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UBIQUITY IN GRAPHS II: UBIQUITY OF GRAPHS WITH

NON-LINEAR END STRUCTURE

NATHAN BOWLER, CHRISTIAN ELBRACHT, JOSHUA ERDE, PASCAL GOLLIN, KARL HEUER,

MAX PITZ, AND MAXIMILIAN TEEGEN

Abstract. A graph G is said to be 4-ubiquitous, where 4 is the minor relation between

graphs, if whenever Γ is a graph with nG 4 Γ for all n ∈ N, then one also has ℵ0G 4 Γ,

where αG is the disjoint union of α many copies of G. A well-known conjecture of Andreae

is that every locally finite connected graph is 4-ubiquitous.

In this paper we give a sufficient condition on the structure of the ends of a graph G

which implies that G is 4-ubiquitous. In particular this implies that the full grid is

4-ubiquitous.

§1. Introduction

This paper is the second in a series of papers making progress towards a conjecture of

Andreae on the ubiquity of graphs. Given a graph G and some relation ⊳ between graphs

we say that G is ⊳-ubiquitous if whenever Γ is a graph such that nG ⊳ Γ for all n ∈ N,

then ℵ0G ⊳ Γ, where αG denotes the disjoint union of α many copies of G. For example,

a classic result of Halin [9] says that the ray is ⊆-ubiquitous, where ⊆ is the subgraph

relation.

Examples of graphs which are not ubiquitous with respect to the subgraph or topo-

logical minor relation are known (see [2] for some particularly simple examples). In [1]

Andreae initiated the study of ubiquity of graphs with respect to the minor relation 4.

He constructed a graph which is not 4-ubiquitous, however the construction relied on the

existence of a counterexample to the well-quasi-ordering of infinite graphs under the minor

relation, for which only examples of very large cardinality are known [13]. In particular,

the question of whether there exists a countable graph which is not 4-ubiquitous remains

open. Most importantly, however, Andreae [1] conjectured that at least all locally finite

graphs, those with all degrees finite, should be 4-ubiquitous.

The Ubiquity Conjecture. Every locally finite connected graph is 4-ubiquitous.

In [2] Andreae proved that his conjecture holds for a large class of locally finite graphs.

The exact definition of this class is technical, but in particular his result implies the

following.
1
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Theorem 1.1 (Andreae, [2, Corollary 2]). Let G be a connected, locally finite graph of

finite tree-width such that every block of G is finite. Then G is 4-ubiquitous.

Note that every end in such a graph G must have degree1 one.

Andreae’s proof employs deep results about well-quasi-orderings of labelled (infinite)

trees [12]. Interestingly, the way these tools are used does not require the extra condition

in Theorem 1.1 that every block of G is finite and so it is natural to ask if his proof can

be adapted to remove this condition. And indeed, it is the purpose of the present and

subsequent paper in our series, [3], to show that this is possible, i.e. that all connected,

locally finite graphs of finite tree-width are 4-ubiquitous.

R

S

P

Figure 1.1. A linkage between R and S.

The present paper lays the groundwork for this extension of Andreae’s result. The

fundamental obstacle one encounters when trying to extend Andreae’s methods is the

following: Let [n] = {1, 2, . . . , n}. In the proof we often have two families of disjoint rays

R = (Ri : i ∈ [n]) and S = (Sj : j ∈ [m]) in Γ, which we may assume all converge1 to a

common end of Γ, and we wish to find a linkage between R and S, that is, an injective

function σ : [n] → [m] and a set P of disjoint finite paths Pi from xi ∈ Ri to yσ(i) ∈ Sσ(i)

such that the walks

T = (RixiPiyσ(i)Sσ(i) : i ∈ [n])

formed by following each Ri along to xi, then following the path Pi to yσ(i), then following

the tail of Sσ(i), form a family of disjoint rays (see Figure 1.1). Broadly, we can think of

1A precise definitions of rays, the ends of a graph, their degree, and what it means for a ray to converge

to an end can be found in Section 2.
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this as ‘re-routing’ the rays R to some subset of the rays in S. Since all the rays in R and

S converge to the same end of Γ, it is relatively simple to show that, as long as n 6 m,

there is enough connectivity between the rays in Γ so that such a linkage always exists.

However, in practice it is not enough for us to be guaranteed the existence of some

injection σ giving rise to a linkage, but instead we want to choose σ in advance, and be

able to find a corresponding linkage afterwards.

In general, however, it is quite possible that for certain choices of σ no suitable linkage

exists. Consider for example the case where Γ is the half grid (briefly denoted by Z�N),

which is the graph whose vertex set is Z× N and where two vertices are adjacent if they

differ in precisely one co-ordinate and the difference in that co-ordinate is one. If we

consider two sufficiently large families of disjoint rays R and S in Γ, then it is not hard

to see that both R and S inherit a linear ordering from the planar structure of Γ, which

must be preserved by any linkage between them.

Analysing this situation gives rise to the following definition: We say that an end ǫ

of a graph G is linear if for every finite set R of at least three disjoint rays in G which

converge to ǫ we can order the elements of R as R = {R1, R2, . . . , Rn} such that for each

1 6 k < i < ℓ 6 n, the rays Rk and Rℓ belong to different ends of G− V (Ri).

Thus the half grid has a unique end and it is linear. On the other end of the spectrum, let

us say that a graph G has nowhere-linear end structure if no end of G is linear. Since ends

of degree at most two are automatically linear, every end of a graph with nowhere-linear

end structure must have degree at least three.

Our main theorem in this paper is the following.

Theorem 1.2. Every locally finite connected graph with nowhere-linear end structure is

4-ubiquitous.

Roughly, if we assume that every end of G has nonlinear structure, then the fact that

nG 4 Γ for all n ∈ N allows us to deduce that Γ must also have some end with a sufficiently

complicated structure that we can always find suitable linkages for all σ as above. In fact,

this property is so strong that we do not need to follow Andreae’s strategy for such graphs.

We can use the linkages to directly build a Kℵ0
-minor of Γ, and it follows that ℵ0G 4 Γ.

In later papers in the series, we shall need to make more careful use of the ideas developed

here. We shall analyse the possible kinds of linkages which can arise between two families

of rays converging to a given end. If some end of Γ admits many different kinds of linkages,

then we can again find a Kℵ0
-minor. If not, then we can use the results of the present

paper to show that certain ends of G are linear. This extra structure allows us to carry

out an argument like that of Andreae, but using only the limited collection of these maps
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σ which we know to be present. This technique will be key to extending Theorem 1.1 in

[3].

Independently of these potential later developments, our methods already allow us to

establish new ubiquity results for many natural graphs and graph classes.

As a first concrete example, let G be the full grid, a graph not previously known to

be ubiquitous. The full grid (briefly denoted by Z�Z) is analogously defined as the half

grid but with Z× Z as vertex set. The grid G is one-ended, and for any ray R in G, the

graph G− V (R) still has at most one end. Hence the unique end of G is non-linear, and

so Theorem 1.2 has the following corollary:

Corollary 1.3. The full grid is 4-ubiquitous.

