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MODULI OF STABILITY FOR HETEROCLINIC CYCLES

OF PERIODIC SOLUTIONS

MARIA CARVALHO, ALEXANDER LOHSE, AND ALEXANDRE A. P. RODRIGUES

Abstract. We consider C2 vector fields in R
3 with an attracting heteroclinic cycle between

a finite number of periodic hyperbolic solutions with real Floquet multipliers. The basin
of this attractor exhibits historic behavior and, from the asymptotic properties of the non-
converging Césaro time averages, we obtain a complete set of invariants under topological
conjugacy in a neighborhood of the cycle. As expected, this set contains the periods of the
orbits involved in the cycle, a combination of their angular speeds, the rates of expansion
and contraction in linearizing neighborhoods of them, besides information regarding the
transition maps and the transition times between these neighborhoods. The ideas of this
general discussion are then applied to a class of cycles, obtained by the lifting of a classical
example of Bowen.

1. Introduction

In the study of dynamical systems it has long been of interest to identify systems that
display similar behaviour in the sense that their phase diagrams look qualitatively the same.
For continuous systems ẋ = f(x) given by some vector field f , this amounts to deciding under
what conditions the flows generated by two different vector fields are topologically equivalent
or even conjugate. In particular, it is desirable to find quantities of the system that are
invariant under topological conjugacy and, moreover, fully characterize conjugacy classes of
systems through a (minimal) number of these quantities. Such a collection is then called a
complete set of invariants.

In the context of heteroclinic dynamics, significant contributions to this type of question
have been made by several authors. We briefly review the invariants under conjugacy that
have been found for: (a) heteroclinic connections between equilibria; (b) attracting hetero-
clinic cycles between equilibria; and (c) heteroclinic connections associated to one periodic
solution. As far as we know, the search of complete sets of invariants for attracting heteroclinic
cycles associated to periodic solutions have not been done yet.

For heteroclinic connections, Dufraine [7], building on the work of Palis [12], considers one-
dimensional heteroclinic connections between two hyperbolic equilibria on a three-dimensional
manifold, each with one real and one pair of complex conjugated eigenvalues. He finds a set of

Date: January 8, 2019.
2010 Mathematics Subject Classification. 34C28, 34C37, 37C29, 37D05, 37G35.
Key words and phrases. Heteroclinic cycle; Historic behavior; Complete set of invariants.
MC and AR were partially supported by CMUP (UID/MAT/00144/2019), which is funded by FCT with

national (MCTES) and European structural funds through the programs FEDER, under the partnership
agreement PT2020. Part of this work has been written during AR’s stay in Nizhny Novgorod University,
supported by the grant RNF 14-41-00044. Visits to Porto by AL were funded through project 57338573 PPP
Portugal 2017 of the German Academic Exchange Service (DAAD), sponsored by the Federal Ministry of
Education and Research (BMBF).

1

http://arxiv.org/abs/1901.01934v1


2 M. CARVALHO, A. LOHSE, AND A. RODRIGUES

invariants involving two quantities: the ratio of the real parts of the complex eigenvalues, and
an expression combining this ratio with their imaginary parts. Bonatti and Dufraine [4] go on
to extend this result to obtain a complete characterization of such a heteroclinic connection
up to topological equivalence. Higher dimensional heteroclinic connections between equilibria
are analyzed in a similar way by Suśın and Simó [15].

Takens [17] provides analogous investigations for an attracting heteroclinic cycle with two
one-dimensional connections between hyperbolic equilibria, this time with only real eigenval-
ues. Under the assumption that the transitions between suitable cross sections to the cycle
is instantaneous and the global maps are linear, he finds a complete set of three invariants
that are intuitively compatible with the ones mentioned above: two ratios of eigenvalues as
found by Palis [12], plus an expression relating these to properties of the global transition
map. Completeness is proved by constructing a conjugacy based on asymptotic properties of
Birkhoff time averages – a technique we also use in this paper. Togawa [18] also obtained that,
for a homoclinic cycle associated to a saddle focus, its saddle-index is a topological invariant.
In fact, this number is an invariant under topological equivalence (see [1]). In this context,
Dufraine [7] proved that the absolute value of the imaginary part of the complex eigenvalues
is a conjugacy invariant.

Carvalho and Rodrigues [5] consider a Bykov attractor – a heteroclinic cycle between two
hyperbolic equilibria on a three-dimensional sphere with a one-dimensional connection as in
[7] and a two-dimensional connection as in [15] between them. Extending the argument of
[17], they find a complete set of four invariants for this situation, namely a combination of
the angular speeds of the equilibria, the rates of expansion and contraction in linearizing
neighborhoods of them, besides information regarding the transition maps between these
neighborhoods. See their paper also for a more detailed overview of the previous results that
we mentioned here only briefly.

Beloqui [3] considers a one-dimensional connection between a saddle-focus equilibrium and
a periodic solution and derives an invariant under conjugacy. More precisely, Beloqui studies
a heteroclinic connection associated to a saddle-focus p (with eigenvalues −Cp ± iω and Ep)
and a periodic solution P (with minimal period ℘ and real Floquet exponents CP and EP
such that |CP | < 1 and |EP | > 1) and shows that

Cp

ωEP
is a topological invariant. Under

additional assumptions, Rodrigues [13] obtained the new invariant

1

EP + Cp

(
ωEP +

2π

℘
Cp

)
.

Our contribution lies in combining and extending techniques used in the previous works to
address the question of complete sets of topological invariants for attracting heteroclinic cycles
with two-dimensional connections between two hyperbolic periodic solutions with real Floquet
multipliers (called “PtoP” cycle). The basin of this attractor exhibits historic behavior and,
from the asymptotic properties of the non-converging time averages, we obtain a complete
set of invariants under topological conjugacy within the basin of attraction of the cycle.
Unsurprisingly, the eight invariants we find include the two minimal periods of the periodic
solutions; the other six are closely related to those found in earlier works. They reduce to
those found in [5] under the assumptions therein on the global transitions (which we are able
to loosen here).

While our results are primarily of interest in terms of further understanding and classifying
heteroclinic behaviour from an abstract point of view, heteroclinic cycles between periodic
solutions appear in several models of real-life systems: for instance, Zhang, Krauskopf and
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Kirk [19] consider a four-dimensional model for intracellular calcium dynamics where a codi-
mension one “PtoP” cycle between two periodic solutions appears. Their setup differs from
our situation, though, by one of the connections being one-dimensional.

This paper is structured as follows. In Sections 2 and 3 we introduce the setting and
establish some notation. Section 4 states our main result, giving a complete list of invariants
under topological conjugacy for a “PtoP” heteroclinic cycle as described above. In Sections 5
and 6 we analyse the local and global dynamics near the cycle as well as the hitting times of
trajectories attracted to it. The proof of our main theorem is spread over Sections 7 and 8,
where we derive the invariants and prove that they indeed form a complete set. We conclude
with an example in Section 9, obtained by the lift of a well-known system studied in [17] and
attributed to Bowen.

2. The setting

We consider C2 vector fields f : S3 → TS3 and the corresponding differential equations
ẋ = f(x) subject to initial conditions x(0) = x0 ∈ S3. We will assume that f has the following
properties:

(P1) There are two hyperbolic periodic solutions C1 and C2 of saddle-type, with minimal
periods ℘1 and ℘2, within which the flow has constant angular speed ω1 > 0 and
ω2 > 0, respectively. The Floquet multipliers of C1 and C2 are real and given by

eE1 > 1 and e−C1 < 1 for C1
eE2 > 1 and e−C2 < 1 for C2

where C1 > E1 and C2 > E2.

