
EXTREMAL PROBLEMS IN UNIFORMLY DENSE HYPERGRAPHS

CHRISTIAN REIHER

Abstract. For a k-uniform hypergraph F let expn, F q be the maximum number of edges
of a k-uniform n-vertex hypergraph H which contains no copy of F . Determining or
estimating expn, F q is a classical and central problem in extremal combinatorics. While for
graphs (k “ 2) this problem is well understood, due to the work of Mantel, Turán, Erdős,
Stone, Simonovits and many others, only very little is known for k-uniform hypergraphs
for k ą 2. Already the case when F is a k-uniform hypergraph with three edges on k ` 1
vertices is still wide open even for k “ 3.

We consider variants of such problems where the large hypergraph H enjoys additional
hereditary density conditions. Questions of this type were suggested by Erdős and Sós
about 30 years ago. In recent work with Rödl and Schacht it turned out that the regularity
method for hypergraphs, established by Gowers and by Rödl et al. about a decade ago, is a
suitable tool for extremal problems of this type and we shall discuss some of those recent
results and some interesting open problems in this area.

§1. Introduction

1.1. Turán’s extremal problem. Extremal graph theory is known to have been initiated
by Turán’s seminal article [34], in which he proved that for n ě r ě 2 there is, among
all graphs on n vertices not containing a clique of order r, exactly one whose number of
edges is maximal, namely the balanced complete pr ´ 1q-partite graph. Turán then asked
for similar results, where instead of a clique one intends to find the 1-skeleton of a given
platonic solid in the host graph. Moreover, he proposed to study analogous questions in
the context of hypergraphs.

Fixing some terminology, we say for a nonnegative integer k that a pair H “ pV,Eq is a
k-uniform hypergraph, if V is a finite set of vertices and E Ď V pkq “ te Ď V : |e| “ ku is a
set of k-element subsets of V , whose members are called the edges of H. As usual 2-uniform
hypergraphs are simply called graphs. Associated with every given k-uniform hypergraph F
one has Turán’s extremal function exp¨, F q mapping every positive integer n to

expn, F q “ max
 

|E| : H “ pV,Eq is an F -free, k-uniform hypergraph with |V | “ n
(

,
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i.e., to the largest number of edges that a k-uniform hypergraph on n vertices without
containing F as a (not necessarily induced) subhypergraph can have. In its strictest sense,
Turán’s hypergraph problem asks to determine this function for every hypergraph F .

Using an averaging argument, Katona, Nemetz, and Simonovits [18] have shown that for
every k-uniform hypergraph F the sequence n ÞÝÑ expn, F q

L`

n
k

˘

is nonincreasing. Therefore
the limit

πpF q “ lim
nÑ8

expn, F q
`

n
k

˘ ,

known as the Turán density of F , exists. The problem to determine the Turán densities of
all hypergraphs is likewise called Turán’s hypergraph problem.

It may be observed that these problems are trivial for k P t0, 1u, while the case k “ 2 is
fairly well understood. Turán himself [34] determined expn,Krq for all integers n and r,
thus proving πpKrq “

r´2
r´1 for every integer r ě 2. This was further generalised by Erdős

and Stone [12], and their result can be shown to yield the full answer to the Turán density
problem in the case of graphs. Explicitly, we have

πpF q “
χpF q ´ 2
χpF q ´ 1 (1.1)

for every graph F with at least one edge, where χpF q denotes the chromatic number of F ,
i.e., the least integer r for which there exists a graph homomorphism from F to Kr (see
also [10], where the connection with the chromatic number appeared first).

Already for k “ 3, however, our knowledge is very limited and there are only very few
3-uniform hypergraphs F for which the function exp¨, F q is completely known. A notable
example occurs when F denotes the Fano plane. Sós conjectured in the 1970s that for n ě 7
the balanced, complete, bipartite hypergraph is extremal for this problem. The first result
in this direction is due to de Caen and Füredi [6], who proved that at least the consequence
πpF q “ 3

4 of Sós’s conjecture holds. By combining their work with Simonovits’s stability
method [33] it was shown in [15, 20] that the conjecture holds for all sufficiently large
hypergraphs. A full proof applying to all n ě 7 was recently obtained in [4].

On the other hand, even concerning the 3-uniform hypergraphs on four vertices with
three and four edges, denoted by Kp3q´

4 and Kp3q
4 respectively, it is only known that

2
7 ď πpK

p3q´
4 q ď 0.2871 and 5

9 ď πpK
p3q
4 q ď 0.5616 .

The lower bounds are derived from explicit constructions due to Frankl and Füredi [13]
and to Turán (see, e.g., [7]), and in both cases they are universally believed to be optimal.
The upper bounds were obtained by computer assisted calculations based on Razborov’s
flag algebra method introduced in [23]. They are due to Baber and Talbot [3], and to
Razborov himself [24]. For a more detailed discussion of our current knowledge about
Turan’s hypergraph problem we refer to Keevash’s survey [19].
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1.2. Uniformly dense hypergraphs. Let us now restrict our attention to 3-uniform
hypergraphs. Accordingly, the word hypergraph will henceforth always mean 3-uniform
hypergraph. Concerning the extremal problem for Kp3q´

4 it was thought for a while that its
Turán density might be 1

4 .
This notion was based on the following construction, which goes back to the work of

Erdős and Hajnal [9]. Take a random tournament T on a large set V of vertices. Evidently
any three vertices in V induce either a transitive subtournament of T or a cyclic triangle.
Furthermore, the former happens with a probability of 3

4 and the latter with a probability
of 1

4 . Define, depending on T , a random hypergraph HpT q on V whose edges correspond to
the cyclic triangles in T . One checks easily that HpT q can never contain a Kp3q´

4 and the
random choice of T causes HpT q to have, with high probability, an edge density close to 1

4 .
While the construction of Frankl and Füredi [13] mentioned earlier shows that the

hypergraphs HpT q cannot be optimal among all Kp3q´
4 -free hypergraphs, it was suggested

by Erdős and Sós (see e.g., [8, 11]) that there might still be a natural sense in which they
are optimal Kp3q´

4 -free hypergraphs. Specifically, they suggested to focus only on uniformly
dense host hypergraphs defined as follows.

Definition 1.1. For real numbers d P r0, 1s and η ą 0 we say that a 3-uniform hypergraph
H “ pV,Eq is uniformly pd, ηq-dense if for all U Ď V the estimate

|U p3q X E| ě d

ˆ

|U |

3

˙

´ η |V |3

holds.

Using standard probabilistic estimates one checks easily that for every accuracy para-
meter η ą 0 the probability that HpT q is uniformly p1

4 , ηq-dense tends to 1 as the number
of vertices tends to infinity. The Turán theoretic question about the optimal density of
uniformly dense hypergraphs not containing a given hypergraph F (such as Kp3q´

4 ) can be
made precise by introducing the quantities

π pF q “ sup
 

d P r0, 1s : for every η ą 0 and n P N there exists an F -free,

uniformly pd, ηq-dense hypergraph H with |V pHq| ě n
(

, (1.2)

which are to be regarded as modified versions of the usual Turán densities for uniformly
dense hypergraphs. With this notation at hand, the tournament construction shows
that π pKp3q´

4 q ě 1
4 and the aforementioned conjecture of Erdős and Sós states that,

actually, this holds with equality. Recently this has been shown independently in [16] and
in [25].

Theorem 1.2. We have π pKp3q´
4 q “ 1

4 .
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One of the two proofs referred to above consists of a computer-generated argument based
on Razborov’s flag algebra method, while the other one uses the hypergraph regularity
method. The subsequent progress in this area (see [28,29]) has followed the latter approach.
Moreover, continuing the collaboration with Rödl and Schacht, we have shown that there
is a large number of further variants of the classical Turán density that can likewise be
studied by means of the hypergraph regularity method (see [26,27]). The goal of this article
is to survey these recent developments.

Before we proceed any further, however, we would like to draw the reader’s attention to
perhaps the most urgent problem in the area, the determination of π pKp3q

4 q. The following
construction, due to Rödl [30], shows that this number has to be at least 1

2 . Consider, for a
sufficiently large natural number n, the elements of rns “ t1, 2, . . . , nu as vertices. Assign
to every pair ij of vertices uniformly at random one of the colours red or green. Declare
a triple ijk with 1 ď i ă j ă k ď n to be an edge of the hypergraph H we are about to
exhibit, if the colours of ij and ik disagree. Of course this happens with a probability
of 1

2 and, again, standard probabilistic arguments show that for every η ą 0 it happens
asymptotically almost surely that H is uniformly p1

2 , ηq-dense. Moreover, it is impossible
that H contains a tetrahedron. This is because for any four vertices i ă j ă k ă ` it must
be the case that two of the three pairs ij, ik, and i` receive the same colour, meaning that
the three triples ijk, ij`, and ik` cannot be present in H at the same time.

Conjecture 1.3. Rödl’s construction is optimal, i.e., we have π pKp3q
4 q “ 1

2 .

A partial result in this direction is given by Theorem 1.4 below.

1.3. Further Turán densities. For proving results about π p¨q one typically works with
a property of hypergraphs that turns out to be more useful than the uniform density
condition introduced in Definition 1.1. Rather than knowing something about the edge
densities within single sets of vertices, it is more helpful to have comparable knowledge
about the edge densities between any three sets of vertices. Explicitly, if H “ pV,Eq denotes
a hypergraph and A,B,C Ď V pHq, we set

E pA,B,Cq “ tpa, b, cq P AˆB ˆ C : abc P Eu .

