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Abstract

For nonparametric regression with one-sided errors and a boundary

curve model for Poisson point processes we consider the problem of effi-

cient estimation for linear functionals. The minimax optimal rate is ob-

tained by an unbiased estimation method which nevertheless depends on a

Hölder condition or monotonicity assumption for the underlying regression

or boundary function.

We first construct a simple blockwise estimator and then build up a

nonparametric maximum-likelihood approach for exponential noise vari-

ables and the point process model. In that approach also non-asymptotic

efficiency is obtained (UMVU: uniformly minimum variance among all un-

biased estimators).The proofs rely essentially on martingale stopping ar-

guments for counting processes and the point process geometry. The esti-

mators are easily computable and a small simulation study confirms their

applicability.
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1 Introduction

For regression models

Yi = g(i/n) + εi, i = 1, . . . , n, (1.1)

the estimation of linear functionals of the regression function g is well understood if (εi)

are uncorrelated with mean zero and variance σ2 > 0. Then the discrete functionals

ϑ(n) =
1

n

n∑
i=1

g(i/n)w(i/n) for some function w : [0, 1]→ R (1.2)

can be estimated by the plug-in version ϑ̂n = 1
n

∑n
i=1 Yiw(i/n) without bias and

with variance σ2

n2

∑n
i=1w(i/n)2. By the Gauß-Markov theorem ϑ̂n has minimal vari-

ance among all linear and unbiased estimators. In the Gaussian case ϑ̂n is even

UMVU (uniformly of minimum variance among all unbiased estimators). In the cor-

responding continuous-time signal-in-white-noise model dY (t) = g(t)dt + σn−1/2dWt,

t ∈ [0, 1], with a Brownian motion W and some g ∈ L2([0, 1]) the plug-in estimator

ϑ̂ =
∫ 1

0 w(t)dY (t) is equally an unbiased estimator of

ϑ =

∫ 1

0
g(t)w(t) dt for some w ∈ L2([0, 1]) (1.3)

of variance σ2

n

∫ 1
0 w(t)2dt. By the Riesz representation theorem, we can thus estimate

any linear L2-continuous functional of g with parametric rate n−1/2.

In certain applications, however, the function g is determined as the boundary or

frontier function of the observations, which can be modeled equivalently by one-sided

errors (εi). The prototypical case is that (εi) are i.i.d. with εi > 0 and for some λ > 0

P (εi 6 x) = λx+O(x2) as x ↓ 0, (1.4)

e.g. εi ∼ Exp(λ). In that case the parametric rate for the location model (i.e. assuming

g to be constant) is with n−1 much faster than in the regular case. These irregular

statistical models have also found considerable theoretical interest, e.g. in the recent

work by Baraud and Birgé (2014). A rate-optimal estimator is given by the extreme

value statistics mini Yi. For the nonparametric problem of estimating the function g in

L2-loss, the optimal rate is n−β/(β+1) for g in a Hölder ball of regularity β ∈ (0, 1] and

radius R > 0:

g ∈ Cβ(R) =
{
f : [0, 1]→ R | ∀x, y ∈ [0, 1] : |f(y)− f(x)| 6 R|y − x|β

}
. (1.5)

This is achieved by a local polynomial estimator ĝn,h as in the regular case, see e.g.

Jirak, Meister, and Reiß (2014) for a construction and a survey of the large literature on

that topic. A plug-in estimator ϑ̂n :=
∫ 1

0 ĝn,hn(x)w(x)dx with optimal bandwidth hn to

estimate ϑ in (1.3) can achieve at best the rate n−β/(β+1/2). This is due to a pointwise

bias of order hβ and a pointwise variance of order (nh)−2, which after integration and
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by using independence results in a total mean squared error of order h2β + n−2h−1 for

the plug-in estimator. The standardised rate n−β/(β+1/2) is not optimal and for β < 1/2

even slower than n−1/2 in the regular case. At the heart of the problem is the usual

nonparametric bias bound, which cannot be improved by averaging.

Here we show that the optimal estimation rate for ϑ(n) under one-sided errors is

n−(β+1/2)/(β+1) for g ∈ Cβ(R). The improvement over the plug-in estimator is achieved

by an unbiased estimation procedure. The bias is exactly zero for the case of expo-

nentially distributed errors and it is asymptotically negligible under (1.4) for β > 1/2.

Compared with standard nonparametric results it is remarkable that an unbiased es-

timator can be constructed whose rate is nevertheless worse than the parametric rate

(n−1 in this case). The risk bound comes from a trade-off between two terms in the

variance instead of the usual bias-variance trade-off.

As for mean regression with the signal-in-white-noise model, also for one-sided errors

an analogous continuous-time model is most useful in exhibiting the main statistical

structure. It is given by observing a Poisson point process (PPP) on [0, 1]×R of intensity

λg(x, y) = n1(y > g(x)), x ∈ [0, 1], y ∈ R, (1.6)

see e.g. Karr (1991) or Daley and Vere-Jones (2008) for point process properties and

Figure 1 below for an illustration. For sufficiently regular g this model can be shown to

be asymptotically equivalent to the regression-type model (1.1) with λ = 1 in (1.4), cf.

Meister and Reiß (2013). At the same time, this serves as a canonical model for support

boundary estimation from i.i.d. observations. For instance, Girard and Jacob (2003)

propose projection based estimators for g in this model class and derive convergence

rates as well as limit distributions, already relying on bias reduction techniques. Also

Bibinger, Jirak, and Reiß (2014) use it as an agnostic model for limit order books in

financial markets.

We first develop the methods in the fundamental PPP model for ϑ from (1.3) and

then transfer them explicitly to the discrete model (1.1). By a blocking technique ϑ

can be estimated without bias and at the minimax optimal rate. The method is then

extended to the one-sided regression setting. Using Lepski’s method we are then able

to provide also an adaptive estimator, that is an estimator which does not rely on the

smoothness parameters β,R and still attains the minimax rate up to a logarithmic

factor. In a second step we can even construct an estimator of ϑ which is UMVU.

This non-asymptotic efficiency result is based on a nonparametric maximum-likelihood

approach, where the maximum-likelihood estimator (MLE) ĝMLE is not only explicit,

but also forms a sufficient and complete statistics. In parallel with Gaussian mean

regression we thus have the UMVU-property of the estimator, but its asymptotic rate is

worse than for parametric location estimation. Still, we are able to prove its asymptotic

normality and to provide a self-normalising CLT such that asymptotic inference is

feasible. The MLE approach equally works for the class of monotone functions g.

The regression-type model (1.1) with one-sided errors and the PPP model (1.6)

have a similar structure as models considered for density support estimation or image
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boundary recovery problems. Let us review briefly the literature on functional estima-

tion for these statistical models. Many asymptotic results for the expected area of the

convex hull for i.i.d. observations are based on the classical results by Rényi and Sulanke

(1964). Based on these results, the ideas of the present paper have been used by Baldin

and Reiß (2015) to construct an UMVU estimator for the volume of a convex body.

For image recovery problems Korostelev and Tsybakov (1993) describe already the rate

n−(β+1/2)/(β+1) obtained for the functional
∫ 1

0 g(x)dx. The upper bound is based on a

localisation step and loses a logarithmic factor. By threefold sample splitting Gayraud

(1997) has constructed an estimator achieving this rate exactly for the related density

support area estimation. An interesting linear programming approach is proposed by

Girard, Iouditski, and Nazin (2005). Yet, these estimators are analysed asymptotically

and lack the non-asymptotic unbiasedness and UMVU property we have found here.

Many other estimators are concerned with the estimation of the density support set or

the regression-type function itself, not of the area or other functionals, let us mention

the work by Mammen and Tsybakov (1995) for connections to classification problems.

Specifically, a nonparametric MLE approach under monotonicity has been developed by

Korostelev, Simar, and Tsybakov (1995) for the asymptotically exact risk in estimating

the density support set in Hausdorff distance. In Gaussian mean regression a nonpara-

metric MLE over regular function classes is equivalent to a least-squares approach with

roughness penalty, leading e.g. to smoothing splines. Under shape constraints the MLE

is a well studied object, see e.g. Groeneboom and Wellner (1992), but usually results

are derived asymptotically.

In the next section we shall develop a simple block-wise estimator. Based on optional

stopping for an intrinsic martingale we prove that it is unbiased under the PPP model

and under exponential noise in the regression-type model. For more general regression

noise the required compensation cannot be achieved exactly, but it comes close to the

model with corresponding exponential noise. The third part of that section presents

the adaptive estimator, while the final part presents the lower bound implying that

the rate is indeed optimal. The nonparametric MLE approach is presented in Section

3, first for the class of Hölder functions, then for monotone functions. The derivation

of the completeness of the nonparametric MLE and the stopping arguments for the

intrinsic martingale are intriguing. For the MLE under Lipschitz conditions we obtain

central limit theorems which allow for feasible confidence sets.

In Section 4 we discuss some implications of the results, in particular concerning

estimating coefficients in a projection estimator approach. Extensions and limitations

are mentioned and a small simulation study shows that the estimators are numerically

feasible and have satisfying finite-sample properties. Most proofs are instructive and

reveal some beautiful interplay between statistics, probability and geometry such that

in the Appendix we only provide some technical lemmata (some of independent interest)

and the more involved proofs of the adaptive rate and the CLT. The notation follows

the usual conventions. We write an . bn or an = O(bn) to say that an is bounded
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by a constant multiple of bn and an ∼ bn for an . bn as well as bn . an. Moreover,

an = o(bn) means an/bn → 0 and an � bn stands for an/bn → 1.

2 Simple rate-optimal estimation

2.1 Block-wise estimation in the PPP model

Let (Xj , Yj)j>1 denote the observations of the Poisson point process (PPP) with inten-

sity (1.6). We shall estimate ϑ from (1.3) without any bias. To grasp the main idea,

suppose that w(x) = 1 holds and that we know a deterministic function ḡ : [0, 1]→ R
with the property ḡ > g (pointwise). Then the number of PPP observations below the

graph of ḡ is Poisson-distributed with intensity equal to n times the area between g

and ḡ: ∑
j>1

1(Yj 6 ḡ(Xj)) ∼ Poiss
(
n

∫ 1

0
(ḡ − g)(x) dx

)
.

This yields an unbiased pseudo-estimator ϑ̄:

ϑ̄ :=

∫ 1

0
ḡ(x) dx− 1

n

∑
i>1

1(Yi 6 ḡ(Xi))⇒ E[ϑ̄] =

∫ 1

0
(ḡ − (ḡ − g))(x) dx = ϑ.

The larger the area between the graphs, the larger is the Poisson parameter and thus

the variance of ϑ̄.