(P2) The stable manifoldsW s
loc(C1), W s

loc(C2) and the unstable manifoldsW u
loc(C1), W u

loc(C2)
are smooth surfaces homeomorphic to a cylinder.

(P3) For every j ∈ {1, 2}, each connected component of W u(Cj) \ {Cj} coincides with a
selected connected component of W s(C(j+1)mod 2) \ {C(j+1)mod 2}.

The two periodic solutions C1 and C2 and the set of trajectories referred to in (P3) build a
heteroclinic cycle we will denote hereafter by H. The assumptions (P1) and (P3) ensure that
H is asymptotically stable (cf. [9, 10]), that is, there exists an open neighborhood V 0 of H
in R

3 such that every solution starting in V 0 remains inside V 0 for all positive times and is
forward asymptotic to H. This open set V 0 is part of the basin of attraction of H, which we
denote by B(H).

Following the strategy adopted in [17, 5], we will select cross sections (submanifolds of
dimension two) inside linearizing neighborhoods of the periodic solutions (see Section 5 for
more details) and assume that, in appropriate coordinates, we have:

(P4) The transition maps are linear with diagonal and non-singular matrices given by




1 0 0

0 a 0

0 0 b



 and





1 0 0

0 c 0

0 0 d



 with a, c > 0, 0 < b, d ≤ 1.

(P5) The transition times between these cross sections are non-negative constants, say s1
and s2, not necessarily equal.

We denote by X
r
PtoP(S

3) the set of Cr, r ≥ 2, smooth vector fields in S3 which satisfy the
assumptions (P1)–(P5), endowed with the Cr-Whitney topology.
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3. Background material

For the reader’s convenience, we include in this section some definitions, notation and
preliminary results.

3.1. Invariants under conjugacy. Given two vector fields ẋ = f1(x) and ẋ = f2(x), defined
in domains D1 ⊂ S and D2 ⊂ S, respectively, let ϕi(t, x0) be the unique solution of ẋ = fi(x)
with initial condition x(0) = x0, for i ∈ {1, 2}. The corresponding flows are said to be
topologically equivalent in subregions U1 ⊂ D1 and U2 ⊂ D2 if there exists a homeomorphism
h : U1 → U2 which maps solutions of the first system onto solutions of the second preserving
the time orientation. If h is also time preserving, that is, if for every x ∈ S and every t ∈ R, we
have ϕ1(t, h(x)) = h(ϕ2(t, x)), the flows are said to be topologically conjugate and h is called
a topological conjugacy. A set of invariants under topological conjugacy is said to be complete

if, given two systems with equal invariants, there exists a topological conjugacy between the
corresponding flows.

3.2. Terminology. Given a compact, flow-invariant set K ⊂ S, its basin of attraction B(K)
is the set of points eventually attracted to K, that is,

B(K) :=
{
x ∈ S : ω(x) ⊂ K

}

where ω(x) stands for the ω-limit set of the trajectory of x.
We are especially interested in the case where K is a heteroclinic cycle. Let ξ1 and ξ2

be hyperbolic invariant sets. We say that there is a heteroclinic connection from ξ1 to ξ2
if W u(ξ1) ∩ W s(ξ2) 6= ∅. Note that this intersection may contain more than one trajectory
and be of dimension greater than one. If there are finitely many sets ξ1, . . . , ξk and cyclic
heteroclinic connections W u(ξi)∩W s(ξi+1) 6= ∅ between them, then the union of all sets and
connections is called a heteroclinic cycle. The sets ξi may be equilibria, periodic solutions or
possibly more complicated invariant sets.

In the presence of symmetry it is common to identify ξ with its group orbit. In particular,
a point ξ is called a relative equilibrium of an equivariant vector field f if at ξ the vector field
f is tangent to the group orbit of ξ. In Section 9 we describe an example of a heteroclinic
cycle between two periodic solutions which are relative equilibria with respect to the SO(2)
group action.

3.3. Constants. For future use, we settle that:

R1 =
ω1 ℘1

2π R2 =
ω2 ℘2

2π γ1 =
C1

E2
γ2 =

C2

E1

δ1 =
C1

E1
δ2 =

C2

E2
δ = δ1 δ2

τ1 =
1
E1

(1 + γ1) τ2 =
1
E2

(1 + γ2).

According to the assumptions, we have τ1, τ2 > 0, δ1 > 1 and δ2 > 1. Notice also that

τ1 =
1

E1
(1 + γ1) =

C1 + E2

E1 E2
, τ2 =

1

E2
(1 + γ2) =

E1 + C2

E1 E2
, δ = γ1 γ2 = δ1 δ2 =

C1C2

E1 E2
.
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4. Main result

We now state the main theorem of this work. In Section 9 we apply this result to a vector
field obtained by lifting Bowen’s example.

Theorem A. Let f ∈ X
r
PtoP(S

3), r ≥ 2. Then
{
℘1, ℘2, γ1, γ2, ω1 + γ1ω2, ω2 + γ2ω1, −

1

E1
log d+ (s1 − γ1s2), −

1

E2
log b+ (s2 − γ2s1)

}

is a complete set of invariants for f under topological conjugacy in a neighborhood of the

heteroclinic cycle H.

Observe that, if we assume that s1 = s2 = 0 (that is, both transitions are instantaneous),
then the complete set of invariants reduces to

{
℘1, ℘2, γ1, γ2, ω1 + γ1ω2, ω2 + γ2ω1,−

1

E1
log d, − 1

E2
log b

}

a list which resembles the ones found in [17] and [5].

The essential steps of the proof we will explain on the next sections may be applied to
attracting heteroclinic cycles between more than two hyperbolic periodic solutions, although
the computations are cumbersome. We conjecture that no qualitatively different invariant
will arise within this more general setting.

5. Local and global dynamics in B(H)

We will start defining two disjoint compact neighborhoods V1 and V2 of the C1 and C2,
respectively, such that each boundary ∂Vj is a finite union of smooth submanifolds (with
boundary) which are transverse to the vector field.

5.1. Local coordinates. For j ∈ {1, 2}, let Sj be a cross section transverse to the flow at
a point Pj of Cj . As Cj is hyperbolic, there is a neighborhood V∗

j of Pj in Sj where the first

return map to Sj, denoted by πj, is C1 conjugate to its linear part (the eigenvalues of the
derivative Dπj(Pj) are precisely eEj > 1 and e−Cj < 1). Moreover, for each r ≥ 2 there is an
open and dense subset of R2 such that, if Cj and Ej lie in this set, then the conjugacy is of
class Cr (cf. [16]). The vector field associated to this linearization around Cj is represented
by the system of differential equations given, in cylindrical coordinates (ρ, θ, z), by





ρ̇ = −Cj (ρ−Rj)

θ̇ = ωj

ż = Ej z
(5.1)

where Rj =
ωj℘j

2π , whose solution with initial condition (Rj + k, θ0, z0), for −ε ≤ k ≤ ε, is

t ∈ R 7→





ρ(t) = Rj + k e−Cj t

θ(t) = θ0 + ωj t mod 2π.
z(t) = z0 e

Ej t

(5.2)

and whose flow is C2-conjugate to the flow of f in a neighborhood of Cj. Unless there is risk

of misunderstanding, in what follows we will drop the label mod 2π when referring to the
variable θ. In these cylindrical coordinates,
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(a) the periodic solution Cj is the circle described by ρ = Rj and z = 0;

(b) the local stable manifold W s
loc(Cj) of Cj is the plane defined by z = 0;

(c) the local unstable manifold W u
loc(Cj) of Cj is the cylindrical surface defined by ρ = Rj .