Moreover, for two real numbers d P r0, 1s and η ą 0 we say that H is pd, η, q-dense if

|E pA,B,Cq| ě d|A||B||C| ´ η|V |3

holds for all A,B,C Ď V . One checks immediately by setting U “ A “ B “ C that every
pd, η, q-dense hypergraph is also uniformly pd, η{6q-dense. In the converse direction one
can only show that large uniformly dense hypergraphs contain linear sized subhypergraphs
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that are still dense in this new sense with almost the same density, and that this is enough
for proving

π pF q “ sup
 

d P r0, 1s : for every η ą 0 and n P N there exists

an F -free, pd, η, q-dense hypergraph H with |V pHq| ě n
(

. (1.3)

A proof of this equality can be found in [28, Proposition 2.5], where one has to set k “ 3
and j “ 1. Alternatively, the reader may prefer to regard (1.3) as the “official definition”
of π p¨q and treat (1.2) just like an additional piece of information that is not going to
be used throughout the rest of this article. As a matter of fact, this may even be the
more natural approach to this subject, and the three dots occurring in the symbol π p¨q
are intended to remind us of the three sets A, B, and C mentioned in the definition of
being pd, η, q-dense.

We proceed with a more restrictive property of hypergraphs shared by both the random
tournament construction and by Rödl’s hypergraph introduced in the previous subsection.
Given a hypergraph H “ pV,Eq, a set A Ď V , and a set of ordered pairs P Ď V 2 we set

E pA,P q “ tpa, b, cq P V 3 : a P A, pb, cq P P, and abc P Eu .

So for instance E pA,B ˆ Cq “ E pA,B,Cq holds for all A,B,C Ď V . Next, for two real
numbers d P r0, 1s and η ą 0 we say that H is pd, η, q-dense provided that

|E pA,P q| ě d|A||P | ´ η|V |3

holds for all A Ď V and P Ď V 2. Finally we define

π pF q “ sup
 

d P r0, 1s : for every η ą 0 and n P N there exists

an F -free, pd, η, q-dense hypergraph H with |V pHq| ě n
(

for every hypergraph F . Since every pd, η, q-dense hypergraph is, in particular, also
pd, η, q-dense, we have

π pF q ď π pF q

for every hypergraph F . Let us remark at this point that due to the fact that Rödl’s
hypergraph is p1

2 , η, q-dense we have π pKp3q
4 q ě 1

2 . Thus the following result from [26]
shows that a considerably weaker version of Conjecture 1.3 is true.

Theorem 1.4. We have π pKp3q
4 q “ 1

2 .

The process of replacing a pair of sets by a set of pairs may be repeated once more. For
a hypergraph H “ pV,Eq and two sets of ordered pairs of vertices P,Q Ď V 2 one defines

K pP,Qq “ tpa, b, cq P V 3 : pa, bq P P and pb, cq P Qu
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as well as

E pP,Qq “ tpa, b, cq P K pP,Qq : abc P Eu .

Notice that for all A Ď V and P Ď V 2 we have

|K pAˆ V, P q| “ |A||P | and E pAˆ V, P q “ E pA,P q .

Next, we declare H to be pd, η, q-dense for two real numbers d P r0, 1s and η ą 0 if

|E pP,Qq| ě d|K pP,Qq| ´ η|V |3

holds for all P,Q Ď V 2. If this is the case, then H is pd, η, q-dense as well. The generalised
Turán densities appropriate for this concept are defined by

π pF q “ sup
 

d P r0, 1s : for every η ą 0 and n P N there exists

an F -free, pd, η, q-dense hypergraph H with |V pHq| ě n
(

for every hypergraph F , and as before we may observe that

π pF q ď π pF q .

The investigation of these quantities was initiated in [27], where the case that F is a
clique received particular attention. This led to the curious situation that while the value of
π pK

p3q
5 q is still unknown, it has been be shown that π pKp3q

11 q “
2
3 holds (see Theorem 2.9).

We would like to mention that -dense hypergraphs have recently also been studied by
Aigner-Horev and Levy [1] in the context of hypergraph Hamiltonicity problems.

It is natural to expect at this moment some definitions of sets like K pP,Q,Rq and
E pP,Q,Rq involving three sets of ordered pairs, but it can be shown that the corresponding
generalised Turán densities π pF q vanish for all hypergraphs F (see [21]).

Still, there are some further variations on this theme. We refer to the concluding remarks
in [26] for a complete enumeration of all uniform density notions in the context of 3-uniform
hypergraphs∗. A more systematic account applying to k-uniform hypergraphs for all k ě 2
has been given in [28, Section 2]. In this survey, however, we shall mainly focus on the
most concrete cases , , and .

∗Strictly speaking, that article deals with quasirandomness notions instead of density notions, the
difference being that in [26] there are also upper bounds imposed on the numbers |E pP,Qq|, etc. It seems,
however, that the present version demanding only lower bounds on these numbers is more natural from the
perspective of hypergraph Turán problems.
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§2. Examples

All known lower bounds on quantities of the form π‹pF q with ‹ P t , , u are derived
from probabilistic constructions that can be viewed as appropriate modifications of Rödl’s
hypergraph introduced at the end of Subsection 1.2. Basically, these constructions combine
an ordering of the vertices, a colouring of the pairs of vertices, and certain rules telling us
which colour patterns on triples of vertices are to be translated into edges of the envisioned
hypergraph.

As a matter of fact, even the Erdős-Hajnal tournament hypergraph can be presented
in this manner, even though prima facie it depends on an orientation rather than on a
colouring of the pairs. Once its vertices receive an arbitrary ordering, however, there
will be “forward” and “backward” arcs between the vertices, and this state of affairs can
alternatively be encoded by using two colours. Moreover, one can decide the presence or
absence of an edge abc in the hypergraph as soon as one knows the three “colours” received
by the pairs ab, ac, and bc (as well as the ordering of ta, b, cu).

For all these reasons, we shall now describe an abstract framework for presenting such
constructions. Given a nonempty finite set Φ of colours we call a set P Ď Φ3 a palette
(over Φ). So the elements of palettes are ordered triples of colours, called colour patterns.
Such a palette is said to be pd, q-dense for a real number d P r0, 1s if |P| ě d|Φ|3 holds.
Given a vertex set V equipped with a linear ordering ă and a colouring ϕ : V p2q ÝÑ Φ we
define a hypergraph HP

ϕ “ pV,Eq by

E “
 

tx, y, zu P V p3q : x ă y ă z and
`

ϕpx, yq, ϕpx, zq, ϕpy, zq
˘

P P
(

. (2.1)

In practice, one usually takes V “ rns for a sufficiently large integer n and adopts the
standard ordering on this set as ă. This causes no loss of generality in the sense that one
still considers the same isomorphism types of hypergraphs as in the general case.

Now the important observation is that if the underlying palette P is pd, q-dense for
some real d P r0, 1s, and if the colouring ϕ gets chosen uniformly at random (among
all |Φ|p

n
2q possibilities), then for every η ą 0 the hypergraph HP

ϕ is asymptotically almost
surely pd, η, q-dense. Furthermore, given a hypergraph F and a palette P it can be
decided in finite time whether there exists a hypergraph of the form HP

ϕ containing F .
Specifically, this happens if and only if there exists an ordering ă of V pF q as well as a
colouring ϕ : BF ÝÑ Φ of the set of pairs covered by edges of F such that every edge xyz
of F with x ă y ă z satisfies

`

ϕpx, yq, ϕpx, zq, ϕpy, zq
˘

P P .

Thus, whenever F fails to admit such a pair pă, ϕq, one knows that π pF q ě d.
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Example 2.1. The simplest (nontrivial) palettes that can be imagined just consist of a
single colour pattern. Owing to potential repetitions of colours in such a pattern, there arise
several distinct possibilities, the most restrictive of which is given by three distinct colours.
So let us consider the case that Φ “ tred, blue, greenu and P “ tpred, blue, greenqu.

Clearly, P is p 1
27 , q-dense. Therefore, the previous discussion shows that if a hyper-

graph F does not have property (b ) in Theorem 2.2 below, then π pF q ě 1
27 . In other

words, if π pF q ă 1
27 , then F needs to admit such an ordering of its vertices together with

such a colouring of its shadow. The main result of [29] informs us that under this condition
one actually has π pF q “ 0. This implies that π pF q R p0, 1

27q holds for every hypergraph F .

Theorem 2.2. For a 3-uniform hypergraph F , the following are equivalent:

(a ) π pF q “ 0.
(b ) There is an enumeration of the vertex set V pF q “ tv1, . . . , vfu and there is a three-

colouring ϕ : BF Ñ tred, blue, greenu of the pairs of vertices covered by hyperedges
of F such that every hyperedge tvi, vj, vku P EpF q with i ă j ă k satisfies

ϕpvi, vjq “ red, ϕpvi, vkq “ blue, and ϕpvj, vkq “ green.