Using an argument similar in spirit to that of Halin [10], we also establish the following

theorem in this paper:

Theorem 1.4. Any connected minor of the half grid N�Z is 4-ubiquitous.

Since every countable tree is a minor of the half grid, Theorem 1.4 implies that all

countable trees are 4-ubiquitous, see Corollary 7.4. We remark that while all trees are

ubiquitous with respect to the topological minor relation, [5], the problem whether all

uncountable trees are 4-ubiquitous has remained open, and we hope to resolve this in a

paper in preparation [4].

In a different direction, if G is any locally finite connected graph, then it is possible to

show that G�Z or G�N either have nowhere-linear end structure, or are a subgraph of the

half grid respectively. Hence, Theorems 1.2 and 1.4 together have the following corollary.

Theorem 1.5. For every locally finite connected graph G, both G�Z and G�N are 4-

ubiquitous.

Finally, we will also show the following result about non-locally finite graphs. For k ∈ N,

we let the k-fold dominated ray be the graph DRk formed by taking a ray together with k

additional vertices, each of which we make adjacent to every vertex in the ray. For k 6 2,

DRk is a minor of the half grid, and so ubiquitous by Theorem 1.4. In our last theorem,

we show that DRk is ubiquitous for all k ∈ N.

Theorem 1.6. The k-fold dominated ray DRk is 4-ubiquitous for every k ∈ N.

The paper is structured as follows: In Section 2 we introduce some basic terminology

for talking about minors. In Section 3 we introduce the concept of a ray graph and

linkages between families of rays, which will help us to describe the structure of an end.
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In Sections 4 and 5 we introduce a pebble-pushing game which encodes possible linkages

between families of rays and use this to give a sufficient condition for an end to contain

a countable clique minor. In Section 6 we re-introduce some concepts from [5] and show

that we may assume that the G-minors in Γ are concentrated towards some end ǫ of Γ. In

Section 7 we use the results of the previous section to prove Theorem 1.4 and finally in

Section 8 we prove Theorem 1.2 and its corollaries.

§2. Preliminaries

In our graph theoretic notation we generally follow the textbook of Diestel [7]. Given

two graphs G and H the cartesian product G�H is a graph with vertex set V (G)× V (H)

with an edge between (a, b) and (c, d) if and only if a = c and (b, d) ∈ E(H) or (a, c) ∈ E(G)

and b = d.

Definition 2.1. A one-way infinite path is called a ray and a two-way infinite path is

called a double ray.

For a path or ray P and vertices v, w ∈ V (P ), let vPw denote the subpath of P with

endvertices v and w. If P is a ray, let Pv denote the finite subpath of P between the

initial vertex of P and v, and let vP denote the subray (or tail) of P with initial vertex v.

Given two paths or rays P and Q which are disjoint but for one of their endvertices, we

write PQ for the concatenation of P and Q, that is the path, ray or double ray P ∪ Q.

Moreover, if we concatenate paths of the form vPw and wQx, then we omit writing w

twice and denote the concatenation by vPwQx.

Definition 2.2 (Ends of a graph, cf. [7, Chapter 8]). An end of an infinite graph Γ is an

equivalence class of rays, where two rays R and S are equivalent if and only if there are

infinitely many vertex disjoint paths between R and S in Γ. We denote by Ω(Γ) the set

of ends of Γ.

We say that a ray R ⊆ Γ converges (or tends) to an end ǫ of Γ if R is contained in ǫ.

In this case we call R an ǫ-ray.

Given an end ǫ ∈ Ω(Γ) and a finite set X ⊆ V (Γ) there is a unique component of Γ−X

which contains a tail of every ray in ǫ, which we denote by C(X, ǫ).

For an end ǫ ∈ Γ we define the degree of ǫ in Γ as the supremum of all sizes of sets

containing vertex disjoint ǫ-rays. If an end has finite degree, we call it thin. Otherwise,

we call it thick.

A vertex v ∈ V (Γ) dominates an end ǫ ∈ Ω(Γ) if there is a ray R ∈ ω such that there

are infinitely many v –R -paths in Γ that are vertex disjoint except from v.

We will use the following two basic facts about infinite graphs.
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Proposition 2.3. [7, Proposition 8.2.1] An infinite connected graph contains either a ray

or a vertex of infinite degree.

Proposition 2.4. [7, Exercise 8.19] A graph G contains a subdivided Kℵ0
as a subgraph

if and only if G has an end which is dominated by infinitely many vertices.

Definition 2.5 (Inflated graph). Given a graph G, we say that a pair (H,ϕH) is an

inflated copy of G, or an IG for short, if H is a graph and ϕH : V (H) → V (G) is such

that:

• For every v ∈ V (G) the branch-set ϕ−1
H (v) induces a non-empty, connected sub-

graph of H ;

• There is an edge in H between ϕ−1
H (v) and ϕ−1

H (w) if and only if (v, w) ∈ E(G)

and this edge, if it exists, is unique.

When there is no danger of confusion we will simply say that H is an IG instead of

saying that (H,ϕH) is an IG, and denote by H(v) the branch-set of v. By definition, a

graph G is a minor of another graph Γ if and only if there is some subgraph H ⊆ Γ such

that H is an IG.

We will say an IG (H,ϕH) is tidy if H is subgraph-minimal such that the pair (H,ϕH)

is an IG, that is, (H ′, ϕH ↾ V (H ′)) is not an IG whenever H ′ ( H . For a given IG (H,ϕ)

by Zorn’s lemma there is always a subgraph H ′ ⊆ H such that (H ′, ϕ ↾ V (H ′)) is a tidy

IG, however this choice may not be unique.

We note that in this case the subgraph of H induced on H(v) is a tree for every v ∈ V (G),

and every leaf of this tree is incident with some edge (u, v) ∈ E(H) between two branch

sets. Furthermore, if dG(v) is finite, than so is H(v). In this paper we will always assume

without loss of generality that each IG is tidy.

If G ⊆ G′ and H is an IG we say that an IG′ H ′ ⊇ H extends H if H(v) ⊆ H ′(v) for

all v ∈ V (G) ∩ V (G′) and we say that H ′ is an extension of H . Note that, since H ⊆ H ′,

for every (v, w) ∈ E(G) the unique edge between H ′(v) and H ′(w) is also the unique edge

between H(v) and H(w).

Definition 2.6 (Pullback). Let G be a graph, M ⊆ G a subgraph without isolated vertices,

and let H be a tidy IG. The pullback of M to H is the IM (H(M), ϕH ↾V (H(M)) where

H(M) ⊆ H is the unique subgraph such that (H(M), ϕH ↾V (H(M)) is a tidy IM .

Note that, due to the tidiness requirement, H(M) might be a proper subgraph of

H [ϕ−1
H (V (M))]. The requirement that M does not contain isolated vertices is necessary

to make this subgraph unique, since if M contains an isolated vertex v, then there isn’t a



UBIQUITY OF GRAPHS WITH NON-LINEAR END STRUCTURE 7

unique choice of a vertex in the branch-set of v to choose. In particular, there two notations

H(M) and H(v) for pullback and branch-set respectively are mutually exclusive.

