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Abstract. We study a nonlinear, non-autonomous feedback controller applied

to boundary control systems. Our aim is to track a given reference signal with
prescribed performance. Existence and uniqueness of solutions to the resulting

closed-loop system is proved by using nonlinear operator theory. We apply our

results to both hyperbolic and parabolic equations.

1. Introduction. In this paper we consider a class of boundary control systems
(BCS ) of the form

ẋ(t) = Ax(t), t > 0, x(0) = x0,

u(t) = Bx(t),

y(t) = Cx(t),

where A,B,C are linear operators. The function u is interpreted as the input, y
as the measured output and x is called the state of the system. Typically, A is a
differential operator on the state space X and B,C are evaluation operators of the
state at the boundary of the spatial domain, that is, the domain of the functions
lying in X.

The aim of this paper is to develop an adaptive controller for boundary control
systems which, roughly speaking, achieves the following goal:

For any prescribed reference signal yref ∈ W 2,∞([0,∞)), the output y
of the system tracks yref in the sense that the transient behavior of the
error e(t) := y(t)− yref(t) is controlled.
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Shortly, we will elaborate on the class of possible reference signals and the meaning
of “controlling the transient behavior” in more detail. The goal will be achieved by
using a funnel controller, which, in the simplest case, has the form

u(t) = − 1

1− ϕ(t)2‖e(t)‖2
e(t)

for some positive function ϕ. Under this feedback, the error is supposed to evolve
in the performance funnel

Fϕ := {(t, e) ∈ [0,∞)× Cm | ϕ(t)‖e‖ < 1}
and would hence satisfy

‖e(t)‖ ≤ ϕ(t)−1, for all t ≥ 0.

In fact, if ϕ tends asymptotically to a large value λ, then the error remains bounded
by λ−1, see Fig. 1.

t

±ϕ(t )−1

±λ−1

e(t )

(0,e(0))

Figure 1. Error evolution in a funnel Fϕ with boundary ϕ(t)−1.

This was first introduced in [20], where feasibility of the funnel controller for a
class of functional differential equations has been shown. These encompass infinite
dimensional systems with very restrictive assumptions on the operators involved,
a special class of nonlinear systems and nonlinear delay systems. In fact, there
finite-dimensional linear “prototype” systems with relative degree one are treated.
The relative degree is a well-known magnitude for finite-dimensional systems and
can roughly be understood as the number of times one needs to differentiate y so
that u appears in the equation. This quantity turned out to be relevant when
considering the funnel controller and has been used to generalize the results of
[20]. For instance, in [14], the funnel controller was proved to be applicable for
systems with known but arbitrary relative degree. The problem is that the ansatz
used there requires very large powers of the gain factor. This problem has been
overcome in [7] by introducing a funnel controller which involves derivatives of the
output and reference signal, and feasibility of this controller in the case of nonlinear
finite-dimensional systems with strict relative degree with stable internal dynamics
has been proven. The funnel control for infinite-dimensional systems has so far only
attracted attention in special configurations [8, 21, 19]. The recent article [8] deals
with a linearized model of a moving water tank by showing that this system belongs
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to the class being treated in [7]. In [21], a class of infinite-dimensional systems has
been considered that allows to prove feasibility of the funnel controller in a similar
way as for finite-dimensional systems. More precisely, this class consists of systems
which possess a so-called Byrnes-Isidori form via bounded and boundedly invertible
state space transformation. The existence of such a form however requires that the
control and observation operators fulfill very strong boundedness conditions, which
in particular exclude boundary control and observation. Funnel control of a heat
equation with Neumann boundary control and co-located Dirichlet output has been
treated in [19]. The proof of feasibility of funnel control uses the spectral properties
of the Laplacian, whence this technique is hardly transferable to further classes of
boundary control systems.

We consider a class of boundary control systems which satisfy a certain energy
balance [6, 15]. The feedback law of the funnel controller naturally induces a non-
linear closed-loop system. For the corresponding solution theory, the concept of
(nonlinear) m-dissipative operators in a Hilbert space will play an important role.
For an appropriate introduction to this classical topic we refer to [16, 17, 22].

The paper is organized as follows. In Section 2 we introduce the system class that
is subject of our results. In Section 3 we present the details about the controller
and present the main results which refer to the applicability of the funnel controller
to the considered system class. In Section 4 we present some examples of partial
differential equations for which the funnel controller is applicable. Section 5 contains
the proof of the main results together with some preliminary auxiliary results. We
provide numerical simulations in Section 6.

The norm in a normed space B will be denoted by ‖ · ‖B or ‖ · ‖, if clear from
context. Analogously, the scalar product of an inner product space will be denoted
by 〈·, ·〉H or 〈·, ·〉. The space Cn is typically provided with the Euclidean inner
product.

The domain of a (possibly nonlinear) operator A is denoted by D(A), and R(A)
stands for the range of A. Given two Banach spaces X,Y , the set of linear bounded
operators from X to Y will be denoted by L(X,Y ) and in the case X = Y simply
by L(X). The identity operator on the space X is IX , or just I, if clear from
context. We further write Im instead of ICm . The symbol A∗ stands for the adjoint
of a linear operator A. In particular, M∗ ∈ Cn×m is the transposed of the complex
conjugate of M ∈ Cm×n.

Lebesgue and Sobolev spaces from a measurable set Ω ⊂ Rd will be denoted
by Lp(Ω) and W k,p(Ω). For a domain Ω ⊂ Rd with sufficiently smooth boundary
∂Ω := Γ, we denote by W k,p(Γ) the Sobolev space at the boundary [1]. The set of
infinitely often differentiable functions from Ω with compact support will be denoted
by C∞0 (Ω).

We identify spaces of Cn-valued functions with the Cartesian product of spaces
of scalar-valued functions, such as, for instance (W k,p(Ω))n ∼= W k,p(Ω;Cn).

For an interval J ⊂ R and a Banach space B, we set

W k,∞(J ;B) := {f ∈ L∞(J ;B) | f (j) ∈ L∞(J ;B), j = 0, . . . , k},

which is to be understood in the Bochner sense [10]. The space W k,∞
loc (J ;B) consists

of all f whose restriction to any compact interval K ⊂ J is in W k,∞(K;B).
The expression S indicates the closure of a set S.
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2. System class. In the following we introduce our system class, define our con-
troller and discuss the solution concept to the resulting nonlinear feedback system.

Definition 2.1 (System class). Let X be a complex Hilbert space and let m ∈ N be
given. Let A : D(A) ⊂ X → X be a closed linear operator, B,C : D(A) ⊂ X → Cm
be linear operators to which we associate the system

ẋ(t) = Ax(t), x(0) = x0,

u(t) = Bx(t),

y(t) = Cx(t).

(1)

We will refer to (1) by S = (A,B,C) and call it a boundary control system (BCS).

In the sequel we specify the system class.

Assumption 2.2. Let a BCS S = (A,B,C) be given.

(i) The system is (generalized) impedance passive, i.e., there exists α ∈ R such
that

Re〈Ax, x〉X ≤ Re〈Bx,Cx〉Cm + α‖x‖2X for all x ∈ D(A). (2)

(ii) A|kerB (the restriction of A to kerB) generates a strongly continuous semi-
group on X.

(iii) The operator [
B
C

]
: D(A)→ C2m (3)

is onto, kerB ∩ kerC ⊂ X is dense and C : D(A|kerB) → Cm is continuous
with respect to the graph norm ‖x‖D(A) = (‖x‖2X + ‖Ax‖2X)1/2.