Example 2.3. As indicated by the discussion in the second paragraph of this section, the
tournament hypergraph can be defined by the p1

4 , q-dense palette

P “ tpÑ,Ð,Ñq, pÐ,Ñ,Ðqu

over Φ “ tÑ,Ðu. The proof of Theorem 1.2 presented in [25] proceeds by showing that for
n´1 ! η ! ε every p1

4 ` ε, η, q-dense hypergraph on n vertices possesses a vertex whose
link graph contains a triangle. It thus seems natural to wonder whether similar ideas can
be used to settle the value of π pF q for all hypergraphs F having a special vertex contained
in every edge. Given a graph G, let us call the hypergraph obtained from G by adding a
new vertex 8 having all triples 8vw with vw P EpGq as edges the cone over G, denoted
by CG. So Kp3q´

4 “ CK3 and the question is what one can say about π pCGq in general.
This problem is already very interesting when G is a clique. Concerning stars Sk “ CKk

the proof in [25] shows more generally that

π pSkq ď

ˆ

k ´ 2
k ´ 1

˙2

holds for all k ě 2, but it remains unclear at this moment whether this is sharp for any k ě 4.
The p1

3 , q-dense palette

P “ tp1, 2, 1q, p1, 3, 1q, p2, 1, 2q, p2, 3, 2q, p3, 1, 3q, p3, 2, 3q, p1, 2, 3q, p2, 3, 1q, p3, 1, 2qu
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over Φ “ t1, 2, 3u establishes the lower bound π pS4q ě
1
3 and a generalisation of this idea

leads to
π pSkq ě

k2 ´ 5k ` 7
pk ´ 1q2

for all k ě 3 (see [25, Section 5.3.1]).

Example 2.4. Rödl’s hypergraph, let us recall, is defined by the p1
2 , q-dense palette

P “ tpred, green, redq, pred, green, greenq, pgreen, red, redq, pgreen, red, greenqu

over Φ “ tred, greenu and establishes π pKp3q
4 q ě 1

2 . More generally, given a set Φ consisting
of r ě 2 colours one may use the palette

P “ tpα, β, γq P Φ3 : α ‰ βu

for showing
π pK

p3q
r`2q ě

r ´ 1
r

.

It would be exciting if equality turned out to hold here for all r ě 2. It should be pointed
out, however, that if this is true it might be much more difficult to prove than Conjecture 1.3,
as for r “ 4 there is a second, apparently sporadic, construction that yields the lower
bound π pKp3q

6 q ě 3
4 as well. Namely, one takes the palette over tred, greenu containing all

six colour patterns involving both colours (see [25, Section 5.1]). This construction works
because of 6 ÝÑ p3q22. However, we are probably just exploiting a numerical coincidence
here and it seems unlikely that similar Ramsey theoretic constructions are relevant to the
problem of determining π pKp3q

r`2q (but see also Example 2.8).

Example 2.5. Finally, we briefly discuss the case where F “ C
p3q
5 is a cycle of length

five, i.e., V pCp3q5 q “ Z{5Z and EpCp3q5 q “
 

ti, i ` 1, i ` 2u : i P Z{5Z
(

. The lower bound
π pC

p3q
5 q ě 4

27 can be shown by using the set of colours Φ “ tdark red, light red, greenu and
the palette consisting of all four colour patterns of the form pred, red, greenq, where “red”
means either “dark red” or “light red”. As far as we know, no interesting upper bound on
π pC

p3q
5 q has ever been obtained.

The last example suggests that occasionally it may be more convenient to work with
a weighted version of the concepts introduced so far. Let us say that a weighted set of
colours is a pair pΦ, wq consisting of a finite nonempty set of colours Φ and a weight
function w : Φ Ñ r0, 1s with the property

ř

γPΦ wpγq “ 1. If no weight function has
been specified, we imagine that wpγq “ |Φ|´1 for all γ P Φ is implicitly understood.
Now when we have a palette P Ď Φ3 over such a weighted set of colours pΦ, wq we say
that P is pd, q-dense if

ř

pα,β,γqPP wpαqwpβqwpγq ě d. In an obvious sense, this extends
the meaning of being pd, q-dense introduced earlier. Now instead of artificially talking
about dark and light red in Example 2.5 we could have just said that we consider the
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weighted set Φ “ tred, greenu with wpredq “ 2
3 and wpgreenq “ 1

3 , as well as the palette
P “ tpred, red, greenqu.

As long as the values attained by our weight function w are rational numbers, it remains,
of course, purely a matter of taste whether one prefers weighted sets of colours or whether
one rather wants to speak about different shades of colours that are somewhat immaterial
to the definition of the palette. It is an interesting open question, however, whether allowing
irrational weights of the colours can ever give rise to an optimal lower bound on π pF q for
any hypergraph F .

This roughly exhausts the lower bound constructions for π p¨q that have been used so far,
and we proceed with a discussion of π p¨q. Returning for simplicity to the unweighted setting,
we say that a palette P over a set of colours Φ is pd, q-dense for a real number d P r0, 1s
provided that

for every we have

α P Φ
ˇ

ˇtpβ, γq P Φ2 : pα, β, γq P Pu
ˇ

ˇ ě d|Φ|2 ,
β P Φ

ˇ

ˇtpα, γq P Φ2 : pα, β, γq P Pu
ˇ

ˇ ě d|Φ|2 ,
γ P Φ

ˇ

ˇtpα, βq P Φ2 : pα, β, γq P Pu
ˇ

ˇ ě d|Φ|2 .

Again easy probabilistic arguments show that whenever a palette P is pd, q-dense, and
a colouring ϕ gets chosen uniformly at random, then for every η ą 0 the hypergraph HP

ϕ

defined in (2.1) is asymptotically almost surely pd, η, q-dense. Thus lower bounds on π pF q
can be established almost in the same way as for π pF q, the only additional thing that
needs to be checked being whether the palette one uses satisfies the three conditions in the
above table.

For instance, the palettes we referred to in the Examples 2.3 and 2.4 are easily verified
to be -dense for the expected values of d. Hence the lower bounds on π p¨q obtained there
apply to π p¨q as well. In particular, we learn

π pSkq ě
k2 ´ 5k ` 7
pk ´ 1q2

for every k ě 3 and
π pK

p3q
r`2q ě

r ´ 1
r

for every r ě 2. But with the exception of Theorem 1.4 (and Theorem 1.2) it is not
known whether equality holds here either. The reader might briefly wonder at this point
whether π pF q and π pF q agree for all hypergraphs F . But in unpublished work with Rödl
and Schacht it was shown that π pF q ą π pF q “ 0 holds for some hypergraph F . Moreover,
we obtained an explicit description of the class tF : π pF q “ 0u.

The story of π p¨q starts similarly, but the few results that have been obtained so far
seem to suggest that this generalised Turán density behaves quite differently. To begin
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with, given a real number d P r0, 1s and a palette P over a set of colours Φ, we say that P

is pd, q-dense if
for all we have

α, β P Φ
ˇ

ˇtγ P Φ: pα, β, γq P Pu
ˇ

ˇ ě d|Φ| ,
α, γ P Φ

ˇ

ˇtβ P Φ: pα, β, γq P Pu
ˇ

ˇ ě d|Φ| ,
β, γ P Φ

ˇ

ˇtα P Φ: pα, β, γq P Pu
ˇ

ˇ ě d|Φ| .

For clarity we emphasise that the two colours, α, β, etc. mentioned in the left column of
this table are allowed to be identical. Now again standard probabilistic arguments show
that if P is pd, q-dense, then for every η ą 0 the hypergraph HP

ϕ is asymptotically almost
surely pd, η, q-dense and this principle can be used in the standard way for producing lower
bounds on π pF q for many hypergraphs F .

All palettes P used in this connection so far are symmetrical in the sense that for every
pattern pγ1, γ2, γ3q P P and every permutation σ P S3 one has pγσp1q, γσp2q, γσp3qq P P. In
other words, this means that permuting the entries of a triple does not affect its membership
in the palette. For symmetrical palettes any two of our three conditions are equivalent to
each other, which reduces the amount of work one needs for checking them by a factor of
three.∗

When specifying a symmetrical palette, it is convenient to enumerate only a small
proportion of its colour patterns from which the remaining ones can be deduced owing to
the symmetry condition. More precisely, given an arbitrary palette P Ď Φ3 we call the
inclusion-wise minimal symmetrical palette containing P the symmetrical palette generated
by P. One may observe that the three symmetrical palettes in the examples that follow
possess some further symmetries induced by permutations of colours.

Example 2.6. The symmetrical palette over t1, 2, 3u generated by

tp1, 1, 2q, p2, 2, 3q, p3, 3, 1qu

is p1
3 , q-dense and shows π pKp3q

5 q ě 1
3 (see [27, Section 13.1.3]).

Example 2.7. Similarly, the symmetrical palette over t1, 2u generated by tp1, 1, 2q, p1, 2, 2qu
is p1

2 , q-dense and, due to the well-known Ramsey theoretic fact 6 ÝÑ p3q22, this proves
that π pKp3q

6 q ě 1
2 .

Example 2.8. Finally, the symmetrical palette over t1, 2, 3u generated by

tp1, 1, 2q, p1, 1, 3q, p2, 2, 1q, p2, 2, 3q, p3, 3, 1q, p3, 3, 2qu
∗It is for this reason that in [27, Section 13.1.3] only symmetrical palettes were introduced. Therefore,

when writing [27], it seemed more convenient to define palettes as collections of multisets of colours instead
of ordered triples, but it is unlikely that this will cause any confusion.
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is p2
3 , q-dense and because of a Ramsey theoretic result due to Chung and Graham [5] this

proves π pKp3q
11 q ě

2
3 .