Now, we shall define an empirical substitute for ḡ, which by stopping time arguments

keeps the unbiasedness, but is nevertheless sufficiently close to g. We partition [0, 1] in

subintervals Ik = [kh, (k + 1)h) of length h with h−1 ∈ N and note that the block-wise

minimum Y ∗k := minj:Xj∈Ik Yj satisfies Y ∗k > minx∈Ik g(x). By the Hölder property of

g we conclude that g(x) 6 Y ∗k +Rhβ holds for all x ∈ Ik and thus Y ∗k +Rhβ is a local

upper bound for g, see also Figure 1. We thus estimate the functional locally on these

blocks by

ϑ̂k := (Y ∗k +Rhβ)w̄k −
1

nh

∑
i>1

1
(
Xi ∈ Ik, Yi 6 Y ∗k +Rhβ

)
w(Xi),

where w̄k = 1
h

∫
Ik
w(x)dx and the true local parameter is ϑk := 1

h

∫
Ik
g(x)w(x)dx.

2.1 Theorem. The estimator ϑ̂block =
∑h−1−1

k=0 ϑ̂kh satisfies with ‖w‖2L2 =
∫ 1

0 w(x)2dx

E[ϑ̂block] = ϑ, Var(ϑ̂block) 6
2Rhβ + (nh)−1

n
‖w‖2L2 .

In particular, the asymptotically optimal block size h � (2βRn)−1/(β+1) yields

lim sup
n→∞

sup
g∈Cβ(R)

n(2β+1)/(β+1) Var(ϑ̂block) 6
β + 1

β
(2βR)1/(β+1)‖w‖2L2 .
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Figure 1: Construction of ϑ̂block. Circles indicate PPP observations (Xi, Yi),

crosses blockwise minima Y ∗k and horizontal lines the upper boundaries Y ∗k +Rhβ.

Proof. Let us study the weighted counting process

N(t) :=
∑
i>1

1
(
Xi ∈ Ik, Yi 6 t

)
w(Xi), t ∈ R .

The pure counting process
∑

i 1(Xi ∈ Ik, Yi 6 t) is a point process in t with determinis-

tic intensity λt = n
∫
Ik

(t−g(x))+dx. Hence, (N(t), t ∈ R) is a process with independent

increments satisfying (e.g. via Prop. 2.32 in Karr (1991))

E[N(t)] =

∫
Ik

n(t− g(x))+w(x)dx, Var(N(t)) =

∫
Ik

n(t− g(x))+w(x)2dx.

In particular, M(t) = N(t)−E[N(t)] is a càdlàg martingale with respect to the filtration

Ft = σ((Xi, Yi)1(Yi 6 t), i > 1), t ∈ R, (2.1)

with mean zero and predictable quadratic variation 〈M〉t = Var(N(t)).

Now note that τ := Y ∗k +Rhβ is an (Ft)-stopping time with

P (τ > t) = exp
(
− n

∫
Ik

(t−Rhβ − g(x))+dx
)

6 exp
(
− nh(t−max

x∈Ik
g(x)−Rhβ)

)
(2.2)

for t > maxx∈Ik g(x) +Rhβ. In particular, τ has finite expectation and Lemma 5.1 on

optional stopping yields

E[M(τ)] = 0⇒ E[N(τ)] = n

∫
Ik

E[(τ − g(x))+]w(x)dx
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and

Var(M(τ)) = E[〈M〉τ ] = n

∫
Ik

E[(τ − g(x))+]w(x)2dx.

Noting τ > g(x) we have

E[(τ − g(x))+] = E[Y ∗k ] +Rhβ − g(x) for all x ∈ Ik.

The identity

ϑ̂k = τw̄k −
1

nh
N(τ) = ϑk −

1

nh
M(τ)

implies E[ϑ̂k] = ϑk and

Var(ϑ̂k) =
1

n2h2
Var(M(τ)) =

1

nh2

∫
Ik

E[Y ∗k +Rhβ − g(x)]w(x)2dx.

A rough universal bound, using that Y ∗k −maxx∈Ik g(x) is stochastically smaller than

the minimum in y of a PPP with intensity n1(x ∈ Ik, y > 0), yields with a random

variable E ∼ Exp(nh)

E[Y ∗k ] 6 E
[

max
x∈Ik

g(x) + E
]
6 g(x) +Rhβ + (nh)−1.

This implies

Var(ϑ̂k) 6
2Rhβ + (nh)−1

nh2

∫
Ik

w(x)2dx.

We conclude for the final estimator ϑ̂block =
∑h−1−1

k=0 ϑ̂kh by the independence of (ϑ̂k)k
that

E[ϑ̂block] = ϑ, Var(ϑ̂block) 6
2Rhβ + (nh)−1

n

∫ 1

0
w(x)2dx.

Finally, insertion of the asymptotically optimal h yields the variance bound.

2.2 Blockwise estimation in the regression-type model

We consider the equi-distant regression model (1.1) where (εi) are i.i.d. satisfying (1.4).

The primary example will be εi ∼ Exp(λ), but any distribution on R+ with a Lipschitz

continuous density fε at zero and fε(0) = λ will be covered, as soon as some loose tail

bound at infinity holds.

Since the observation design is discrete, our parameter of interest becomes

ϑ(n) from (1.2). In analogy with the PPP case we build an estimator for ϑk =
1
nh

∑
i∈Ĩk g(i/n)w(i/n) on each block of indices Ĩk := {i : kh < i

n ≤ (k + 1)h}, where

h−1, nh ∈ N:

ϑ̃k :=
1

nh

∑
i∈Ĩk

(
Yi ∧ (Y∗k +Rhβ)− λ−11

(
Yi 6 Y∗k +Rhβ

))
w(i/n). (2.3)
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Here, Y∗k = mini∈Ĩk Yi is again the minimal observation on each block. In contrast to

the PPP-estimator the empirical upper bound for g on Ik is given by the minimum

of Y∗k + Rhβ and Yi, which for the rate-optimal choice of h, however, has negligible

impact. We obtain the following result where ‖w‖p = ( 1
n

∑n
i=1|w(i/n)|p)1/p denotes the

standardised `p-norm.

2.2 Theorem. Let the i.i.d. error variables εi satisfy (1.4) as well as F̄ε(y) = P (εi >

y) . (1 + y)−ρ for some ρ > 0. For g ∈ Cβ(R) the estimator ϑ̃blockn =
∑h−1−1

k=0 ϑ̃kh

satisfies for h→ 0 with nh→∞ uniformly in n, h,R, β

|E[ϑ̃blockn − ϑ(n)]| . (Rhβ + (nh)−1)2‖w‖1, Var(ϑ̃blockn ) . h(Rhβ + (nh)−1)2‖w‖22.

In particular, uniformly over β > β0 > 1/2, R 6 R0 < ∞ we obtain with the rate-

optimal block size h ∼ (Rn)−1/(β+1)

(E[ϑ̃blockn − ϑ(n)])2 = o(Var(ϑ̃blockn )), Var(ϑ̃blockn ) . R1/(β+1)n−(2β+1)/(β+1)‖w‖22.

In the case εi ∼ Exp(λ) we have for any β ∈ (0, 1], R, λ > 0 the more precise result

E[ϑ̃blockn ] = ϑ, Var(ϑ̃blockn ) 6
2Rhβ + (nλh)−1

nλ
‖w‖22.

2.3 Remark. The result and proof for εi ∼ Exp(λ) are exactly as in the PPP model.

For other distributions of εi the estimator is only asymptotically unbiased, but for

Hölder regularity β > 1/2 the bias is negligible with respect to the stochastic error. A

side remark is that for strong asymptotic equivalence with the PPP model in Le Cam’s

sense the necessary minimal regularity β > 1 is higher, see Meister and Reiß (2013).

Proof. Fix a block with index k and consider for t ∈ R

M(t) :=
∑
i∈Ĩk

(
1(Yi 6 t) + log F̄ε(Yi ∧ t− g(i/n))

)
w(i/n). (2.4)

With respect to the filtration Ft = σ(Yi1(Yi 6 t), i ∈ Ĩk), (M(t), t ∈ R) defines a

martingale with E[M(t)] = 0 and quadratic variation 〈M〉t =
∑

i∈Ĩk(− log F̄ε(Yi ∧
t − g(i/n)))w(i/n)2: just note that the compensator of

∑
i∈Ĩk 1(Yi 6 t) equals the

integrated hazard function
∑

i∈Ĩk

∫ Yi∧t−g(i/n)
0 F̄ε(s)

−1dFε(s). Moreover, τ := Y∗k +Rhβ

is a stopping time with respect to (Ft). From the representation

ϑ̃k − ϑk =
1

nλh

(∑
i∈Ĩk

Gε(Yi ∧ τ − g(i/n))w(i/n)−M(τ)
)

with Gε(z) := λz + log F̄ε(z)

(2.5)

and the stopping Lemma 5.1 in combination with E[τ ] <∞ due to the moment bound

from Lemma 5.2 below we conclude

E[ϑ̃k − ϑk] =
1

nλh

∑
i∈Ĩk

E[Gε(Yi ∧ τ − g(i/n))]w(i/n).
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In the case εi ∼ Exp(λ) we have log(F̄ε(z)) = −λz, that is Gε(z) = 0, and the estimator

is unbiased.

By Assumption (1.4), there is some δ > 0 such that Gε(z) = O(z2) holds for

z ∈ [0, δ]. For z > δ we have also Gε(z) 6 λz = O(z2) and Gε(z) > −|log(F̄ε(z))|. By

Lemma 5.2, Cauchy-Schwarz inequality, monotonicity of F̄ε and F̄ε(εi) ∼ U [0, 1] this

leads to

|E[ϑ̃k − ϑk]|

.
∑
i∈Ĩk

E[(τ − g(i/n))2] + E[log(F̄ε(Yi − g(i/n)))2]1/2P (|log(F̄ε(τ − g(i/n)))| > δ)1/2

nh
|w(i/n)|

.
∑
i∈Ĩk

E[(τ − g(i/n))2] + E[log(F̄ε(εi))
2]1/2P (F̄ε(mini∈Ĩk εi + 2Rhβ) < e−δ)1/2

nh
|w(i/n)|

.
(Rhβ + (nh)−1)2 + F̄ε(F̄

−1
ε (e−δ)− 2Rhβ)nh/2

nh

∑
i∈Ĩk

|w(i/n)|.

With h → 0 and nh → ∞ the second term in the numerator converges geometrically

fast to zero and the assertion for the bias of ϑ̃blockn follows.

