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Abstract. In the first part of this paper, we showed that three cou-
pled populations of identical phase oscillators give rise to heteroclinic
cycles between invariant sets where populations show distinct frequen-
cies. Here, we now give explicit stability results for these heteroclinic
cycles for populations consisting of two oscillators each. In systems
with four coupled phase oscillator populations, different heteroclinic cy-
cles can form a heteroclinic network. While such networks cannot be
asymptotically stable, the local attraction properties of each cycle in
the network can be quantified by stability indices. We calculate these
stability indices in terms of the coupling parameters between oscillator
populations. Hence, our results elucidate how oscillator coupling influ-
ences sequential transitions along a heteroclinic network where individ-
ual oscillator populations switch sequentially between a high and a low
frequency regime; such dynamics appear relevant for the functionality
of neural oscillators.

1. Introduction

Interacting populations of identical oscillators are capable of generating
global dynamics that exhibit rapid transitions between metastable states
where different populations are in different frequency regimes. Such dynam-
ics can be caused by trajectories close to heteroclinic structures between
invariant sets where frequency synchrony is local rather than global across
all populations [1]. In the first part of this paper [2], we showed the existence
of heteroclinic cycles in three coupled small populations.

For such dynamics to be observable over longer timescales, the hetero-
clinic cycles have to have some stability properties. Apart from asymptotic
stability and instability, heteroclinic cycles can display various intermedi-
ate forms of nonasymptotic attraction. These range from fragmentary as-
ymptotic stability (“attracting more than nothing”) to essential asymptotic
stability (“attracting almost everything”). Podvigina and Ashwin [3] in-
troduced a stability index to quantify attraction along trajectories. This
stability index is defined for any dynamically invariant set and thus pro-
vides a convenient tool to describe the stability of heteroclinic trajectories
within a cycle or network1. Recently, Garrido-da-Silva and Castro [4] derived
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1To avoid confusion in terminology, we reserve the word “network” for heteroclinic

networks and talk about coupled (or interacting) populations of phase oscillators (rather
than oscillator networks).
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explicit expressions for the stability indices for a fairly general class of het-
eroclinic cycles called quasi-simple. Such expressions are particularly useful
to describe the stability of heteroclinic cycles that are part of a networks
consisting of more than one cycle.

The main contributions of this paper are explicit stability results for hete-
roclinic cycles and networks between invariant sets with localized frequency
synchrony in terms of the coupling parameter of the oscillator populations.
Here we focus on coupled oscillator populations with two oscillators per pop-
ulation. Due to the existence of invariant subspaces, the heteroclinic cycles
are quasi-simple. Consequently, we apply the stability results of Garrido-
da-Silva and Castro [4] to calculate the stability indices. We first consider
three coupled oscillator populations to calculate stability indices for the
heteroclinic cycles in [2]. We then show that four coupled oscillator popula-
tions support a heteroclinic network which contains two distinct heteroclinic
cycles of the type considered before. Their stability properties are then cal-
culated using the tools developed for three populations and we comment on
the stability of the whole network. Since our stability conditions explicitly
depend on the coupling parameters of the oscillator populations, our results
elucidate how the coupling structure of the system shapes the asymptotic
dynamical behavior. Moreover, they highlight the utility of the general sta-
bility results in [4] for heteroclinic cycles on arbitrary manifolds.

The remainder of this paper is structured as follows. The following section
summarizes facts on (robust) heteroclinic cycles, nonasymptotic stability,
and coupled populations of phase oscillators. In Section 3 we calculate the
stability indices along the heteroclinic cycle in the first part of this paper [2]
for a system of three populations. Such cycles are contained in a heteroclinic
network for four coupled populations as shown in Section 4, and we calculate
their stability properties. We also give some numerical results and comment
on the stability of the network as a whole. Finally, we give some concluding
remarks in Section 5.

2. Preliminaries

To set the stage, we review some results about heteroclinic cycles, their
stability properties, and coupled populations of phase oscillators. In terms
of notation, we will follow the first part of the paper [2].