The main result of [27] provides an upper bound on the -Turán-densities of cliques that
turns out to be sharp in surprisingly many small cases.

Theorem 2.9. For every integer r ě 2 one has π pK2rq ď r´2
r´1 .

Together with the Examples 2.6–2.8 this yields

π pK
p3q
4 q “ 0,

1
3 ď π pK

p3q
5 q,

π pK
p3q
6 q “ π pK

p3q
7 q “ π pK

p3q
8 q “ 1

2 ď π pK
p3q
9 q ď π pK

p3q
10 q,

π pK
p3q
11 q “ ¨ ¨ ¨ “ π pK

p3q
16 q “

2
3 ,

i.e., the exact value of π pKp3q
t q for all t ď 16 with the exception of t “ 5, 9, 10. It seems

likely that if π pKp3q
5 q “ 1

3 turned out to be true, then the methods of [27] would allow to
prove π pKp3q

10 q ď
3
5 as well. More generally, there are some good reasons to believe that

π pK
p3q
` q “ α implies π pKp3q

2` q ď
1

2´α .

§3. Reduced hypergraphs

It is currently open whether all extremal hypergraphs for π , π , and π can be derived
from palettes, i.e., whether they are of the form HP

ϕ . There is, however, a slightly more
general method to construct pd, η, ‹q-dense hypergraphs with ‹ P t , , u, for which such
a result can be proved. This construction relies on so-called reduced hypergraphs that are
going to be introduced next.

The main new idea is that when we have an ordered vertex set pV,ăq as well as a
colouring ϕ of the pairs in V p2q, then in hypergraphs of the form HP

ϕ “ pV,Eq the presence
or absence of a triple xyz with x ă y ă z in E depends entirely on the colours received by
the pairs xy, xz, and yz without taking the relative positions of x, y, and z in the linear
ordering ă into account. But one could imagine, for instance, hypergraphs with vertex
set r2ns for some huge n P N, where for converting colour patterns observed on pairs into
edges there is one rule applying to triples with two vertices in rns and a completely different
rule for triples with two vertices in rn` 1, 2ns.

Reduced hypergraphs can be thought of as a framework for capturing the combinatorial
core of all such constructions. Let us consider a finite set I of indices. Suppose that
to any pair of distinct indices i, j P I there has been assigned a finite nonempty set of
vertices P ij “ Pji, and that for distinct pairs of indices the corresponding vertex sets are
disjoint. Finally, assume that for every triple of indices ijk P Ip3q there has been specified
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a 3-uniform tripartite hypergraph A ijk with vertex classes P ij, P ik, and Pjk. In such
situations we call the

`

|I|
2

˘

-partite 3-uniform hypergraph A with

V pA q “
ď

¨

ijPIp2q

P ij and EpA q “
ď

¨

ijkPIp3q

EpA ijk
q

a reduced hypergraph with index set I, vertex classes P ij, and constituents A ijk.
When translating such a reduced hypergraph into a hypergraph H “ pV,Eq of Turán

theoretic significance one starts with a huge vertex set V having an equipartition V “
Ť

¨ iPI Vi

and takes a “colouring” of pairs of vertices such that for x P Vi and y P Vj with i ‰ j the
pair xy receives uniformly at random some element of P ij as its “colour” ϕpxyq. Then for
any three vertices from distinct partition classes x P Vi, y P Vj, and z P Vk one decides
whether xyz P E should be the case depending on the colours ϕpxyq, ϕpxzq, and ϕpyzq by
using the constituent A ijk as if it were a palette; so explicitly one demands

xyz P E ðñ tϕpxyq, ϕpxzq, ϕpyzqu P EpA ijk
q .

Next we need to express our density conditions in terms of reduced hypergraphs. The
definition that follows is easy to remember. Intuitively it just tells us that , , and
correspond to ordinary density, a minimum vertex degree condition, and a minimum pair
degree condition for the constituents of A , respectively.∗

Definition 3.1. Let A denote a reduced hypergraph with index set I, vertex classes P ij,
and constituents A ijk, and let d P r0, 1s be a real number.

(i ) If epA ijkq ě d|P ij||P ik||Pjk| holds for any three distinct indices i, j, k P I we say
that A is pd, q-dense.

(ii ) Moreover, if for any three distinct indices i, j, k P I and every vertex P ij P P ij we
have

ˇ

ˇ

 

pP ik, P jk
q P P ik ˆ Pjk : pP ij, P ik, P jk

q P EpA ijk
q
(
ˇ

ˇ ě d|P ik||Pjk| ,

then A is called pd, q-dense.
(iii ) Finally, if for any three distinct indices i, j, k P I and all vertices P ij P P ij , P ik P P ik

we have
ˇ

ˇ

 

P jk
P Pjk : pP ij, P ik, P jk

q P EpA ijk
q
(
ˇ

ˇ ě d|Pjk| ,

then A is called pd, q-dense.

∗In the same way, the case dismissed at the the end of Section 1.3 would correspond to a minimum
triple degree condition or, in other words, to the condition that all constituents be complete tripartite
hypergraphs (if d ą 0). This is, of course, related to the fact that -dense hypergraphs of positive density
contain everything, i.e., that π pF q “ 0 holds for every hypergraph F .
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Whether the hypergraphs described by a given reduced hypergraph A are capable of
containing a given hypergraph F can be expressed in terms of the existence of so-called
reduced maps, that are going to be introduced next.

Definition 3.2. A reduced map from a hypergraph F to a reduced hypergraph A with
index set I, vertex classes P ij, and constituents A ijk is a pair pλ, ϕq such that

(i ) λ : V pF q ÝÑ I and ϕ : BF ÝÑ V pA q, where BF denotes the set of all pairs of
vertices covered by an edge of F ;

(ii ) if uv P BF , then λpuq ‰ λpvq and ϕpuvq P Pλpuqλpvq;
(iii ) if uvw P EpF q, then tϕpuvq, ϕpuwq, ϕpvwqu P EpA λpuqλpvqλpwqq.
If some such reduced map exists, we say that A contains a reduced image of F , and

otherwise A is called F -free.

Now the main result about the reduced hypergraph construction asserts the following.

Theorem 3.3. If F is a hypergraph and ‹ P t , , u, then

π‹pF q “ sup
 

d P r0, 1s : For every m P N there is a pd, ‹q-dense,

F -free, reduced hypergraph with an index set of size m
(

. (3.1)

Large parts of the proof of this result are implicit in [25–27,29]. Still, we believe it to
be useful to gather the argument in its entirety in the remainder of this section and the
two subsequent sections. To this end, we shall temporarily denote the right side of (3.1)
by πrd

‹ pF q, where the superscript “rd” means “reduced”.
The inequality πrd

‹ pF q ď π‹pF q, proved in Proposition 3.4 below, simply expresses the
fact that the narrative of this section does indeed indicate a valid strategy for establishing
lower bounds on π‹pF q by means of reduced hypergraphs. The proof of the other direction,
πrd
‹ pF q ě π‹pF q, requires more involved reasoning based on the hypergraph regularity

method.

Proposition 3.4. For every hypergraph F and every symbol ‹ P t , , u we have

πrd
‹ pF q ď π‹pF q .

Let us recall the following standard concepts and facts required in the proof. A bipartite
graph G “ pX ŸY,Eq is called pδ, dq-quasirandom for two real numbers δ ą 0 and d P r0, 1s
if for all A Ď X and B Ď Y the estimate

ˇ

ˇepA,Bq´ d|A||B|
ˇ

ˇ ď δ|X||Y | holds. Suppose now
that for two nonempty disjoint sets X and Y we create a random bipartite graph G with
vertex set X ŸY by declaring each pair in KpX, Y q “ ttx, yu : x P X and y P Y u uniformly
at random to be an edge of G with probability d. Then for any fixed pair of sets A Ď X

and B Ď Y Chernoff’s inequality (see e.g. [2, Theorem A.1.4]) implies

P
`ˇ

ˇepA,Bq ´ d|A||B|
ˇ

ˇ ą δ|X||Y |
˘

ď 2 expp´2δ2
|X||Y |q,
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whence
PpG fails to be pδ, dq-quasirandomq ď 2|X|`|Y |`1 expp´2δ2

|X||Y |q .

In particular, if |X| “ |Y | tends to infinity, then G is asymptotically almost surely pδ, dq-
quasirandom.

An important result about quasirandomness, utilised below, is the so-called triangle
counting lemma. It informs us that if a tripartite graph P “ pX Ÿ Y Ÿ Z,Eq has the
property that its naturally induced bipartite subgraphs on X Ÿ Y , X Ÿ Z, and Y Ÿ Z

are pδ, dXY q-, pδ, dXZq-, and pδ, dY Zq-quasirandom, respectively, then the size of the set
K3pP q “ ttx, y, zu : xy, xz, yz P Eu of triangles it contains obeys the estimate

ˇ

ˇ|K3pP q| ´ dXY dXZdY Z |X||Y ||Z|
ˇ

ˇ ď 3δ|X||Y ||Z| .

