x

hn

)
.

We now use point process techniques to analyze the asymptotic behavior of this linear

program.

Denote by

Nn :=
∑

i∈[n(x−hn),n(x+hn)]

δ
((i/n− x)/hn, (nhn)1/αε̄i)

a point process of standardized error random variables. Then the constraints (A.14) can be

reformulated as Nn(Apn) = 0 where Af := {(t, u) ∈ [−1, 1]×R | u > f(t)} denotes the open

epigraph of a function f .

Since by (H2) |ε̄i − εi| = g(in) − qx((i/n − x)/hn)) = O(hβn) = o((nhn)−1/α) uniformly

for all i ∈ [n(x− hn), n(x+ hn)], one has

E
(
Nn([−1, 1]× (−1,∞))) ∼ 2nhnP

{
ε̄1 > −(nhn)−1/α

}
→ 2c.

Therefore, Nn converges weakly to a Poisson process N on [−1, 1]×R with intensity measure

2cU[−1,1]⊗να where να has Lebesgue density x 7→ α|x|α−1I(−∞, 0) (see, e.g., Resnick (2007),

Theorem 6.3). By Skorohod’s representation theorem, we may assume that the convergence

holds a.s.

Next we analyze the corresponding linear program in the limiting model to minimize∫ 1

−1
p(t) dt over polynomials of degree d subject to N(Ap) = 0. In what follows we use a

representation of the Poisson process as N =
∑∞

i=1 δ(Ti,Zi) where Ti are independent random

variables which are uniformly distributed on [−1, 1].

First we prove by contradiction that the optimal solution is almost surely unique. Suppose

that there exist more than one solution. From the theory of linear programs it is known

that then there exists a solution p such that J := {j ∈ N | p(Tj) = Zj} has at most d

elements. Because p is bounded and N has a.s. finitely many points in any bounded set,

η := inf{|p(Ti)− Zi| | i ∈ N \ J} > 0 a.s. Since p is an optimal solution, all polynomials ∆

of degree d such that ∆(Tj) = 0, j ∈ J , and ‖∆‖∞ < η must satisfy
∫ 1

−1
∆(t) dt = 0, because

both p+∆ and p−∆ satisfy the constraints N(Ap±∆) = 0. In particular, for all polynomials

q of degree d − |J |, ∆(t) = τ
∏

i∈J(t − Ti)q(t) is of that type if τ > 0 is sufficiently small.

Write
∏

i∈J(t− Ti) in the form t|J | +
∑|J |−1

l=0 alt
l. Then necessarily

∫ 1

−1

∏
i∈J

(t− Ti)tj dt =
2

|J |+ j + 1
I{|J |+ j even}+

|J |−1∑
l=0

2al
l + j + 1

I{l + j even} = 0,
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for all j ∈ {0, . . . d − |J |}. This implies that (Ti)i∈J lies on a manifold M|J |,d of dimension

|J | − (d− |J |+ 1) = 2|J | − d− 1 which only depends on |J | and d. However, by Proposition

A.1, ‖p‖∞ ≤ KdZmax where

Zmax := max
1≤i≤jd

min{|Zi| | Ti ∈ [−1 + (j − 1)/jd,−1 + j/jd]}.

The above conclusion contradicts P{Zmax > K} → 0 as K →∞, since

P
{
∃J ⊂ N : |J | ≤ d, (Tj)j∈J ∈M|J |,d,max

j∈J
|Zj| ≤ KdK

}
= 0

for all K > 0 (i.e., the fact that among finitely many values Ti a.s. there does not exist a

subset which lies on a given manifold of lower dimension).

Therefore the solution p must be a.s. unique which in turn implies that it is a basic

feasible solution, i.e., |J | ≥ d+ 1. On the other hand, because the intensity measure of N is

absolutely continuous, |J | ≤ d + 1 a.s. and thus |J | = d + 1. Because of Nn → N a.s., one

has Nn([−1, 1]× [−KdZmax,∞)) = N([−1, 1]× [−KdZmax,∞)) =: M for sufficiently large n.

Moreover, one can find a numeration of the points (Tn,i, Zn,i), 1 ≤ i ≤M , of Nn and (Ti, Zi),

1 ≤ i ≤M , of N in [−1, 1]× [−KdZmax,∞) such that (Tn,i, Zn,i)→ (Ti, Zi).

Next we prove that the solution to the linear program to minimize
∫ 1

−1
pn(t) dt subject

to Nn(Apn) = 0 is eventually unique with pn → p a.s. Since any optimal solution can be

written as a convex combination of basic feasible solutions, w.l.o.g. we may assume that

Jn := {1 ≤ i ≤ M | pn(Tn,i) = Zn,i} has at least d + 1 elements. The polynomial pn is

uniquely determined by this set Jn. Suppose that along a subsequence n′ the set Jn′ is

constant, but not equal to J . Then p′n converges uniformly to the polynomial p̄ of degree

d that is uniquely determined by the conditions p̄(Ti) = Zi for all i ∈ Jn′ . In particular,

p̄ is different from the unique optimal polynomial p for the limit Poisson process, but it

satisfies the constraints N(Ap) = 0. Thus
∫ 1

−1
p̄(t) dt >

∫ 1

−1
p(t) dt. On the other hand, for

all η > 0 the polynomial p + η eventually satisfies the constraints Nn(Ap+η) = 0 and thus∫ 1

−1
p(t) + η dt ≥

∫ 1

−1
p̄n(t) dt, which leads to a contradiction.