Remark 2.3.

a) By setting u = 0, the above assumptions imply that the semigroup T (·) :
[0,∞) → L(X) generated by A|kerB fulfills ‖T (t)‖ ≤ eαt. In particular, the
semigroup is contractive, if α ≤ 0.

b) The Lumer–Phillips theorem [11, Theorem 3.15] implies that A|kerB generates
a strongly continuous semigroup T (·) on X with ‖T (t)‖ ≤ eαt for all t > 0 if,
and only if, R(A|kerB−λI) = X for some (and hence any) λ ≥ α, together with
Re〈Ax, x〉X ≤ α‖x‖2X for all x ∈ D(A). As a consequence, Assumption 2.1(ii)
can be replaced by the condition that R(A|kerB−λI) = X for some (and hence
any) λ ≥ α.

c) The operator (3) is onto if, and only if, there exist P,Q : L(Cm,D(A)) with[
B
C

] [
P Q

]
=

[
Im 0
0 Im

]
(4)

d) We are dealing with complex spaces in this article for sake of simplicity. A com-
ment on real systems can be found in Remark 3.5(e).

e) An oftentimes considered class in infinite-dimensional linear systems theory is
that of well-posed linear systems, see e.g. [23]. That is, the controllability map,
observability map and input-output map are bounded operators. Note that we
do not impose such a well-posedness assumption throughout this article.
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Example 2.4. There are several systems which fit in our description. A class of
examples of hyperbolic type is given by so-called port-Hamiltonian systems such as
the lossy transmission line

Vζ(ζ, t) = −LIt(ζ, t)−RI(ζ, t),

Iζ(ζ, t) = −CVt(ζ, t)−GV (ζ, t),

u(t) =

(
V (a, t)
V (b, t)

)
,

y(t) =

(
I(a, t)
−I(b, t)

)
,

where V and I are the voltage and the electric current at a point ζ of a segment
(a, b) over the time t. A precise definition of port-Hamiltonian systems will be given
in Section 4.1.

In Section 4.3 we will also apply the theoretical results to parabolic systems
given through a general second-order elliptic operator on a regular domain Ω. A
particular case is the heat equation,

∂tx(t, ζ) = ∆x(t, ζ),

ν · ∇x(t, ζ)|∂Ω = u(t),∫
∂Ω

x(t, ζ)dζ = y(t),

where the control variable is the heat flux at the boundary and the observation is
the total temperature along the boundary.

3. Funnel controller. The following definition presents the cornerstone of our
controller, the class of admissible funnel boundaries.

Definition 3.1. Let

Φ :=

{
ϕ ∈W 2,∞([0,∞)) | ϕ is real-valued with inf

t≥0
ϕ(t) > 0

}
.

With ϕ ∈ Φ we associate the performance funnel

Fϕ := {(t, e) ∈ [0,∞)× Cm | ϕ(t)‖e‖ < 1}.
In this context we refer to 1/ϕ(·) as funnel boundary, see also Fig. 1.

Now we define our controller, which is a slight modification of the original con-
troller introduced in [20]. For x0 ∈ D(A), we define the funnel controller as

u(t) =

(
u0 +

1

1− ϕ2
0‖e0‖2

e0

)
p(t)− 1

1− ϕ(t)2‖e(t)‖2
e(t), (5)

where ϕ0 = ϕ(0), e0 := Cx0 − yref(0), u0 := Bx0, and p is a function with compact
support and p(0) = 1. In the following we collect assumptions on the functions
involved in the funnel controller and the initial value of the BCS S = (A,B,C).
Particularly, this includes that the expressions Cx0, yref(0), Bx0 and p(0) are well-
defined.

Assumption 3.2 (Reference signal, performance funnel, initial value). The initial
value x0 of the BCS S = (A,B,C) and the functions in the controller (5) fulfill

(i) yref ∈W 2,∞([0,∞);Cm);
(ii) p ∈W 2,∞([0,∞)) with compact support and p(0) = 1;
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(iii) x0 ∈ D(A) and ϕ ∈ Φ with ϕ(0)‖Cx0 − yref(0)‖ < 1.

Remark 3.3. Apart from smoothness of the reference signal and performance fun-
nel, the assumptions on the controller basically include two points:

a) The initial value is “smooth”, i.e., x0 ∈ D(A). The reason is that - especially
for hyperbolic systems - the initialization with x0 ∈ X \ D(A) might result
in a discontinuous output. This effect typically occurs when the semigroup
generated by A|kerB is not analytical, such as, for instance, when a wave equation
is considered.

b) The output of the system at t = 0 is already in the performance funnel.

The funnel controller (5) differs from the classical one in [20] by the addition of the
term (

u0 + 1
1−ϕ2

0‖e0‖2
e0

)
p(t)

for some (arbitrary) smooth function with p(0) = 1 and compact support. This
ensures that the controller is consistent with the initial value, that is, u in (5)
satisfies

u(0) =
(
u0 + 1

1−ϕ2
0‖e0‖2

e0

)
p(0)− 1

1−ϕ(0)2‖e(0)‖2 e(0) = u0 = Bx0 = Bx(0).

The funnel controller therefore requires the knowledge of the “initial value of the
input” u0 = Bx0. This means that, loosely speaking, the “actuator position” has
to be known at the initial time, which is —by the opinion of the authors— no
restriction from a practical point of view.
We would like to emphasize that the application of the funnel controller does not
need any further “internal information” on the system, such as system parameters
or the full knowledge of the initial state.

The funnel controller (5) applied to a BCS S = (A,B,C) results in the closed-
loop system

ẋ(t) = Ax(t), x(0) = x0,

Bx(t) = u(t),

Cx(t) = y(t),

e(t) = y(t)− yref(t), e0 = Cx0 − yref(0), ϕ0 = ϕ(0),

u(t) = (Bx0 + ψ(ϕ0, e0))p(t)− ψ(ϕ(t), e(t)),

(6a)

where

ψ(ϕ, e) :=
1

1− ϕ2‖e‖2
e,

D(ψ) := {(ϕ, e) ∈ (0,∞)× Cm | ϕ‖e‖ < 1}.
(6b)

We see immediately that the closed-loop system is nonlinear and time-variant. In
the sequel we present our main results which state that the funnel controller is
functioning in a certain sense. Note that this result includes the specification of
the solution concept with which we are working. First we show that the funnel
controller applied to any system fulfilling Assumption 2.2 has a solution. Such
a solution however might not be bounded on the infinite time horizon. Thereafter,
we show that boundedness on [0,∞) is guaranteed, if the constant α in the energy
balance (2) is negative. The proofs of these results can be found in Section 5.
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Theorem 3.4 (Feasibility of funnel controller, arbitrary α). Let a BCS S =
(A,B,C) be given which satisfies Assumption 2.2 and assume that the initial value
x0 and the functions yref , p, ϕ fulfill Assumption 3.2. Then, for all T > 0 the
closed-loop system (6) has a unique solution x ∈ W 1,∞([0, T ];X) in the following
sense:

(i) ẋ is continuous at almost every t ∈ [0, T ], and
(ii) for almost every t ∈ [0, T ] holds x ∈ D(A) and (6).

Remark 3.5.

a) The solution concept which is subject of Theorem 3.4 is strong in the sense that
the weak derivative of x is evolving in the space X and not in some larger space
as used e.g. in [24].

b) The property x ∈W 1,∞([0, T ];X) of a solution implies Ax = ẋ ∈ L∞([0, T ];X),
whence x ∈ L∞([0, T ];D(A)). As a consequence, for u = Bx and y = Cx
holds that u, y ∈ L∞([0, T ];Cm). By the same argumentation, we see that the
continuity of ẋ at almost every t ∈ [0, T ] implies that u and y are continuous at
almost every t ∈ [0, T ].

c) For T1 < T2 consider solutions x1 and x2 of the closed-loop system (6) on [0, T1]
and [0, T2], respectively. Uniqueness of the solution implies that x1 = x2|[0,T1].

As a consequence, there exists a unique x ∈W 1,∞
loc ([0,∞);X) with the property

that for all T > 0 holds that x|[0,T ] is a solution of (6). Accordingly, the input
satisfies u ∈ L∞loc([0,∞);Cm). Note that, by the fact that the output evolves in
the funnel, we have that y is essentially bounded, that is y ∈ L∞([0,∞);Cm).

d) The properties u, y, yref ∈ L∞([0, T ];Cm) imply that the error e = y − yref is
uniformly bounded away from the funnel boundary. That is, there exists some
ε > 0 such that

ϕ(t)‖e(t)‖ < 1− ε for almost all t ∈ [0, T ].

e) The typical situation is that the system is real in the sense that the input, output
and state evolve in the real spaces Rm and X. By using a complexification
X + iX, the results presented in this article can be applied to such systems
yielding that a (not yet necessarily real) solution x ∈ W 1,∞([0, T ];X + iX) the
closed-loop system (6) exists which is moreover unique. A closer look yields that
the pointwise complex conjugate x̄ is as well a solution of (6), and uniqueness
gives x = x̄, whence x has to be real in this case.

Though bounded on each bounded interval, the solution x of the closed-loop
system (6) might satisfy

lim sup
t→∞

‖x(t)‖ =∞, lim sup
t→∞

‖u(t)‖ =∞

In the following we show that this unboundedness does not occur when the constant
α in (2) in Assumption 2.2 is negative.