See the illustration in Figure 1.



W   (C)s
loc

W   (C)  u
loc

2

εε

Out  (C)+

Out  (C)-

W   (C)  u
loc

In  (C)+

In  (C)-

Figure 1. Local data near a periodic solution C.

We will analyze the dynamics inside a cylindrical neighborhood Vj(ε) of Cj , for some ε > 0,
contained in the saturation of V∗

j by the flow and given by

Vj(ε) =
{
(ρ, θ, z) : 0 < Rj − ε ≤ ρ ≤ Rj + ε, θ ∈ [0, 2π[, −ε ≤ z ≤ ε

}
.

When there is no risk of confusion, we will write Vj instead of Vj(ε). For j ∈ {1, 2}, each Vj ,
called an isolating block for Cj , is homeomorphic to a hollow cylinder whose boundary is the
union ∂Vj = In(Cj) ∪Out(Cj) ∪∆(Cj) satisfying the following conditions:

(1) In(Cj) is the union of the walls of Vj, that is,

In(Cj) =
{
(ρ, θ, z) : ρ = Rj ± ε, θ ∈ [0, 2π[, |z| ≤ ε

}

with two connected components which are locally separated by W u(Cj). In cylindrical
coordinates, In(Cj) ∩W s(Cj) is the union of the two circles in Vj , namely

In(Cj) ∩W s(Cj) =
{
(ρ, θ, z) : ρ = Rj ± ε, θ ∈ [0, 2π[, z = 0

}
.
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Forward trajectories starting at In(Cj) go inside Vj .

(2) Out(Cj) is the union of two annuli, the top and the bottom of Vj, that is,

Out(Cj) =
{
(ρ, θ, z) : Rj − ε ≤ ρ ≤ Rj + ε, θ ∈ [0, 2π[, z = ±ε

}

with two connected components which are locally separated by W s(Cj). The intersec-
tion Out(Cj) ∩W u(Cj) is precisely the union of the two circles in Vj given by

Out(Cj) ∩W u(Cj) =
{
(ρ, θ, z) : ρ = Rj, θ ∈ [0, 2π[, z = ±ε

}
.

Backward trajectories starting at Out(Cj) go inside Vj .

(3) The vector field is transverse to ∂Vj at all points except possibly at the circles ∆(Cj) =
In(Cj) ∩Out(Cj), parameterized by ρ = Rj ± ε and z = ±ε.

Denote by In+(Cj) the intersection of In(Cj) with ρ = Rj + ε, and let Out+(Cj) be the
intersection of Out(Cj) with z = ε. More precisely,

In+(Cj) =
{
(ρ, θ, z) : ρ = Rj + ε, θ ∈ [0, 2π[, −ε ≤ z ≤ ε

}
(5.3)

Out+(Cj) =
{
(ρ, θ, z) : Rj − ε ≤ ρ ≤ Rj + ε, θ ∈ [0, 2π[, z = ε

}
.

5.2. Local dynamics. In this subsection we restrict the analysis to initial points of In(Cj)
with z0 > 0 and ρ = Rj + ε. The other cases are entirely similar. Using the dynamics in
local coordinates described by (5.2), we now evaluate the time needed by an initial condition
(Rj + ε, θ0, z0) ∈ In+(Cj) to reach Out+(Cj).

To estimate this time T , we have just to solve the equation

z0 e
Ej T = ε

from which we deduce that

T = − 1

Ej
log

(z0
ε

)
.

Therefore, the local map, acting inside Vj and sending In+(Cj) into Out(Cj), is given by

Φ+
j (Rj + ε, θ0, z0) = (ρ(T ), θ(T ), z(T )) (5.4)

=

(
Rj + ε

(z0
ε

)δj
, θ0 −

ωj

Ej
log

(z0
ε

)
mod 2π, ε

)
.

5.3. Transition maps. Denote by [C1 → C2] the component of the heteroclinic cycle H
formed by the coincidence between W u(C1) and W s(C2). Similarly, [C2 → C1] represents the
coincidence between W s(C1) and W u(C2). Notice that [C1 → C2] connects points with z = ε
in V1 (respectively z = −ε) to points with ρ = R2 + ε (respectively ρ = R2 − ε) in V2.

Notice that Out+(C1) \ [C1 → C2] has two connected components (the same holds for
Out+(C2)) and that points in Out+(C1) near W u(C1) are mapped into In+(C2) along a flow-
box around the connection [C1 → C2]; analogously, points in Out+(C2) near W u(C2) are
mapped into In+(C1) along the same flow-box.

Recall that we are assuming that both transition maps from Out±(Cj) to In±(Cj), for j =
1, 2, have a linear component with submatrices

[

a 0

0 b

]

from Out(C1) to In(C2), and
[

c 0

0 d

]

from Out(C2) to In(C1), for some 0 < b, d ≤ 1 and a, c > 0. Therefore, the transition maps
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Ψ+
12 : Out+(C1) → In+(C2) and Ψ+

21 : Out+(C2) → In+(C1) are expressed in cylindrical
coordinates as

Ψ+
12(ρ, θ, ε) =

(
R2 + ε, a θ mod 2π, b (ρ−R1)

)
(5.5)

and

Ψ+
21(ρ, θ, ε) =

(
R1 + ε, c θ mod 2π, d (ρ−R2)

)
. (5.6)

Figure 2 summarizes this information.

(   )

b

0

0

a

C2 C

(   )

d

0

0



c

1

Figure 2. Linear components of the global maps.

5.4. The first return map to In(C2). Given an initial condition (R2 ± ε, θ, z) ∈ In+(C2),
its trajectory returns to In+(C2), thus defining a first return map

F2 := Ψ+
12 ◦ Φ+

1 ◦Ψ+
21 ◦ Φ+

2 : In+(C2) → In+(C2) (5.7)

which is as smooth as the vector field f and acts as

F2(R2 ± ε, θ, z) = (R2 ± ε,Θ, Z) , (5.8)

where

Θ = ac θ −
[
ac ω1E1 + a ω1 C2

E1 E2

]
log

(z
ε

)
− aω1

E1
log d mod2π

Z = b ε dδ1
(z
ε

)δ

.

If s1(X) stands for the time needed for the orbit starting at X ∈ Out(C2) to hit In(C1)
(see Figure 3) and we choose the cross sections Out(C2) and In(C1) small enough, then the
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interval [smin, smax] is arbitrarily small, where

smin = min
{
s1(X) : X ∈ Out(C2) ∩W u(C2)

}

smax = max
{
s1(X) : X ∈ Out(C2) ∩W u(C2)

}
.

Notice that these extreme values exist since Out(C2)∩W u(C2) is compact. Therefore, there is
M1 > 0 such that 0 ≤ s1(X) ≤ M1 for all X ∈ Out(C2). Analogously, we define s2(X) as the
time needed for the orbit starting at X ∈ Out(C1) to hit In(C2). Using the same argument, we
may find M2 > 0 such that 0 ≤ s2(X) ≤ M2 for all X ∈ Out(C1). Let M = max {M1,M2}.
We remark that, for each initial condition X0 ∈ B(H), the time spent by the piece of the
trajectory {ϕ(t, X0) : t ∈ [0,T]} inside V1 ∪ V2 goes to infinity as T → +∞, while both
transition times s1 and s2 during its sojourn outside V1 ∪ V2 remain uniformly bounded.