Proof of Proposition 3.4. Let a real number d P r0, 1s be given which has the property that
for every m P N there exists a pd, ‹q-dense, F -free reduced hypergraph with m indices. We
need to show that d ď π‹pF q. So consider an arbitrary real η ą 0 as well as some n P N.
Now we need to produce a pd, η, ‹q-dense, F -free hypergraph H “ pV,Eq with |V | ě n. For
this purpose, we set

m “

R

6
η

V

(3.2)

and appeal to our hypothesis on d. It yields an F -free, pd, ‹q-dense reduced hypergraph A ,
say with index set I, vertex classes P ij, and constituents A ijk, where |I| “ m. Now set

P “ max
 

|P ij| : ij P Ip2q
(

, δ “
η

6P 3

and let h " P,m, n, η´1 be sufficiently large.
We shall construct the desired hypergraph H on a set of vertices V “

Ť

¨ iPI Vi with
|Vi| “ h for every i P I. Owing to the probabilistic argument discussed before this proof
we may assume that there is a family tϕij : ij P Ip2qu of colourings ϕij : KpVi, Vjq ÝÑ P ij

such that for every pair of indices ij P Ip2q and every P ij P P ij the bipartite graph GpP ijq

between Vi and Vj whose set of edges is ϕ´1
ij pP

ijq happens to be pδ, |P ij|´1q-quasirandom.
Depending on such colourings ϕij we complete the definition of H in the expected way by
setting

EpHq “
 

xyz P V p3q : There are distinct i, j, k P I with x P Vi, y P Vj, z P Vk,

and tϕijpxyq, ϕikpxzq, ϕjkpyzqu P EpA ijk
q
(

.

Let us remark that all edges of H are crossing in the sense of intersecting each of the
vertex classes Vi with i P I at most once. The rationale behind our choice of m in (3.2) is
that it allows us to bound the number of non-crossing triples px, y, zq P V 3 in a useful way.
Clearly, this number is h3 times the number of triples pi, j, kq P I3 for which i “ j, i “ k,
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or j “ k holds. As this number is in turn at most 3m2, we conclude that the number of
non-crossing ordered triples is at most 3m2h3 “ 3m´1|V |3, which by (3.2) is at most η

2 |V |
3.

Now our choice of h clearly guarantees |V pHq| “ hm ě n. Next we would like to check
that H is indeed F -free. Otherwise there would exist an embedding ψ : F ÝÑ H. For
each u P V pF q let λpuq P I denote the index for which ψpuq P Vλpuq is true. For every pair
uv P BF we know that λpuq ‰ λpvq, because the edges of H are crossing. Thus we may
define ϕ : BF Ñ V pA q by

ϕpuvq “ ϕλpuqλpvq
`

ψpuqψpvq
˘

for every pair uv P BF . Evidently λ and ϕ satisfy the first two clauses of Definition 3.2.
As ψ maps edges of F to edges of H, they satisfy (iii ) as well. Thus pλ, ϕq is a reduced
map from F to A , contrary to the choice of A as being F -free.

It remains to check that H is pd, η, ‹q-dense and for this purpose we consider the three
possibilities for ‹ separately.

First Case. ‹ “

Given arbitrary A,B,C Ď V we need to prove that |E pA,B,Cq| ě d|A||B||C| ´ η|V |3.
Whenever i, j, k P I are distinct and tP ij, P ik, P jku P EpA ijkq, the triangle counting lemma
entails that the tripartite subgraph of GpP ijqYGpP ikqYGpP jkq induced by AXVi, BXVj ,
and C X Vk contains at least

|AX Vi||B X Vj||C X Vk|

|P ij||P ik||Pjk|
´ 3δh3

triangles each of which gives rise to an edge of H. Thus for distinct i, j, k P I we have

E pAX Vi, B X Vj, C X Vkq ě
|EpA ijkq||AX Vi||B X Vj||C X Vk|

|P ij||P ik||Pjk|
´ 3P 3δh3 ,

which by our assumption that A be pd, q-dense and by our choice of δ yields

E pAX Vi, B X Vj, C X Vkq ě d|AX Vi||B X Vj||C X Vk| ´
η
2h

3 .

Summing over all ordered triples pi, j, kq of distinct indices we infer that, up to an additive
error of at most η

2 |V |
3, the size of E pA,B,Cq is at least d times the number of crossing

triples in AˆB ˆC. As there at most η
2 |V |

3 non-crossing triples altogether, it follows that
we have indeed |E pA,B,Cq| ě d|A||B||C| ´ η|V |3.

Second Case. ‹ “

Given A Ď V and Q Ď V 2 we need to prove that |E pA,Qq| ě d|A||Q| ´ η|V |3. Getting
rid of non-crossing triples as in the previous case, it suffices to this end if we show for any
three distinct indices i, j, k P I that

|E pAX Vi, QX pVj ˆ Vkq| ě d|AX Vi||QX pVj ˆ Vkq| ´
η
2h

3 .
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For this in turn it is enough to establish that for every P jk P Pjk the sets

rKpP jk
q “

 

px, y, zq P Vi ˆ Vj ˆ Vk : x P A, py, zq P Q, and ϕjkpyzq “ P jk
(

and
rEpP jk

q “
 

px, y, zq P rKpP jk
q : xyz P EpHq

(

satisfy
ˇ

ˇ rEpP jk
q
ˇ

ˇ ě d
ˇ

ˇ rKpP jk
q
ˇ

ˇ´
η

2P h
3 .

Now we distinguish the triples px, y, zq contributing to the left side according to the
values of ϕijpxyq and ϕikpxzq. By the assumed pd, q-denseness of A we know

ˇ

ˇ

 

pP ik, P jk
q P P ik ˆ Pjk : pP ij, P ik, P jk

q P EpA ijk
q
(
ˇ

ˇ ě d|P ik||Pjk| ,

and thus it remains to show that for every edge tP ij, P ik, P jku of A ijk we have

ˇ

ˇ

 

px, y, zq P rKpP jk
q : ϕijpxyq “ P ij and ϕikpxzq “ P ik

(
ˇ

ˇ ě

ˇ

ˇ rKpP jkq
ˇ

ˇ

|P ij||P ik|
´ 3δh3 . (3.3)

Now appealing for y P Vj to the pδ, |P ik|´1q-quasirandomness of GpP ikq we learn that the
sets

Ay “
 

x P AX Vi : ϕijpxyq “ P ij
(

and
Cy “

 

z P Vk : py, zq P Q and ϕjkpyzq “ P jk
(

satisfy
ˇ

ˇ

 

px, zq P Ay ˆ Cy : ϕikpxzq “ P ik
(
ˇ

ˇ ě
|Ay||Cy|

|P ik|
´ δh2 .

Summing over all y P Y we deduce
ˇ

ˇ

 

px, y, zq P rKpP jk
q : ϕijpxyq “ P ij and ϕikpxzq “ P ik

(
ˇ

ˇ

ě |P ik|´1ˇ
ˇ

 

px, y, zq P rKpP jk
q : ϕijpxyq “ P ij

(
ˇ

ˇ´ δh3 . (3.4)

Thus (3.3) will follow if can prove additionally that
ˇ

ˇ

 

px, y, zq P rKpP jk
q : ϕijpxyq “ P ij

(
ˇ

ˇ ě |P ij|´1ˇ
ˇ rKpP jk

q
ˇ

ˇ´ δh3 .

This estimate can be verified, however, in the same way as (3.4), the only difference being that
this time one works with a sum over all z P Vk and exploits the pδ, |P ij|´1q-quasirandomness
of GpP ijq.

Third Case. ‹ “

Proceeding almost exactly as in the previous case we consider two given sets of pairs
Q,R P V 2 and aiming at |E pQ,Rq| ě d|K pQ,Rq| ´ η|V |3 we begin again by eliminating



18 CHRISTIAN REIHER

the noncrossing triples from our consideration, this time by reducing our claim to the
statement that for any three distinct indices i, j, k P I the inequality

ˇ

ˇE
`

QX pVi ˆ Vjq, R X pVj ˆ Vkq
˘ˇ

ˇ ě d
ˇ

ˇK
`

QX pVi ˆ Vjq, R X pVj ˆ Vkq
˘ˇ

ˇ´
η
2h

3

holds. This will be clear once we know that for all P ij P P ij and P jk P Pjk the sets

rKpP ij, P jk
q “

 

px, y, zq P Vi ˆ Vj ˆ Vk XK pQ,Rq : ϕijpxyq “ P ij and ϕjkpyzq “ P jk
(

and
rEpP ij, P jk

q “
 

px, y, zq P rKpP ij, P jk
q : xyz P EpHq

(

satisfy
ˇ

ˇ rEpP ij, P jk
q
ˇ

ˇ ě d
ˇ

ˇ rKpP ij, P jk
q
ˇ

ˇ´ 3δPh3 .

As A is pd, q-dense, we have
ˇ

ˇ

 

P ik
P P ik : pP ij, P ik, P jk

q P EpA ijk
q
(
ˇ

ˇ ě d|P ik| ,

and, hence, it is enough to check that to every edge tP ij, P ik, P jku of the constituent A ijk

there corresponds an inequality
ˇ

ˇ

 

px, y, zq P rKpP ij, P jk
q : ϕikpxzq “ P ik

(
ˇ

ˇ ě

ˇ

ˇ rKpP ij, P jkq
ˇ

ˇ

|P ik|
´ δh3 . (3.5)

Now indeed for every y P Vj the pδ, |P ik|´1q-quasirandomness of GpP ikq tells us that for
the sets

Ay “
 

x P Vi : px, yq P Q and ϕijpxyq “ P ij
(

and
Cy “

 

z P Vk : py, zq P R and ϕjkpyzq “ P jk
(

one has
ˇ

ˇ

 

px, zq P Ay ˆ Cy : ϕikpxzq “ P ik
(ˇ

ˇ ě
|Ay||Cy|

|P ik|
´ δh2 .