Theorem 3.6. Let a BCS S = (A,B,C) be given which satisfies Assumption 2.2
such that Assumption 2.2(i) holds with α < 0. Assume that the initial value x0 and
the functions yref , p, ϕ fulfill Assumption 3.2. Then the solution x : [0,∞)→ X of
the closed-loop system (6) (which exists by Theorem 3.4) fulfills

x ∈W 1,∞([0,∞);X) and u = Bx ∈ L∞([0,∞);Cm).
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Remark 3.7. In particular when the input and output of a system have different
physical dimensions, it might be essential that the funnel controller is dilated by
some constant k0 > 0. More precisely, one might consider the controller

u(t) =

(
u0 +

k0

1− ϕ2
0‖e0‖2

e0

)
p(t)− k0

1− ϕ(t)2‖e(t)‖2
e(t). (7)

The feasibility of this controller is indeed covered by Theorems 3.4 & 3.6, which
can be seen by the following argumentation: Consider the BCS S = (A,B,C) with
transformed input ũ = k−1

0 u. That is, a system S = (A, k−1
0 B,C). Providing X

with the equivalent inner product 〈·, ·〉new := k−1
0 〈·, ·〉X , we obtain

Re〈Ax, x〉new ≤ Re〈k−1
0 Bx,Cx〉Cm + α‖x‖2new for all x ∈ D(A).

Consequently, by Theorem 3.4, the funnel controller

ũ(t) =
(

ũ0︸︷︷︸
=k−1

0 u0

+
1

1− ϕ2
0‖e0‖2

e0

)
p(t)− 1

1− ϕ(t)2‖e(t)‖2
e(t)

results in feasibility of the closed-loop. Now resolving ũ = k−1
0 u in the previous

formula, we obtain exactly the controller (7). Further note that, by the same
argumentation together with Theorem 3.6, we obtain that all the trajectories are
bounded in the case where α < 0.

4. Some PDE examples. We now present three different system classes for which
we can apply the previously presented results. The first two have state variables
which are described by hyperbolic PDEs and the third one by a parabolic PDE.

4.1. Port-Hamiltonian systems in one spatial variable. The systems consid-
ered in this article enclose a class of port-Hamiltonian hyperbolic system in one
spatial dimension with boundary control and observation, which has been treated
in [3, 4, 5, 6, 15] and is subject of the subsequent definition. Typically they are
considered in a bounded interval (a, b) ⊂ R. We may consider I := (a, b) = (0, 1)
without loss of generality.

Definition 4.1 (Port-Hamiltonian hyperbolic BCS in one spatial variable). Let
N, d ∈ N and for k = 0, . . . , N consider Pk ∈ Cd×d. We assume that Pk =
(−1)k+1P ∗k for k 6= 0 with PN invertible and P0 + P ∗0 ≤ 0. Further let WB ,WC ∈
CNd×2Nd such that the matrix

W :=

[
WB

WC

]
∈ C2Nd×2Nd

is invertible.

a) Let H ∈ L∞
(
[0, 1];Cd×d

)
with H(ζ) = H(ζ)∗ for almost every ζ ∈ [0, 1] and

assume that there are m,M > 0 such that mId ≤ H(ζ) ≤MId for almost every
ζ ∈ [0, 1]. We consider X := L2([0, 1];Cd) equipped with the scalar product
induced by H,

〈y, x〉X := 〈y,Hx〉L2 =

∫ 1

0

y(ζ)∗H(ζ)x(ζ) dζ , x, y ∈ L2([0, 1];Cd). (8)

The port-Hamiltonian operator A : D(A) ⊂ X → X is given by

Ax =

N∑
k=0

Pk
∂k

∂ζk
(Hx), x ∈ D(A), (9a)
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with domain

D(A) =
{
x ∈ X | Hx ∈WN,2([0, 1];Cd)

}
(9b)

b) Denote the spatial derivative of f by f ′. For a port-Hamiltonian operator A
and x ∈ D(A) we define the boundary flow f∂,Hx ∈ CNd and boundary effort
e∂,Hx ∈ CNd by

(
f∂,Hx
e∂,Hx

)
:= R0



(Hx)(1)
(Hx)′(1)

...
(Hx)(N−1)(1)

(Hx)(0)
(Hx)′(0)

...
(Hx)(N−1)(0)


, (10)

where the matrix R0 ∈ C2Nd×2Nd is defined by

R0 :=
1√
2

[
Λ −Λ
INd INd

]
, (11)

with

Λ :=


P1 P2 · · · · · · PN
−P2 −P3 · · · −PN 0

...
...

...
...

...
(−1)N−1PN 0 · · · 0 0

 .
c) For a port-Hamiltonian operator A we define the input map B : D(A) ⊂ X →

CNd and the output map C : D(A) ⊂ X → CNd as

Bx := WB

(
f∂,Hx
e∂,Hx

)
, (12)

Cx := WC

(
f∂,Hx
e∂,Hx

)
. (13)

We call S = (A,B,C) a port-Hamiltonian hyperbolic BCS in one spatial variable
to which we associate the boundary control and observation problem

ẋ(t) = Ax(t), x(0) = x0,

u(t) = Bx(t),

y(t) = Cx(t)

(14)

with a state x(t) := x(t, ·) ∈ X and t ≥ 0.

From the former definition we have the following result.

Lemma 4.2. With operators A, B and C as in Definition 4.1, there exist P,Q ∈
L(C2Nd,D(A)) with

BP = INd, BQ = 0,
CP = 0, CQ = INd.

Consequently, AP,AQ ∈ L(CNd;X).
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Proof. Consider the trace operator T : WN,2([0, 1];Cd)→ C2Nd as the linear map

T z =



z(1)
z′(1)

...
z(N−1)(1)
z(0)
z′(0)

...
z(N−1)(0)


,

so that [
Bx
Cx

]
= WR0T Hx, where W =

[
WB

WC

]
.

Consider the standard orthogonal basis {ej}2Ndj=1 in C2Nd and choose some fj ∈
WN,2([0, 1];Cd) with T (fj) = ej for j = 1, . . . , 2Nd. Since W,R0 are invertible, we
can define Mp,Mq ∈ C2Nd×Nd by

Mp = R−1
0 W−1

[
INd

0

]
, Mq = R−1

0 W−1

[
0
INd

]
.

Let Mp,Mq be decomposed as

Mp =

 Mp,1

...
Mp,2Nd

 , Mq =

 Mq,1

...
Mq,2Nd

 ,
with Mp,j ,Mq,j ∈ C1×Nd for j = 1, . . . , 2Nd. Now set for almost every ζ ∈ [0, 1],

(Pu)(ζ) := H−1(ζ)

2Nd∑
j=1

Mp,jufj(ζ), ∀u ∈ CNd,

(Qy)(ζ) := H−1(ζ)

2Nd∑
j=1

Mq,jyfj(ζ), ∀y ∈ CNd.

By construction P,Q have the desired properties.

Remark 4.3. Note that for a port-Hamiltonian hyperbolic BCS S = (A,B,C) in
one spatial variable holds that C∞0 ([0, 1];Cd) ⊂ kerB∩ kerC is a dense subspace of
X. Integration by parts gives

Re〈Ax, x〉X ≤ Re〈Bx,Cx〉CNd + Re〈P0Hx,Hx〉L2 for all x ∈ D(A). (15)

Since P0 + P ∗0 ≤ 0, it follows that the BCS fulfills Assumption 2.2(i) with α = 0.

The class of impedance passive port-Hamiltonian systems meets the requirements
of Assumption 2.2. We summarize it in the following statement.

Theorem 4.4. Any port-Hamiltonian hyperbolic BCS S = (A,B,C) with one spa-
tial variable satisfies Assumption 2.2. If, moreover, there exists some µ > 0 such
that P0 + P ∗0 + µI is pointwise negative definite, then Assumption 2.2(i) holds for
some α < 0.
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Proof. It is stated in Remark 4.3 that S = (A,B,C) satisfies Assumption 2.2(i)
with α ≤ 0. Further, A|kerB generates a (contractive) semigroup by [5, Theorem
2.3], whence S = (A,B,C) satisfies Assumption 2.2(ii). We can further infer from
Remark 4.3 that kerB∩kerC is dense in X, and Lemma 4.2 guarantees the existence
of P,Q such that (4) holds. This implies that the condition in Assumption 2.2(3)
is fulfilled by S = (A,B,C).
If, moreover, P0 + P ∗0 + µI is pointwise negative definite for some µ > 0, then we
can conclude from (15) that Assumption 2.2(i) holds with α := −µm/(2M), where
m,M > 0 are given in Definition 4.1.