Out(C  )1

In(C  )2

C
1

C
2

x

ϕ(x,s (x))1

Figure 3. Scheme for the global transition.

6. Hitting times

In this section we will obtain estimates of the amount of time a trajectory spends between
consecutive isolating neighborhoods of the periodic solutions. To simplify the computations,
we may re-scale the local coordinates in order to assume that ε = 1.

As a trajectory approaches H, it visits a neighborhood of C1, then moves off towards a
neighborhood of C2, comes back to the proximity of C1, and so on. During each turn it
spends a geometrically increasing period of time in the small neighborhoods of the periodic
solutions. More precisely, starting at the time t0 (which we may assume equal to 0) with the
initial condition (ρ0, θ0, 1) ∈ Out+(C2), its orbit hits Out+(C1) after a time interval equal to

t1 = s1(ρ0, θ0, 1) −
1

E1
log (d |ρ0 −R2|) (6.1)



10 M. CARVALHO, A. LOHSE, AND A. RODRIGUES

at the point in Out+(C1) whose cylindrical coordinates are

(ρ1, θ1, 1) = (Φ+
1 ◦Ψ+

21)(ρ0, θ0, 1) = Φ+
1 (R1 + 1, c θ0, d (ρ0 −R2))

=

(
R1 + [d(ρ0 −R2)]

δ1 , c θ0 −
ω1

E1
log [d(ρ0 −R2)] , 1

)
if ρ0 > R2;

(ρ1, θ1, 1) = (Φ+
1 ◦Ψ+

21)(ρ0, θ0, 1) = Φ+
1 (R1 − 1, c θ0, d (R2 − ρ0))

=

(
R1 − [d(R2 − ρ0)]

δ1 , c θ0 −
ω1

E1
log [d(R2 − ρ0)] , 1

)
if ρ0 < R2.

Then, the orbit goes to In+(C2) and proceeds to Out+(C2), hitting the point

(ρ2, θ2, 1) = (Φ+
2 ◦Ψ+

12)(ρ1, θ1, 1)

in Out+(C2), where
ρ2 = R2 ± bδ2 [d|ρ0 −R2|]δ ,

θ2 = ac θ0 −
[
aω1E2 + ω2C1

E1E2

]
log |ρ0 −R2| −

[
aω1E2 + ω2C1

E1 E2

]
log d− ω2

E2
log b mod2π,

and spending in the whole path a time equal to

t2 = t1 + s2(ρ1, θ1, 1) +

(
− 1

E2
log (b |ρ1 −R1|)

)
(6.2)

= t1 + s2(ρ1, θ1, 1)−
1

E2
log b− δ1

E2
log d− δ1

E2
log (|ρ0 −R2|).

And so on for the other time values.

7. The invariants

Now we will examine how the hitting times sequences generate the set of invariants we are
looking for. Starting with a point P0 := (ρ0, θ0, 1) ∈ Out+(C2) at the time t0 = 0 (notice
that P0 ∈ B(H)\H), we consider the sequences of times (tj)j ∈N

constructed in the previous

section and define, for each i ∈ N0 = N ∪ {0}, the sequences of points and transition times





P2i := ϕ (t2i, P0) = (ρ2i, θ2i, 1) ∈ Out+(C2)
s2i+1 := s2i+1(P0) = s1(P2i)

P2i+1 := ϕ (t2i+1, P0) = (ρ2i+1, θ2i+1, 1) ∈ Out+(C1)
s2i+2 = s2i+2(P1) = s2(P2i+1).

(7.1)

The trajectory (t ∈ R
+
0 → ϕ(t, P0)) is partitioned into periods of time corresponding

either to its sojourns inside V1 and along the connection [C2 → C1] (that is, the differences
t2i+1 − t2i for i ∈ N0) or inside V2 and along the the connection [C1 → C2] (that is, t2i+2 − t2i+1

for i ∈ N0) during its travel that begins and ends at Out+(C2).
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Lemma 7.1. Let P0 = (ρ0, θ0, 1) be a point in Out+(C2) and take the corresponding sequence

(tj)j ∈N0
. Then:

(1) (t2i+1 − t2i)− γ2 (t2i − t2i−1) = − 1
E1

log d+ (s2i+1 − γ2 s2i).

(2) (t2i+2 − t2i+1)− γ1 (t2i+1 − t2i) = − 1
E2

log b+ (s2i+2 − γ1 s2i+1).

(3) (t2i+2 − t2i)− δ (t2i − t2i−2) = −τ1 log d− τ2 log b+ (s2i+2 + s2i+1)− δ (s2i + s2i−1).

Proof. Firstly, recall from (6.1) and (6.2) that

t2i − t2i−1 = − 1

E2
log (b |ρ2i−1 −R1|) + s2i

t2i+1 − t2i = − 1

E1
log (d |ρ2i −R2|) + s2i+1.

Besides, one has

t2i+1 − t2i = − 1

E1
log (d |ρ2i −R2|) + s2i+1 = − 1

E1
log

[
d
(
b |ρ2i−1 −R1|

)δ2
]
+ s2i+1

= − 1

E1
log d− δ2

E1
log b− δ2

E1
log (|ρ2i−1 −R1|) + s2i+1.

Therefore,

(t2i+1 − t2i)− γ2 (t2i − t2i−1) = (t2i+1 − t2i)−
C2

E1
(t2i − t2i−1)

= − 1

E1
log d− δ2

E1
log b− δ2

E1
log (|ρ2i−1 −R1|) + s2i+1 −

− C2

E1

[
− 1

E2
log b− 1

E2
log (|ρ2i−1 −R1|) + s2i

]

= − 1

E1
log d− δ2

E1
log b+

C2

E1

1

E2
log b+

(
s2i+1 −

C2

E1
s2i

)

= − 1

E1
log d+

(
s2i+1 −

C2

E1
s2i

)
.

The proof of item (2) of the lemma is similar. Concerning item (3), we start evaluating
t2i − t2i−2 and t2i+2 − t2i:

t2i − t2i−2 = − 1

E2
log (b |ρ2i−1 −R1|) + s2i−1 −

1

E1
log (d |ρ2i−2 −R2|) + s2i

= − 1

E2
log

[
b
(
d |ρ2i−2 −R2|

)δ1
]
− 1

E1
log (d |ρ2i−2 −R2|) +

(
s2i + s2i−1

)

= −
(

1

E1
+

δ1
E2

)
log d− 1

E2
log b−

(
1

E1
+

δ1
E2

)
log (|ρ2i−2 −R2|) +

(
s2i + s2i−1

)

= −τ1 log d−
1

E2
log b− τ1 log (|ρ2i−2 −R2|) +

(
s2i + s2i−1

)
;
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t2i+2 − t2i = −τ1 log d−
1

E2
log b− τ1 log (|ρ2i −R2|) +

(
s2i+2 + s2i+1

)

= −τ1 log d−
1

E2
log b− τ1 log

[(
b (d |ρ2i−2 −R2|)δ1

)δ2
]
+

(
s2i+2 + s2i+1

)

= −τ1 log d−
1

E2
log b− τ1δ2 log

[
b (d |ρ2i−2 −R2|)δ1

]
+

(
s2i+2 + s2i+1

)

= −τ1 log d−
(

1

E2
+ τ1δ2

)
log b− τ1δ1δ2 log (d |ρ2i−2 −R2|) +

(
s2i+2 + s2i+1

)

= −τ1(1 + δ) log d−
(

1

E2
+ τ1δ2

)
log b− τ1δ log (|ρ2i−2 −R2|) +

(
s2i+2 + s2i+1

)
.