For the variance bound we use Var(A+B) 6 2 Var(A)+2 Var(B), Var(
∑

i∈Ĩk Ai) 6
nh
∑

i∈Ĩk E[A2
i ], |Gε(z)| . z+|log F̄ε(z)|1(z > δ) and the stopping Lemma 5.1 to obtain

in analogy with the bias part:

Var(ϑ̃k) =
1

(nλh)2
Var

(∑
i∈Ĩk

Gε(Yi ∧ τ − g(i/n))w(i/n)−M(τ)
)

6
2

(nλh)2

∑
i∈Ĩk

E
[(
nhGε(Yi ∧ τ − g(i/n))2 + |log F̄ε(Yi ∧ τ − g(i/n))|

)]
w(i/n)2

.
∑
i∈Ĩk

(E [(τ − g(i/n))2
]

+ E
[
|log F̄ε(εi)|4

]1/2
P
(
F̄ε
(

mini∈Ĩk εi + 2Rhβ
)
< e−δ

)1/2
nh

+
E[τ − g(i/n)] + E

[
|log F̄ε(εi)|2

]1/2
P
(
F̄ε
(

mini∈Ĩk εi + 2Rhβ
)
< e−δ

)1/2
(nh)2

)
w(i/n)2

.
(Rhβ + (nh)−1)2 + (Rhβ + (nh)−1)(nh)−1 + F̄ε(F̄

−1
ε (e−δ)− 2Rhβ)nh/2

nh

∑
i∈Ĩk

w(i/n)2

.
(Rhβ + (nh)−1)2

nh

∑
i∈Ĩk

w(i/n)2.

For the global estimator we infer Var(ϑ̃blockn ) . h(Rhβ+(nh)−1)2‖w‖22 by independence

of (ϑ̃k). It remains to insert the rate-optimal choice of h and to note that n−4β/(β+1) =

o(n−(2β+1)/(β+1)) holds for β > 1/2.

9



Finally, in the case εi ∼ Exp(λ) we have E[Y∗k − maxi g(i/n)] 6 (nλh)−1 and

Var(ϑ̃k) = E[〈M〉τ ]
(nλh)2

. Consequently,

Var(ϑ̃k) 6
∑
i∈Ĩk

E[Y∗k +Rhβ − g(i/n)]

λ(nh)2
w(i/n)2 6

2Rhβ + (nλh)−1

λ(nh)2

∑
i∈Ĩk

w(i/n)2,

which by independence gives the asserted bound for Var(ϑ̃blockn ).

2.3 Adaptive estimation

We now address the question of choosing the block size h in a data-driven way, not

assuming the regularity parameters R and β to be known. We apply Lepski’s method

(Lepskij 1990) and treat the general regression-type model (1.1). The main technical

work is devoted to obtaining explicit critical values in Proposition 5.4 of the appendix.

To this end, the critical values are defined via the compensator of an exponential

counting process and are thus itself again stochastic. While an explicit non-asymptotic

risk analysis is clearly possible, we focus here on the asymptotic risk, showing that by

the versatility of Lepski’s method rate-optimal adaptive estimation up to logarithmic

factors is indeed possible in our non-regular situation.

For a choice n−1(log n)2 6 h1 < . . . < hM 6 1 of block sizes hm with h−1
m , nhm ∈ N

consider the corresponding blockwise estimators

ϑ̃blockn,hm =
1

n

h−1
m −1∑
k=0

∑
i∈Ĩk,hm

(
Yi∧(Y∗k,hm+(nhm)−1)−λ−11

(
Yi 6 Y∗k,hm+(nhm)−1

))
w(i/n),

where the subscript hm marks all quantities depending on the block size. Remark

that the intercept Rhβm in (2.3) has been replaced by the asymptotically balanced size

(nhm)−1, which does not depend on the unknown R and β. Among (hm)16m6M we

select the block size adaptively via

ĥ := inf
{
hm

∣∣∣ ∃m′ 6 m : |ϑ̃blockn,hm′
− ϑ̃blockn,hm+1

| > κm+1 + κm′
}
∧ hM

with critical values (ki denotes the block k with i ∈ Ĩk)

κm =

n∑
i=1

(
1(Yi 6 Y∗ki,hm+(nhm)−1)

H√c logn(h
1/2
m w(i/n))

nλh
1/2
m

)
+

(Cc log n)2‖w‖1
(nhm)2λ

+

√
c log n

2nλh
1/2
m

.

Here, the function Hx(y) = log(1−2x|y|)
−2x −|y| and the constant C > 0 with property |λz+

log(F̄ε(z))| 6 C2z2 for z ∈ [0, δ] are used and c > 0 is specified below. Asymptotically,

we have Hx(y) ≈ xy2 as xy → 0 and C ≈ −(f ′ε(0)+fε(0)2) in the case of a differentiable

density fε of εi around zero (note C = 0 for εi ∼ Exp(λ)). Then the proof in the

Appendix yields the following risk bounds.
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2.4 Theorem. Assume g ∈ Cβ(R), supx|w(x)| < ∞ and that fε/F̄ε is bounded. The

adaptive estimator ϑ̃blockn = ϑ̃block
n,ĥ

satisfies with h∗ := sup{hm |Rhβm 6 (nhm)−1} ∨ h1

and for λ ∈ (0, λ), n sufficiently large

E[(ϑ̃blockn − ϑ(n))21(ĥ < h∗)] .M(n−c + n(1−λc)/2),

E[(ϑ̃blockn − ϑ̃blockn,h∗ )21(ĥ > h∗)] .
(log n)4

(nh∗)4
+
M log n

n2h∗
.

Choosing c > 5λ−1 ∨ 2 and asymptotically h0 ∼ (log n)2n−1, hm ∼ h0q
m for m =

1, . . . ,M , q > 1, M ∼ log n, the adaptive estimator exhibits the asymptotic rate

E[(ϑ̃blockn − ϑ(n))2] . (log n)2n−(2β+1)/(β+1) + (log n)4n−4β/(β+1).

In particular, for β > 1/2 the estimator achieves the minimax optimal rate up to a

logarithmic factor.

2.5 Remark. The oracle-type block size h∗ is the largest block size among (hm) such

that ϑ̃blockn,hm
remains unbiased, except for the distribution bias induced in the case εi 6∼

Exp(λ). As the proof shows, in the case εi ∼ Exp(λ) not only the critical values (C = 0),

but also the bounds simplify. We obtain E[(ϑ̃blockn − ϑ̃blockn,h∗ )21(ĥ > h∗)] . M logn
n2h∗ and

thus the minimax optimal rate up to a log-factor for any β > 0.

More elaborate arguments in the proof could give a smaller exponent for the loga-

rithmic factor, but it is quite likely that some logarithmic factor has to be paid neces-

sarily for adaptation, cf. Jirak, Meister, and Reiß (2014) for a related result. Similarly,

the hypotheses that w and fε/F̄ε are uniformly bounded are certainly not necessary,

but permit more concise and transparent bounds.

2.4 Rate optimality

We prove that the rate R1/(2β+2)n−(β+1/2)/(β+1) is optimal in a minimax sense over

Cβ(R). The proof is conducted for the PPP model, the regression case with εi ∼ Exp(λ)

can be treated in the same way.

2.6 Theorem. For estimating ϑ =
∫ 1

0 g(x)w(x) dx, w ∈ L2([0, 1]), over the parameter

class Cβ(R), β ∈ (0, 1], R > 0, the following asymptotic lower bound holds:

lim inf
n→∞

inf
ϑ̂n

sup
g∈Cβ(R)

R−1/(β+1)n(2β+1)/(β+1)‖w‖−2
L2 Eg[(ϑ̂n − ϑ)2] > 0.

The infimum extends over all estimators ϑ̂n from the PPP model with intensity (1.6).

Proof. The proof is based on a Bayesian risk bound, which clearly provides a lower

bound for the minimax risk, see Korostelev and Tsybakov (1993) for similar approaches.

11



Take an independent Bernoulli sequence (εk), i.e. P (εk = 1) = p, P (εk = 0) = 1 − p
with p ∈ (0, 1), and set for a triangular kernel K(y) = 2 min(y, 1− y)1[0,1](y)

g(x) =
h−1−1∑
k=0

εkgk(x) with gk(x) = cRhβK((x− kh)/h),

where h ∈ (0, 1) with h−1 ∈ N will be chosen later. Then for c > 0 sufficiently small,

we have g ∈ Cβ(R) for all h and all realisations of (εk). We interpret this specification

of g as a prior on Cβ(R) and we shall make use of the independence of prior as well

as the observation laws on different blocks Ik = [kh, (k + 1)h). For each k we obtain

from the Bayes formula the posterior probability given the observations of the PPP in

interval Ik (cf. the likelihood derivation in (3.1) below)

ε̂k := P (εk = 1 | (Xi, Yi)i>1) =
pen

∫
gk1(∀Xi ∈ Ik : Yi > gk(Xi))

1− p+ pen
∫
gk

.

Using that εk are 0-1-valued, we have ε̂k = E[εk | (Xi, Yi)i>1] and Var(εk | (Xi, Yi)i>1) =

ε̂k(1 − ε̂k). Therefore the Bayes-optimal estimator of ϑ under squared loss is given by

the posterior mean

ϑ̂ =

h−1−1∑
k=0

ε̂k

∫
Ik

gk(x)w(x) dx.

Using independence and E[ε̂k − εk] = 0, its Bayes risk is calculated as

E[(ϑ̂− ϑ)2] =
h−1−1∑
k=0

Var(ε̂k − εk)
(∫

Ik

gk(x)w(x) dx
)2

=
h−1−1∑
k=0

E
[

Var
(
εk

∣∣∣ (Xi, Yi)i>1

)](∫
Ik

gk(x)w(x) dx
)2

=

h−1−1∑
k=0

p(1− p)
(1− p+ pen

∫
gk)2

(∫
Ik

gk(x)w(x) dx
)2
.

We now choose h = d(cRn)1/(β+1)e−1 such that n
∫
Ik
gk(x) dx = cRhβ+1n 6 1 holds.

Then the Bayes risk is bounded in order by

E[(ϑ̂− ϑ)2] & R2h2β+1
h−1−1∑
k=0

(∫
Ik

K((x− kh)/h)

‖K((•− kh)/h)‖L2

w(x) dx
)2
.