Theorem 4.4 allows to directly apply Theorems 3.4 & 3.6. Namely, if the initial
value x0 and the functions yref , p, ϕ fulfill Assumption 3.2, the application of the
funnel controller (5) results in a unique global solution x ∈W 1,∞

loc ([0,∞);X) in the
sense of Theorem 3.4. If, moreover, P0 + P ∗0 + µI is pointwise negative definite for
some µ > 0, then x, ẋ and u are moreover essentially bounded by Theorem 3.6.

4.2. Hyperbolic systems in several spatial variables. The following setting
is presented in [25, Section 8.2]. We give a summary of the main results. For the
particular case of the higher dimensional wave equation we refer to [24].

Definition 4.5. Let d ∈ N and matrices Pj ∈ Rn×n for j = 0, . . . , d such that
P>j = Pj for all j 6= 0 and P>0 = −P0. Let Ω be a bounded open subset of Rd with
smooth boundary Γ and outward unit normal vector field η. We define the first
order differential operator

Ax := P0x+

d∑
j=1

Pj
∂x

∂ζj
, x ∈ D(A),

D(A) := {x ∈ L2(Ω;Rn) | Ax ∈ L2(Ω;Rn)}.

(16)

We also define the symmetric operator Qη :=
∑d
j=1 ηjPj : Γ→ Rn×n.

Remark 4.6. Note that D(A) in (16) is the maximal domain of definition of the
operator A. This is further a Hilbert space, see [18], when endowed with the graph
norm.

Assumption 4.7.

(i) Γ is characteristic with constant multiplicity, that is, for all ζ ∈ Γ we have
that

dim kerQη(ζ) = n− 2r ⇔ rank Qη(ζ) = 2r

where n > 2r ∈ N is constant.
(ii) The spectrum of Qη(ζ), ζ ∈ Γ, is symmetric with respect to the imaginary

axis and the sign of its eigenvalues is independent of ζ ∈ Γ, that is, there are
r positive eigenvalues.

Under Assumption 4.7, there exists a unitary operator U ∈ L(L2(Γ;Rn)) and a
diagonal matrix Λ such that Qη = UΛU∗ with U∗U = IL2(Γ;Rn) and

Λ =

Λ1 0 0
0 −Λ1 0
0 0 0

 ,
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see [25]. Here Λ1 ∈ L(L2(Γ;Rr)) contains the positive eigenvalues of Qη. Further
we have the following decomposition

Λ =

[
R∗0ΣR0 0

0 0

]
, (17)

where

R0 :=
1√
2

[
Λ1 −Λ1

I I

]
∈ L(L2(Γ;R2r)), Σ :=

[
0 I
I 0

]
∈ L(L2(Γ;R2r)).

According to (17) we partition the unitary operator U ∈ L(L2(Γ)n) as follows

U∗ =

[
R∗

S∗

]
: L2(Γ;Rn)→ L2(Γ;R2r)× L2(Γ;Rn−2r).

Definition 4.8. Let r ∈ N be given as in Assumption 4.7 and T0 : W 1,2(Ω;Rn)→
L2(Γ;Rn) be the trace operator of order zero, i.e., T0x = x|Γ for x ∈ W 1,2(Ω;Rn).
Then the boundary port-variables associated with the differential operator A are the
operators e∂ , f∂ ∈ L(W 1,2(Ω;Rn), L2(Γ;Rr)) defined by[

f∂x
e∂x

]
:= R0R

∗T0x, x ∈W 1,2(Ω;Rn).

We make the following assumption as in [25], which is a natural extension of the
integration by parts formula for this systems. Recall that W 1/2,2(Γ;Rr) equals the
range of trace operator on W 1,2(Ω;Rr).

Assumption 4.9. Assume that the mapping[
e∂
f∂

]
: W 1,2(Ω;Rn)→ L2(Γ;Rr)× L2(Γ;Rr)

can be continuously extended to a linear mapping[
e∂
f∂

]
: D(A)→W−1/2,2(Γ;Rr)×W 1/2,2(Γ;Rr).

Furthermore assume that Green’s identity holds for all x, z ∈ D(A), that is

〈Ax, z〉L2 + 〈x,Az〉L2 = 〈e∂x, f∂z〉W−1/2,2,W 1/2,2 + 〈e∂z, f∂x〉W−1/2,2,W 1/2,2 .

Definition 4.10. Let A0 := A with D(A0) := {x ∈ D(A) | ∃b ∈ Rr : e∂x = b}. To
the operator A0 we associate the (BCS) S = (A0,B,C) with

Bx = e∂x, x ∈ D(A0)

and

Cx =

∫
Γ

f∂xdσ, x ∈ D(A0).

For our purposes, we make the following assumption, which is for instance satis-
fied by the wave equation.

Remark 4.11. Note that if we restrict

[
e∂
f∂

]
to W 1,2(Ω;Rn), we obtain that[

e∂
f∂

]
(W 1,2(Ω;Rn)) = W 1/2,2(Γ;R2r),
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see [25, pp. 212]. Since R2r ⊂ W 1/2,2(Γ;R2r), the former implies that there are
p, q : W 1,2(Ω) ⊂ D(A0)→ Rr such that[

e∂
f∂

] [
p q

]
=

[
Ir 0
0 Ir

]
.

Thus, by setting P := p and Q := |Γ|−1q we have that[
B
C

] [
P Q

]
=

[
Ir 0
0 Ir

]
.

Theorem 4.12 ([25, Theorem 8.18]). Under Assumptions 4.7 & 4.9 and the nota-
tion of Definitions 4.8 & 4.10, it follows that

Re〈A0x, x〉L2 = Re〈Bx,Cx〉Rr ∀x ∈ D(A0)

and that the operator A0|kerB is skew-adjoint and generates a unitary C0-semigroup.

We show that the class belongs to that which is subject of Section 2, which
consequences that the funnel controller is applicable.

Theorem 4.13. Let S = (A0,B,C) be as in Definition 4.10 and let Assumptions
4.7 & 4.9 be satisfied. Then S = (A0,B,C) satisfies Assumption 2.2.

Proof. The result follows immediately from Theorem 4.12 and Remark 4.11 together

with the fact that C∞0 (Ω;Rn) ⊂ ker

[
e∂
f∂

]
is a dense subspace.

Example 4.14. Consider the 2-dimensional wave equation with boundary control
in an open bounded domain Ω with smooth boundary Γ, namely,

∂ttw(t, ζ) = ∆w(t, ζ),

u(t) =
∂w(t, ζ)

∂η

∣∣∣∣
Γ

,

y(t) =

∫
Γ

∂tw(t, ζ)|Γdσ,

(18)

and w(0, ·) = a(·) ∈ W 2,2(Ω) with ∂ηa(·)|Γ = 0, wt(0, ·) = v(·) ∈ W 1,2(Ω). Then
the funnel controller is locally applicable for (18).

Proof. The wave equation can be transformed into a port-Hamiltonian system of
the form 16, c.f. [25, Example 8.12] with P0 = 0 and

P1 =

0 1 0
1 0 0
0 0 0

 , P2 =

0 0 1
0 0 0
1 0 0

 ,
and state variable

x =

 pq1

q2

 =

 ∂tw∂ζ1w
∂ζ2w

 .
Further [

e∂x
f∂x

]
=

[
η · q|Γ
p|Γ

]
,

where η is the normal unit vector. The domain of the operator A0 is given by

D(A0) :=


 pq1

q2

 ∈ L2(Ω;R3) | p ∈W 1,2(Ω), q ∈ Hdiv(Ω),∃b ∈ R : η · q|Γ = b

 ,
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where

Hdiv(Ω) := {x ∈ L2(Ω) | ∇ · x ∈ L2(Ω)}.
It is clear that x0 ∈ D(A0). From [12, Theorem 1.3] the range of f∂ is precisely
W 1/2,2(Γ) and e∂ from Hdiv(Ω) is surjective onto W−1/2,2(Γ), see [12, Theorem 2.2]
and [12, Corollary 2.4].