Lemma 2.7. Let G be a graph and let H be a tidy IG. If R ⊆ G is a ray, then H(R) is

also a ray.

Proof. Let R = x1x2 . . . be a ray. For each i ≥ 1 there is a unique edge (vi, wi) ∈ E(H)

between H(xi) and H(xi+1). Since {wi, vi+1} ⊆ H(xi+1), and H is tidy, there is a unique

path Pi between {wi, vi+1} in H .

By minimality of H(R), it follows that H(R)(x1) = {v1} and H(R)(xi) = V (Pi) for

each i ≥ 2 . Hence H(R) is a ray. �

§3. The Ray Graph

Definition 3.1 (Ray graph). Given a finite family of disjoint rays R = (Ri : i ∈ I) in a

graph Γ the ray graph RGΓ(R) = RGΓ(Ri : i ∈ I) is the graph with vertex set I and with

an edge between i and j if there is an infinite collection of vertex disjoint paths from Ri

to Rj in Γ which meet no other Rk. When the host graph Γ is clear from the context we

will simply write RG(R) for RGΓ(R).

The following lemmas are simple exercises. For a family R of disjoint rays in G tending

to the same end and H ⊆ Γ being an IG the aim is to establish the following: if S is a

family of disjoint rays in Γ which contains the pullback H(R) of each R ∈ R, then the

subgraph of the ray graph RGΓ(S) induced on the vertices given by {H(R) : R ∈ R} is

connected.

Lemma 3.2. Let G be a graph and let R = (Ri : i ∈ I) be a finite family of disjoint rays

in G. Then RGG(R) is connected if and only if all rays in R tend to a common end

ω ∈ Ω(G).

Lemma 3.3. Let G be a graph, R = (Ri : i ∈ I) be a finite family of disjoint rays in G

and let H be an IG. If R′ = (H(Ri) : i ∈ I) are the pullbacks of the rays in R in H, then

RGG(R) = RGH(R
′).

Lemma 3.4. Let G be a graph, H ⊆ G, R = (Ri : i ∈ I) be a finite disjoint family of rays

in H and let S = (Sj : j ∈ J) be a finite disjoint family of rays in G− V (H), where I and

J are disjoint. Then RGH(R) is a subgraph of RGG(R ∪ S)
[

I
]

. In particular, if all rays

in R tend to a common end in H, then RGG(R∪ S)
[

I
]

is connected.

Recall that an end ω of a graph G is called linear if for every finite set R of at least

three disjoint ω-rays in G we can order the elements of R as R = {R1, R2, . . . , Rn} such

that for each 1 6 k < i < ℓ 6 n, the rays Rk and Rℓ belong to different ends of G−V (Ri).
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Lemma 3.5. An end ω of a graph G is linear if and only if the ray graph of every finite

family of disjoint ω-rays is a path.

Proof. For the forward direction suppose ω is linear and {R1, R2, . . . , Rn} converge to ω,

with the order given by the definition of linear. It follows that there is no 1 6 k < i < ℓ 6 n

such that (k, ℓ) is an edge in RG(Rj : j ∈ [n]). However, by Lemma 3.2 RG(Rj : j ∈ [n])

is connected, and hence it must be the path 12 . . . n.

Conversely, suppose that the ray graph of every finite family of ω-rays is a path. Then,

every such family R can be ordered as {R1, R2, . . . , Rn} such that RG(R) is the path

12 . . . n. It follows that, for each i, (k, ℓ) 6∈ E(RG(R)) whenever 1 6 k < i < ℓ 6 n − 1,

and so by definition of RG(R) there is no infinite collection of vertex disjoint paths from

Rk to Rℓ in G− V (Ri). Therefore Rk and Rℓ belong to different ends of G− V (Ri). �

Definition 3.6 (Tail of a ray after a set). Given a ray R in a graph G and a finite set

X ⊆ V (G) the tail of R after X, denoted by T (R,X), is the unique infinite component of

R in G−X.

Definition 3.7 (Linkage of families of rays). Let R = (Ri : i ∈ I) and S = (Sj : j ∈ J) be

families of disjoint rays of Γ, where the initial vertex of each Ri is denoted xi. A family

P = (Pi : i ∈ I) of paths in Γ is a linkage from R to S if there is an injective function

σ : I → J such that

• Each Pi goes from a vertex x′
i ∈ Ri to a vertex yσ(i) ∈ Sσ(i);

• The family T = (xiRix
′
iPiyσ(i)Sσ(i) : i ∈ I) is a collection of disjoint rays.

We say that T is obtained by transitioning from R to S along the linkage. We say the

linkage P induces the mapping σ. Given a vertex set X ⊆ V (G) we say that the linkage

is after X if X ∩ V (Ri) ⊆ V (xiRix
′
i) for all i ∈ I and no other vertex in X is used by

T . We say that a function σ : I → J is a transition function from R to S if for any finite

vertex set X ⊆ V (G) there is a linkage from R to S after X that induces σ.

We will need the following lemma from [5], which asserts the existence of linkages.

Lemma 3.8 (Weak linking lemma). Let Γ be a graph, ω ∈ Ω(Γ) and let n ∈ N. Then for

any two families R = (Ri : i ∈ [n]) and S = (Sj : j ∈ [n]) of vertex disjoint ω-rays and any

finite vertex set X ⊆ V (G), there is a linkage from R to S after X.

§4. A pebble-pushing game

Suppose we have a family of disjoint rays R = (Ri : i ∈ I) in a graph G and a subset

J ⊆ I. Often we will be interested in which functions we can obtain as transition functions
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between (Ri : i ∈ J) and (Ri : i ∈ I). We can think of this as trying to ‘re-route’ the rays

(Ri : i ∈ J) to a different set of |J | rays in (Ri : i ∈ I).

To this end, it will be useful to understand the following pebble-pushing game on a

graph.

Definition 4.1 (Pebble-pushing game). Let G = (V,E) be a finite graph. For any fixed

positive integer k we call a tuple (x1, x2, . . . , xk) ∈ V k a game state if xi 6= xj for all

i, j ∈ [k] with i 6= j.

The pebble-pushing game (on G) is a game played by a single player. Given a game state

Y = (y1, y2, . . . , yk), we imagine k labelled pebbles placed on the vertices (y1, y2, . . . , yk).

We move between game states by moving a pebble from a vertex to an adjacent vertex

which does not contain a pebble, or formally, a Y -move is a game state Z = (z1, z2 . . . , zk)

such that there is an ℓ ∈ [k] such that yℓzℓ ∈ E and yi = zi for all i ∈ [k] \ {ℓ}.

Let X = (x1, x2 . . . , xk) be a game state. The X-pebble-pushing game (on G) is a pebble-

pushing game where we start with k labelled pebbles placed on the vertices (x1, x2 . . . , xk).

We say a game state Y is achievable in the X-pebble-pushing game if there is a sequence

(Xi : i ∈ [n]) of game states for some n ∈ N such that X1 = X, Xn = Y and Xi+1 is an

Xi-move for all i ∈ [n − 1], that is, if it is a sequence of moves that pushes the pebbles

from X to Y .