The same argument over the shifted blocks I ′k = [(k+1/2)h, (k+3/2)h) implies that the

minimax risk is bounded by the maximum (and thus the average) over the respective

Bayes risks:

inf
ϑ̂n

sup
g∈Cβ(R)

Eg[(ϑ̂n − ϑ)2] & R2h2β+1
2h−1−2∑
k=0

(∫
Ik

K((x− kh/2)/h)

‖K((•− kh/2)/h)‖L2

w(x) dx
)2
.
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The tent functions K((x − kh/2)/h), k = 0, 1, . . . , 2h−1 − 2 form a Riesz basis for

their linear span Vh (see e.g. Example 2.1 in Wojtaszczyk (1997)), which is the space

of all linear splines with knots at kh/2, vanishing at the boundary. This means that

the sum in the last display is larger than a constant times the L2([0, 1])-norm of the

orthogonal projection of w onto Vh. As
⋃
h>0 Vh is dense in L2([0, 1]), the L2-norm of

the projections of w onto Vh converges for h → 0 to the L2-norm of w. Insertion of

h ∼ (Rn)−1/(β+1) yields the desired lower bound rate R1/(β+1)n−(2β+1)/(β+1)‖w‖2L2 .

3 Nonparametric Maximum-Likelihood

3.1 The MLE over Cβ(R)

Let us study the nonparametric maximum-likelihood estimator (MLE) in the class

Cβ(R). Denote by Pg the law of the observations in the PPP model with intensity

λg(x, y) = n1(y > g(x)). Then for g > g0 by Thm. 1.3 in Kutoyants (1998) and the

fact that the PPP intensities coincide outside the compact set [0, 1] × [min g0,max g]

we obtain the Radon-Nikodym-derivative

dPg
dPg0

= exp
(
n

∫ 1

0
(g − g0)(x) dx

)
1
(
∀i : Yi > g(Xi)

)
.

A simple probability measure P0 dominating all Pg, g ∈ Cβ(R) (where g need not be

bounded from below), is given by the PPP model with intensity λ0(x, y) = n(ey ∧ 1)

and yields again via Thm. 1.3 in Kutoyants (1998) the likelihood

L(g) =
dPg
dP0

=
(∏
j>1

n1(Yj > g(Xj))

n(eYj ∧ 1)

)
exp

(
− n

∫ 1

0

∫ ∞
−∞

(1(y > g(x))− ey ∧ 1) dy dx
)

=
(∏
j>1

e(−Yj)+1(Yj > g(Xj))
)

exp
(
− n

∫ 1

0
(−1− g(x)) dx

)
= exp

(
n+

∑
j>1

(−Yj)+

)
exp

(
n

∫ 1

0
g(x) dx

)
1
(
∀j > 1 : Yj > g(Xj)

)
. (3.1)

The first factor is independent of g and we obtain thus the same structure as under Pg0
above. The MLE over Cβ(R) is the function ĝ that maximizes

∫ 1
0 g over all g ∈ Cβ(R)

with g(Xj) 6 Yj for all j. We can write explicitly

ĝMLE(x) = min
j>1

(
Yj +R|x−Xj |β

)
,

since the right-hand side even maximises g(x) pointwise over the considered class of g,

see also Figure 2. The corresponding likelihood (with respect to n-dimensional Lebesgue

13
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Figure 2: Construction of ĝMLE in the PPP model (n = 100, left) and in the

regression-type model (n = 100, εi ∼ Exp(1), right) for β = 1. Thin lines indicate

x 7→ Yj +R|x−Xj| at observations on the graph of ĝMLE.

measure) in the regression-type model (1.1) with εi ∼ Exp(λ) i.i.d. is given by

Lregr(g) = λn exp
(
− λ

n∑
i=1

Yi

)
exp

(
λ

n∑
i=1

g(i/n)
)
1
(
∀i = 1, . . . , n : Yi > g(i/n)

)
.

The maximum-likelihood estimator over Cβ(R) is then similarly given by

ĝMLE−regr(x) = min
i=1,...,n

(
Yi +R|x− i/n|β

)
, x ∈ [0, 1], (3.2)

see Figure 2 for an illustration of the two constructions of the MLE. They are both

quickly determined numerically. In the sequel, we shall focus on the MLE in the PPP

model and only hint at the parallel theory for the regression-type model under expo-

nential noise. We abstain from analysing the exponential MLE under non-exponential

noise in the regression-type model because the results must be asymptotic in nature

and will be comparable to Theorem 2.2.

3.1 Proposition. The nonparametric MLE (ĝMLE(x), x ∈ [0, 1]) is a sufficient and

complete statistics for Cβ(R).

Proof. By definition of ĝMLE the likelihood (3.1) can be written as

L(g) = exp
(
n+

∑
j>1

(−Yj)+

)
exp

(
n

∫ 1

0
g(x) dx

)
1
(
g 6 ĝMLE

)
such that by Neyman’s factorisation criterion (e.g. Lehmann and Romano (2006)) ĝMLE

is a sufficient statistics for this parameter class.

Let us remark that by definition ĝMLE is an element of Cβ(R). Since Cβ(R),

equipped with its Cβ-norm, is not separable, we equip it with the Borel σ-algebra

generated by the uniform (supremum) norm, which is generated by all point evalua-

tions. Measurability of the estimator ĝMLE is then easily established since all point
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evaluations ĝMLE(x), x ∈ [0, 1], are measurable as minima of countably many random

variables.

For completeness we now consider any statistic T : Cβ(R) → R satisfying

Eg[T (ĝMLE)] = 0 for all g ∈ Cβ(R), which is Borel measurable with respect to

the uniform norm. For g ∈ Cβ(R) denote by [g,∞) := {h ∈ Cβ(R) |h > g} the

’bracket’ between g and ∞, that is all functions whose graphs lie above g. Noting

[g,∞) ∩ [h,∞) = [g ∨ h,∞) where the maximum g ∨ h is again in Cβ(R), the family

{[g,∞) | g ∈ Cβ(R)} is an ∩-stable generator of the uniform Borel σ-algebra in Cβ(R):

for any x0 ∈ [0, 1], y0 ∈ R we have {h ∈ Cβ(R) |h(x0) > y0} = [y0 − R|•− x0|β,∞) by

the Hölder condition and {[y0,∞) | y0 ∈ R} generates the Borel σ-algebra on R.

From Eg[T (ĝMLE)] = 0 we obtain by using the likelihood under P0

en
∫

(g+1) E0

[
T (ĝMLE)e

∑
j>1(−Yj)+1(ĝMLE ∈ [g,∞))

]
= 0.

Splitting T = T+ − T− with non-negative T+, T−, we infer that the measures B 7→
E0[T±(ĝMLE)e

∑
j>1(−Yj)+1(ĝMLE ∈ B)] agree on {[g,∞) | g ∈ Cβ(R)} and thus by the

uniqueness theorem for all uniform Borel sets B in Cβ(R), in particular for B = {T > 0}
and B = {T < 0}. This implies T+(ĝMLE)e

∑
j>1(−Yj)+ = T−(ĝMLE)e

∑
j>1(−Yj)+ P0-a.s.

and thus T (ĝMLE) = 0 Pg-a.s. for all g ∈ Cβ(R).

In analogy with the block-wise estimator ϑ̂block we set

ϑ̂MLE :=

∫ 1

0
ĝMLE(x)w(x) dx− 1

n

∑
j>1

1
(
ĝMLE(Xj) = Yj

)
w(Xj).

This means that ϑ̂MLE is obtained by a plug-in of the nonparametric MLE ĝMLE into

the functional minus a bias correction which counts the relative number of observations

on the graph of ĝMLE . The striking result is that this estimator is not only unbiased,

but even uniformly of minimum variance among all unbiased estimators for the class

Cβ(R) (UMVU).

3.2 Theorem. The estimator ϑ̂MLE is for each finite sample size n UMVU over the

class Cβ(R) with

Var(ϑ̂MLE) =
1

n

∫ 1

0
E[ĝMLE(x)− g(x)]w(x)2 dx

6
(

Γ(β/(β + 1))β(2R/(β + 1))1/(β+1)n−(2β+1)/(β+1) +
1

n2
e−2βRn/(β+1)

)
‖w‖2L2 .

For n→∞ we obtain

Var(ϑ̂MLE) 6 (2 + o(1))R1/(β+1)n−(2β+1)/(β+1)‖w‖2L2 .

Proof. Let us define another weighted counting process

N̄(t) =
∑
j>1

1
(
Yj 6 t ∧min

i>1
(Yi +R|Xj −Xi|β)

)
w(Xj), t ∈ R .
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Note {mini>1(Yi + R|Xj −Xi|β) < t} = {mini:Yi<t(Yi + R|Xj −Xi|β) < t} for each t

and that the pure (w = 1) counting process has stochastic intensity

λ̄t = n

∫ 1

0

∫
[g(x),t]

1
(

min
i:Yi<s

(Yi +R|x−Xi|β) > s
)
dsdx.

Consequently, N̄ is adapted to (Ft) from (2.1) and we obtain by compensation (cf.

Prop. 2.32 in Karr (1991)) the (Ft)-martingale

M̄(t) = N̄(t)− n
∫ 1

0

∫
[g(x),t]

1
(

min
i:Yi6s

(Yi +R|x−Xi|β) > s
)
dsw(x) dx.

The main observation is the identity

lim
t→∞

(N̄(t)− M̄(t)) = n

∫ 1

0

∫ ∞
g(x)

1
(

min
i>1

(Yi +R|x−Xi|β) > s
)
dsw(x) dx

= n

∫ 1

0

∫ ∞
g(x)

1(ĝMLE(x) > s) dsw(x) dx

= n

∫ 1

0
(ĝMLE(x)− g(x))w(x) dx,

which tells us that

N̄(∞) := lim
t→∞

N̄(t) =
∑
j>1

1(ĝMLE(Xj) > Yj)w(Xj) =
∑
j>1

1(ĝMLE(Xj) = Yj)w(Xj)

simultaneously counts the weighted number of points (Xj , Yj) on the graph of ĝMLE

and equals the scaled bias n(
∫ 1

0 ĝ
MLE(x)w(x)dx−ϑ) up to a martingale term. We thus

have ϑ̂MLE =
∫ 1

0 ĝ
MLE(x)w(x) dx− 1

nN̄(∞) = ϑ− 1
nM̄(∞) where

M̄(∞) =
∑
j

1
(
Yj 6 ĝMLE(x)

)
w(Xj)−

∫ 1

0
(ĝMLE(x)− g(x))w(x) dx

is the a.s. and L2-limit of the L2-bounded martingale M̄ with

〈M̄〉t = n

∫ 1

0

∫
[g(x),t]

1
(

min
i:Yi<s

(Yi +R|x−Xi|β) > s
)
dsw(x)2dx

↑ n
∫ 1

0
(ĝMLE(x)− g(x))w(x)2 dx =: 〈M̄〉∞ as t ↑ ∞.