2.1. Heteroclinic cycles and their stability. Let M be a smooth d-
dimensional manifold and let X be a smooth vector field on M. Define the
usual limit sets α(x), ω(x) for the flow onM generated by X and t→ ±∞.
For a hyperbolic equilibrium ξ ∈M we write

W s(ξ) := {x ∈M | ω(x) = ξ } , W u(ξ) := {x ∈M | α(x) = ξ }

to denote its stable and unstable manifold, respectively.

Definition 2.1. A heteroclinic cycle C consists of a finite number of hyper-
bolic equilibria ξq ∈M, q = 1, . . . , Q, together with heteroclinic trajectories

[ξq → ξq+1] ⊂W u(ξq) ∩W s(ξq+1) 6= ∅

where indices are taken modulo Q.



HETEROCLINIC NETWORKS OF LOCALIZED FREQUENCY SYNCHRONY 3

A heteroclinic network N is a connected union of two or more distinct
heteroclinic cycles.

For simplicity, we write C = (ξ1, . . . , ξQ). If M is a quotient of a higher-
dimensional manifold and C is a heteroclinic cycle in M, we also call the
lift of C a heteroclinic cycle. The same goes for a heteroclinic network N.

While heteroclinic cycles are in general a nongeneric phenomenon, they
can be robust if all connections are of saddle-sink type in (lower-dimensional)
subspaces. Let C = (ξ1, . . . , ξQ) be a heteroclinic cycle. If there are flow-
invariant submanifolds Pq ⊂ M such that [ξq → ξq+1] ⊂ Pq is a saddle-
sink connection, then C is robust with respect to perturbations of X which
preserve the invariant sets Pq.

Robust heteroclinic cycles may arise for example in dynamical systems
with symmetry. Let Γ be a finite group which acts on M. For a subgroup
H ⊂ Γ define the set Fix(H) = {x ∈M | γx = x ∀γ ∈ H } of points fixed
under H; this is a vector space that is invariant under the flow generated
by X. For x ∈M let Γx = { γx | γ ∈ Γ} denote its group orbit and Σ(x) =
{ γ ∈ Γ | γx = x} its isotropy subgroup. Now assume that the smooth vector
field X is a Γ-equivariant vector field onM, that is, the action of the group
commutes with X. Any heteroclinic cycle with Pq = Fix(Σq) where Σq are
isotropy subgroups is robust to Γ-equivariant perturbations of X, that is, Γ-
equivariant vector fields close to X will have a heteroclinic cycle close to C;
see [5] for more details.

2.1.1. Nonasymptotic stability. Heteroclinic cycles may have intricate nonasymp-
totic stability properties. We briefly recall some definitions that formalize
these.

For ε > 0, write Bε(A) for an ε-neighborhood of a set A ⊂ Rd and B(A)
for its basin of attraction, i.e., the set of points x ∈ Rd with ω(x) ⊂ A. For
δ > 0 the δ-local basin of attraction is

Bδ(A) := {x ∈ B(A) | ∀t > 0: Φt(x) ∈ Bδ(A)} ,
where Φt is the flow generated by X. Let ` denote the Lebesgue measure.

Definition 2.2 ([6]). An invariant set A is fragmentarily asymptotically
stable (f.a.s.) if `(Bδ(A)) > 0 for any δ > 0.

Being f.a.s. is not necessarily a very strong form of attraction. A set that
is not f.a.s. is usually called completely unstable, see also [6]. Melbourne [7]
introduces the stronger notion of essential asymptotic stability, which we
quote here in the formulation of Brannath [8].

Definition 2.3 ([8], Definition 1.2). A compact invariant set A is called
essentially asymptotically stable (e.a.s.) if it is asymptotically stable relative
to a set Υ ⊂ Rd with the property that

(1) lim
ε→0

`(Bε(A) ∩Υ)

`(Bε(A))
= 1.

Podvigina and Ashwin [3] introduced the concept of a local stability in-
dex σ(x) ∈ [−∞,+∞] to quantify stability and attraction. It is constant
along trajectories, so to characterize stability/attraction of a heteroclinic
cycle with one-dimensional connections, it suffices to consider finitely many
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stability indices. Let σq denote the stability index along [ξq−1 → ξq]. For
our purposes it is enough to note that (under some mild assumptions) a
heteroclinic cycle C = (ξ1, . . . , ξQ) is completely unstable if σq = −∞ for
all q, it is f.a.s. as soon as σq > −∞ for some q, and it is e.a.s. if and only
if σq > 0 for all q = 1, . . . , Q. See [9, Theorem 3.1] for details.