A graph G is k-pebble-win if Y is an achievable game state in the X-pebble-pushing

game on G for every two game states X and Y .

The following lemma shows that achievable game states on the ray graph RG(R) yield

transition functions from a subset of R to itself. Therefore, it will be useful to understand

which game states are achievable, and in particular the structure of graphs on which there

are unachievable game states.

Lemma 4.2. Let Γ be a graph, ω ∈ Ω(Γ), m ≥ k be positive integers and let (Sj : j ∈ [m])

be a family of disjoint rays in ω. For every achievable game state Z = (z1, z2, . . . , zk) in

the (1, 2, . . . , k)-pebble-pushing game on RG(Sj : j ∈ [m]), the map σ defined via σ(i) := zi

for every i ∈ [k] is a transition function from (Si : i ∈ [k]) to (Sj : j ∈ [m]).

Proof. We first note that if σ is a transition function from (Si : i ∈ [k]) to (Sj : j ∈ [m])

and τ is a transition function from (Si : i ∈ σ([k])) to (Sj : j ∈ [m]), then clearly τ ◦ σ is a

transition function from (Si : i ∈ [k]) to (Sj : j ∈ [m]).

Hence, it will be sufficient to show the statement holds when σ is obtained from

(1, 2, . . . , k) by a single move, that is, there is some t ∈ [k] and a vertex σ(t) 6∈ [k]

such that σ(t) is adjacent to t in RG(Sj : j ∈ [m]) and σ(i) = i for i ∈ [k] \ {t}.
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So, let X ⊆ V (G) be a finite set. We will show that there is a linkage from (Si : i ∈ [k])

to (Sj : j ∈ [m]) after X that induces σ. By assumption there is an edge (t, σ(t)) ∈

E(RG(Sj : j ∈ [m])). Hence, there is a path P between T (St, X) and T (Sσ(t), X) which

avoids X and all other Sj .

Then the family P = (P1, P2, . . . , Pk) where Pt = P and Pi = ∅ for each i 6= t is a

linkage from (Si : i ∈ [k]) to (Sj : j ∈ [m]) after X that induces σ. �

We note that this pebble-pushing game is sometimes known in the literature as “per-

mutation pebble motion” [11] or “token reconfiguration” [6]. Previous results have mostly

focused on computational questions about the game, rather than the structural questions

we are interested in, but we note that in [11] the authors give an algorithm that decides

whether or not a graph is k-pebble-win, from which it should be possible to deduce the

main result in this section, Lemma 4.9. However, since a direct derivation was shorter

and self contained, we will not use their results. We present the following simple lemmas

without proof.

Lemma 4.3. Let G be a finite graph and X a game state.

• If Y is an achievable game state in the X-pebble-pushing game on G, then X is an

achievable game state in the Y -pebble-pushing game on G.

• If Y is an achievable game state in the X-pebble-pushing game on G and Z is an

achievable game state in the Y -pebble-pushing game on G, then Z is an achievable

game state in the X-pebble-pushing game on G.

Definition 4.4. Let G be a finite graph and let X = (x1, x2, . . . , xk) be a game state.

Given a permutation σ of [k] let us write Xσ = (xσ(1), xσ(2), . . . , xσ(k)). We define the

pebble-permutation group of (G,X) to be the set of permutations σ of [k] such that Xσ is

an achievable game state in the X-pebble-pushing game on G.

Note that by Lemma 4.3, the pebble-permutation group of (G,X) is a subgroup of the

symmetric group Sk.

Lemma 4.5. Let G be a graph and let X be a game state. If Y is an achievable game

state in the X-pebble-pushing game and σ is in the pebble-permutation group of Y , then σ

is in the pebble-permutation group of X.

Lemma 4.6. Let G be a finite connected graph and let X be a game state. Then G is

k-pebble-win if and only if the pebble-permutation group of (G,X) is Sk.

Proof. Clearly, if the pebble-permutation group is not Sk then G is not k-pebble-win.

Conversely, since G is connected, for any game states X and Y there is some τ such that Y τ
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is an achievable game state in the X-pebble-pushing game, since we can move the pebbles

to any set of k vertices, up to some permutation of the labels. We know by assumption that

Xτ−1

is an achievable game state in the X-pebble-pushing game. Therefore, by Lemma 4.3

Y is an achievable game state in the X-pebble-pushing game. �

Lemma 4.7. Let G be a finite connected graph and let X = (x1, x2, . . . , xk) be a game

state. If G is not k-pebble-win, then there is a two colouring c : X → {r, b} such that

both colour classes are non trivial and for all i, j ∈ [k] with c(xi) = r and c(xj) = b the

transposition (ij) is not in the pebble-permutation group.

Proof. Let us draw a graph H on {x1, x2, . . . , xk} by letting (xi, xj) be an edge if and only

if (ij) is in the pebble-permutation group of (G,X). It is a simple exercise to show that

the pebble-permutation group of (G,X) is Sk if and only if H has a single component.

Since G is not k-pebble-win, we therefore know by Lemma 4.6 that there are at least

two components in H . Let us pick one component C1 and set c(x) = r for all x ∈ V (C1)

and c(x) = b for all x ∈ X \ V (C1). �

Definition 4.8. Given a graph G, a path x1x2 . . . xm in G is a bare path if dG(xi) = 2 for

all 2 6 i 6 m− 1.

Lemma 4.9. Let G be a finite connected graph with vertex set V which is not k-pebble-

win and with |V | ≥ k + 2. Then there is a bare path P = p1p2 . . . pn in G such that

|V \ V (P )| 6 k. Furthermore, either every edge in P is a bridge in G, or G is a cycle.

Proof. Let X = (x1, x2, . . . , xk) be a game state. Since G is not k-pebble-win, by Lemma 4.7

there is a two colouring c : {xi : i ∈ [k]} → {r, b} such that both colour classes are non

trivial and for all i, j ∈ [k] with c(xi) = r and c(xj) = b the transposition (ij) is not in

the pebble permutation group. Let us consider this as a three colouring c : V → {r, b, 0}

where c(v) = 0 if v 6∈ {x1, x2, . . . , xk}.

For every achievable game state Z = (z1, z2, . . . , zk) in the X-pebble-pushing game we

define a three colouring cZ given by cZ(zi) = c(xi) for all i ∈ [k] and by cZ(v) = 0 for all

v /∈ {z1, z2, . . . , zk}. We note that, for any achievable game state Z there is no zi ∈ c−1
Z (r)

and zj ∈ c−1
Z (b) such that (ij) is in the pebble permutation group of (G,Z). Indeed, if it

were, then by Lemma 4.3 X(ij) is an achievable game state in the X-pebble-pushing game,

contradicting the fact that c(xi) = r and c(xj) = b.