By summing this over all y P Y one arrives at (3.5). �

§4. Irregular triads

The definition of πrd
‹ pF q assures us that for ε ą 0 every pπrd

‹ pF q ` ε, ‹q-dense reduced
hypergraph A with sufficiently many indices contains a reduced image of F . For our
intended application of this fact, however, we need to know that it remains true if one
allows the deletion of a small number of edges from A (see Proposition 4.4 below).

For ‹ “ this turns out to be somewhat easier to prove than in the other two cases. The
additional argument we want to put forth if ‹ “ is the following.

Suppose that a reduced hypergraph A with index set I, vertex classes P ij, and con-
stituents A ijk as well as two real numbers d ą 0 and η ě 0 are given. We shall say that A
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is pd, η, q-dense if for any three distinct indices i, j, k P I the exceptional set X ij
k Ď P ij

consisting of all P ij P P ij with
ˇ

ˇ

 

pP ik, P jk
q P P ik ˆ Pjk : pP ij, P ik, P jk

q P EpA ijk
q
(
ˇ

ˇ ă d|P ik||Pjk|

satisfies |X ij
k | ď η|P ij|. So for reduced hypergraphs being pd, 0, q-dense means the same as

being pd, q-dense.

Lemma 4.1. For every hypergraph F and every ε ą 0 there exist m P N and η ą 0 such
that every pπrdpF q ` ε, η, q-dense reduced hypergraph with m indices contains a reduced
image of F .

Proof. Choose m in such a way that every
`

πrdpF q` ε
2 ,

˘

-dense reduced hypergraph with m
indices contains a reduced image of F , set

η “
ε

4m ,

and consider an arbitrary pπrdpF q ` ε, η, q-dense reduced hypergraph A with m indices.
As usual we denote the index set, vertex classes, and constituents of A by I, P ij , and A ijk

respectively. Let the exceptional sets X ij
k be defined as above with πrdpF q ` ε here in place

of d there.
Now the plan is to show that if one deletes all exceptional vertices from A one gets a

`

πrdpF q ` ε
2 ,

˘

-dense reduced hypergraph, which, therefore, contains a reduced image of F .
Thus we define

Qij “ P ij r
ď

kPIrti,ju

X ij
k for every pair ij P Ip2q ,

and notice that our assumption on A implies

|Qij| ě p1´mηq , (4.1)

whence, in particular, Qij ‰ ∅.
For this reason there exists a reduced hypergraph B with index set I and vertex classesQij

whose constituents Bijk are the restrictions of A ijk to Qij ŸQik ŸQjk.
Consider any three distinct indices i, j, k P I as well as an arbitrary vertex P ij P Qij.

From P ij R X ij
k we conclude

ˇ

ˇ

 

pP ik, P jk
q P P ik ˆ Pjk : pP ij, P ik, P jk

q P EpA ijk
q
(
ˇ

ˇ ě pπrd
pF q ` εq|P ik||Pjk| . (4.2)

By (4.1) we have |Qik| ě p1´mηq|P ik| and |Qjk| ě p1´mηq|Pjk|, wherefore

|pP ik ˆ Pjkqr pQik ˆQjkq| ď 2mη|P ik||Pjk| “ ε
2 |P

ik
||Pjk| .
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Combined with (4.2) this yields
ˇ

ˇ

 

pP ik, P jk
q P Qik ˆQjk : pP ij, P ik, P jk

q P EpA ijk
q
(
ˇ

ˇ ě
`

πrd
pF q ` ε´ ε

2

˘

|P ik||Pjk|

ě
`

πrd
pF q ` ε

2

˘

|Qik||Qjk| ,

as desired. �

Similar considerations can be undertaken with respect to . As expected, a reduced
hypergraph A with standard notation is called pd, η, q-dense for two real numbers d P r0, 1s
and η ą 0 provided that for any three distinct indices i, j, k P I the set Yjki of all exceptional
pairs pP ij, P ikq P P ij ˆ P ik with

ˇ

ˇ

 

P jk
P Pjk : pP ij, P ik, P jk

q P EpA ijk
q
(
ˇ

ˇ ă d|Pjk| ,

satisfies |Yjki | ď η|P ij||P ik|.

Lemma 4.2. Given ε ą 0 and a hypergraph F , there are m P N and η ą 0 such that every
pπrdpF q ` ε, η, q-dense reduced hypergraph with m indices contains a reduced image of F .

Proof. Take m so large that every
`

πrdpF q` ε
2 ,

˘

-dense reduced hypergraph with m indices
contains a reduced image of F . Take ` P N and η ą 0 fitting into the hierarchy

η ! `´1
! m´1, ε ,

and let A be a pπrdpF q ` ε, η, q-dense reduced hypergraph with index set I of size m,
vertex classes P ij, constituents A ijk, and exceptional sets Yjki (defined with πrdpF q ` ε in
place of d). We want to prove that there is a reduced map from F to A .

To this end we consider a random reduced hypergraph B with index set I whose vertex
sets Qij are any

`

|I|
2

˘

disjoint sets of size `. The intended randomness is induced by a family
ψ “ tψij : ij P Ip2qu of maps ψij : Qij ÝÑ P ij. Depending on ψ the constituents of B are
defined so as to satisfy

tQij, Qik, Qjk
u P EpBijk

q ðñ tψijpQij
q, ψikpQik

q, ψjkpQjk
qu P EpA ijk

q

for all ijk P Ip3q and all Qij P Qij, Qik P Qik, and Qjk P Qjk.
Let us observe first that if for some choice of ψ it happens that B contains a reduced

image of F , then we are done. This is because if pλ, ϕq is a reduced map from F to B,
then pλ, ψ ˝ ϕq is a reduced map from F to A , where by pψ ˝ ϕq : BF ÝÑ V pA q we mean
the map defined by pψ ˝ ϕqpuvq “ ψλpuqλpvq

`

ϕpuvq
˘

for all uv P BF .
In the remainder of the proof we shall show that if ψ gets chosen uniformly at random,

then with positive probability B is
`

πrdpF q ` ε
2 ,

˘

-dense, which will conclude the proof
due to our choice of m.

So let us study for fixed distinct indices i, j, k P I and fixed vertices Qij P Qij , Qik P Qjk

the unpleasant event E that the pair degree D of Qij and Qik in Bijk is smaller than
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`

πrdpF q ` ε
2

˘

`. If also the vertices P ij “ ψijpQijq and P ik “ ψikpQikq are given, then this
pair degree D depends only on ψjk and not on the remaining maps comprising ψ. Moreover,
the distribution of D is the same as if one draws ` random elements from Pjk and keeps
track of how many of them belong to the common neighbourhood of P ij and P ik in A ijk.
Thus if pP ij, P ikq R Yjki the expected value of D is at least pπrdpF q ` εq` and Chernoff’s
inequality (see e.g. [2, Theorem A.1.4]) yields

P
`

E
ˇ

ˇψijpQij
q “ P ij and ψikpQik

q “ P ik
˘

ď expp´ε2`{2q .

Owing to |Yjki | ď η|P ij||P ik| we infer

PpE q “ |P ij|´1
|P ik|´1

ÿ

pP ij ,P ikqPPijˆPik

P
`

E
ˇ

ˇψijpQij
q “ P ij, ψikpQik

q “ P ik
˘

ď η ` expp´ε2`{2q .

As there are altogether no more than m3`2 possibilities to choose i, j, k, Qij, and Qik, this
proves

P
`

B fails to be
`

πrd
pF q ` ε

2 ,
˘

-dense
˘

ď m3`2`η ` expp´ε2`{2q
˘

,

and by an appropriate choice of ` and η the right side can be pushed below 1. �

Remark 4.3. It should be clear that the same construction could have been used for
establishing Lemma 4.1. In fact, it generalises much further and applies to the study of the
Turán densities πA pF q initiated in [28] as well.

Proposition 4.4. Given a hypergraph F , a positive real number ε, and a symbol ‹ P t , , u

there exist m P N and δ ą 0 such that the following holds. If two reduced hypergraphs A

and B with the same set of indices I of size at least m and with the same vertex classes P ij

have the properties that A is pπrd
‹ pF q ` ε, ‹q-dense and

ÿ

ijkPIp3q

|EpA ijkqr EpBijkq|

|P ij||P ik||Pjk|
ď δ|I|3 , (4.3)

then B contains a reduced image of F .

Proof. We work with the hierarchy

δ ! ξ,m´1
! ε .

Call a triple ijk P Ip3q useless if

EpA ijk
qr EpBijk

q| ą ξ|P ij||P ik||Pjk| .

As a consequence of (4.3) the number of such useless triples is at most δξ´1|I|3. Since |I| ě m

is sufficiently large, we have
`

|I|
3

˘

ą 1
7 |I|

3 and thus a proportion of no more than 7δξ´1

among all triples is useless. Therefore, if one draws a set J Ď I with |J | “ m uniformly
at random, the expected number of useless triples in J is at most 7δξ´1`m

3

˘

, which by an
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appropriate choice of δ can be made less than 1. For this reason, there exists a set J Ď I

with |J | “ m spanning no useless triple. We shall now prove that the restriction of B to J ,
denoted by B1 in the sequel, contains a reduced image of F . To this end we treat the three
cases ‹ “ , , separately.