We obtain from E[ϑ̂MLE − ϑ] = 1
n E[−M̄(∞)], Var(ϑ̂MLE) = 1

n2 Var(M̄(∞)) the result

(use Lemma 5.1 with τ =∞)

E[ϑ̂MLE ] = ϑ and Var(ϑ̂MLE) =
1

n2
E[〈M̄〉∞] =

1

n

∫ 1

0
E[ĝMLE(x)− g(x)]w(x)2 dx.
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Hence, ϑ̂MLE is an unbiased estimator and by the Lehmann-Scheffé Theorem ϑ̂MLE ,

derived from a sufficient and complete statistics, is uniformly of minimum variance

among all unbiased estimators (e.g. Lehmann and Romano (2006)).

To bound the variance we use a universal, but somewhat rough deviation bound

for s > 0 and x ∈ [0, 1]:

P (ĝMLE(x)− g(x) > s) = exp
(
− n

∫ 1

0
(s−R|ξ − x|β + g(x)− g(ξ))+dξ

)
6 exp

(
− n

∫ 1

0
(s− 2R|ξ − x|β)+dξ

)
6

{
exp(−n 2R

β+1(s/2R)(β+1)/β), s ∈ [0, 2R],

exp(−n(s− 2R/(β + 1))), s > 2R.
(3.3)

In the first step we have evaluated the probability that no observation lies in {(ξ, η) | η+

R|x−ξ|β < g(x)+s} using the PPP property. Integrating this survival function bound,

we obtain directly

E[ĝMLE(x)− g(x)] =

∫ ∞
0

P (ĝMLE(x)− g(x) > s) ds

6
∫ 2R

0
exp

(
− n 2R

β + 1
(s/2R)(β+1)/β

)
ds+

∫ ∞
2R

e−n(s−2R/(β+1))ds

= Γ(β/(β + 1))β(2R/(β + 1))1/(β+1)n−β/(β+1) +
1

n
e−2βRn/(β+1). (3.4)

Insertion and a numerical evaluation then yield (the maximal constant being attained

for β → 0) Var(ϑ̂MLE) 6 (2 + o(1))R1/(β+1)‖w‖2L2n
−(2β+1)/(β+1).

3.3 Remark. The MLE ĝMLE−regr from (3.2) for the regression-type model is by the

same (or simpler) arguments a sufficient and complete statistics over Cβ(R). It gives

rise to the estimator

ϑ̂MLE−regr =
1

n

n∑
i=1

(
ĝMLE−regr(i/n)− λ−11

(
ĝMLE−regr(i/n) = Yi

))
w(i/n).

Then for Exp(λ)-distributed errors ϑ̂MLE−regr is an unbiased estimator of ϑ(n) with

Var(ϑ̂MLE−regr) = 1
n2λ

∑n
i=1 E[ĝMLE−regr(i/n) − g(i/n)]w(i/n)2. This follows analo-

gously from the corresponding counting process N̄(t), replacing Xj in the PPP case

by j/n. The asymptotic upper bound for the regression model as n → ∞ is the same

as for the PPP model, but with the noise level 1/n replaced by 1/(nλ), provided w2 is

Riemann-integrable.

While ϑ̂MLE as an UMVU estimator enjoys very desirable finite sample properties

of its risk, for inference questions we are also in need of distributional properties, at

least asymptotically. A priori, in our Poisson-type boundary models it might not be
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clear whether the limiting distribution is Gaussian, but in fact this is the case since

we average over the interval [0, 1]. The proof of the following central limit theorems for

the Lipschitz case is slightly more technical and therefore given in the appendix. Note

that a central limit theorem for the blockwise estimator ϑ̂blockn follows far more easily

due to Lindeberg’s theorem, profiting from the independence between blocks.

3.4 Theorem. For g ∈ C1(R) (Lipschitz case), supx∈[0,1]|w(x)| <∞ and Var(ϑ̂MLE
n ) ∼

n−3/2, indicating the dependence of ϑ̂MLE on n, the following central limit theorems

hold as n→∞:

n1/2(ϑ̂MLE
n − ϑ)

(
∫ 1

0 E[ĝMLE(x)− g(x)]w(x)2 dx)1/2
⇒ N(0, 1),

n1/2(ϑ̂MLE
n − ϑ)

(
∫ 1

0 (ĝMLE(x)− g(x))w(x)2 dx)1/2
⇒ N(0, 1).

Furthermore, the following self-normalising version is valid:

n1/2(ϑ̂MLE
n − ϑ)

( 1
n

∑
j>1 1(ĝMLE(Xj) = Yj)w(Xj)2)1/2

⇒ N(0, 1).

3.5 Remark. The ’super-efficient’ case Var(ϑ̂MLE
n ) = o(n−3/2) is to some extent de-

generate and might possibly result in non-Gaussian limit laws. A lower estimate in

(3.3) above shows that E[ĝMLE(x) − g(x)] & n−3/2 holds as soon as the function g

satisfies |g(y)−g(x)| 6 R′|y−x| for R′ < R and y in a neighbourhood of x. This means

that Var(ϑ̂MLE) ∼ n−3/2 and the CLTs above are applicable whenever g has a local

Lipschitz constant smaller than R, at least on some subinterval. Note that in this case

we also get ’for free’ the nice geometric result that the number of observations on the

graph of ĝMLE is of order n1/2 (in mean) because of

1

n

∑
j>1

1(ĝMLE(Xj) = Yj) ∼
∫ 1

0
E[ĝMLE(x)− g(x)] dx ∼ n−1/2.

The standard deviation is of smaller order as the proof of Theorem 3.4 shows.

An immediate consequence of the selfnormalising CLT is the following inference

statement.

3.6 Corollary. Under the assumptions of Theorem 3.4

In :=
[
ϑ̂MLE
n − σ̂nq1−α/2, ϑ̂

MLE
n + σ̂nq1−α/2

]
, σ̂2

n :=
1

n2

∑
j>1

1(ĝMLE(Xj) = Yj)w(Xj)
2,

with q1−α/2 the (1−α/2)-quantile of N(0, 1), is a confidence interval for ϑ with asymp-

totic coverage 1− α.

Also the asymptotic variance can be determined explicitly.
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3.7 Corollary. Under the assumptions of Theorem 3.4 we obtain

Var(ϑ̂MLE
n ) =

(√π
2

+ o(1)
)
n−3/2

∫ 1

0

√
(R2 − g′(x)2)/Rw(x)2dx,

where g′ denotes the weak derivative of the Lipschitz function g, and thus

n3/4(ϑ̂MLE
n − ϑ)⇒ N

(
0,

∫ 1

0

√
(R2 − g′(x)2)/Rw(x)2dx

)
.

Proof. A Lipschitz function g is absolutely continuous, hence a.e. differentiable and

necessarily |g′(x)| 6 R holds a.e. For x ∈ (0, 1) where g′(x) exists we obtain, arguing

by dominated convergence using (3.3),

P
(
n1/2(ĝMLE

n (x)− g(x)) > z
)

= exp
(
− n

∫ 1

0
(g(x) + zn−1/2 −R|ξ − x| − g(ξ))+dξ

)
= exp

(
−
∫ n1/2(1−x)

−n1/2x

(
n1/2(g(x)− g(x+ n−1/2u)) + z −R|u|

)
+
du
)

→ exp
(
−
∫ ∞
−∞

(z −R|u| − g′(x)u)+du
)

= exp
(
− R

R2 − g′(x)2
z2
)
.

By integrating this survival function over z ∈ R+ and applying dominated convergence

due to the uniform bound (3.3), we conclude

n1/2 E[ĝ(MLE)
n (x)− g(x)]→

√
(R2 − g′(x)2)/R

√
π

2
.

Integration over x yields by another application of dominated convergence in view of

(3.4) the asymptotic expression for Var(ϑ̂MLE
n ).

The last corollary shows that for constant g the asymptotic variance (rescaled by

n3/2) equals
√
Rπ‖w‖2L2/2 and is largest among all admissible g while for linear g with

slope ±R the rescaled asymptotic variance vanishes, i.e. the convergence rate is faster

than n−3/2. In Figure 2 we see indeed that ĝMLE is closest to g where g has largest

slope. Notice that the bias correction via point counts gives a precise meaning for this

observation. So far, our methods of proof do not extend to the β-Hölder case with β < 1

or to w ∈ L2 because we need to control the difference to a block-wise partitioned MLE.

The strategy of proof does neither apply to the monotone MLE, as introduced next.

3.2 MLE under monotonicity

Let us consider the general nonparametric class

M := {g : [0, 1)→ R | g is increasing and left-continuous}
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Figure 3: Construction of the estimator ĝMon in the PPP model (n = 100, left)

and in the regression-type model (n = 100, εi ∼ Exp(1), right).

of monotone, that is (not necessarily strictly) increasing functions. Since monotone g

have at most countably many jumps, the observations for left- and right-continuous

versions of g are a.s. identical. Then the nonparametric MLE for the PPP model over

this class is given by

ĝMon(x) = min
i:Xi>x

Yi, x ∈ [0, 1),

which is obvious from the fact that any g ∈ M with g(Xi) 6 Yi for all i necessarily

satisfies g 6 ĝMon, see also Figure 3. Note that a.s. ĝMon(x) < ∞ holds for x ∈ [0, 1),

but limx↑1 ĝ
Mon(x) =∞.

3.8 Proposition. The nonparametric MLE (ĝMon(x), x ∈ [0, 1)) is a sufficient and

complete statistics for M.

Proof. Sufficiency follows again from the likelihood representation

L(g) = exp
(
n+

∑
j>1

(−Yj)+

)
exp

(
n

∫ 1

0
g(x) dx

)
1
(
g 6 ĝMon

)
,

using g ∈ L1 because of g(x) ∈ [g(0), g(1)] by monotonicity, and the factorisation

criterion. For completeness we equip M with the ball σ-algebra for the uniform norm,

cf. Examples 1.7.3, 1.7.4 in van der Vaart and Wellner (1996), which is generated by

the point evaluations f 7→ f(x), x ∈ [0, 1). In particular, this implies that ĝMon is

measurable because its point evaluations are measurable. For fixed x0 ∈ [0, 1), y0 ∈ R
we have the bracket representation

{g ∈M | g(x0) > y0} =
⋃
n∈N

[y0 − n1[0,x0)(x),∞).

Noting that maxima of monotone functions are again monotone, the brackets form

an ∩-stable generator of the ball σ-algebra. The proof now follows exactly that of

Proposition 3.1.
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In analogy with the Cβ(R)-case we build the estimator

ϑ̂Mon :=

∫ 1

0
ĝMon(x)w(x) dx− 1

n

∑
j>1

1
(
ĝMon(Xj) = Yj

)
w(Xj)

that will enjoy similar nice properties. We have to consider, however, weight functions

w whose support stays away from x = 1 in order to avoid problems arising from

ĝMon(x) ↑ ∞ as x ↑ 1.