Hence, Jn = J for all sufficiently large n and the optimal solution pn for Nn is unique and

it converges uniformly to the optimal solution p for the Poisson process N . Moreover, using

the relation (pn(Tn,j))j∈J = (Zn,j)j∈J (which is a system of linear equation in the coefficients

of pn), pn(0) can be calculated as wtn(Zn,j)j∈J for some vector wn which converges to a limit

vector w (corresponding to the analogous relation for p).

Exactly the same arguments apply if we replace ε̄i with εi, which corresponds to the

case that g is identical 0. Since the points (T̃n,i, Z̃n,i) of the pertaining point process equal(
Tn,i, Zn,i − (nhn)1/α(g(i/n)− qx((i/n)− x)/hn)

)
and thus |Z̃n,i − Zn,i| ≤ cg(nhn)1/αhβn, the

difference of the resulting values for optimal polynomial at 0 is bounded by a multiple of

(nhn)1/αhβn. In view of (A.13) and (H2), we may conclude that the difference between the

estimation errors can be bounded by a multiple of hβn = o(n−1/2), which finally yields (A.12)

and thus the assertion. 2
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A.8 Proof of Corollary 4.3

Note that bnsc√
n

(Fbnsc(y)−Fn(y)) = En(y, s)− bnsc
n
En(y, 1) with En defined in (A.4). A similar

reasoning as in the proof of Theorem 3.1 (see (A.6)) shows that

sup
y∈R,s∈[0,1]

∣∣∣( ns̄nbnsc − 1
)bnsc√

n
(Fbnsc(y)− Fn(y))

∣∣∣ = oP (1).

Hence, by Theorem 3.1, uniformly for all y ∈ R, s ∈ [0, 1],

√
n(F̂n(y, s)− s̄nF̂n(y))

=
√
n(F̂n(y, s)− s̄nFbnsc(y))− s̄n

√
n((F̂n(y)− Fn(y))) + s̄n

√
n(Fbnsc(y)− Fn(y))

= ns̄n
bnsc

bnsc√
n

(Fbnsc(y)− Fn(y)) + oP (1)

= En(y, s)− bnsc
n
En(y, 1) + oP (1)

= En(y, s)− sEn(y, 1) + oP (1)

which converges weakly to KF (y, s)−sKF (y, 1) for the Kiefer process KF defined in Theorem

3.1. Check that this Gaussian process has the same law as G(s, F (y)), because they have

the same covariance function. Thus the Kolmogorov-Smirnov statistic Tn converges weakly

to sups∈[0,1],y∈R |G(s, F (y)| = sups∈[0,1],z∈[0,1] |G(s, z)|, where the last equality holds by the

continuity of F . 2

A.9 Proof of Theorem 4.4

Note that under the given assumptions, the statements of Theorem 2.7 (i) and (ii) are valid

with rate oP (1). Let Ωn := {infx∈In g̃
′(x) > 0}. From assumption (I1) and Theorem 2.7 (ii)

it follows that P (Ωn) → 1 for n → ∞. But on Ωn the estimators g̃I and g̃ are identical,

and thus F̃I,bnsc = F̃bnsc. Now (4.1) can be concluded as in the proof of Theorem 3.1,

because Theorem 2.7 (i) yields supx∈In |g̃(x) − g(x)| = oP (n−1/(2(α∧1))). The convergence of

the Kolmogorov-Smirnov test statistic then follows exactly as in the proof of Corollary 4.3.

2

Acknowledgement

Financial support by the DFG (Research Unit FOR 1735 Structural Inference in Statistics:

Adaptation and Effciency) is gratefully acknowledged.

References

Akritas, M. and Van Keilegom, I. (2001). Nonparametric estimation of the residual distri-

bution. Scand. J. Statist. 28, 549–567.

32



Anevski, D. and Fougères, A.-L. (2007). Limit properties of the monotone rearrangement

for density and regression function estimation. arXiv:0710.4617v1

Birke, M. and Neumeyer, N. (2013). Testing Monotonicity of Regression Functions - An

Empirical Process Approach. Scand. J. Statist. 40, 438–454.

Birke, M., Neumeyer, N. and Volgushev, S. (2016+). The independence process in condi-

tional quantile location-scale models and an application to testing for monotonicity.

Statistica Sinica, to appear.

Chernozhukov, V., Fernández-Val, I. and Galichon, A. (2009). Improving point and interval

estimators of monotone functions by rearrangement. Biometrika 96, 559–575.

Daouia, A., Noh, H. and Park, B. U. (2016). Data envelope fitting with constrained poly-

nomial splines. J. R. Stat. Soc. B. 78, 3–30.

Einmahl, J. H. J. and Van Keilegom, I. (2008). Specification tests in nonparametric regres-

sion. Journal of Econometrics 143, 88–102.
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