2.1.2. Stability of quasi-simple heteroclinic cycles. The stability indices can
be calculated for specific classes of heteroclinic cycles. Let C = (ξ1, . . . , ξQ)
be a robust heteroclinic cycle onM. As above, denote the flow-invariant sets
which contain the heteroclinic connections with Pq. Let Tq := TξqM denote
the tangent space of M at ξq. For subspaces V ⊂ W ⊂ Tq write W 	 V
for the orthogonal complement of V in W . In slight abuse of notation,
define P−q := TξqPq−1 and P+

q := TξqPq to be the tangent spaces of Pq−1
and Pq in Tq, respectively. These are linear subspaces of Tq of the same
dimension as Pq−1 (which contains the incoming saddle connection) and Pq
(containing the outgoing connection), respectively. Set Lq := P−q ∩ P+

q .

Definition 2.4. The robust heteroclinic cycle C is quasi-simple if dim(P−q 	
Lq) = dim(P+

q 	 Lq) = 1 for all q ∈ {1, . . . , Q}.

Remark 2.5. Note that this is a slight generalization of the definition given
by Garrido-da-Silva and Castro in [4] to arbitrary manifolds. In particular,
the condition in Definition 2.4 implies that dim(Pq−1) = dim(Pq).

As usual, an eigenvalue of the Jacobian dX(ξq) is radial if its associated
eigenvector is in Lq, contracting if the associated eigenvector is in P−q 	
Lq, expanding if the associated eigenvector is in P+

q 	 Lq, and transverse
otherwise. In other words, a cycle is quasi-simple if it has unique expanding
and contracting directions at each equilibrium, and thus one-dimensional
saddle connections.

The standard way to analyze the stability of heteroclinic cycles is to write
down a Poincaré return map with linearized dynamics local to the equilibria
as well as globally along the connecting orbits; cf. [10]. For quasi-simple
cycles whose global maps are rescaled permutations of the local coordi-
nate axes Garrido-da-Silva and Castro [4] showed how their (asymptotic
or nonasymptotic) stability can be calculated solely from the properties of
the linearization of the equilibria at the cycle. More precisely, the stability
of each equilibrium ξq along the cycle is encoded in a transition matrix Mq

and the stability of the cycle is determined by properties of these matrices.
We explain this technique in more detail when we apply it in Section 3.
Note that this immediately implies that the results in [4] carry over to our
definition of a quasi-simple heteroclinic cycle since the stability does not
depend on other global properties.

For ease of reference, we recall the stability results from [4, Theorems 3.4,
3.10] in a condensed form. For a heteroclinic cycle C = (ξ1, . . . , ξQ) with

transition matrices Mq set M(q) := Mq−1 · · ·M1MQ · · ·Mq+1Mq. All M(q)

have the same eigenvalues. If none of the Mq has a negative entry—there
are no repelling transverse directions—we have the following result, which
is a dichotomy between asymptotic stability and complete instability.
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Proposition 2.6 ([4, Theorem 3.4]). Let C be a quasi-simple heteroclinic
cycle with rescaled permutation of the local coordinate axes as global maps
and transition matrices Mq, q = 1, . . . , Q. Suppose that all entries of all Mq

are nonnegative.

(i) If M(1) satisfies |λmax| > 1, then σq = +∞ for all q = 1, . . . , Q and
the cycle C is asymptotically stable.

(ii) Otherwise, σq = −∞ for all q = 1, . . . , Q and C is completely unstable.

If the transition matrices Mq contain negative entries—there are trans-
versely repelling directions, for example, if the cycle is part of a network—
then additional criteria have to be satisfied in order for the cycle to possess
some form of nonasymptotic stability. For a matrix M let λmax denote the
maximal eigenvalue and umax = (umax

1 , . . . , umax
d ) the corresponding eigen-

vector. Define the conditions (cf. [4, Lemma 3.2])

(A) λmax is real.
(B) λmax > 1.
(C) umax

m umax
n > 0 for all m,n = 1, . . . , d.