Finally, combining the two previous equalities, we obtain

(t2i+2 − t2i)− δ (t2i − t2i−2) =

= −τ1(1 + δ) log d−
(

1

E2
+ τ1δ2

)
log b− τ1δ log (|ρ2i−2 −R2|)

+ τ1δ log d+
δ

E2
log b+ τ1δ log (|ρ2i−2 −R2|) +

(
s2i+2 + s2i+1

)
− δ

(
s2i + s2i−1

)

= −τ1 log d−
(

1

E2
+ τ1δ2 −

δ

E2

)
log b+

(
s2i+2 + s2i+1

)
− δ

(
s2i + s2i−1

)

= −τ1 log d−
1

E2
(1 + γ2) log b+

(
s2i+2 + s2i+1

)
− δ

(
s2i + s2i−1

)

= −τ1 log d− τ2 log b+
(
s2i+2 + s2i+1

)
− δ

(
s2i + s2i−1

)
.

�

Taking into account that the sequences (s2i)i∈N and (s2i−1)i∈N are uniformly bounded, a
straightforward computation gives additional information on the evolution of the quotients
of the previous sequences, besides a connection between the return times sequences and the
combinations ω1 + γ1 ω2 and ω2 + γ2 ω1.

Corollary 7.2.

(1) limi→+∞
t2i+2 − t2i+1

t2i+1 − t2i
= γ1.

(2) limi→+∞
t2i+1 − t2i
t2i − t2i−1

= γ2.

(3) limi→+∞
t2i+2 − t2i
t2i − t2i−2

= δ.

(4) limi→+∞
ω1 (t2i+1 − t2i)+ω2 (t2i+2 − t2i+1)

t2i+2 − t2i
= (ω1 + γ1 ω2)

1
γ1 +1 .

(5) limi→+∞
ω2 (t2i − t2i−1)+ω1 (t2i+1 − t2i)

t2i+1 − t2i−1
= (ω2 + γ2 ω1)

1
γ2 +1 .

Remark 7.3. Observe that

(ω1 + γ1 ω2)
1

γ1 + 1
− (ω2 + γ2 ω1)

1

γ2 + 1
= (ω1 − ω2)

1− γ1 γ2
(γ1 + 1)(γ2 + 1)

so, under assumption (P1), these invariants are equal if and only if ω1 = ω2.
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From now on, and having in mind the assumption (P5) and the examples we are interested
in (see Section 9), we will assume that there exist s1 ≥ 0 and s2 ≥ 0 such that

s2i+1 = s1 and s2i = s2, ∀ i ∈ N ∀P0 ∈ Out+(C2). (7.2)

This way, using the previous computations, we may estimate the invariants we are looking
for.

Corollary 7.4. Let P0 = (ρ0, θ0, 1) be a point in Out+(C2) and take the corresponding times

sequence (ti)i∈N0
. Then:

(1) limi→+∞ (t2i+1 − t2i)− γ2 (t2i − t2i−1) = − 1
E1

log d+ (s1 − γ2 s2).

(2) limi→+∞ (t2i+2 − t2i+1)− γ1 (t2i+1 − t2i) = − 1
E2

log b+ (s2 − γ1 s1).

(3) limi→+∞ (t2i+2 − t2i)− δ (t2i − t2i−2) = −τ1 log d− τ2 log b+ (s2 + s1)(1 − δ).

Thus, besides ℘1, ℘2, the values

γ1 γ2

ω1 + γ1ω2 ω2 + γ2ω1

− 1

E1
log d+ (s1 − γ1s2) − 1

E2
log b+ (s2 − γ2s1)

are invariants under topological conjugacy. Notice that the invariant

−τ1 log d− τ2 log b+ (s1 + s2)(1− δ)

may be rewritten as a combination of − 1
E1

log d + (s1 − γ2 s2) and − 1
E2

log b + (s2 − γ1 s1)
with coefficients that are invariants as well. Indeed, summoning the links between the several
constants listed in Subsection 3.3, we deduce that

[
− 1

E1
log d+ (s1 − γ2 s2)

]
(1 + γ1) +

[
− 1

E2
log b+ (s2 − γ1 s1)

]
(1 + γ2)

= − 1

E1
log d+ s1 − γ2 s2 −

γ1
E1

log d+ γ1 s1 − γ1 γ2 s2 −
1

E2
log b+ s2 − γ1 s1

− γ2
E2

log b+ γ2 s2 − γ1 γ2 s1

=
(
− 1 + γ1

E1

)
log d+

(
− 1 + γ2

E2

)
log b+

(
s1 + s2

)(
1− γ1 γ2

)

= −τ1 log d− τ2 log b+ (s1 + s2)(1 − δ).

8. Completeness of the set of invariants

Let f and g be vector fields in X
r
PtoP(S

3), r ≥ 2, having a stable heteroclinic cycle associated
to two periodic solutions. For a conjugacy between f and g to exist it is necessary that the
conjugated orbits have hitting times sequences, with respect to fixed cross sections, that are
uniformly close. Therefore, besides the numbers ℘1 and ℘2, which are well known to be
invariants under conjugacy, the values γ1, γ2, − 1

E1
log d+(s1−γ2s2), − 1

E2
log b+(s2−γ1s1),

ω1+γ1 ω2 and ω2+γ2 ω1 are also invariants under topological conjugacy. We are left to prove
that they form a complete set. The argument we will present was introduced by F. Takens
in [17] while examining Bowen’s example and, with some adjustments, used in [5] for a class
of Bykov attractors.
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Let ℘1, ℘2, γ1, γ2, ω2+γ2ω1, ω1+γ1ω2, − 1
E1

log d+(s1−γ2s2) and − 1
E2

log b+(s2−γ1s1)

be the invariants of f , and ℘1, ℘2, γ1, γ2, ω1 + γ1ω2, ω2 + γ2ω1, − 1
E1

log d + (s1 − γ2s2)

and − 1
E2

log b + (s2 − γ1s1) the ones of g. Assume that they are pairwise equal. We are

due to explain how these numbers enable us to construct a conjugacy between f and g in a
neighborhood of the respective heteroclinic cycles Hf and Hg.

8.1. Takens’ procedure. We will start associating to f and any point P in a fixed cross

section Σ another point P̃ whose f−trajectory has a sequence of hitting times (at a possibly

different but close cross section Σ̃) which is determined by, and uniformly close to, the hitting
times sequence of P , but is easier to work with. This is done by slightly adjusting the cross
section Σ using the flow along the orbit of P . Afterwards, we need to find an injective and
continuous way of recovering the orbits from the hitting times sequences. Repeating this
procedure with g we find a point Q whose g−trajectory has hitting times at some cross

section equal to the ones of P̃ . Due to the fact that the invariants of f and g are the same,
the map that sends P to Q is the desired conjugacy.