Since G is connected, for every achievable game state Z there is a path P = p1p2 . . . pm

in G with cZ(p1) = r, cZ(pm) = b and cZ(pi) = 0 otherwise. Let us consider an achievable

game state Z for which G contains such a path P of maximal length.
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We first claim that there is no v 6∈ P with cZ(v) = 0. Indeed, suppose there is such a

vertex v. Since G is connected there is some v–P path Q in G and so, by pushing pebbles

towards v on Q, we can achieve a game state Z ′ such that cZ′ = cZ on P and there is

a vertex v′ adjacent to P such that cZ′(v′) = 0. Clearly v′ cannot be adjacent to p1 or

pm, since then we can push the pebble on p1 or pm onto v′ and achieve a game state Z ′′

for which G contains a longer path than P with the required colouring. However, if v′ is

adjacent to pℓ with 2 6 ℓ 6 m − 1, then we can push the pebble on p1 onto pℓ and then

onto v′, then push the pebble from pm onto p1 and finally push the pebble on v′ onto pℓ

and then onto pm.

However, if Z ′ = (z′1, z
′
2, . . . , z

′
k) with p1 = z′i and pm = z′j , then above shows that

(ij) is in the pebble-permutation group of (G,Z ′). However, cZ′(z′i) = cZ(p1) = r and

cZ′(z′j) = cZ(pm) = b, contradicting our assumptions on cZ′.

Next, we claim that each pi with 3 6 i 6 m− 2 has degree 2. Indeed, suppose first that

pi with 3 6 i 6 m − 2 is adjacent to some other pj with 1 6 j 6 m such that pi and pj

are not adjacent in P . Then it is easy to find a sequence of moves which exchanges the

pebbles on p1 and pm, contradicting our assumptions on cZ .

Suppose then that pi is adjacent to a vertex v not in P . Then, cZ(v) 6= 0, say without

loss of generality cZ(v) = r. However then, we can push the pebble on pm onto pi−1, push

the pebble on v onto pi and then onto pm and finally push the pebble on pi−1 onto pi and

then onto v. As before, this contradicts our assumptions on cZ .

Hence P ′ = p2p3 . . . pm−1 is a bare path in G, and since every vertex in V − V (P ′) is

coloured using r or using b, there are at most k such vertices.

Finally, suppose that there is some edge in P ′ which is not a bridge of G, and so no edge

of P ′ is a bridge of G. We wish to show that G is a cycle. We first make the following

claim:

Claim 4.10. There is no achievable game state W = (w1, w2, . . . , wk) such that there is

a cycle C = c1c2 . . . crc1 and a vertex v 6∈ C such that:

• There exist distinct positive integers i, j, s and t such that cW (ci) = r, cW (cj) = b

and cW (cs) = cW (ct) = 0;

• v adjacent to some cv ∈ C.

Proof of Claim 4.10. Suppose for a contradiction there exists such an achievable game

state W . Since C is a cycle we may assume without loss of generality that ci = c1, cs =

c2 = cv, ct = c3 and cj = c4. If cW (v) = b, then we can push the pebble at v to c2 and

then to c3, push the pebble at c1 to c2 and then to v, and then push the pebble at c3 to

c1. This contradicts our assumptions on cW . The case where cW (v) = r is similar. Finally
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if cW (v) = 0, then we can push the pebble at c1 to c2 and then to v, then push the pebble

at c4 to c1, then push the pebble at v to c2 and then to c4. Again this contradicts our

assumptions on cW . �

Since no edge of P ′ is a bridge, it follows that G contains a cycle C containing P ′. If

G is not a cycle, then there is a vertex v ∈ V \ C which is adjacent to C. However by

pushing the pebble on p1 onto p2 and the pebble on pm onto pm−1, which is possible since

|V | ≥ k + 2, we achieve a game state Z ′ such that C and v satisfy the assumptions of the

above claim, a contradiction. �

§5. Pebbly ends

Definition 5.1 (Pebbly). Let Γ be a graph and ω an end of Γ. We say ω is pebbly if for

every k ∈ N there is an n ≥ k and a family R = (Ri : i ∈ [n]) of disjoint rays in ω such

that RG(R) is k-pebble-win. If for some k there is no such family R, we say ω is not

k-pebble-win.

The following is an immediate corollary of Lemma 4.9.

Corollary 5.2. Let ω be an end of a graph Γ which is not k-pebble-win and let R =

(Ri : i ∈ [m]) be a family of m ≥ k + 2 disjoint rays in ω. Then there is a bare path

P = p1p2 . . . pn in RG(Ri : i ∈ [m]) such that |[m] \ V (P )| 6 k. Furthermore, either each

edge in P is a bridge in RG(Ri : i ∈ [m]), or RG(Ri : i ∈ [m]) is a cycle.

Hence, if an end in Γ is not pebbly, then we have some constraint on the behaviour of

rays towards this ends. In a later paper [3] we will investigate more precisely what can

be said about the structure of the graph towards this end. For now, the following lemma

allows us to easily find any countable graph as a minor of a graph with a pebbly end.

Lemma 5.3. Let Γ be a graph and let ω ∈ Ω(Γ) be a pebbly end. Then Kℵ0
4 Γ.

Proof. By assumption, there exists a sequence R1,R2, . . . of families of disjoint ω-rays

such that, for each k ∈ N, RG(Rk) is k-pebble-win. Let us suppose that

Ri = (Ri
1, R

i
2, . . . , R

i
mi
) for each i ∈ N.

Let us enumerate the vertices and edges of Kℵ0
by choosing some bijection σ : N∪N(2) →

N such that σ(i, j) > σ(i), σ(j) for every {i, j} ∈ N(2) and also σ(1) < σ(2) < · · · . For

each k ∈ N let Gk be the graph on vertex set Vk = {i ∈ N : σ(i) 6 k} and edge set

Ek = {{i, j} ∈ N(2) : σ(i, j) 6 k}.

We will inductively construct subgraphs Hk of Γ such that Hk is an IGk extending

Hk−1. Furthermore for each k ∈ N if V (Gk) = [n] then there will be tails T1, T2, . . . , Tn
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of n distinct rays in Rn such that for every i ∈ [n] the tail Ti meets Hk in a vertex of

the branch set of i, and is otherwise disjoint from Hk. We will assume without loss of

generality that Ti is a tail of Rn
i .

Since σ(1) = 1 we can take H1 to be the initial vertex of R1
1. Suppose then that

V (Gn−1) = [r] and we have already constructed Hn−1 together with appropriate tails Ti

of Rr
i for each i ∈ [r]. Suppose firstly that σ−1(n) = r + 1 ∈ N.

Let X = V (Hn−1). There is a linkage from (Ti : i ∈ [r]) to (Rr+1
1 , Rr+1

2 , . . . , Rr+1
r ) after

X by Lemma 3.8, and, after relabelling, we may assume this linkage induces the identity

on [r]. Let us suppose the linkage consists of paths Pi from xi ∈ Ti to yi ∈ Rr+1
i .

Since X ∪
⋃

i Pi ∪
⋃

i Tixi is a finite set, there is some vertex yr+1 on Rr+1
r+1 such that the

tail yr+1R
r+1
r+1 is disjoint from X ∪

⋃

i Pi ∪
⋃

i Tixi.