Generally, stability indices are evaluated as a function of the local stability
properties at the equilibrium points [3]; for quasi-simple cycles in arbitrary
dimension, Garrido-da-Silva and Castro [4] denote this function by F ind.
Later on, we will consider three-dimensional transition matrices and for
0 6= β = (β1, β2, β3) ∈ R3, this function reads

F ind(β) :=



+∞ if min(β1, β2, β3) ≥ 0,

− β1+β2+β3
min(β1,β2,β3)

if β1 + β2 + β3 > 0

and min(β1, β2, β3) < 0,

0 if β1 + β2 + β3 = 0,

β1+β2+β3
max(β1,β2,β3)

if β1 + β2 + β3 < 0

and max(β1, β2, β3) > 0,

−∞ if max(β1, β2, β3) ≤ 0.

The following proposition summarizes the second stability result adapted to
our setting.

Proposition 2.7 ([4, Theorem 3.10]). Let C be a quasi-simple heteroclinic
cycle with rescaled permutation of the local coordinate axes as global maps
and transition matrices Mq, q = 1, . . . , Q. Suppose that at least one Mq has
at least one negative entry.

(a) If there is at least one q such that the matrix M(q) does not satisfy
conditions (A)–(C), then σq = −∞ for all q = 1, . . . , Q and C is
completely unstable.

(b) If all M(q) satisfy conditions (A)–(C), then C is f.a.s. and there exist

β(1), . . . , β(s) ∈ R3 such that the stability indices for C are given by

σq = min
l=1,...,s

F ind
(
β(l)
)
.

Here s is bounded by an expression which depends on the number of rows
of the transition matrices (and their products) with at least one negative
entry; cf. [4] for details.
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2.2. Coupled populations of phase oscillators. Consider M popula-
tions of N phase oscillators where θσ,k ∈ T := R/2πZ denotes the phase
of oscillator k in population σ. Hence, the state of the coupled oscilla-
tor populations is determined by θ = (θ1, . . . , θM ) ∈ TMN where θσ =
(θσ,1, . . . , θσ,N ) ∈ TN is the state of population σ. Let SN denote the per-
mutation group of N elements. Suppose that the phase evolution is given
by

(2) θ̇σ,k :=
d

dt
θσ,k = ω + Yσ,k(θ)

where ω is the intrinsic frequency of each oscillator and the vector field Y is
(SN ×T)M -equivariant. Here, each copy of T acts by shifting all oscillator
phases of a given population σ by a common constant while SN permutes
the oscillator indices k.

The symmetry implies that certain phase configurations are dynamically
invariant. For a single population of N oscillators, the subset

S :=
{

(φ1, . . . , φN ) ∈ TN | φk = φk+1

}
(3)

corresponds to phases being in full phase synchrony and

D :=

{
(φ1, . . . , φN ) ∈ TN

∣∣∣∣ φk+1 = φk +
2π

N

}
(4)

denotes a splay phase configuration—typically we call any element of the
group orbit SND a splay phase. For interacting oscillator populations, we
use the shorthand notation

θ1 · · · θσ−1Sθσ+1 · · · θM =
{
θ ∈ TMN

∣∣ θσ ∈ S
}

(5a)

θ1 · · · θσ−1Dθσ+1 · · · θM =
{
θ ∈ TMN

∣∣ θσ ∈ D
}

(5b)

to indicate that population σ is fully phase synchronized or in splay phase.
Consequently, S · · · S (M times) is the set of cluster states where all popula-
tions are fully phase synchronized and D · · ·D the set where all populations
are in splay phase. Because of the SMN symmetry, the sets (5) are invari-
ant [11].

To reduce the phase-shift symmetry TM we may rewrite (2) in terms of
phase differences ψσ,k := θσ,k+1 − θσ,1, k = 1, . . . , N − 1. Hence, with ψσ ∈
TN−1 we also write for example ψ1S · · · S (or simply ψS · · · S if the index is
obvious) to indicate that all but the first population is phase synchronized.
The sets (5) are equilibria relative to TM , that is, they are equilibria for the
reduced system in terms of phase differences.