In this case P,Q are explicitly given by

(Pu)(ζ) =

 0
η1(ζ)
η2(ζ)

u, (Qy)(ζ) =
1

|Γ|

1
0
0

 y, u, y ∈ R.

Further C∞0 (Ω) ⊂ kerB∩ kerC is dense. Hence, Theorem 4.13 gives the result.

4.3. A parabolic system. A particular case of the boundary controlled heat equa-
tion was already discussed in [19], with a slightly different funnel controller. Here
we present a parabolic problem and refer to [13] for more details on second order
elliptic operators.

Definition 4.15. Let n ∈ N, Ω ⊂ Rn be a bounded domain with C2 boundary Γ
and outward normal unit vector ν. Assume that a ∈ C∞(Ω;Cn×n) is self-adjoint
and satisfies the ellipticity condition

∃α > 0 : ∀v ∈ Cn Re

n∑
i,j=1

aij(ζ)viv
∗
j ≥ α‖v‖2Cn .

Let κ ≥ 0 and consider the BCS S = (A,B,C) defined by

Ax := ∇ · (a∇x)− κx, x ∈ D(A),

D(A) :=
{
x ∈W 1,2(Ω) | ∇ · a∇x ∈ L2(Ω) and ∃b ∈ C : ν · a∇x|Γ = b

}
Bx := ν · (a∇x)|Γ,

Cx :=

∫
Γ

(T0x)dσ,

(19)

where T0 : W 1,2(Ω)→W 1/2,2(Γ) denotes trace operator, T0x = x|Γ.

Remark 4.16. We have the following comments on the former definition.

1. The operator T0 : W 1,2(Ω)→W 1/2,2(Γ) is onto;
2. it is well-known that the realization of A in kerB with κ = 0 corresponds to

the Neumann elliptic problem, e.g. [13, Theorem 2.2.2.5], and A|kerB generates
a contractive semigroup for κ ≥ 0.

3. for x ∈ D(A)

Re〈Ax, x〉L2 ≤ Re〈Bx,Cx〉C − κ‖x‖2L2 .

Lemma 4.17. There are operators P,Q : D(A)→ C such that[
B
C

] [
P Q

]
=

[
1 0
0 1

]
.

In fact, Q = |Γ|−1 is constant.

Proof. Let T0x := x|Γ and Tνx := ν · a∇x|Γ. From [13, Theorem 1.6.1.3] the
combined trace operator [

Tνx
T0x

]
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from W 2,2(Ω) to W 1/2,2(Γ)×W 3/2,2(Γ) is onto. Hence, there are pν , q0 such that

ν · a∇pν |Γ = 1, ν · a∇q0|Γ = 0,
pν |Γ = 0, q0|Γ = 1.

Note that q0 = 1 is a solution. Considering pν , q0 as operators from C to W 2,2(Ω) ⊂
D(A) yields that P := pν and Q := |Γ|−1q0 have the desired properties.

Next we show that this class satisfies the preliminaries of Theorem 3.6.

Theorem 4.18. For any BCS S = (A,B,C) as introduced in Definition 4.15 with,
additionally, κ > 0, satisfies Assumption 2.2 with α < 0.

Proof. It follows immediately from the conditions and previous considerations, to-
gether with C∞0 (Ω) ⊂ kerB ∩ kerC being a dense subspace and Theorem 3.6.

5. Proof of Theorems 3.4 & 3.6. We develop some auxiliary results to conclude
with the proof of the main results. A part of following lemma has been shown in
[9] under the additional assumption of well-posedness, cf. Remark 2.3(e).

Lemma 5.1. Assume that S = (A,B,C) satisfies Assumption 2.2 with α ∈ R. For
all β > α, u ∈ Cm and f ∈ X there exist unique x ∈ D(A) and y ∈ Cm with

(βI − A)x = f,

u = Bx,

y = Cx.

(20)

Furthermore, there exist bounded operators H(β) ∈ L(X), J(β) ∈ L(Cm;X),
F (β) ∈ L(X;Cm) and G(β) ∈ L(Cm) = Cm×m which connect the solution of
(20) via

x = H(β)f + J(β)u,

y = F (β)f +G(β)u.
(21)

Thereby, the matrix G(β) + G(β)∗ is positive definite, and G(β) is invertible with
positive definite G(β)−1 + (G(β)∗)−1.

Proof. Step 1: We show uniqueness of the solution of (20). To this end, we have
to show that the choice f = 0 and u = 0 leads to x = 0 and y = 0. Assuming
that x ∈ D(A), y ∈ Cm fulfills (20) with f = 0 and u = 0, we obtain from (2) in
Assumption 2.2(i) that

β‖x‖2X = Re〈Ax, x〉X ≤ Re〈Bx,Cx〉Cm + α‖x‖2X ,
and thus (β − α)‖x‖2 ≤ 0. Invoking β > α, we obtain x = 0 and, consequently,
y = Cx = 0.

Step 2: We show the existence of bounded operators H(β), J(β), F (β) and G(β)
such that the solutions of (20) fulfill (21): By Remark 2.3b), Assumption 2.2(ii)&(i)
imply that βI − A|kerB is bijective. Further invoking Remark 2.3c), Assump-
tion 2.2(iii) leads to the existence of P,Q : L(Cm,D(A)), such that (4) holds.
Considering

x = (βI − A|kerB)−1︸ ︷︷ ︸
=:H(β)

f + ((βI − A|kerB)−1(AP − βP ) + P )︸ ︷︷ ︸
=:J(β)

u,

y = C(βI − A|kerB)−1︸ ︷︷ ︸
=:F (β)

f + C(βI − A|kerB)−1(AP − βP )︸ ︷︷ ︸
=:G(β)

u,



16 PUCHE, REIS, SCHWENNINGER

a straightforward calculation shows that (20) holds. Further, the operators H(β),
J(β), F (λ) and G(λ) are bounded as they are compositions of bounded operators.
Step 3: We show that G(β) +G(β)∗ is positive definite, and G(β) is invertible with
positive definite G(β)−1 + (G(β)∗)−1: Considering (20) with f = 0 and taking the
real part of inner product in X, we obtain

Reβ‖x‖2 = Re〈Ax, x〉 ≤ Re〈u, y〉Cm + α‖x‖2 = 〈u, 1
2 (G(β) +G(β)∗)u〉Cm + α‖x‖2,

whence

(β − α)‖x‖2 ≤ 〈u, 1
2 (G(β) +G(β)∗)u〉Cm ,

so that G(β) + G(β)∗ is positive semidefinite. If for u ∈ Cm holds 〈u, 1
2 (G(β) +

G(β)∗)u〉Cm = 0, then (β − α)‖x‖2X ≤ 0 which implies x = 0 and thus u = Bx = 0.
This implies the positive definiteness of G(β) + G(β)∗, and we can immediately
conclude that G(β) is invertible with positive definite G(β)−1 + (G(β)∗)−1.

Next we introduce a special class of nonlinear operators.

Definition 5.2. Let X be a Hilbert space and A : D(A) ⊂ X → X a (possibly
nonlinear) operator. We say that A is dissipative, if for all x, y ∈ D(A) holds
Re〈A(x)−A(y), x−y〉 ≤ 0. If furthermore, for all λ > 0 it holds thatR(λI−A) = X,
we call A m-dissipative.

Remark 5.3. If A : D(A) ⊂ X → X is m-dissipative, then for all f ∈ X and λ > 0
there exists some z ∈ D(A) with λz − A(z) = f . The element z is indeed unique,
since for any x ∈ D(A) with λx−A(x) = f , we obtain by taking the difference that

λ(x− z)− (A(x)−A(z)) = 0

and taking the inner product with x− z gives

λ‖x− z‖2 = Re〈A(x)−A(z), x− z〉.

Dissipativity of A leads to non-positivity of the latter expression, whence x = z.

Proposition 5.4. Let φ : D(φ) ⊂ Cm → Cm be defined by

φ(y) :=
1

1− ‖y‖2
y,

D(φ) := {y ∈ Cm | ‖y‖ < 1}.
(22)

Then −φ is m-dissipative.