8.2. A sequence of adjusted hitting times. Fix P = (ρ0, θ0, z0) ∈ B(Hf ) and let (ti)i∈N0

be the times sequence defined in (7.1). We start defining, for each i ∈ N0, a finite family of
numbers

T̃
(i)

0 , T̃
(i)

1 , T̃
(i)

2 , . . . , T̃
(i)

i

satisfying the following properties

T̃
(i)

i = Ti = t2i+2 − t2i (8.1)

T̃
(i)

j − δ T̃
(i)

j−1 = −τ1 log d− τ2 log b+ (1− δ)(s1 + s2) ∀ j ∈ {1, 2, . . . , i}.
By finite induction, it is straightforward that, for every i ∈ N,

T̃
(i)

0 =
Ti + (

∑i−1
j=0 δj) − τ1 log d− τ2 log b+ (1− δ)(s1 + s2)

δi
. (8.2)

Therefore, using the argument of [5], we may conclude that:

Lemma 8.1. Let P0 = (ρ0, θ0, 1) be a point in Out+(C2) and take the corresponding sequence

(tj)j ∈N0
. Then, for each i ∈ N, there exists Ji ∈ R such that

∑∞
i=1 i |Ji| < ∞ and

(t2i+2 − t2i)− δ (t2i − t2i−2) = −τ1 log b− τ2 log d+ Ji.

In addition, for every i ∈ N0, we have T̃
(i+1)

0 − T̃
(i)

0 = Ji+1

δi+1 .

As δ > 1, the series
∑∞

j=1
Jj
δj

converges, and so the sequence
(
T̃

(i)
0

)
i∈N0

converges. Denote

its limit by T̃0:

T̃0 := lim
i→+∞

T̃
(i)

0 = T
(0)
0 +

∞∑

j=1

Jj
δj

= T0 +

∞∑

j=1

Jj
δj

. (8.3)

Next, for i ≥ 1, consider the sequence (T̃i)i∈N0
satisfying

T̃i = δ T̃i−1 − τ1 log d− τ2 log b+ (1− δ)(s1 + s2) ∀ i ∈ N (8.4)

where T̃0 was computed in (8.3).
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Lemma 8.2. [5] The series
∑+∞

i=0 (Ti − T̃i) converges and limi→+∞(Ti − T̃i) = 0.

Therefore, we may take a sequence
(
t̃2i

)
i∈N0

of positive real numbers such that

t̃0 = 0

T̃i = t̃2i+2 − t̃2i

lim
i→+∞

(t2i − t̃2i) = 0. (8.5)

Moreover, by construction (see (8.4)) we have

(t̃2i+2 − t̃2i)− δ (t̃2i − t̃2i−2) = −τ1 log d− τ2 log b+ (1− δ)(s1 + s2). (8.6)

After defining the sequences of even indices, we take a sequence
(
t̃2i+1

)
i∈N0

satisfying, for

every i ∈ N0,

t̃2i+2 − t̃2i+1 = γ1 (t̃2i+1 − t̃2i)−
1

E2
log b+ (s2 − γ1s1). (8.7)

Lemma 8.3 ([5]). The following equalities hold:

(1) limi→+∞ (t2i+1 − t̃2i+1) = 0.

(2) limi→+∞ (t̃2i+1 − t̃2i)− γ2 (t̃2i − t̃2i−1) = − 1
E1

log d+ (s1 − γ2 s2).

(3) limi→+∞ (t̃2i+2 − t̃2i+1)− γ1 (t̃2i+1 − t̃2i) = − 1
E2

log b+ (s2 − γ1 s1).

As any solution of f in B(Hf ) eventually hits Out (C2), we may apply the previous con-
struction to all the orbits of f in B(Hf ). So, given any P0 ∈ B(Hf ), we take the first
non-negative hitting time of the forward orbit of P0 at Out (C2), defined by

tΣ2
(P0) = min {t ∈ R

+
0 : ϕ(t, P0) ∈ Out (C2)}.

As Out+(C2) and Out−(C2) are relative-open sets, this first-hitting-time map is continuous
with P0. Then, having fixed

P = ϕ(tΣ2
(P0), P0) = (ρ0, θ0,±1) ∈ Out (C2)

we consider its hitting times sequence
(
t
(P )
i

)

i∈N0

and build the sequence
(
t̃

(P )
i

)

i∈N0

as

explained in the previous section.

Adjusting the cross sections Σ1 and Σ2 if needed, we now find a point P̃ ∈ Out (C2) in

the f−trajectory of P whose hitting times sequence is precisely
(
t̃

(P )
i

)

i∈N0

. Notice that the

new cross sections are close to the previous ones since the sequences (ti)i∈N0
and

(
t̃i
)
i∈N0

are

uniformly close. We are left to show that there exists a continuous choice of such a trajectory

with hitting times sequence
(
t̃

(P )
i

)
i∈N0

.

8.2.1. Coordinates of P̃ . Given a sequence of times
(
t̃i
)
i∈N0

satisfying t̃0 = 0 and the

properties established in Lemma 8.3, (8.5), (8.6) and (8.7), one may recover from its terms

the coordinates of a point (ρ0, θ0, 1) ∈ Out+(C2) whose ith hitting time is precisely t̃i. Firstly,
we solve the equation (see (6.1))

t̃1 = − 1

E1
log (d |ρ0 −R2|) + s1 (8.8)
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obtaining ρ0. Then, using (6.2), we get

t̃2 = t̃1 + s2 −
1

E2
log (b |ρ1 −R1|) (8.9)

and compute ρ1. And so on, getting from such a sequence of times all the values of the
radial coordinates (ρ2i+1)i∈N0

and (ρ2i)i∈N0
of the successive hitting points at Out+(C1) and

Out+(C2), respectively.
Notice that the previous computations do not depend on the angular coordinate. That is

why nothing has yet been disclosed about θ0 from them. Concerning the evolution in R
+ of

the angular coordinates, the spinning in average inside the cylinders is given, for every i ∈ N0,
by

θ2i+2 − c θ2i

t̃2i+2 − t̃2i
=

(θ2i+2 − a θ2i+1) + (a θ2i+1 − c θ2i)

t̃2i+2 − t̃2i

=
ω2 (t̃2i+2 − t̃2i+1) + ω1 (t̃2i+1 − t̃2i)

t̃2i+2 − t̃2i

=
ω1 + γ1 ω2

γ1 + 1
(8.10)

(cf. Corollary 7.2). Moreover, Lemma 8.3 indicates that

θ2i+1 − c θ2i
θ2i+2 − a θ2i+1

=
ω1 (t̃2i+1 − t̃2i)

ω2

(
t̃2i+2 − t̃2i+1

) =
ω1

γ1 ω2
.

So

θ2i+2 − θ2i = (θ2i+2 − a θ2i+1) + (a θ2i+1 − a c θ2i) + (a c− 1) θ2i

= (θ2i+2 − a θ2i+1)

(
aω1

γ1 ω2
+ 1

)
+ (a c− 1) θ2i

= ω2 (t̃2i+2 − t̃2i+1)

(
aω1

γ1 ω2
+ 1

)
+ (a c− 1) θ2i

=
aω1 + γ1 ω2

γ1
(t̃2i+2 − t̃2i+1) + (a c− 1) θ2i.

On the other hand, from (8.10) we get

θ2i+2 − θ2i = (θ2i+2 − c θ2i) + (c− 1) θ2i

=
ω1 + γ1 ω2

γ1 + 1
(t̃2i+2 − t̃2i) + (c− 1) θ2i.