3.9 Theorem. Assume supp(w) ⊆ [0, 1). Then the estimator ϑ̂Mon is for each finite

sample size n UMVU over the class M with

Var(ϑ̂Mon) =
1

n

∫ 1

0
E[ĝMon(x)− g(x)]w(x)2dx.

For bounded w it satisfies

Var(ϑ̂Mon) 6
(

3π(g(1)−g(0))
2

)1/2
‖w‖2∞n−3/2 +O(n−2).

3.10 Remark.

1. For w ∈ Lp with p > 4 the proof below still yields the rate n−1/2 using Hölder’s

inequality instead of a supremum norm bound. For monotonous g with bounded

weak derivative g′, i.e. Lipschitz-continuous g, the asymptotic constant turns out

to be exactly
√
π/2

∫ 1
0 w(x)2

√
g′(x) dx by a dominated convergence argument.

2. Concerning the support of w, the proof shows that the remainder O(n−2) is in

fact 2n−2(1 − sup{x : w(x) 6= 0})−1) and for varying weight functions wn we

may allow a shrinking distance εn of supp(wn) from 1 such that εnn
1/2 → ∞,

implying a negligible order compared to n−3/2.

3. The rate n−3/2 is minimax optimal for the mean squared error over the class M.

This follows by adapting the proof of Theorem 2.6 for the Lipschitz case β = 1.

We may just add to g(x) a linear slope Ax with A > 2cR such that g ∈M holds

for any realisation of (εk).

Proof. The proof follows along the lines of the proof for Theorem 3.2. Here the weighted

counting process is

N̄(t) =
∑
j>1

1
(
Yj 6 t ∧ min

i:Xi>Xj
Yi

)
w(Xj), t ∈ R .

Its intensity is λ̄t = n
∫ 1

0

∫
[g(x),t] 1(mini:Xi>x Yi > s)dsdx and compensation yields the

corresponding martingale M̄(t). The same limiting arguments, by restriction to the

support of w, then yield again E[ϑ̂Mon] = ϑ and

Var(ϑ̂Mon) =
1

n

∫ 1

0
E[ĝMon(x)− g(x)]w(x)2dx.
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It remains to estimate the last expectation. Suppose w(x) = 0 for x > 1− ε and some

ε > 0 and let

g′∞(x) := sup
0<h61−x

g(x+ h)− g(x+)

h
∈ [0,∞], g(x+) = lim

y↓x
g(y), x ∈ [0, 1− ε],

be the maximal function for the measure-valued derivative of g. Then for x ∈ [0, 1− ε]
with g′∞(x) ∈ (0,∞)

√
nE[ĝMon(x)− g(x)] =

∫ ∞
0

P (ĝMon(x)− g(x) > sn−1/2) ds

=

∫ ∞
0

exp
(
− n

∫ 1

x
(sn−1/2 + g(x)− g(ξ))+dξ

)
ds

=

∫ ∞
0

exp
(
−
∫ n1/2(1−x)

0

(
s+ n1/2(g(x)− g(x+ n−1/2u))

)
+
du
)
ds

6
∫ ∞

0
exp

(
−
∫ n1/2(1−x)∧s/g′∞(x)

0
(s− g′∞(x)u) du

)
ds

6
∫ ∞

0
exp

(
− s(n1/2(1− x) ∧ s/g′∞(x))/2

)
ds

6 (πg′∞(x)/2)1/2 + 2n−1/2ε−1e−nε
2/(2g′∞(x)),

which trivially continues to hold with obvious extension if g′∞(x) ∈ {0,∞}. We shall

now establish a weak-L1-estimate for g′∞ by adapting and improving (in the constant)

classical results (Rudin 1987, Thm. 7.4). For ζ > 0 we define

Bζ = {x ∈ [0, 1− ε] | g′∞(x) > ζ}

and we shall prove |Bζ | 6 ζ−1‖g‖BV with |Bζ | denoting the Lebesgue measure of Bζ ,

‖g‖BV = g(1)− g(0).

To this end we construct a family (xi, hi)i∈J , J some countable set, in Bζ × R+

with g(xi + hi)− g(xi) > ζhi and [xi, xi + hi)∩ [xj , xj + hj) = ∅ for all i 6= j such that⋃
i∈J [xi, xi +hi) ⊇ Bζ holds. We proceed by (transfinite) recursion: since x 7→ g(x+) is

right-continuous, so is g′∞ and thus x0 := inf Bζ lies in Bζ such that there is some h0 > 0

with g(x0 +h0)−g(x0) > ζh0. Then define x1 := min(Bζ \ [x0, x0 +h0)), which is again

in Bζ by right-continuity such that some h1 > 0 exists with g(x1 + h1) − g(x1) > ζh1

and so on. Having thus defined (xi, hi)i∈I′ for all (possibly infinite) ordinal numbers I ′

smaller than some given ordinal I we add xI = inf(Bζ ∩
⋂
i∈∪I′ [xi + hi, 1 − ε]) ∈ Bζ

with some corresponding hI until Bζ is exhausted by
⋃
i∈I [xi, xi + hi). Then we just

estimate

g(1)− g(0) >
∑
i∈J

g(xi + hi)− g(xi) > ζ
∑
i∈J

hi > ζ|Bζ |.

Using E[ĝMon(x)− g(x)] 6 (πg′∞(x)/(2n))1/2 + 2n−1ε−1 and for a > 0 the integral

bound∫ 1−ε

0
g′∞(x)1/2dx 6

∫ 1/a

0
z−1/2d|Bz−1 |+ a1/2(1− ε) 6 ‖g‖BV

∫ 1/a

0
z−1/2dz + a1/2,
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derived from |Bz−1 | 6 z‖g‖BV , we obtain with a = ‖g‖BV∫ 1−ε

0
E[ĝMon(x)− g(x)] dx 6 (3π‖g‖BV )1/2(2n)−1/2 +O(n−1)

for g ∈M. The assertion follows by pulling ‖w‖∞ out of the integral.

In the regression-type model the nonparametric MLE over M is likewise

ĝMon−regr(x) = mini:x6i/n Yi. Then by the same arguments

ϑ̂Mon−regr
n :=

1

n

n∑
i=1

(
ĝMon−regr(i/n)− λ−11

(
ĝMon−regr(i/n) = Yi

))
w(i/n)

is an unbiased estimator of 1
n

∑n
i=1 g(i/n)w(i/n) under Exp(λ)-noise with

Var(ϑ̂Mon−regr
n ) = 1

n2λ

∑n
i=1 E[ĝMon−regr(i/n)− g(i/n)]w(i/n)2. Note that at the right

end-point E[ĝMon−regr(1) − g(1)] = λ−1 holds, but that summand only contributes

(nλ)−2w(1)2 to the total variance which is usually negligible.

4 Discussion

An important application for the estimation of functionals are orthogonal series es-

timators, also called projection estimators. Let (ϕm)m>1 be an orthonormal basis of

L2([0, 1]). Then we can form the estimator ĝM =
∑M

m=1 ϑ̂mϕm of g where ϑ̂m esti-

mates the coefficient 〈g, ϕm〉L2 , i.e. w = ϕm in our notation. Using our estimators for

g ∈ Cβ(R) we thus obtain as stochastic error in the L2-risk:

E
[
‖ĝM − E[ĝM ]‖2L2

]
=

M∑
m=1

Var(ϑ̂m) .Mn−(2β+1)/(β+1).

For L2-Sobolev spaces Hs of regularity s and standard bases like (trigonometric) poly-

nomials, splines or wavelets we have the bias bound
∑

m>M 〈g, ϕm〉2 . M−2s. We

always have g ∈ Cβ(R)⇒ g ∈ Hβ such that

E[‖ĝM − g‖2L2 ] .M−2β +Mn−(2β+1)/(β+1) ∼ n−2β/(β+1) for M ∼ n1/(β+1)

follows. This seems to be the first rate-optimal estimation result for series estimators

in one-sided regression, cf. Girard and Jacob (2003), Jirak, Meister, and Reiß (2014)

for (optimal) rates and other approaches in the literature. We may, of course, also have

g ∈ Hs for some s > β, but then the derived rate is slower than the optimal n−2s/(2s+1).

The unbiased estimation method essentially relies on a uniform control of the variation

of g and we do not know whether similar results can be obtained for Sobolev (or Besov)

instead of Hölder balls.

Concerning the function class G over which the nonparametric MLE is feasible and

for which the derived estimator of ϑ exhibits nice non-asymptotic properties, it was
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Figure 4: Monte-Carlo errors for the different estimators and two functions g

only essential for the stopping arguments as well as the completeness property that

constants lie in G and that for g1, g2 ∈ G also g1 ∧ g2 and g1 ∨ g2 are in G. Thus

also G = M ∩ Cβ(R) or extensions to the multivariate case G = C
β
d (R) = {g : [0, 1]d →

R | |g(x)−g(y)| 6 R|x−y|β} are possible. For smoothness degrees β > 1 or other shape

constraints like convexity our method does not transfer directly, but may possibly be

adapted, see e.g. Baldin and Reiß (2015), where also the intensity λ is estimated.

Finally, in a small simulation example we investigate the behaviour of the blockwise

estimator, the MLE and the monotone MLE for ϑ =
∫ 1

0 g(x)dx on finite samples. We

simulate the PPP model as well as the regression-type model with Exp(1)-distributed

noise. For two different monotone regression functions g the RMSE (root mean squared

error) is estimated in M = 200 Monte Carlo repetitions. On the left-hand side of Figure

4 the RMSE results for g(x) = 0.5 sin(2πx) + 4x are shown and on the right-hand side

those for g(x) =
√
x. It can be seen that all three estimators work well even for the

small sample size n = 50 and that their performances in the PPP and the regression

model are comparable.

The blockwise estimator does not perform so much worse than the ML estimators.

From our theoretical results this is to be expected: the ratio of the upper bounds for

the nonasymptotic variance of ϑ̂MLE and of ϑ̂block is given by

Γ(β/(β + 1))β(β + 1)−1/(β+1)

β−β/(β+1)(β + 1)
= Γ(β/(β + 1))β(2β+1)/(β+1)(β + 1)−(β+2)/(β+1),

which approaches one for β ↓ 0, has a minimum 0.54 at β ≈ 0.47 and then increases to

about 0.63 for β ↑ 1. Note, however, that both upper bounds are not tight. Since the

simple blockwise approach is faster to compute, which is particularly relevant for any

adaptive estimator, and is theoretically easier to analyse than the MLE (especially for

the CLT, but also for an adaptive procedure), we conclude that both approaches are

attractive and should be considered in their own right.
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5 Appendix

5.1 Technical results

We formulate a stopping theorem for continuous-time martingales, which does not seem

readily available in the literature.