Proof. Step 1: We prove that −φ is dissipative. We first like to note that the
function g : [0, 1) → R with r 7→ r

1−r2 is monotonically increasing on [0, 1), which

follows by nonnegativity of its derivative. As a consequence (g(a)− g(b))(a− b) ≥ 0
for all a, b ∈ [0, 1). Using this, we obtain that for w, y ∈ D(φ) holds

Re〈φ(w)− φ(y), w − y〉 = Re〈φ(w), w〉+ Re〈φ(y), y〉 − Re〈φ(y), w〉 − Re〈φ(w), y〉

=
(
‖w‖2

1−‖w‖2 + ‖y‖2
1−‖y‖2 −

Re〈w,y〉
1−‖y‖2 −

Re〈y,w〉
1−‖w‖2

)
≥
(
‖w‖2

1−‖w‖2 + ‖y‖2
1−‖y‖2 −

‖w‖‖y‖
1−‖y‖2 −

‖y‖‖w‖
1−‖w‖2

)
=
(
‖w‖

1−‖w‖2 −
‖y‖

1−‖y‖2

)
(‖w‖ − ‖y‖)

= (g(‖w‖)− g(‖y‖)) · (‖w‖ − ‖y‖) ≥ 0.
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Step 2: We show that λI + φ(·) is surjective for all λ > 0. Consider f ∈ Cm and
λ > 0. Since λI + φ(·) maps zero to zero, it suffices to prove that any f 6= 0 is in
the range of λI + φ(·). To this end, consider the real polynomial p with

p(ρ) = λρ3 − ‖f‖ρ2 − (λ+ 1)ρ+ ‖f‖.
We observe that p(0) = ‖f‖ > 0 and p(1) = −1 < 0, whence there exists some

ρ̃ ∈ (0, 1) with p(ρ̃) = 0. Now choosing y = ρ̃
‖f‖f , we obtain by simple arithmetics

that
λy + φ(y) = f

(1−ρ̃2)‖f‖2 ·
(
−λρ̃3 + (λ+ 1)ρ̃

)
p(ρ̃)=0

= f
(1−ρ̃2)‖f‖2 ·

(
−‖f‖ · ρ̃2 + ‖f‖

)
= f,

which shows that λI + φ(·) is surjective.

We now present a result concerning perturbations of m-dissipative operators.

Lemma 5.5. [17, Corollary 6.19 (a)] Let X be a Hilbert space, A : D(A) ⊂ X → X,

m-dissipative and B : D(A) ⊂ D(B) ⊂ X → X continuous. Then if A + B is a
dissipative operator, then A+B is m-dissipative.

The next result is a modification of [4, Theorem 4.3] in which the function φ is
defined on the whole space Cm instead of a domain D(φ) as in our situation.

Lemma 5.6. Let S = (A,B,C) be a BCS and let Assumption 2.2 be satisfied with
α ∈ R. Let φ : D(φ) ⊂ Cm → Cm be given by (22). Then the nonlinear operator
A : D(A) ⊂ X → X with

A(z) := (A− αI)|D(A)z,

D(A) := {z ∈ D(A) | ‖Cz‖ < 1,Bz + φ(Cz) = 0}
(23)

is m-dissipative and D(A) = X.

Proof. Step 1: We show that A is a densely defined: For given (v, e) ∈ Cm ×D(φ)
with v = −φ(e) we can find z0 ∈ D(A) such that(

Bz0

Cz0

)
=

(
v
e

)
,

e.g., by setting z0 = Pv+Qe, where P,Q are chosen as in Remark 2.3c). It follows
that z0 + kerB ∩ kerC ⊂ D(A) is a dense subset of X by Assumption 2.2.

Step 2: For given λ > 0, we show that λI −A is surjective:
Let f ∈ X. Our aim is to find some z ∈ D(A) with (λI −A)(z) = f , that is,

((λ+ α)I − A)z = f

Bz = −φ(Cz).
(24)

Set β := λ + α > α and consider the operators H(λ) ∈ L(X), J(λ) ∈ L(Cm;X),
F (λ) ∈ L(X;Cm) and G(λ) ∈ L(Cm) = Cm×m from Lemma 5.1. Since the matrix
G(β)−1 +(G(β)∗)−1 is positive definite by Lemma 5.1, there exists some δ > 0 such
that G(β)−1 +(G(β)∗)−1−2δI is positive definite. The function −φ is m-dissipative
by Proposition 5.4, whence

Ψ(·) := −φ(·)−G(β)−1 + δI

is dissipative. Then Lemma 5.5 gives rise to m-dissipativity of Ψ. In particular,
Ψ(·) − δI = −φ(·) − G(β)−1 : D(φ) → Cm is bijective, whence there exists some
e ∈ D(φ) with

Ψ(e)− δe = G(β)−1F (β)f,
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which is equivalent to

−φ(e) = G(β)−1e−G(β)−1F (β)f,

and thus

e = F (β)f +G(β)(−φ(e)).

Then Lemma 5.1 implies that z = H(β)f + J(β)(−φ(e)) indeed fulfills (24).
Step 3: We show that A is dissipative: Let z1, z2 ∈ D(A), then

Re〈A(z1)−A(z2), z1 − z2〉X
Assumption

=
2.2(i)

Re〈Aα|D(A)z1 − Aα|D(A)z2, z1 − z2〉X

≤ −Re〈φ(Cz1)− φ(Cz2),Cz1 − Cz2〉Cn

Proposition

≤
5.4

0.

An intrinsic technical problem when investigating solvability of (6) is that the
feedback is varying in time, i.e. it depends on t explicitly. To circumvent this
problem, we perform a change of variables leading to an evolution equation with a
constant operator. This is subject of the subsequent auxiliary result.

Lemma 5.7. Let a BCS S = (A,B,C) be given which satisfies Assumption 2.2 and
assume that the initial value x0 and the functions yref , p, ϕ fulfill Assumption 3.2.
Then for ϕ0 = ϕ(0), e0 = Cx0 − yref(0), u0 = Bx0, operators P,Q : L(Cm,D(A))
with (4), and the nonlinear m-dissipative operator A given in (23) and

ω = ϕ̇
ϕ ,

f =ϕ ·
(
AQyref −Qẏref + AP (u0 + ψ(ϕ0, e0))p− P (u0 + ψ(ϕ0, e0))ṗ(t)

)
z0 =ϕ0 ·

(
x0 −Qyref(0)− P (u0 + ψ(ϕ0, e0))

)
.

(25)

holds ω ∈ W 1,∞([0,∞)), f ∈ W 1,∞([0,∞);X) and z0 ∈ D(A). Furthermore, the
following holds for T > 0:

a) If x ∈W 1,∞([0, T ];X) and for almost every t ∈ [0, T ] holds that ẋ is continuous
at t, x ∈ D(A) and (6), then for

z(t) = ϕ(t)
(
x(t)−Qyref(t)− P (Bx0 + ψ(ϕ0, e0))p(t)

)
, (26)

holds z ∈ W 1,∞([0, T ];X) and for almost every t ∈ [0, T ] holds that ż is contin-
uous at t, z(t) ∈ D(A) and

ż(t) = A(z(t)) + (ω(t) + α)z(t) + f(t),

z(0) = z0
(27)

b) Conversely, if z ∈ W 1,∞([0, T ];X) and for almost every t ∈ [0, T ] holds that ż
is continuous at t, z(t) ∈ D(A) and (27), then for

x(t) = ϕ(t)−1z(t) +Qyref(t) + P (Bx0 + ψ(ϕ0, e0))p(t), (28)

x ∈W 1,∞([0, T ];X) and for almost every t ∈ [0, T ] holds that ẋ is continuous at
t, x ∈ D(A) and (6).

c) If z ∈W 1,∞([0,∞);X), then x as in (28) fulfills x ∈W 1,∞([0,∞);X).
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Proof. The statements ω ∈ W 1,∞([0,∞)), f ∈ W 1,∞([0,∞);X) follow from the
product rule for weak derivatives [2, p. 124]. Since P maps to D(A), we have
z0 ∈ D(A). Further, by using BP = I, BQ = 0, CP = 0 and CQ = I, we obtain

φ(Cz0) =
ϕ0 · e0

1− ϕ2
0‖e0‖2

= −Bz0,

whence z0 ∈ D(A).
To prove statement a), assume that x ∈ W 1,∞([0, T ];X) has a derivative which is
continuous and in the domain of A almost everywhere. First note that the twice
weak differentiability of p and ϕ together with the fact that P and Q map to D(A)
implies that z ∈W 1,∞([0, T ];X) with ż(t) being in D(A) for almost every t ∈ [0, T ].
By further using that (6) holds for almost every t ∈ [0, T ], we obtain —analogously
to the above computations for z0— that

φ(Cz(t)) =
ϕ(t)e(t)

1− ϕ(t)2‖e(t)‖2
= −Bz(t),

which implies that z(t) ∈ D(A) for almost every t ∈ [0, T ]. Further, a straightfor-
ward calculation shows that (6) implies that z(t) fulfills (27).
Statement b) follows by an argumentation straightforward to that in the proof of
a). Statement c) is a simple consequence of inft≥0 ϕ(t) > 0, ϕ, p ∈ W 2,∞([0,∞)),
yref ∈W 2,∞([0,∞),Cm) and the product rule for weak derivatives.