Consequently,

aω1 + γ1 ω2

γ1
(t̃2i+2 − t̃2i+1) + (a c− 1) θ2i =

ω1 + γ1 ω2

γ1 + 1
(t̃2i+2 − t̃2i) + (c− 1) θ2i

or, equivalently,

θ2i

(
c (a− 1)

)
=

ω1 + γ1 ω2

γ1 + 1

(
t̃2i+2 − t̃2i+1

)
− aω1 + γ1 ω2

γ1

(
t̃2i+2 − t̃2i

)
. (8.11)

Similar estimates show that
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θ2i+1 − a θ2i−1

t̃2i+1 − t̃2i−1

=
ω2 + γ2 ω1

γ2 + 1

θ2i+1 − θ2i−1 =
ω2 + γ2 ω1

γ2 + 1
(t̃2i+1 − t̃2i−1) + (a− 1) θ2i−1

θ2i+1 − θ2i−1 =
c ω2 + γ2 ω1

γ2
(t̃2i+1 − t̃2i) + (a c− 1) θ2i−1

θ2i−1

(
a (c− 1)

)
=

ω2 + γ2 ω1

γ2 + 1

(
t̃2i+1 − t̃2i−1

)
− c ω2 + γ2 ω1

γ2

(
t̃2i+1 − t̃2i

)
. (8.12)

From these computations an angular coordinate θ0 is uniquely determined if and only if
either a 6= 1, in which case

θ0 =
( 1

c (a− 1)

) [ω1 + γ1 ω2

γ1 + 1

(
t̃2 − t̃1

)
− aω1 + γ1 ω2

γ1

(
t̃2 − t̃0

) ]

or c 6= 1, in which case

θ1 =
( 1

a (c− 1)

) [ω2 + γ2 ω1

γ2 + 1

(
t̃3 − t̃1

)
− c ω2 + γ2 ω1

γ2

(
t̃3 − t̃2

) ]

is known, from which θ0 is found iterating the flow backwards.
If a = 1 = c, we may evaluate θ2 − θ0, but all possible values θ0 ∈ [0, 2π[ are good choices

for the angular coordinate. In particular, in this case, the invariants ω1+γ1 ω2

1+γ1
and ω2+γ2 ω1

1+γ2
are

not used to construct the conjugacy.

8.3. The conjugacy. Consider linearizing neighborhoods of C1 and C2, the periodic solutions
of g, and take a point P = (ρ0, θ0, 1) ∈ Out+(C2), the corresponding hitting times sequence

(ti)i∈N0
at cross sections In+(C1) and Σ2, and the sequence of times

(
t̃i
)
i∈N0

obtained in

Subsection 8.2.
As done for f in Subsection 8.2.1, using estimates similar to (8.8), (8.9) and (8.11), we now

find for g a unique point QP , given in local coordinates by (ρ0, θ0, 1), where

ρ0 = R2 ± e−(t̃1−s1)E1

d

θ0 =
( 1

c (a− 1)

) [ω1 + γ1 ω2

γ1 + 1

(
t̃2 − t̃1

)
− aω1 + γ1 ω2

γ1

(
t̃2 − t̃0

) ]
if a 6= 1

θ1 =
( 1

a (c− 1)

) [ω2 + γ2 ω1

γ2 + 1

(
t̃3 − t̃1

)
− c ω2 + γ2 ω1

γ2

(
t̃3 − t̃2

) ]
if c 6= 1

θ0 = any value in [0, 2π[ if a = 1 = c.

The set of these points build cross sections Σ1 and Σ2 for g at which the points QP have the

prescribed hitting times
(
t̃i
)
i∈N0

by the action of g. Next, we take the map

H : P ∈ Σ2 ∩Out+(C2) 7→ QP

and extend it using the flows ϕ and ϕ of f and g, respectively: for every t ∈ R, set H(ϕt(P )) =
ϕt(H(P )). An analogous construction is repeated for Out−(C2).
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Lemma 8.4 ([5]). H is a conjugacy.

This ends the proof of Theorem A.

9. An example

In this section we present a family of vector fields in R
3 satisfying properties (P1)–(P5)

obtained from Bowen’s example presented in [17]. The latter is a C∞ vector field in the plane
with structurally unstable connections between two equilibria. We will use the technique
introduced in [6] and further explored in [11, 2], combined with symmetry breaking, to lift
Bowen’s example to a vector field in R

3 with periodic solutions involved in a heteroclinic cycle
as described in Section 2.

9.1. Lifting and its properties. The authors of [2, 14] investigate how some properties of
a Z2–equivariant vector field on R

n lift by a rotation to properties of a corresponding vector
field on R

n+1. For the sake of completeness, we review some of these properties. Let Xn be
a Z2–equivariant vector field on R

n. Without loss of generality, we may assume that Xn is
equivariant by the action of

Tn(x1, x2, ...., xn−1, y) = (x1, x2, ...., xn−1,−y).

The vector field Xn+1 on R
n+1 is obtained by adding the auxiliary equation θ̇ = ω > 0 and

interpreting (y, θ) as polar coordinates. In cartesian coordinates (x1, ..., xn−1, r1, r2) ∈ R
n+1,

this extra equation corresponds to the system r1 = |y| cos θ and r2 = |y| sin θ. The resulting
vector field Xn+1 on R

n+1 is called the lift by rotation of Xn, and is SO(2)–equivariant in
the last two coordinates.

Given a set Λ ⊂ R
n, let L(Λ) ⊂ R

n+1 be the lift by rotation of Λ, that is,
{
(x1, ..., xn−1, r1, r2) ∈ R

n+1 : (x1, . . . , xn−1, ||(r1, r2)||) or (x1, . . . , xn−1,−||(r1, r2)||) ∈ Λ
}
.

It was shown in [2, Section 3] that, if Xn is a Z2(Tn)–equivariant vector field in R
n and Xn+1

is its lift by rotation to R
n+1, then:

(1) If p is a hyperbolic equilibrium of Xn, then L({p}) is a hyperbolic periodic orbit of
Xn+1 with minimal period 2π

ω
.

(2) If [p1 → p2] is a k-dimensional heteroclinic connection between equilibria p1 and p2
and it is not contained in Fix(Z2(Tn)), then it lifts to a (k+1)-dimensional connection
between the periodic orbits L({p1}) and L({p2}) of Xn+1.

(3) If Λ is a compact Xn–invariant asymptotically stable set, then L(Λ) is a compact
Xn+1–invariant asymptotically stable set.

9.2. Bowen’s example. Consider the system of differential equations
{

ẋ = −y
ẏ = x− x3

(9.1)

whose equilibria are O = (0, 0) and P± = (±1, 0). This is a conservative system, with first
integral given by

v(x, y) =
x2

2

(
1− x2

2

)
+

y2

2
.



MODULI OF STABILITY 19

It is easy to check that the origin O is a center. The equilibria P± are saddles with eigenvalues
±
√
2. They are contained in the v-energy level v ≡ 1/4, and therefore there are two one-

dimensional connections between them, one from P+ to P− and another from P− to P+, we
denote by [P+ → P−] and [P− → P+], respectively. Let H0 be this heteroclinic cycle. The
open domain D bounded by H0 and containing O is filled by closed trajectories and we have
0 ≤ v < 1/4. Notice also that the boundary of D intersects the line x = 0 at the points
(0,±

√
2/2). See Figure 4.

x

V(x,0)

x
.

P+
P-

Figure 4. Phase diagram of (9.1).

9.3. A perturbation of Bowen’s example. Given ε > 0, consider the following perturba-
tion of (9.1) defined by the differential equations

{
ẋ = −y
ẏ = x− x3 − ε y

(
v(x, y)− 1

4

)
.

(9.2)

For ε > 0 small enough, the heteroclinic cycle H0 persists, but now the ω-limit of every
trajectory with initial condition in D \ {(0, 0)} is H0. Check these details in Figure 5.