To form Hn we add the paths Tixi ∪ Pi to the branch set of each i 6 r and set yr+1 as

the branch set for r + 1. Then Hn is an IGn extending Hn−1 and the tails yjR
r+1
j are as

claimed.

Suppose then that σ−1(n) = {u, v} ∈ N(2) with u, v 6 r. We have tails Ti of Rr
i for each

i ∈ [r] which are disjoint from Hn−1 apart from their initial vertices. Let us take tails Tj

of Rr
j for each j > r which are also disjoint from Hn−1. Since RG(Rr) is r-pebble-win,

it follows that RG(Ti : i ∈ [mr]) is also r-pebble-win. Furthermore, since by Lemma 3.2

RG(Ti : i ∈ [mr]) is connected, there is some neighbour w ∈ [mr] of u in RG(Ti : i ∈ [mr]).

Let us first assume that w /∈ [r]. Since RG(Ti : i ∈ [mr]) is r-pebble-win, the game

state (1, 2, . . . , v−1, w, v+1, . . . , r) is an achievable game state in the (1, 2, . . . , r)- pebble-

pushing game and hence by Lemma 4.2 the function ϕ1 given by ϕ1(i) = i for all i ∈ [r]\{v}

and ϕ1(v) = w is a transition function from (Ti : i ∈ [r]) to (Ti : i ∈ [mr]).

Let us take a linkage from (Ti : i ∈ [r]) to (Ti : i ∈ [mr]) inducing ϕ1 which is after

V (Hn−1). Let us suppose the linkage consists of paths Pi from xi ∈ Ti to yi ∈ Ti for i 6= v

and Pv from xv ∈ Tv to yv ∈ Tw. Let

X = V (Hn−1) ∪
⋃

i∈[r]

Pi ∪
⋃

i∈[r]

Tixi

Since u is adjacent to w in RG(Ti : i ∈ [mr]) there is a path P̂ between T (Tu, X) and

T (Tw, X) which is disjoint from X and from all other Ti, say P̂ is from x̂ ∈ Tu to ŷ ∈ Tw.

Finally, since RG(Ti : i ∈ [mr]) is r-pebble-win, the game state (1, 2, . . . , r) is an achiev-

able game state in the (1, 2, . . . , v − 1, w, v + 1, . . . , r)-pebble-pushing game and hence by

Lemma 4.2 the function ϕ2 given by ϕ2(i) = i for all i ∈ [r] \ {v} and ϕ2(w) = v is a

transition function from (Ti : i ∈ [r] \ {v} ∪ {w}) to (Ti : i ∈ [mr]).
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Let us take a further linkage from (Ti : i ∈ [r] \ {v} ∪ {w}) to (Ti : i ∈ [mr]) inducing ϕ2

which is after X ∪ P̂ ∪ Tux̂ ∪ yvTwŷ. Let us suppose the linkage consists of paths P ′
i from

x′
i ∈ Ti to y′i ∈ Ti for i ∈ [r] \ {v} and P ′

v from x′
v ∈ Tw to y′v ∈ Tv.

In the case that w ∈ [r], w < v, say, the game state

(1, 2, . . . , w − 1, v, w + 1, . . . , v − 1, w, v + 1, . . . r)

is an achievable game state in the (1, 2, . . . , r)-pebble pushing-game and we get, by a

similar argument, all Pi, xi, yi, P
′
i , x

′
i, y

′
i and P̂ .

We build Hn from Hn−1 by adjoining the following paths:

• for each i 6= v we add the path TixiPiyiTix
′
iP

′
iy

′
i to Hn−1, adding the vertices to

the branch set of i;

• we add P̂ to Hn−1, adding the vertices of V (P̂ ) \ {ŷ} to the branch set of u;

• we add the path TvxvPvyvTwx
′
vP

′
vy

′
v to Hn−1, adding the vertices to the branch set

of v.

We note that, since ŷ ∈ yvTwx
′
v the branch sets for u and v are now adjacent. Hence

Hn is an IGn extending Hn−1. Finally the rays y′iTi for i ∈ [r] are appropriate tails of the

used rays of Rr. �

As every countable graph is a subgraph of Kℵ0
, a graph with a pebbly end contains

every countable graph as a minor. Thus, as ℵ0G is countable, if G is countable, we obtain

the following corollary:

Corollary 5.4. Let Γ be a graph with a pebbly end ω and let G be a countable graph. Then

ℵ0G 4 Γ.

§6. G-tribes and concentration of G-tribes towards an end

To show that a given graph G is 4-ubiquitous, we shall assume that nG 4 Γ holds for

every n ∈ N an show that this implies ℵ0G 4 Γ. To this end we use the following notation

for such collections of nG in Γ, most of which we established in [5].

Definition 6.1 (G-tribes). Let G and Γ be graphs.

• A G-tribe in Γ (with respect to the minor relation) is a family F of finite collections

F of disjoint subgraphs H of Γ such that each member H of F is an IG.

• A G-tribe F in Γ is called thick, if for each n ∈ N there is a layer F ∈ F with

|F | ≥ n; otherwise, it is called thin.

• A G-tribe F ′ in Γ is a G-subtribe 1 of a G-tribe F in Γ, denoted by F ′ 4 F , if

there is an injection Ψ: F ′ → F such that for each F ′ ∈ F ′ there is an injection

1When G is clear from the context we will often refer to a G-subtribe as simply a subtribe.



16 BOWLER, ELBRACHT, ERDE, GOLLIN, HEUER, PITZ, TEEGEN

ϕF ′ : F ′ → Ψ(F ′) such that V (H ′) ⊆ V (ϕF ′(H ′)) for each H ′ ∈ F ′. The G-subtribe

F ′ is called flat, denoted by F ′ ⊆ F , if there is such an injection Ψ satisfying

F ′ ⊆ Ψ(F ′).

• A thick G-tribe F in Γ is concentrated at an end ǫ of Γ, if for every finite vertex

set X of Γ, the G-tribe FX = {FX : F ∈ F} consisting of the layers FX = {H ∈

F : H 6⊆ C(X, ǫ)} ⊆ F is a thin subtribe of F . It is strongly concentrated at ǫ if

additionally, for every finite vertex set X of Γ, every member H of F intersects

C(X, ǫ).

We note that, every thick G-tribe F contains a thick subtribe F ′ such that every H ∈
⋃

F is a tidy IG. We will use the following lemmas from [5].

Lemma 6.2 (Removing a thin subtribe, [5, Lemma 5.2]). Let F be a thick G-tribe in Γ

and let F ′ be a thin subtribe of F , witnessed by Ψ: F ′ → F and (ϕF ′ : F ′ ∈ F ′). For

F ∈ F , if F ∈ Ψ(F ′), let Ψ−1(F ) = {F ′
F} and set F̂ = ϕF ′

F
(F ′

F ). If F /∈ Ψ(F ′), set F̂ = ∅.

Then

F ′′ := {F \ F̂ : F ∈ F}

is a thick flat G-subtribe of F .

Lemma 6.3 (Pigeon hole principle for thick G-tribes, [5, Lemma 5.3]). Suppose for some

k ∈ N, we have a k-colouring c :
⋃

F → [k] of the members of some thick G-tribe F in Γ.