The previous lemma is indeed the key step to prove Theorems 3.4 & 3.6 on
the feasibility of the funnel controller. By using the state transformation (26) with
inversion (28), the analysis of feasibility of the funnel controller reduces to the proof
of existence of a solution to the nonlinear evolution equation (27) in which the time-
dependence is now extracted to the inhomogeneity. This is subject of the following
result, which is a slight generalization of [22, Thm. IV.4.1], where equations of
type (27) with constant ω and m-monotone A are considered. Thereby we will use
Kato’s results [16, Thms. 1-3]. Note that these statements deal as well with a slight
more special situation, but can be extended to the general case presented below,
as directly after the aforementioned results by Kato. Note as well, that in [16] the
notion of m-accretive operators A is used, which means that −A is m-dissipative.

Lemma 5.8. Let T > 0, X be a Hilbert space and A : D(A) ⊂ X → X be m-
dissipative in X with 0 ∈ D(A) and A(0) = 0. Then for each z0 ∈ D(A), real-valued
ω ∈W 1,∞([0, T ]) and f ∈W 1,∞([0, T ];X) there exists a unique z ∈W 1,∞([0, T ];X)
with

(i) z(t) ∈ D(A) for almost every t ∈ [0, T ];
(ii) for almost every t ∈ [0, T ] holds

ż(t) = A(z(t)) + ω(t)z(t) + f(t), t ∈ [0, T ], (29)

z(0) = z0,

(iii) ż and A(z) are continuous except at a countable number of values in [0, T ].

Proof. Define the operator A(t)z := A(z) + ω(t)z + f(t) for (t, z) ∈ [0, T ] × D(A)
and set D(A(t)) = D(A) for all t ≥ 0. For s, t ∈ [0, T ] and z ∈ D(A) we have

‖A(t)z −A(s)z‖ = ‖(ω(t)− ω(s))z + f(t)− f(s)‖

≤ (‖ω̇‖L∞‖z‖+ ‖ḟ‖L∞)|t− s|

≤ max{‖ω̇‖L∞ , ‖ḟ‖L∞}|t− s|(1 + ‖z‖).
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Further, for all t ∈ [0, T ] and λ > ‖ω‖L∞ the operator −λI +A(t) is m-dissipative.
The dissipativity is trivial. For the range condition, let µ > 0 and u ∈ X, then

µI − (−λz +A(t)z) = u

can be rewritten as

(µ+ λ− ω(t))z −A(z) = u+ f(t).

Since λ − ω(t) > 0 uniformly in t and A is m-dissipative, if follows that there is a
unique z ∈ D(A) such that µz − (−λz + A(t)z) = u. Now, the application of [16,
Theorems 1-3] and the subsequent remark in [16] deliver the result.

Proof of Theorem 3.4. Let T > 0, and consider the nonlinear operator A as in (23)
and ω ∈ W 1,∞([0,∞)), f ∈ W 1,∞([0,∞);X) and z0 ∈ D(A) as in (25). Then
Lemma 5.8 implies that the nonlinear evolution equation (27) has a unique solution
z ∈ W 1,∞([0, T ];X) in the sense that for almost all t ∈ [0, T ] holds z(t) ∈ D(A), ż
is continuous at t, and (27). Then Lemma 5.7b) yields that x ∈W 1,∞([0, T ];X) as
in (28) has the desired properties.
It remains to show uniqueness: Assume that xi ∈ W 1,∞([0, T ];X) are solutions of
the closed-loop system (6) for i = 1, 2. Then

zi(t) = ϕ(t)
(
xi(t)−Qyref(t)− P (Bx0 + ψ(ϕ0, e0))p(t)

)
, (30)

fulfills żi(t) = A(zi(t)) + (ω(t) + α)z(t) + f(t) with zi(0) = z0, and the uniqueness
statement in Lemma 5.8 gives z1 = z2. Now resolving (30) for xi and invoking
z1 = z2 gives x1 = x2.

It remains to prove Theorem 3.6 which states that the global solution and its
derivative are bounded in case of negativity of the constant α in Assumption 2.2 (i).
To this end a further auxiliary result, which is a generalization of the Grönwall
inequality.

Lemma 5.9. [22, Lemma IV.4.1] Let a, b ∈ L1([0, T ]) be real-valued with b ≥ 0
almost everywhere and let the absolutely continuous function v : [0, T ] → (0,∞)
satisfy

(1− ρ)v̇(t) ≤ a(t)v(t) + b(t)v(t)ρ, for almost every t ∈ [0, T ],

where 0 ≤ ρ < 1. Then

v(t)1−ρ ≤ v(0)1−ρe
∫ t
0
a(s) ds +

∫ t

0

e
∫ t
s
a(r) dr b(s) ds , t ∈ [0, T ].

Now we are ready to formulate the proof of Theorem 3.6.

Proof of Theorem 3.6. Let α < 0, let A be the nonlinear operator in (23) and
ω ∈W 1,∞([0,∞)), f ∈W 1,∞([0,∞);X) and z0 ∈ D(A) as in (25).

Step 1: We show that the solution z ∈ W 1,∞
loc ([0,∞);X) of (27) (which exists by

Lemma 5.8) is bounded:
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Then we obtain that for almost all t ≥ 0 holds

1
2

d
dt‖z(t)‖X = Re〈z(t), ż(t)〉X

= Re〈z(t),Az(t) + (ω(t) + α)z(t) + f(t)〉X
≤ Re〈z(t),Az(t)〉X + (ω(t) + α)‖z(t)‖2X + ‖z(t)‖X‖f(t)‖X

(23)
= Re〈z(t),Az(t)〉X + ω(t)‖z(t)‖2X + ‖z(t)‖X‖f(t)‖X
(2)

≤ Re〈Bz(t),Cz(t)〉Cn + α‖z(t)‖2X + ω(t)‖z(t)‖2X‖z(t)‖2X + ‖z(t)‖X‖f(t)‖X
(23)
= − ‖Cz(t)‖2

1− ‖Cz(t)‖2
+ α‖z(t)‖2X + ω(t)‖z(t)‖2X + ‖z(t)‖X‖f(t)‖X

≤α‖z(t)‖2X + ω(t)‖z(t)‖2X + ‖z(t)‖X‖f(t)‖X .

Now applying Lemma 5.9 with ρ = 1/2, using that the definition of ω in (25) leads
to ω = d

dt log(ϕ) and setting ε := inft≥0 ϕ(t) > 0, we obtain that for almost all
t ≥ 0 holds

‖z(t)‖X ≤ ε−1‖z0‖Xϕ(t)eαt + ϕ(t)eαt
∫ t

0

ϕ(s)−1e−αs‖f(s)‖X ds .