First Case. ‹ “
Since ξ ď ε

2 , the reduced hypergraph B1 is
`

πrdpF q ` ε
2 ,

˘

-dense and thus it does indeed
contain a reduced image of F .

Second Case. ‹ “
Owing to Lemma 4.1 it suffices to check that B1 is

`

πrdpF q ` ε
2 , 2ξε

´1,
˘

-dense. So let
any three distinct indices i, j, k P J be given and let X ij

k Ď P ij denote the exceptional set
of all vertices P ij P P ij with

ˇ

ˇ

 

pP ik, P jk
q P P ik ˆ Pjk : pP ij, P ik, P jk

q P EpBijk
q
(
ˇ

ˇ ă
`

πrd
pF q ` ε

2

˘

|P ik||Pjk| .

Since A is pπrdpF q ` ε, q-dense and ijk is useful, we have

|X ij
k | ¨

ε
2 |P

ik
||Pjk| ď |EpA ijk

qr EpBijk
q| ď ξ|P ij||P ik||Pjk| ,

which yields indeed |X ij
k | ď 2ξε´1|P ij|.

Third Case. ‹ “
Arguing as the previous case one proves that B1 is

`

πrdpF q ` ε
2 , 2ξε

´1,
˘

-dense, which
yields the desired conclusion in view of Lemma 4.2. �

§5. Hypergraph regularity

The proof of Theorem 3.3 can now be completed by means of the hypergraph regularity
method, which for 3-uniform hypergraphs is due to Frankl and Rödl [14]. Our presentation
below also takes the later works [17,22,31,32] into account.

A central notion in this area is that of a hypergraph H being regular with respect to
a tripartite graph P , which roughly speaking means that the triangles in P behave in an
important way as if a random subset of them would correspond to edges of H.

Definition 5.1. A 3-uniform hypergraph H “ pV,EHq is pδ3, d3q-regular with respect to
a tripartite graph P “ pX Ÿ Y Ÿ Z,EP q with V Ě X Y Y Y Z if for every tripartite
subgraph Q Ď P we have

ˇ

ˇ|EH XK3pQq| ´ d3|K3pQq|
ˇ

ˇ ď δ3|K3pP q| .

Moreover, we simply say that H is δ3-regular with respect to P , if it is pδ3, d3q-regular for
some d3 ě 0. We also define the relative density of H with respect to P by

dpH|P q “
|EH XK3pP q|

|K3pP q|
,

where we use the convention dpH|P q “ 0 if K3pP q “ ∅.
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Now the hypergraph regularity lemma tells us that large hypergraphs can in the following
approximate sense be decomposed into regular parts.

Theorem 5.2 (Regularity Lemma). For every δ3 ą 0, every δ2 : N Ñ p0, 1s, and every
t0 P N there exists an integer T0 such that for every n ě t0 and every n-vertex 3-uniform
hypergraph H “ pV,EHq the following holds.

There are integers t P rt0, T0s and ` ď T0, a vertex partition V0 Ÿ V1 Ÿ . . . Ÿ Vt “ V , and
for all 1 ď i ă j ď t there exists a partition

P ij “ tP ij
α “ pVi Ÿ Vj, E

ij
α q : 1 ď α ď `u

of the edge set of the complete bipartite graph KpVi, Vjq satisfying the following properties.

(i ) |V0| ď δ3n and |V1| “ ¨ ¨ ¨ “ |Vt|;
(ii ) for every 1 ď i ă j ď t and α P r`s the bipartite graph P ij

α is pδ2p`q, 1{`q-regular;
(iii ) and H is δ3-regular with respect to P ijk

αβγ for all but at most δ3t
3`3 tripartite graphs

P ijk
αβγ “ P ij

α Ÿ P
ik
β Ÿ P

jk
γ “ pVi Ÿ Vj Ÿ Vk, E

ij
α Ÿ E

ik
β Ÿ E

jk
γ q (5.1)

with 1 ď i ă j ă k ď t and α, β, γ P r`s.

The tripartite graphs occurring in (5.1) are called triads. In order to get a better feeling
as to why (in our context) such a decomposition of a given hypergraph H is a useful thing
to have, it may be helpful to imagine the following special outcome.

(a ) V0 “ ∅, i.e., the entire vertex set gets partitioned;
(b ) every edge of H intersects each partition class Vi at most once;
(c ) there are no irregular triads, i.e., (iii ) holds without any exceptions;
(d ) moreover, all triads are either “full” in the sense that all their triangles correspond

to edges of H, or “empty” in the sense that none of their triangles correspond to
edges of H.

It is not hard to see that if these four things happen at the same time, then H is
essentially of the form constructed in the proof of Proposition 3.4. The underlying reduced
hypergraph A on which such a construction would be based has index set rts, vertex
classes P ij, and the possible edges tP ij

α , P
ik
β , P

jk
γ u in its constituents A ijk would indicate

which triads P ijk
αβγ are “full”.

So in a vague sense what remains to be done for completing the proof of Theorem 3.3
is that we need to address how to deal with the possible failures of (a )–(d ) when the
regularity lemma gets applied. There will be no difficulties with (a ) or (b ), for the concepts
we study are sufficiently robust, so that deleting the small set V0 for (a ) and ignoring the
small proportion of noncrossing edges for (b ) has essentially no effect. We are prepared
for (c ) in the light of Proposition 4.4.
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Finally, regarding (d ) we will treat triads with respect to which the relative density H is
not too small as if they were full. That is, for some appropriate constant d3 ą 0 we will
put an edge tP ij

α , P
ik
β , P

jk
γ u into A ijk if and only if dpH|P ijk

αβγq ě d3. This will allow us to
rather easily transfer denseness properties from H to A , but we will need an argument as
to why a reduced map from F to A does still give rise to a copy of F in H, even though
the triads we want to use are not known to be full. This is, however, a standard situation
in hypergraph regularity theory, for which the counting lemma has been developed. Below
we shall require the following consequence of this result.

Theorem 5.3 (Embedding Lemma). For every 3-uniform hypergraph F and every d3 ą 0
there exist δ3 ą 0, and functions δ2 : N ÝÑ p0, 1s and N : N ÝÑ N such that the following
holds for every ` P N.

Suppose that
‚ λ : V pF q ÝÑ I is a map from V pF q to some set I with λpuq ‰ λpvq for all uv P BF ,
‚ that tVi : i P Iu is a family of mutually disjoint sets of the same size N˚ ě Np`q,
‚ and that for every uv P BF one has a pδ2p`q,

1
`
q-quasirandom bipartite graph Puv

between Vλpuq and Vλpvq.
Then a hypergraph H with V pHq Ě

Ť

iPI Vi posseses a subhypergraph isomorphic to F
provided that for every edge uvw P EpF q

‚ one has dpH|Puv Y Puw Y Pvwq ě d3

‚ and H is δ3-regular with respect to the tripartite graph Puv Y Puw Y Pvw.

For completeness we shall briefly discuss how this statement relates to the standard
reference [22, Corollary 2.3]. First of all, a more conventional setup for the counting lemma
would be the case that V pF q “ I “ rf s holds for some natural number f and that λ is
the identity. Secondly, in this special case the full counting lemma allows to estimate the
number of homomorphisms ψ from F to H with ψpuq P Vλpuq for every u P V pF q in a
satisfactory way. In particular, a suitable choice of δ3, δ2p¨q, and Np¨q entails that this
number is at least 1

2d
epF q
3 `´|BF |N

|V pF q|
˚ . Thirdly, this assertion generalises immediately to the

case of general F , I, and λ, even if λ should fail to be injective. Finally, by increasing Np`q if
necessary, one can achieve that this lower bound on the number of homomorphisms from F

to H exceeds the number of non-injective maps ψ from V pF q to V pHq with ψpuq P Vλpuq
for every u P V pF q. Therefore, [22, Corollary 2.3] does indeed imply Theorem 5.3.

We may now proceed to the second half of Theorem 3.3.

Proposition 5.4. If F is a hypergraph and ‹ P t , , u, then π‹pF q ď πrd
‹ pF q.

Proof. We may suppose πrd
‹ pF q ă 1, since otherwise the result is clear. Let an arbitrary

ε P p0, 1´ πrd
‹ pF qs be given. By plugging F and d3 “

1
7ε into Theorem 5.3 we obtain δ3 ą 0



EXTREMAL PROBLEMS IN UNIFORMLY DENSE HYPERGRAPHS 25

and functions δ2 : N ÝÑ p0, 1s as well as N : N ÝÑ N. Without loss of generality, we may
suppose that δ3 ă

1
2 is sufficiently small, that δ2p`q ď

1
21ε`

´3 holds for every ` P N and
that N is increasing. By Proposition 4.4 and our flexibility to decrease δ3 we may assume
that there exists t0 P N such that if for arbitrary t ě t0 and ` ě 1 one deletes deletes
at most δ3t

3`3 edges from a
`

πrd
‹ pF q `

1
7ε, ‹

˘

-dense reduced hypergraph with index set rts
whose vertex classes have size `, then the resulting reduced hypergraph contains a reduced
image of F . With this choice of δ3, δ2p¨q, and t0 we appeal to the regularity lemma, thus
getting an integer T0. Finally, we set

n0 “ 2T0NpT0q and η “
ε

56T 5
0
.