Then there is a monochromatic, thick, flat G-subtribe F ′ of F .

Note that, in the following lemma, it is necessary that G is connected, so that every

member of the G-tribe is a connected graph.

Lemma 6.4 ([5, Lemma 5.4]). Let G be a connected graph and Γ a graph containing a

thick G-tribe F . Then either ℵ0G 4 Γ, or there is a thick flat subtribe F ′ of F and an

end ǫ of Γ such that F ′ is concentrated at ǫ.

Lemma 6.5 ([5, Lemma 5.5]). Let G be a connected graph and Γ a graph containing a

thick G-tribe F concentrated at an end ǫ of Γ. Then the following assertions hold:

(1) For every finite set X, the component C(X, ǫ) contains a thick flat G-subtribe of F .

(2) Every thick subtribe F ′ of F is concentrated at ǫ, too.

Lemma 6.6. Let G be a connected graph and Γ a graph containing a thick G-tribe F

concentrated at an end ǫ ∈ Ω(Γ). Then either ℵ0G 4 Γ, or there is a thick flat subtribe of

F which is strongly concentrated at ǫ.



UBIQUITY OF GRAPHS WITH NON-LINEAR END STRUCTURE 17

Proof. Suppose that no thick flat subtribe of F is strongly concentrated at ǫ. We construct

an ℵ0G 4 Γ by recursively choosing disjoint IGs H1, H2, . . . in Γ as follows: Having chosen

H1, H2, . . . , Hn such that for some finite set Xn we have

Hi ∩ C(Xn, ǫ) = ∅

for all i ∈ [n], then by Lemma 6.5(1), there is still a thick flat subtribe F ′
n of F contained

in C(Xn, ǫ). Since by assumption, F ′
n is not strongly concentrated at ǫ, we may pick

Hn+1 ∈ F ′
n and a finite set Xn+1 ⊇ Xn with Hn+1 ∩C(Xn+1, ǫ) = ∅. Then the union of all

the Hi is an ℵ0G 4 Γ. �

The following lemma will show that we can restrict ourself to thick G-tribes which are

concentrated at thick ends.

Lemma 6.7. Let G be a connected graph and Γ a graph containing a thick G-tribe F

concentrated at an end ǫ ∈ Ω(Γ) which is thin. Then ℵ0G 4 Γ.

Proof. Since ǫ is thin, we know by Proposition 2.4 that only finitely many vertices dominate

ǫ. Deleting these yields a subgraph of Γ in which there is still a thick G-tribe concentrated

at ǫ. Hence we may assume without loss of generality that ǫ is not dominated by any

vertex in Γ.

Let k ∈ N be the degree of ǫ. By [8, Corollary 5.5] there is a sequence of vertex sets

(Sn : n ∈ N) such that:

• |Sn| = k,

• C(Sn+1, ǫ) ⊆ C(Sn, ǫ), and

•
⋂

n∈N C(Sn, ǫ) = ∅.

Suppose there is a thick subtribe F ′ of F which is strongly concentrated at ǫ. For any

F ∈ F ′ there is an NF ∈ N such that H \C(SNF
, ǫ) 6= ∅ for all H ∈ F by the properties of

the sequence. Furthermore, since F ′ is strongly concentrated, H ∩ C(SNF
, ǫ) 6= ∅ as well

for each H ∈ F .

Let F ∈ F ′ be such that |F | > k. Since G is connected, so is H , and so from the above

it follows that H ∩ SNF
6= ∅ for each H ∈ F , contradicting the fact that |SNF

| = k < |F |.

Thus ℵ0G 4 Γ by Lemma 6.6. �

Note that, whilst concentration is hereditary for subtribes, strong concentration is not.

However if we restrict to flat subtribes, then strong concentration is a hereditary property.

Let us show see how ends of the members of a strongly concentrated tribe relate to ends

of the host graph Γ. Let G be a connected graph and H ⊆ Γ an IG. By Lemmas 3.2

and 3.4, if ω ∈ Ω(G) and R1 and R2 ∈ ω then the pullbacks H(R1) and H(R2) belong
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to the same end ω′ ∈ Ω(Γ). Hence, H determines for every end ω ∈ G a pullback end

H(ω) ∈ Ω(Γ). The next lemma is where we need to use the assumption that G is locally

finite.

Lemma 6.8. Let G be a locally finite connected graph and Γ a graph containing a thick

G-tribe F strongly concentrated at an end ǫ ∈ Ω(Γ) where every member is a tidy IG.

Then either ℵ0G 4 Γ, or there is a flat subtribe F ′ of F such that for every H ∈
⋃

F ′

there is an end ωH ∈ Ω(G) such that H(ωH) = ǫ.

Proof. Since G is locally finite and every H ∈
⋃

F is tidy, the branch sets H(v) are

finite for each v ∈ V (G). If ǫ is dominated by infinitely many vertices, then we know by

Proposition 2.4 that Γ contains a topological Kℵ0
minor, in which case ℵ0G 4 Γ, since

every locally finite connected graph is countable. If this is not the case, then there is some

k ∈ N such that ǫ is dominated by k vertices and so for every F ∈ F at most k of the

H ∈ F contain vertices which dominate ǫ in Γ. Therefore, there is a thick flat subtribe

F ′ of F such that no H ∈
⋃

F ′ contains a vertex dominating ǫ in Γ. Note that F ′ is still

strongly concentrated at ǫ, and every branch set of every H ∈
⋃

F ′ is finite.

Since F ′ is strongly concentrated at ǫ, for every finite vertex set X of Γ every H ∈
⋃

F ′

intersects C(X, ǫ). By a standard argument, since H as a connected infinite graph does

not contain a vertex dominating ǫ in Γ, instead H contains a ray RH ∈ ǫ.

For a subgraph K ⊆ H let us define K↓ to be the subgraph of G where V (K↓) = ϕH(K)

and (v, w) ∈ E(K↓) if and only if K contains the edge in H between H(v) and H(w). Then,

since each H(v) is finite, R ↓

H ⊆ G is an infinite subgraph of a locally finite connected graph,

and hence includes a ray SH in G. Furthermore, by construction, V (H(SH)) ⊆ V (RH)

and so the pullback of SH tends to ǫ in Γ. Hence, if SH tends to ωH ∈ Ω(G) then

H(ωH) = ǫ. �

§7. Ubiquity of minors of the half grid

Here, and in the following, we denote by H the infinite, one-ended, cubic hexagonal half

grid (see Figure 7.1). The following theorem of Halin is one of the cornerstones of infinite

graph theory.

Theorem 7.1 (Halin, see [7, Theorem 8.2.6]). Whenever a graph Γ contains a thick end,

then H 6 Γ. �

In [10], Halin used this result to show that every topological minor of H is ubiquitous

with respect to the topological minor relation 6. In particular, trees of maximum degree 3

are ubiquitous with respect to 6.
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Figure 7.1. The hexagonal half grid H.

However, the following argument, which is a slight adaptation of Halin’s, shows that

every connected minor of H is ubiquitous with respect to the minor relation. In particular,

the dominated ray, the dominated double ray, and all countable trees are ubiquitous with

respect to the minor relation.