The definition of f in (25) leads to the existence of c0, c1 > 0 such that for almost
all t ≥ 0 holds ‖f(t)‖X ≤ ϕ(t)(c0 + c1‖yref‖W 1,∞). Thus,

‖z(t)‖X ≤ ε−1‖z0‖Xϕ(t)eαt − α−1ϕ(t)(c0 + c1‖yref‖W 1,∞)(1− eαt),

whence z ∈ L∞([0,∞);X).
Step 2: We show that ż ∈ L∞([0,∞);X):
To this end, let h > 0 and, by using the dissipativity of A, consider

1
2

d
dt‖z(t+ h)− z(t)‖2X ≤ α‖z(t+ h)− z(t)‖2X + ω0(t+ h)‖z(t+ h)− z(t)‖2X

+ |ω0(t+ h)− ω0(t)|‖z(t)‖X‖z(t+ h)− z(t)‖X
+ ‖f(t+ h)− f(t)‖X‖z(t+ h)− z(t)‖X ,

Again applying the Grönwall type inequality from Lemma 5.9 with ρ = 1/2, dividing
by h and letting h→ 0 yields

‖ż(t)‖X

≤ ε−1‖ż(0)‖Xϕ(t)eαt + ϕ(t)eαt
∫ t

0

e−αsϕ(s)−1(‖z‖L∞ |ω̇0(s)|+ ‖ḟ(s)‖X) ds

≤ ε−1‖A(z0) + ω0(0)z0 + f(0)‖X‖ϕ‖L∞

+ ‖ϕ‖L∞
∥∥ϕ−1

∥∥
L∞

(‖z‖L∞‖ω̇0‖L∞ + d0 + d1‖yref‖W 2,∞)

for some d0, d1 > 0. Hence, ż(t) ∈ L∞([0,∞);X).
Step 3: We conclude that the solution x in (6) (which exists by Theorem 3.4) fufills
x ∈W 1,∞([0,∞);X):
We know from the first two steps that z ∈ W 1,∞([0,∞);X). Then Lemma 5.7c)
leads to x ∈W 1,∞([0,∞);X).
Step 4: We finally show that u = Bx fufills u ∈ L∞([0,∞);Cm):
We know from the third step, we know that x ∈ W 1,∞([0,∞);X). Since we have
x(t) ∈ D(A) with ẋ(t) = Ax(t) for almost all t ≥ 0, we can conclude that Ax ∈
L∞([0,∞);X), and thus x ∈ L∞([0,∞);D(A)). Then B ∈ L(D(A),Cm) gives
u = Bx ∈ L∞([0,∞);Cm).
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6. Simulations. Here we show some examples which correspond to the classes
mentioned in Section 3. The implementation of all simulations has been done with
Python.

6.1. Lossy transmission line. We consider the dissipative version of the Teleg-
rapher’s Equation with constant coefficients given by

Vζ(ζ, t) = −LIt(ζ, t)−RI(ζ, t),

Iζ(ζ, t) = −CVt(ζ, t)−GV (ζ, t),

u(t) =

(
V (a, t)
V (b, t)

)
,

y(t) =

(
I(a, t)
−I(b, t)

)
.

R is the resistance, C the capacitance, L the inductance and G the conductance
—all of them per unit length.

The system can be written in port-Hamiltonian form as

∂tx(ζ, t) = P1∂ζ(H(ζ)x(ζ, t)) + P0H(ζ)x(ζ, t),

u(t) = WBR0

(
(Hx)(b, t)
(Hx)(a, t)

)
,

y(t) = WCR0

(
(Hx)(b, t)
(Hx)(a, t)

)
,

where

P1 :=

[
0 −1
−1 0

]
, P0 :=

[
−R 0
0 −G

]
,H(ζ) :=

[
L−1 0

0 C−1

]
,

WB :=
1√
2

[
1 0 0 1
−1 0 0 1

]
,WC :=

1√
2

[
0 1 1 0
0 1 −1 0

]
,

x(ζ, t) :=

(
LI(ζ, t)
CV (ζ, t)

)
.

We have chosen the reference signals and funnel boundary of the following form

yref(t) =

(
A1 sin(ω1t) sin(ω2t)

A2 sin(ω3t)

)
,

ϕ(t) = ϕ0ε
−2 tanh(ωt+ ε).

In this case the system is impedance passive and P0 + P ∗0 ≤ −2 min{R,G}I2 and
Theorem 4.4 implies that u, y ∈ L∞([0,∞);R2). The simulated system is shown in
Fig. 2.

The parameter values are ζ ∈ (a, b) with a = 0 m, b = 1 m,

R = 463.59Ωm−1, L = 0.5062 mH m−1,
G = 29.111 µS m−1, C = 51.57 nF m−1.

Further, set c0 = (LC)−1/2, f = 1 MHz, ω = 2πf , ϕ0 = 1 A−1, ε = 0.1 and
amplitudes A1 = −0.3 A, A2 = 0.4 A. The other angular frequencies are ω1 = ω,
ω2 = 16ω and ω3 = ω/2. For the time interval we have defined T0 = f−1 and
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Figure 2. Left: Norm of the error within the funnel boundary
followed by the two reference signals and the respective outputs.
Right: Inputs obtained from the feedback law.

t ∈ [0, T ], where T = 2T0. We have used semi-explicit finite differences with a
tolerance of 10−3. The mesh in ζ has M = 1000 points and the mesh in t has

N =

⌊
b− a
2c0T

M

⌋
points. We further assume that the initial state is zero, i.e., x0 = 0 and we apply
the controller (7) from Remark 3.7 with k0 = 1 Ω.

6.2. Wave equation in two spatial dimensions. Here we consider the situation
described in Example 4.14, given by the system in polar coordinates on the unit
disc

∂ttw(t, r, θ) = ∂rrw(t, r, θ) + r−1∂rw(t, r, θ) + r−2∂θθw(t, r, θ),

u(t) = (∂rw(t, r, θ))|r=1,

y(t) =

∫ 2π

0

∂tw(t, 1, θ)dθ,

and use again a funnel boundary of the form ϕ(t) = ϕ0ε
−2 tanh(ωt + ε) and a

reference signal of the form yref(t) = A tanh(ωt) +B sin(ωt). The results are given
in Fig. 3. Note that by setting the speed of propagation to 1, the units of t coincide
with the ones of r.

The parameter values are r ∈ (a, b) with a = 0 m, b = 1 m, θ ∈ (0, 2π), f = 1 m−1,
ω = 2πf , ε = 10−2, ϕ0 = 1. The amplitudes are A = 1 and B = 0.1. We define
T0 = f−1 and T = 4T0. The initial state of the system is

w(0, r, θ) = 0 m, wt(0, r, θ) = 0,

which leads to a problem with radial symmetry, so the partial derivatives with
respect to θ vanish and we use explicit finite differences in r with M = 2000 points
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Figure 3. Performance funnel with the error, reference signal with
the output of the closed-loop system and input of the closed-loop.

and in t ∈ [0, T ] with N points, where

N =

⌊
b− a
2T

⌋
M.

6.3. Heat equation. Here we consider the following boundary controlled 2D heat
equation on the unit disc given by

∂tx(t, r, θ) = α(∂rrx(t, r, θ) + r−1∂rx(t, r, θ) + r−2∂θθx(t, r, θ)),

u(t) = α(∂rx(t, r, θ))|r=1,

y(t) =

∫ 2π

0

x(t, 1, θ)dθ,

where α > 0 is the thermal diffusivity.
In this case, making use of Theorem 4.18, we choose a funnel boundary of the

form ϕ(t) = ϕ0ε
−2 tanh(ωt+ ε). The reference signal is given by yref(t) = A sin(ωt)

and the simulated system is shown in Fig. 4. In Fig. 5 we show the evolution of
the plate at four different times.

The parameter values are α = 1 m2s−1, r ∈ (r0, r1), with r0 = 0 m and r1 = 1 m,
and θ ∈ (0, 2π). The amplitude values are A = 1 J, ϕ0 = 0.1 J and ε = 10−1. We
have set T0 = 1 s, ω = 2πT−1

0 and T = 5T0. We have used explicit finite differences
with a partition in r and θ of N = 25 points for each variable and in t ∈ [0, T ] of

M =

⌊
10T

(
N2

(r1 − r0)2
+

N

r1 − r0
+
N2

4π2

)⌋
points. The initial state of the system is

x(0, r, θ) = x0(r1 − r)2 sin(θ),

where x0 = 0.5 Jm−2. We apply the controller (7) from Remark 3.7 with k0 = 1 s−2.
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the output of the closed-loop system and input of the closed-loop.
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[25] J. A. Villegas. A port-Hamiltonian approach to distributed parameter systems. PhD thesis,

University of Twente, 2007.

Received xxxx 20xx; revised xxxx 20xx.

E-mail address: marc.puche@uni-hamburg.de

E-mail address: timo.reis@uni-hamburg.de

E-mail address: felix.schwenninger@uni-hamburg.de

https://arxiv.org/abs/1902.00586
mailto:marc.puche@uni-hamburg.de
mailto:timo.reis@uni-hamburg.de
mailto:felix.schwenninger@uni-hamburg.de

	1. Introduction
	2. System class
	3. Funnel controller
	4. Some PDE examples
	4.1. Port-Hamiltonian systems in one spatial variable
	4.2. Hyperbolic systems in several spatial variables
	4.3. A parabolic system

	5. Proof of Theorems 3.4 & 3.6
	6. Simulations
	6.1. Lossy transmission line
	6.2. Wave equation in two spatial dimensions
	6.3. Heat equation

	REFERENCES