5.1 Lemma. Let (M(t), t > t0) be a càdlàg martingale with M(t0) = 0 and let τ be a

stopping time with values in [t0,∞], both on some filtered probability space. If E[〈M〉τ ]

is finite, then E[M(τ)] = 0 and E[M(τ)2] = E[〈M〉τ ] hold.

Proof. From the Burkholder-Davis-Gundy inequality (Thm. 26.12 in Kallenberg

(2002)) and the identity E[[M ]τ ] = E[〈M〉τ ] (e.g. by Prop. 4.50(c) in Jacod and Shiryaev

(1987) for M τ ), we conclude E[supt>t0 M
2
t∧τ ] . E[〈M〉τ ]. Hence, (|Mt∧τ |p)t>t0 , p ∈

{1, 2}, is uniformly integrable and by optional stopping E[Mτ ] = limt→∞ E[Mτ∧t] = 0

follows as well as E[M2
τ ] = E[[M ]τ ] = E[〈M〉τ ].

A moment bound for the stopping time in the proof of Theorem 2.2 is provided.

5.2 Lemma. Under the assumptions of Theorem 2.2 we have for τ = Y∗k +Rhβ

E[(τ − g(i/n))p]1/p . Rhβ + (nλh)−1

as nh→∞ for any p > 0.

Proof. The property Y∗k 6 maxi∈Ĩk g(i/n) + mini∈Ĩk εi implies for nh→∞

P
(
nλh(Y∗k −max

i∈Ĩk
g(i/n)) > z

)
6 F̄ε(z/nλh)nh = enh log F̄ε(z/nλh) → e−z.

Using F̄ε(z/nh)nh . (1 + z/nh)−nhρ, we establish

lim
R→∞

sup
n,h

∫ ∞
R

zp−1P
(
nλh

(
Y∗k −max

i∈Ĩk
g(i/n)

)
> z
)
dz = 0

for any p > 1 such that by uniform integrability

lim sup
nh→∞

E
[(
nλh|Y∗k −max

i∈Ĩk
g(i/n)|

)p]
6
∫ ∞

0
zpe−zdz <∞

follows. By the Hölder condition g varies at most by Rhβ on each block and thus

E[(τ −mini∈Ĩk g(i/n))p] . (Rhβ + (nλh)−1)p holds.

We need the following interesting self-normalising property. The constant is cer-

tainly not optimal.

5.3 Lemma. Suppose that a non-negative random variable X satisfies P (X > x) =

e−a(x), x > 0, with a strictly increasing convex function a. Then E[X2] 6 6(e+1)E[X]2

holds.
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Proof. The property P (a(X) > a(x)) = e−a(x) shows that Y := a(X) is Exp(1)-

distributed. Since the inverse a−1 of a exists, we may use a−1(0) = 0 and the concavity

of a−1 to calculate

E[X]2 = E[a−1(Y )2] =

∫ ∞
0

∫ ∞
0

a−1(x)a−1(y)e−x−ydydx

=

∫ ∞
0

∫ z

0
a−1(x)a−1(z − x) dx e−zdz

>
∫ ∞

0

∫ z

0

x

z
a−1(z)

z − x
z

a−1(z) dx e−zdz =

∫ ∞
0

z

6
a−1(z)2e−zdz.

By monotonicity, we have
∫ 2

1 za
−1(z)2e−zdz > e−1

∫ 1
0 a
−1(z)2e−zdz. This shows

6E[X]2 >
1

e+ 1

∫ ∞
0

a−1(z)2e−zdz =
1

e+ 1
E[X2].

5.2 Proof of Theorem 2.4

For hm < h∗ we infer from the deviation bound in Proposition 5.4 below

P (ĥ = hm) 6
m−1∑
m′=1

(
P (|ϑ̃blockn,hm′

− ϑ(n)| > κm′) + P (|ϑ̃blockn,hm+1
− ϑ(n)| > κm+1)

)
6

m−1∑
m′=1

(
4n−2c + nF̄ε((c log n− 2)/(nhm′))

nhm′ + nF̄ε((c log n− 2)/(nhm+1))nhm+1

)
.M(n−2c + n1−λc)

for λ ∈ (0, λ) and n sufficiently large. By Cauchy-Schwarz inequality we thus infer

E[(ϑ̃blockn − ϑ(n))21(ĥ < h∗)] . E[(ϑ̃blockn − ϑ(n))4]1/2M(n−2c + n1−λc)1/2.

From the exponential moment bound (5.1) and Lemma 5.2 we obtain that the fourth

moment of the error remains bounded (even tends to zero) such that the first inequality

follows.

By construction, we have for hm̂ := ĥ > h∗ =: hm∗ that |ϑ̃blockn − ϑ̃blockn,h∗ | 6 κm̂+κm∗

holds. Using Hx(y) ≈ xy2 and hm & (log n)2n−1, we obtain

κm̂+κm∗ .
(log n)2

(nh∗)2
+

√
log n

n
√
h∗

(
1+ max

hm>h∗
hm

h−1
m −1∑
k=0

#{i ∈ Ĩk,hm : Yi 6 Y∗k,h+(nhm)−1}
)
.

For each fixed hm we have by compensation of the block-wise counting process

E
[( h−1

m −1∑
k=0

#{i ∈ Ĩk,hm : Y∗k,hm < Yi 6 Y∗k,hm + (nhm)−1}
)2]

6 h−1
m

h−1
m −1∑
k=0

E[A2
k +Ak]
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with

Ak =
∑

i∈Ĩk,hm

∫
1
(
Y∗k,hm < s+ g(i/n) 6 Y∗k,hm + (nhm)−1

) fε(s)
F̄ε(s)

ds 6 ‖fε/F̄ε‖∞ ∼ 1.

Since by definition #{i ∈ Ĩk,hm : Yi 6 Y∗k,hm} = 1 a.s., we have

E
[(
hm

h−1
m −1∑
k=0

#{i ∈ Ĩk,hm : Yi 6 Y∗k,hm + (nhm)−1}
)2

] . 1.

A (crude) bound for the maximum via the sum thus yields the second inequality:

E[(ϑ̃blockn − ϑ̃blockn,h∗ )21(ĥ > h∗)] 6 E[(κm̂ + κm∗)
21(ĥ > h∗)] .

(log n)4

(nh∗)4
+
M log n

n2h∗
.

For the asymptotic rate just note that the geometric grid of bandwidths suffices

to achieve h∗ ∼ n−1/(β+1) asymptotically such that inserting E[(ϑ̃blockn,h∗ − ϑ(n))2] .
n−(2β+1)/(β+1) + n−4β/(β+1) from Theorem 2.2 and the triangle inequality yield the re-

sult, noting that the risk on {ĥ < h∗} is negligible due to the choice of c. It remains to

prove the following deviation inequality.

5.4 Proposition. For any h, x, κ > 0 with Rhβ 6 (nh)−1, 2xh1/2‖w‖∞ < 1 and

κ < (δ − 2Rhβ)nh we have with probability at least 1− 2e−2x2 − h−1F̄ε(κ/(nh))nh the

bound

nλh1/2|ϑ̃blockn,h − ϑ(n)| 6
n∑
i=1

1(Yi 6 τ (i))Hx(h1/2w(i/n)) + C2(κ+ 2)2n−1h−3/2‖w‖1 + x.

Proof. We consider the martingale M(t) in (2.4) and the associated stopping rule τ .

By the substitution rule (Kallenberg 2002, Thm. 26.7) we obtain for γ > −1/‖w‖∞ the

exponential (local) martingale

E(t) = exp
(∑
i∈Ĩk

1(Yi 6 t) log(1 + γw(i/n)) + log(F̄ε(Yi ∧ t− g(i/N)))γw(i/n)
)

= exp
(
γM(t)−

∑
i∈Ĩk

1(Yi 6 t)
(
γw(i/n)− log(1 + γw(i/n))

))
.

We infer from |Ĩk| < ∞ and the fact that F̄ε(εi) ∼ U([0, 1]) has finite p-moments for

all p > −1 via Lemma 5.1 the stopping result

E
[

exp
(
γM(τ)−

∑
i∈Ĩk

1(Yi 6 τ)
(
γw(i/n)− log(1 + γw(i/n))

))]
= 1. (5.1)

Using representation (2.5), the independence among blocks yields E[eγZγ ] = 1 for

Zγ :=nλ(ϑ̃blockn,h − ϑ(n))−
n∑
i=1

Gε(Yi ∧ τ (i) − g(i/n))w(i/n)
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−
n∑
i=1

1(Yi 6 τ (i))
(
w(i/n)− log(1 + γw(i/n))

γ

)
.

We choose γ = ±2xh1/2 and obtain by Markov inequality P (h1/2Z2xh1/2 > x) 6 e−2x2 ,

P (h1/2Z−2xh1/2 6 −x) 6 e−2x2 such that with probability 1− 2e−2x2

∣∣∣nλh1/2(ϑ̃blockn,h − ϑ(n))− h1/2
n∑
i=1

Gε(Yi ∧ τ (i) − g(i/n))w(i/n)
∣∣∣

6
n∑
i=1

1(Yi 6 τ (i))Hx(h1/2w(i/n)) + x. (5.2)

From |Gε(z)| 6 C2z2 for z ∈ [0, δ] and Rhβ 6 (nh)−1 we infer

P
(

max
i∈Ĩk
|Gε(Yi ∧ τ − g(i/n))| > C2(κ+ 2)2/(nh)2

)
6 P

(
max
i∈Ĩk

(Yi ∧ τ − g(i/n)) > (κ+ 2)/(nh)
)

6 P
(

min
i∈Ĩk

εi + 2(nh)−1 > (κ+ 2)/(nh)
)

= F̄ε

(
κ/(nh)

)nh
.

We thus obtain with probability 1− F̄ε(κ/(nh))nh the bound∣∣∣∑
i∈Ĩk

Gε(Yi ∧ τ − g(i/n))w(i/n)
∣∣∣ 6 C2(κ+ 2)2

(nh)2

∑
i∈Ĩk

|w(i/n)|.

Summing over the h−1 blocks implies with probability 1− h−1F̄ε(κ/(nh))nh

h1/2
∣∣∣ n∑
i=1

Gε(Yi ∧ τ (i) − g(i/n))w(i/n)
∣∣∣ 6 C2(κ+ 2)2n−1h−3/2‖w‖1.

In view of (5.2) this yields the result.

5.3 Proof of Theorem 3.4

Let rn → 0 such that r3
nn → ∞ and r−1

n ∈ N. On each block Jl = [lrn, (l + 1)rn),

l = 0, . . . , r−1
n − 1, we can define the blockwise C1(R)-MLE

ĝMLE
l (x) = min

i:Xi∈Jl
(Yi +R|x−Xi|), x ∈ Jl.