Now we contend that every pπrd
‹ pF q ` ε, η, ‹q-dense hypergraph H on n ě n0 vertices has

a subhypergraph isomorphic to F , which clearly implies the desired result.
Suppose that the regularity lemma applied to H yields the integers t P rt0, T0s and ` ď T0,

the vertex partition V pHq “ V0 Ÿ V1 Ÿ . . . Ÿ Vt and for 1 ď i ă j ď t the pair partition

P ij “ tP ij
α “ pVi Ÿ Vj, E

ij
α q : 1 ď α ď `u

of KpVi, Vjq such that (i ), (ii ), and (iii ) hold.
This situation gives rise to two reduced hypergraphs A and B with index set rts and

vertex classes P ij for ij P rtsp2q defined as follows. A triple tP ij
α , P

ik
β , P

jk
γ u is declared to form

an edge of the constituent A ijk if the corresponding triad P ijk
αβγ satisfies dpH|P ijk

αβγq ě d3. If
in addition H is δ3-regular with respect to this triad, then we put this edge into Bijk as
well. We shall verify later that

A is
`

πrd
‹ pF q `

1
7ε, ‹

˘

-dense. (5.2)

Based on this fact, the argument can be completed as follows. By Theorem 5.2(iii ) we
have

|EpA qr EpBq| ď δ3t
3`3 ,

so due to our choice of t0 according to Proposition 4.4 there is a reduced map pλ, ϕq from F

to B. Now the embedding lemma applies to I “ rts, λ, the sets Vi for i P I, and the
bipartite graphs called ϕpuvq P Pλpuqλpvq here playing the rôles of Puv there. The lower
bound imposed there on the sets Vi follows from

|Vi| “
|V | ´ |V0|

t
ě
p1´ δ3qn

T0
ě

n0

2T0
“ NpT0q ě Np`q ,

for every i P rts. Moreover, H satisfies the last two bullets of Theorem 5.3 by Defini-
tion 3.2(iii ) and the construction of B. So altogether we obtain indeed F Ď H and it
remains to establish (5.2).

A key observation towards this goal is that for M “ |V1| “ . . . “ |Vt| every triad spans
at most

`

`´3 ` 3δ2p`q
˘

M3 triangles due to the triangle counting lemma, and because of
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δ2p`q ď
1
21ε`

´3 this is turn at most p1` 1
7εq`

´3M3. So by our choice of d3 a triad that does
not correspond to an edge of A can accomodate at most 1

7εp1`
1
7εq`

´3M3 edges of H.
Furthermore, it will be helpful to be aware that our choice of η guarantees

ηn3
“

ε

7T 2
0

ˆ

n

2T0

˙3

ď
εM3

7`2 .

From now on we treat the three possibilities for ‹ separately.

First Case. ‹ “

Given any three distinct indices i, j, k P rts we need to prove |EpA ijkq| ě
`

πrdpF q` 1
7ε
˘

`3.
Applying the assumption that H is pπrdpF q ` ε, η, q-dense to Vi, Vj, and Vk we obtain

|E pVi, Vj, Vkq| ě
`

πrd
pF q ` ε

˘

M3
´ ηn3

ě
`

πrd
pF q ` 6

7ε
˘

M3 .

Counting the edges of the left side according to the triad to which they belong we obtain
`

πrd
pF q ` 6

7ε
˘

M3
ď
`

|EpA ijk
q| ` 1

7ε`
3˘`1` 1

7ε
˘

`´3M3 .

Owing to
`

πrd
pF q ` 4

7ε
˘`

1` 1
7ε
˘

ď πrd
pF q ` 6

7ε

this yields
`

πrd
pF q ` 3

7ε
˘

`3
ď |EpA ijk

q| ,

which is more than required.

Second Case. ‹ “

Consider three distinct indices i, j, k P rts, a bipartite graph P jk
γ P Pjk, and its neigh-

bourhood
N “

 

pP ij
α , P

ik
β q P P ij ˆ P ik : tP ij

α , P
ik
β , P

jk
γ u P EpA

ijk
q
(

in the constituent A ijk. Observe that

|EpP jk
γ q| ě

`

`´1
´ δ2p`q

˘

M2
ě
`

1´ 1
7ε
˘

`´1M2 .

Since H is pπrdpF q ` ε, η, q-dense, this yields

|E pVi, P
jk
γ q| ě

`

πrd
pF q ` ε

˘

M |EpP jk
γ q| ´ ηn

3

ě
`

πrd
pF q ` ε

˘

p1´ 1
7εq`

´1M3
´ 1

7ε`
´1M3

ě
`

πrd
pF q ` 4

7ε
˘

`´1M3 ,

where we have identified P jk
γ in the natural way with a subset of Vj ˆVk. As in the previous

case this leads to
`

πrd
pF q ` 4

7ε
˘

`´1M3
ď
`

N ` 1
7ε`

2˘`1` 1
7ε
˘

`´3M3 ,
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which in turn implies
`

πrd
pF q ` 1

7ε
˘

`2
ď N .

Thus A is indeed
`

πrdpF q ` 1
7ε,

˘

-dense.

Third Case. ‹ “

This time let three distinct indices i, j, k P rts as well as two bipartite graphs P ij
α P P ij and

P jk
γ P Pjk be given, which we identify with the corresponding subsets of ViˆVj and Vj ˆVk,

respectively. The graph counting lemma implies

K pP ij
α , P

jk
γ q ě

`

`´2
´ 2δ2p`q

˘

M3
ě
`

1´ 1
7ε
˘

`´2M3

and it follows from H being pπrdpF q ` ε, η, q-dense that
ˇ

ˇE pP ij
α , P

jk
γ q

ˇ

ˇ ě
`

πrd
pF q ` ε

˘
ˇ

ˇK pP ij
α , P

jk
γ q

ˇ

ˇ´ ηn3

ě
`

πrd
pF q ` ε

˘`

1´ 1
7ε
˘

`´2M3
´ 1

7ε`
´2M3

ě
`

πrd
pF q ` 4

7ε
˘

`´2M3

Regarding the common neighbourhood

J “
 

P ik
β P P ik : pP ij

α , P
ik
β , P

jk
γ q P EpA

ijk
q
(

this tells us
`

πrd
pF q ` 4

7ε
˘

`´2M3
ď
`

|J | ` 1
7`ε

˘`

1` 1
7ε
˘

`´3M3 ,

which yields
`

πrd
pF q ` 1

7ε
˘

` ď |J | ,

as desired. �

§6. More on tetrahedra

In order to illustrate how Theorem 3.3 can be applied we conclude this article by sketching
a proof of π pKp3q

4 q “ 0. This result forms the first interesting case of Theorem 2.9 and the
reader seeking further information or more details is referred to [27].

Given ε ą 0 we want to show that every pε, q-dense reduced hypergraph with sufficiently
many indices contains the reduced image of a tetrahedron. Let A be such a reduced
hypergraph with index set I, vertex classes P ij , and constituents A ijk. Write I as a disjoint
union I “ X Ÿ Y , where |X| ą 1

ε
and Y is much larger then X.

The first step is to assign to every pair px, yq P X ˆ Y an arbitrary vertex P xy P Pxy.
Next we look at two distinct vertices x, x1 P X. For every y P Y the common neigh-

bourhood of P xy and P x1y in the constituent A xx1y contains, by our hypothesis on A , at
least ε|Pxx1

| vertices. Thus, by double counting, we may fix a vertex P xx1

P Pxx1 belonging
to this neighbourhood for at least ε|Y | many choices of y P Y . In other words, we may
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shrink Y by a factor of no more than ε to a subset Y 1 such that P xx1

P xyP x1y is edge of A

for every y P Y 1.
This argument can be applied iteratively to all pairs of vertices in X. That is, we

enumerate all pairs in Xp2q and when processing a pair in the list we select a vertex from
the corresponding vertex class and shrink the subset of Y under current consideration by a
further factor of ε. When this procedure ends, we have chosen for every pair xx1 P Xp2q a
vertex P xx1

P Pxx1 . Moreover, if Y ˚ denotes the subset of Y that has survived through all
stages, then tP xx1

, P xy, P x1yu P EpA xx1yq holds for all distinct x, x1 P X and all y P Y ˚.
By starting with a sufficiently large set Y we can ensure that |Y ˚| ě 2. Pick once and

for all two distinct indices y, y1 P Y ˚. Reversing the rôles of X and Y we may now select
a suitable vertex P yy1 in Pyy1 and shrink X in the same way as above to a set X˚ with
|X˚| ě ε|X| such that P xyP xy1

P yy1

P EpA xyy1

q holds for all x P X˚. Due to |X| ą 1
ε
there

will be at least two survivors x and x1 in X˚.
Now the four indices x, x1, y, and y1 form together with the six vertices P xx1 , P xy, P xy1 ,

P x1y, P x1y1 , and P yy1 the desired reduced image of a tetrahedron in A .
It should be clear that the same argument also establishes π pBq “ 0 for every bipartite

hypergraph B. There are, however, many further hypergraphs whose -Turán-density van-
ishes. For instance, as a consequence of Theorem 2.2 the Fano plane F satisfies π pF q “ 0
and, hence, also π pF q “ 0. We shall return to the rather subtle problem of characterising
the set tF : π pF q “ 0u at another occasion.
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