2.2.1. Frequencies and localized frequency synchrony. Suppose that M > 1
and let θ : [0,∞)→ TMN be a solution of (2) with initial condition θ(0) =

θ0. While θ̇σ,k(t) is the instantaneous angular frequency of oscillator (σ, k),
define the asymptotic average angular frequency of oscillator (σ, k) by

(6) Ωσ,k(θ
0) := lim

T→∞

1

T

∫ T

0
θ̇σ,k(t) dt.

Here we assume that these limits exist for all oscillators but this notion can
be generalized to frequency intervals; see also [12, 13].
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Definition 2.8. A connected flow-invariant invariant set A ⊂ TMN has
localized frequency synchrony if for any θ0 ∈ A and fixed σ we have Ωσ,k = Ωσ

for all k and there exist indices σ 6= τ such that

Ωσ 6= Ωτ .(7)

Remark 2.9. Note that a chain-recurrent set A with localized frequency
synchrony is a weak chimera as defined in [14].

3. Three Coupled Oscillator Populations

Here we derive explicit stability results for the heteroclinic cycles inM = 3
coupled populations of N = 2 phase oscillators (2) considered in the first
part [2]; we use the same notation introduced there. Interactions between
pairs of oscillators are mediated by the coupling function

(8) g(ϑ) = sin(ϑ+ α)− r sin(a(ϑ+ α)).

With the interaction function

G̃(4)(θτ ;ϑ) = −1

4

(
cos(θτ,1 − θτ,2 + ϑ+ α) + cos(θτ,2 − θτ,1 + ϑ+ α)

)
,(9)

the phase dynamics for coupling strength K > 0 between populations are
given by

θ̇σ,k = ω + g(θσ,3−k − θσ,k) +KG̃(4)(θσ−1; θσ,3−k − θσ,k)

−KG̃(4)(θσ+1; θσ,3−k − θσ,k),
(10)

σ ∈ {1, 2, 3}, k ∈ {1, 2}. These are the equations of motion2 considered in
the first part [2] with phase shifts parametrized by α := α2 = α4 − π

2 .
The interactions between populations in (10)—which include nonpair-

wise coupling—are a special case of (2). More precisely, with ZM := Z/MZ
the equations (10) are (SN ×T)M o ZM -equivariant. Each copy of T acts
by shifting all oscillator phases of one population by a common constant
while SN permutes its oscillators. The action of ZM permutes the popula-
tions cyclically. These actions do not necessarily commute. The phase space
of (10) is organized by invariant subspaces and there are relative equilibria
DSS, DDS and their images under the Z3 action.

3.1. Heteroclinic cycles and local stability. The coupled oscillator pop-
ulations (10) with interaction functions (8), (9) support a robust heteroclinic
cycle [2]. Linear stability of DSS, DDS are given by the eigenvalues

λDSS
1 = 2 cos(α) + 4r cos(2α),(11a)

λDSS
2 = 2K sin(α)− 2 cos(α) + 4r cos(2α),(11b)

λDSS
3 = −2K sin(α)− 2 cos(α) + 4r cos(2α),(11c)

2As shown in [1] and Appendix A these equations arise from an approximation of
coupled populations with state-dependent phase shift by nonpairwise coupling terms.
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and

λDDS
1 = 2K sin(α) + 2 cos(α) + 4r cos(2α),(12a)

λDDS
2 = −2K sin(α) + 2 cos(α) + 4r cos(2α),(12b)

λDDS
3 = −2 cos(α) + 4r cos(2α).(12c)

Lemma 3.1 (Lemma 3.2 in [2]). Suppose that λDSS
3 < 0 < λDSS

2 and
λDDS
2 < 0 < λDDS

1 . Then the M = 3 coupled populations of N = 2 phase
oscillators (10) with interaction functions (8), (9) have a robust heteroclinic
cycle

C2 = (DSS,DDS,SDS,SDD,SSD,DSD,DSS).

For fixed α ≈ π
2 , the assumptions of Lemma 3.1 define a cone-shaped

region in (K, r) parameter space: there is an affine linear function L such
that K > K0 where L(K0) = 0 and r between −L(K) and L(K). For the
remainder of this section, we assume that the assumptions of Lemma 3.1
hold.

Lemma 3.2. The cycle C2 is quasi-simple.