The main difference to Halin’s original proof is that, since he was only considering locally

finite graphs, he was able to assume that the host graph Γ was also locally finite.

Lemma 7.2 ([10, (4) in Section 3]). ℵ0H is a topological minor of H.

Theorem 1.4. Any connected minor of the half grid N�Z is 4-ubiquitous.

Proof. Suppose G 4 N�Z is a minor of the half grid, and Γ is a graph such that nG 4 Γ

for each n ∈ N. By Lemma 6.4 we may assume there is an end ǫ of Γ and a thick G-tribe

F which is concentrated at ǫ. By Lemma 6.7 we may assume that ǫ is thick. Hence H 6 Γ

by Theorem 7.1, and with Lemma 7.2 we obtain

ℵ0G 4 ℵ0(N�Z) 4 ℵ0H 6 H 6 Γ. �

Lemma 7.3. H contains every countable tree as a minor.

Proof. It is easy to see that the infinite binary tree T2 embeds into H as a topological

minor. It is also easy to see that countably regular tree T∞ where every vertex has infinite

degree embeds into T2 as a minor. And obviously, every countable tree T is a subgraph

of T∞. Hence we have

T ⊆ T∞ 4 T2 6 H

from which the result follows. �

Corollary 7.4. All countable trees are ubiquitous with respect to the minor relation.

Proof. This is an immediate consequence of Lemma 7.3 and Theorem 1.4. �
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§8. Proof of main results

Theorem 1.2. Every locally finite connected graph with nowhere-linear end structure is

4-ubiquitous.

Proof. Let Γ be a graph such that nG 4 Γ holds for every n ∈ N. Thus Γ contains a thick

G-tribe F . By Lemmas 6.4 and 6.6 we may assume that F is strongly concentrated at an

end ǫ of Γ and so by Lemma 6.8 we may assume that for every H ∈
⋃

F there is an end

ωH ∈ Ω(G) such that H(ωH) = ǫ.

Our aim now is to show that ǫ is pebbly, which will complete the proof by Corollary 5.4.

So, let us assume for contradiction that there is some k ∈ N such that ǫ is not k-pebble-win.

Since F is thick there is some F ∈ F which contains k+2 disjoint IGs, H1, H2, . . . , Hk+2.

Since by assumption G has nowhere-linear end structure, by Lemma 3.5 for each i ∈ [k+2]

there is a family of disjoint rays {Ri
1, R

i
2, . . . , R

i
mi
} in G tending to ωHi

whose ray graph

in G is not a path. Let

S = (Hi(R
i
j) : i ∈ [k + 2], j ∈ [mi]).

By construction S is a disjoint family of rays which tend to ǫ in Γ and by Lemma 3.3

and Lemma 3.4 RGΓ(S) contains disjoint subgraphs K1, K2, . . . , Kk+2 such that Ki
∼=

RGG(R
i
j : j ∈ [mi]). However, by Corollary 5.2, there is a set X of vertices of size at most

k such that RGΓ(S) − X is a bare path P . However, then some Ki ⊆ P is a path, a

contradiction. �

Figure 8.1. The ray graphs in the full grid are cycles.
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Corollary 1.3. The full grid is 4-ubiquitous.

Proof. Let G be the full grid. Since G − R has at most one end for any ray R ∈ G, by

Lemma 3.2 the ray graph RG(R) is 2-connected for any finite family of three or more rays.

Hence, by Theorem 1.2 G is 4-ubiquitous �

Remark 8.1. In fact, every ray graph in the full grid is a cycle (see Figure 8.1).

Theorem 1.5. For every locally finite connected graph G, both G�Z and G�N are 4-

ubiquitous.

Proof. If G is a path or a ray, then G�Z is a subgraph of the half grid N�Z and thus

4-ubiquitous by Theorem 1.4. If G is a double ray then G�Z is the full grid and thus

4-ubiquitous by Corollary 1.3. Otherwise let G′ be a finite connected subgraph of G which

is not a path. For any end ω of G�Z there is a ray R of Z such that all rays of the form

{v}�R for v ∈ V (G) go to ω. But then G′ is a subgraph of RGG�Z(({v}�R)v∈V (G′)), so

this ray-graph is not a path, hence by Lemma 3.5 G�Z has nowhere-linear end structure

and is therefore 4-ubiquitous by Theorem 1.2. �

Finally let us prove Theorem 1.6. Recall that for k ∈ N let DRk denote the graph

formed by taking a ray R together with k vertices v1, v2, . . . , vk adjacent to every vertex

in R.

Theorem 1.6. The k-fold dominated ray DRk is 4-ubiquitous for every k ∈ N.

Proof. Note that if k 6 2 then DRk is a minor of the half grid, and hence ubiquity follows

from Theorem 1.4.

Suppose then that k ≥ 3 and Γ is a graph which contains a thick DRk-tribe F all

of whose members are tidy. By Lemma 6.6 we may assume that there is an end ǫ of

Γ such that F is concentrated at ǫ. If there are infinitely many vertices dominating ǫ,

then ℵ0DRk 4 Kℵ0
6 Γ holds by Proposition 2.4. So we may assume that only finitely

many vertices dominate ǫ. By taking a thick subtribe if necessary, we may assume that

no member of F contains such a vertex.

As before, if we can show that ǫ is pebbly, then we will be done by Corollary 5.4. So

suppose for a contradiction that ǫ is not r-pebble-win for some r ∈ N.

Let R be the ray as stated in the definition of DRk and let v1, v2, . . . , vk ∈ V (DRk)

be the vertices adjacent to each vertex of R. For each i ∈ [k] let Si denote the star in

V (DRk) consisting of vi and all incident edges. For each H ∈
⋃

F and each i ∈ [k]

we have that H(Si) is a locally finite infinite tree since H is tidy and any vertex of

H(Si) whose degree is infinite would dominate ǫ. So H(Si) includes a ray, call it RH,i,
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by Proposition 2.3. Let RH = H(R) be the pullback of the ray R in H . Now we set

RH = (RH,1, RH,2, . . . , RH,k, RH).

Since all leaves of H(Si) are in branch sets of vertices of R, it follows that in the graph

RGH(RH) each RH,i is adjacent to RH . Hence RGH(RH) contains a vertex of degree

k ≥ 3.

There is some layer F ∈ F of size ℓ ≥ r+ 1, say F = (Hi : i ∈ [ℓ]). For every i ∈ [r+ 1]

we set RHi
= (RHi,1, RHi,2, . . . , RHi,k, RHi

). Let us now consider the family of disjoint rays

R =
r+1
⋃

i=1

RHi
.

By construction R is a family of disjoint rays which tend to ǫ in Γ and by Lemma 3.3

and Lemma 3.4 RGΓ(R) contains r + 1 vertices whose degree is at least k ≥ 3. However,

by Corollary 5.2, there is a vertex set X of size at most r such that RGΓ(R)−X is a bare

path P . But then some vertex whose degree is at least 3 is contained in the bare path, a

contradiction. �
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