Note that by definition the blockwise MLE is at least as large as the global MLE, i.e.

ĝMLE
l > ĝMLE . By construction, (ĝMLE

l )l are independent and each

ϑ̂MLE
l :=

∫
Jl

ĝMLE
l (x)w(x) dx− 1

n

∑
j>1

1
(
Xj ∈ Jl, ĝMLE

l (Xj) = Yj
)
w(Xj)
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enjoys the non-asymptotic properties of Theorem 3.2 on Jl, in particular E[ϑ̂MLE
l ] =∫

Jl
g(x)w(x)dx and Var(ϑ̂MLE

l ) = 1
n

∫
Jl
E[ĝMLE

l (x) − g(x)]w(x)2 dx. Let us therefore

first establish for the blockwise MLE ϑ̃n :=
∑r−1

n −1
l=0 ϑ̂MLE

l that

( 1

n

rn−1∑
l=0

∫
Jl

E[ĝMLE
l (x)− g(x)]w(x)2 dx

)−1/2
(ϑ̃n − ϑ)⇒ N(0, 1). (5.3)

By independence of (ϑ̂MLE
l ), for the CLT to hold it suffices to check the 4th moment

Lyapunov condition ∑r−1
n −1
l=0 E[(ϑ̂l − ϑl)4]

Var(ϑ̃n)2
→ 0.

For each l = 0, . . . , rn−1 let (M̄l,t)t be the compensated weighted counting process from

the proof of Theorem 3.2, restricted to Jl. The (non-predictable) quadratic variation

of (M̄l,t) is given by the sum of squared jumps:

[M̄l]t =
∑
s6t

(∆M̄l,s)
2 =

∑
j>1

1
(
Xj ∈ Jl, Yj 6 t ∧ min

i:Xi∈Jl
(Yi +R|Xj −Xi|)

)
w(Xj)

2.

The Burkholder-Davis-Gundy inequality (e.g. Thm 26.12 in Kallenberg (2002)) then

yields by similar arguments as for (M̄t) above

E[M̄4
l,∞] . E[[M̄l]

2
∞] = E

[(
n

∫
Jl

(ĝMLE
l − g)w2

)2
+ n

∫
Jl

(ĝMLE
l − g)w4

]
.

Using Jensen’s inequality, we find

r−1
n −1∑
l=0

E[(ϑ̂MLE
l − ϑl)4] =

1

n4

r−1
n −1∑
l=0

E[M̄4
l,∞]

.
r−1
n −1∑
l=0

E
[
n−2

(∫
Jl

(ĝMLE
l − g)w2

)2
+ n−3

∫
Jl

(ĝMLE
l − g)w4

]

6
r−1
n −1∑
l=0

(
n−2rn

∫
Jl

E[(ĝMLE
l − g)2]w4 + n−3

∫
Jl

E[ĝMLE
l − g]w4

)
.

As in (3.3) we can bound

P (ĝMLE
l (x)− g(x) > s) 6

{
exp(−nR(s/2R)2), s ∈ [0, 2Rrn],

exp(−n(srn −Rr2
n)), s > 2Rrn.

(5.4)

Noting rnn
1/2 → ∞ and ‖w‖∞ < ∞, we apply the moment bound of Lemma 5.3 to

ĝMLE
l (x)− g(x) with a(s) = n

∫
Jl

(s−R|ξ − x|+ g(x)− g(ξ))+dx and integrate over s

to obtain
r−1
n −1∑
l=0

E[(ϑ̂MLE
l − ϑl)4] . (rn + n−1/2)

(
n−3/2

)2
.
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Hence, in view of Var(ϑ̃n) > Var(ϑ̂MLE
n ) ∼ n−3/2 the Lyapunov condition is satisfied

and the CLT (5.3) follows.

In the second step we show that the difference between ϑ̃n and ϑ̂MLE
n is of small

stochastic order oP (n−3/4). First, we note that the above martingale arguments yield

E[(ϑ̃n − ϑ̂MLE
n )2] = Var(ϑ̃n − ϑ̂MLE

n ) = n−1
r−1
n −1∑
l=0

∫
Jl

E[ĝMLE
l (x)− ĝMLE(x)]w(x)2dx.

Introduce the notation ĝMLE
−l (x) = mini:Xi /∈Jl(Yi +R|x−Xi|β) and consider the event

Ωn =
{
∀l = 0, . . . , r−1

n − 1 ∃x ∈ Jl : ĝMLE
l (x) = ĝMLE(x)

}
whose complement is given by Ω{

n =
⋃
l{minx∈Jl(ĝ

MLE
l − ĝMLE

−l )(x) > 0}. By indepen-

dence of ĝMLE
l and ĝMLE

−l and conditioning on the latter we obtain

P
(

min
x∈Jl

(ĝMLE
l − ĝMLE

−l )(x) > 0
)

= E
[

exp
(
− n

∫
Jl

(ĝMLE
−l − g)(x) dx

)]
6 E

[
exp

(
− nrn min

(
(ĝMLE
−l − g)(lrn), (ĝMLE

−l − g)((l + 1)rn)
))]

.

Using ĝMLE
l′ > ĝMLE

−l for l′ 6= l, the bound (5.4) yields

P
(

min
x∈Jl

(ĝMLE
l − ĝMLE

−l )(x) > 0
)
6 2 max

l′,x
E
[

exp(−nrn(ĝMLE
l′ (x)− g(x)))

]
. n−1r−2

n .

We conclude P (Ω{
n) = O(n−1r−3

n )→ 0 by a union bound and the choice of rn.

On the event Ωn the left-most point Ll in Jl where ĝMLE
l and ĝMLE coincide is well

defined and satisfies for l > 1

Ll := inf{x ∈ Jl | ĝMLE
l (x) = ĝMLE(x)}

= inf{x ∈ Jl | ĝMLE
l (x) 6 ĝMLE

l−1 (lrn) +R(x− lrn)}.

Now Ll = lrn holds on Ωn if the corresponding right-most point Rl−1 := sup{x ∈
Jl−1 | ĝMLE

l−1 (x) = ĝMLE(x)} on Jl−1 satisfies Rl−1 < lrn and vice versa Ll > lrn ⇒
Rl−1 = lrn. Due to this symmetry we only consider the case Ll > lrn. For z ∈ (0, rn]

and l = 1, . . . , r−1
n − 1 a rough bound yields:

P
(
Ll > lrn + z

∣∣∣ ((Xi, Yi)1(Xi < lrn))i>1

)
6 exp

(
− n

∫ lrn+z

lrn

(ĝMLE
l−1 (x)− g(x)) dx

)
6 exp

(
− nz(ĝMLE

l−1 (lrn)− g(lrn))
)
.

Since ĝMLE
l (Ll) = ĝMLE

l−1 (Ll) holds and both functions are in C1(R), we obtain the

bound ∫ Ll

lrn

(ĝMLE
l − ĝMLE

l−1 )(x)dx 6
∫ Ll

lrn

2R(Ll − x)dx . (Ll − lrn)2.
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By the identity E[Z2] =
∫∞

0 2zP (Z > z)dz for non-negative random variables Z and

by the above probability bound for Ll we obtain further

E
[ ∫ Ll

lrn

(ĝMLE
l − ĝMLE)1Ωn

]
. E

[ ∫ rn

0
ze−nz(ĝ

MLE
l−1 (lrn)−g(lrn))dz

]
. E

[
min

( 1

n(ĝMLE
l−1 (lrn)− g(lrn))

, rn

)2]
.

Using (5.4) on Jl−1, we arrive, after suitable substitution inside the integral, at

E
[ ∫ Ll

lrn

(ĝMLE
l − ĝMLE)1Ωn

]
.
∫ ∞

0
min(u−1n−1, r2

n)e−udu

. n−1 log(nr2
n).

Summing over l, bounding the alternative case Rl−1 < lrn by the same estimate

and using ‖w‖∞ <∞, we arrive at

E
[ r−1

n −1∑
l=0

∫
Jl

(ĝMLE
l − ĝMLE)(x)w(x)2dx1Ωn

]
. (nrn)−1 log(nr2

n) = o(n−1/2). (5.5)

This gives the desired result E[(ϑ̃n − ϑ̂MLE
n )21Ωn ] = o(n−3/2) with P (Ωn)→ 1.

Furthermore, from (5.5) we derive also that

rn−1∑
l=0

∫
Jl

E[ĝMLE
l (x)− g(x)]w(x)2 dx−

∫ 1

0
E[ĝMLE(x)− g(x)]w(x)2 dx

= o(n−1/2) +O
(

sup
l,x∈Jl

E[(ĝMLE
l (x)− ĝMLE(x))1Ω{

n
]
)
.

By the Cauchy-Schwarz inequality, the last term is at most of order

O(n−1/2P (Ω{
n)1/2) = o(n−1/2). Hence, applying Slutsky’s Lemma twice to the CLT

(5.3), we arrive at( 1

n

∫ 1

0
E[ĝMLE(x)− g(x)]w(x)2 dx

)−1/2
(ϑ̂MLE
n − ϑ)⇒ N(0, 1).

By Jensen’s inequality, Var(
∫
Jl

(ĝMLE
l −g)w2) 6 rn

∫
Jl
E[(ĝMLE

l −g)2]w4 . r2
nn
−2/3,

which implies

Var
( rn−1∑

l=0

∫
Jl

(ĝMLE
l (x)− g(x))w(x)2 dx

)
. rnn

−2/3 = o(n−2/3).

We infer
∑rn−1

l=0

∫
Jl

(ĝMLE
l − g)w2 P−→

∑rn−1
l=0

∫
Jl
E[ĝMLE

l − g]w2. Together with (5.5),

this yields the CLT(∫ 1

0
(ĝMLE(x)− g(x))w(x)2 dx

)−1/2
n−1/2(ϑ̂MLE

n − ϑ)⇒ N(0, 1).
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Now note that the MLE for the functional
∫
gw2

ϑ̂MLE
n (w2) :=

∫ 1

0
ĝMLE(x)w(x)2dx− 1

n

∑
j>1

1
(
ĝMLE(Xj) = Yj

)
w(Xj)

2

is also unbiased with Var(ϑ̂MLE
n (w2))1/2 . n−3/4. Since by assumption

∫ 1
0 E[ĝMLE −

g]w2 ∼ n−1/2 is of larger order, Slutsky’s Lemma permits to replace
∫ 1

0 E[ĝMLE − g]w2

by
∫ 1

0 ĝ
MLEw2 − ϑ̂MLE

n (w2) in the CLT, which gives the desired self-normalising form.
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