P+
P-

Figure 5. Bowen’s example (9.2) with ε > 0.
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9.4. The lifting of Bowen’s cycle. According to the lifting procedure described above, we
now construct a vector field on R

3 with two periodic solutions linked in a cyclic way within
a configuration similar to the heteroclinic cycle H0 of Bowen’s example. Noticing that H0

is contained in the half plane y > −1, one rotates the phase diagram of Bowen’s perturbed
example around the line y = −1. This transforms the equilibria P± into saddle periodic
solutions as in (P1), and the one-dimensional heteroclinic connections into two-dimensional
ones which are diffeomorphic to cylinders as in (P2). Meanwhile, the attracting character
of the cycle H0 is preserved and one connected component of the stable manifold of each
periodic solution coincides with a connected component of the unstable manifold of the other
as demanded in (P3).

More precisely, in the region y > −1, we may write y+1 = r2 for a unique r > 0, and with
ṙ = ẏ

2r the system of equations (9.2) takes the form
{

ẋ = 1− r2

ṙ = 1
2r

[
x− x3 − ε

(
x2

2 − x4

4 + (r2−1)2

2 − 1
4

)
(r2 − 1)

]
.

Multiplying both equations by the positive term 2r2 does not qualitatively affect the phase
portrait, thus (9.2) in the region y > −1 is equivalent to

{
ẋ = 2r2(1− r2)

ṙ = r
(
x− x3 − ε

(
x2

2 − x4

4 + (r2−1)2

2 − 1
4

)
(r2 − 1)

)
(9.3)

in the domain r > 0. It is straightforward to check that the system of equations (9.3) for
(x, r) ∈ R

2 has the following properties:

(1) The line r = 0 is flow-invariant.

(2) It is Z2(Γ)–equivariant, where Γ(x, r) = (x,−r).

This allows us to apply the lifting procedure as described above, performing the mentioned
rotation of the phase diagram of (9.3): adding a new variable θ with θ̇ = ω, for some constant
ω > 0 and taking Cartesian coordinates (x, r1, r2) = (x, r cos θ, r sin θ), the system of equations
(9.3) becomes





ẋ = 2(1− r21 − r22)(r
2
1 + r22)

ṙ1 = r1

[
x− x3 − ε(r21 + r22 − 1)

(
x2

2 − x4

4 +
(r2

1
+r2

2
−1)

2 − 1
4

)]
− ωr2

ṙ2 = r2

[
x− x3 − ε(r21 + r22 − 1)

(
x2

2 − x4

4 +
(r21+r22−1)

2 − 1
4

)]
+ ωr1.

(9.4)

The equilibria P+ and P− lift to two hyperbolic closed orbits satisfying (P1), namely

C1 :=
{
(x, r1, r2) : x = 1, r21 + r22 = 1

}

C2 :=
{
(x, r1, r2) : x = −1, r21 + r22 = 1

}

with radius R1 = R2 = 1. The Floquet multipliers of C1 and C2 are given by e
√
2 > 1

and e−
√
2 < 1 (details in [8]). Their two-dimensional stable and unstable manifolds are

homeomorphic to cylinders and, for ε > 0 small enough, the flow of (9.4) has a heteroclinic
cycle H as stated in (P2) and (P3).
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Admittedly, conditions C1 > E1 and C2 > E2 of item (P1) fail, and so Krupa-Melbourne’s
criterium of [9, 10] is no longer applicable. However, by construction, H0 is asymptotically
stable, and so is H. As explained in Subsection 9.1, the basin of attraction of H contains
L(D\{(0, 0)}). In what follows, fB stands for the vector field just obtained as the lifting of
the perturbed version of Bowen’s example.

9.5. Checking conditions (P4) and (P5) for fB. For the unlifted system (9.2), we may
choose ε > 0 and K > 0 to define global sections

Out(P+) =
{
(x, y) : x = 1− ε, y ∈ [0,K ε]

}

In(P−) =
{
(x, y) : x = −1 + ε, y ∈ [0,K ε]

}

and, in a similar way, the sections Out(P−) and In(P+). Therefore, the cross sections for
(9.2) may be written as

Out(C1) =
{
(x, r1, r2) : x = 1− ε, r21 + r22 ∈ [1, 1 +K ε]

}

In(C2) =
{
(x, r1, r2) : x = −1 + ε, r21 + r22 ∈ [1, 1 +K ε]

}

and similarly for Out(C2) and In(C1). If r1r2 6= 0, changing coordinates as follows

ρ ↔
√

r21 + r22 θ ↔ arctan

(
r2
r1

)
+mπ, m = 0, 1 z ↔ x

we identify (x, r1, r2) with (ρ, θ, z) as done in Section 5. Hence the transition from Out(C1)
to In(C2) maps (ρ0, θ0, ε) to (R1 + ε, θ1, z1) = (1 + ε, θ1, z1) and is linear, with a diagonal

matrix given in the cylindrical coordinates (ρ, θ, z) by the matrix

[
1 0 0

0 a 0

0 0 b

]
for some a > 0

and b > 0. The same argument applies to the connection [C2 → C1]. This completes the
verification of condition (P4).

In order to characterize the first return map to the cross sections of lifted system (9.4), we
add the following assumptions to the vector field (9.3):

(H1): There are s1 ≥ 0 and an open set U1 ⊂ Out(P+) containing W u(P+) such that the
transition time to In(P−) of all trajectories starting in U1 is constant and equal to s1. The
transition from U1 to In(P−) maps (1− ε, y) to (−1 + ε, b y).

(H2): Analogously, there are s2 ≥ 0 and an open set U2 ⊂ Out(P−) containing W u(P−)
such that the transition time to In(P+) of all trajectories starting in U2 is constant and equal
to s2. The transition from U2 to In(P+) maps (−1 + ε, y) into (1− ε, d y).

We now proceed to check condition (P5).

Lemma 9.1.

(1) For j ∈ {1, 2}, the transition times are constant on L(Uj) and equal to sj.
(2) The angular speeds of the periodic solutions C1 and C2 are equal to ω.

Proof. Item (1) follows from the way the lifting is carried out, ensuring that the global cross
sections In(C1), In(C2), Out(C1) and Out(C2) are lifts by rotation of In(P+), In(P−), Out(P+)
and Out(P−), respectively. Using (H1), if P ∈ L(U1) ⊂ Out(C1), then the transition time of
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its trajectory to In(C2) is s1. Analogous conclusion holds for P ∈ L(U2) using (H2). Part (2)
of the statement is a consequence of the fact that the solutions corresponding to the periodic
solutions are parameterized by t 7→ (±1, cos(ωt), sin(ωt)). �

Figure 6 summarizes the previous information concerning the lifted dynamics.

P
+

P
-

C2
C

(   )d

0

0

c

1

y dy

O

Figure 6. Illustration of the properties that are conveyed from (9.3) to its lifting (9.4).

9.6. Invariants for fB. Now Theorem A applies to the heteroclinic cycle H and its basin of
attraction (which contains L(D\{(0, 0)})) of the example (9.4), indicating that the set

{
ω, γ1, γ2, − 1

E1
log d+ (s1 − γ1 s2), −

1

E2
log b+ (s2 − γ2 s1)

}

is a complete family of invariants for fB under topological conjugacy in L(D\{(0, 0)}). In
addition, for the example (9.4) we have E1 = E2 =

√
2 and γ1 = γ2 = 1. The values of the

constants s1 and s2 depend on the chosen cross sections for the perturbed Bowen’s example.
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