Proof. It suffices to consider the equilibria DSS and DDS due to the symme-
try which permutes populations. We have W u(DSS) ⊂ DψS, W u(DDS) ⊂
ψDS which implies that each saddle has one contracting, expanding, and
transverse eigenvalue; there are no radial eigenvalues since DSψ ∩ DψS =
DSS and DψS ∩ ψDS = DDS. �

Subject to nonresonance conditions, we may linearize the flow around the
equilibria; see also [15, Proposition 4.1].

Lemma 3.3. Suppose that λDSS
1 , λDDS

3 6= 0, and

0 6= 2r cos(2α)± 3 cos(α),(13a)

0 6= 4K sin(α)± 4r cos(2α)± 2 cos(α)(13b)

(in the second line we allow any combination of + and −). Then we can
linearize the flow at the equilibria in C2. For α = π

2 , these conditions reduce
to r 6= 0 and r 6= ±K.

Proof. According to the C1 linearization theorem [16] we can linearize the
flow if the eigenvalues λl of the linearization satisfy Reλl 6= Reλj + Reλk
when Reλj < 0 < Reλk. Given (11), conditions (13) are just these nonres-
onance conditions. Plugging in α = π

2 yields the second assertion. �

3.2. Cross sections, transition matrices, and stability. Using stan-
dard notation, we write

−cDSS := λDSS
3 , eDSS := λDSS

2 , tDSS := λDSS
1 ,(14)

−cDDS := λDDS
2 , eDDS := λDDS

1 , tDDS := λDDS
3 ,(15)

for the contracting, expanding, and transverse eigenvalues. Thus eq, cq > 0,
q ∈ {DSS,DDS}. The ratios between contraction/transverse stability and
expansion are given by

aq :=
cq
eq
, bq := − tq

eq
(16)
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for q ∈ {DSS,DDS}; we have aq > 0 by definition and bq > 0 if tq < 0.

3.2.1. Poincaré map and transition matrices. We first consider the linearized
flow at the equilibria to calculate the local transition maps. Introduce local
coordinates (v, w, z) which correspond to the contracting, expanding, and
transverse directions, respectively. After appropriate rescaling, consider the
cross sections

H in
q = { (v, w, z) | |v| = 1, |w| ≤ 1, |z| ≤ 1} ,(17)

Hout
q = { (v, w, z) | |v| ≤ 1, |w| = 1, |z| ≤ 1}(18)

at q ∈ {DSS,DDS}. The linearized flow at ξq is

Φτ
q (v, w, z) = (exp(−cqτ)v, exp(eqτ)w, exp(tqτ)z) .

Hence the time of flight is τ = − log(w)/eq which implies that the local map
at ξq is

hlocq : H in
q → Hout

q , (±1, w, z) 7→ (waq ,±1, wbqz)

Considering the invariant subspaces, we see that the global maps are
rescaled permutations. More specifically, we have

hglq : Hout
q → H in

q+1, (v, w, z) 7→ (Aqw,Bqz,Dqv).

Write hq := hglq ◦hlocq : H in
q → H in

q+1. Ignoring v, this yields a map between
the incoming 2-dimensional sections of subsequent equilibria

hq(w, z) = (Bqw
bqz,Dqw

aq).

Taken together, the Poincaré return map for the linearized dynamics around
the heteroclinic cycle (modulo the Z3 group action) is

h = hDDS ◦ hDSS.

If we introduce logarithmic coordinates we can write the return map in
terms of transition matrices [17, 4]. Restrict to the (w, z) coordinates and
introduce logarithmic variables η = log(w), ζ = log(z). In the new variables,
the maps hq become linear,

(19) ĥq(η, ζ) = Mq

(
η
ζ

)
+

(
logBq
logDq

)
with

Mq =

(
bq 1
aq 0

)
(20)

Note that these transition matrices are the same as the ones for simple cycles
in R4 of type C [3].

The transition matrix for the Poincaré map h is MDDSMDSS. These tran-
sition matrices govern the stability of the cycle [4, Theorem 3.4].
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3.2.2. Stability of C2 for α = π
2 . The stability properties at the saddles

are symmetric and stability is governed by the properties of the transition
matrix

M =

(
b 1
a 0

)
.(21)

Here we omitted the saddle index q since MDSS = MDDS = M. This is the
same transition matrix as for a simple heteroclinic cycle in R4 of type C−1 [3].

Lemma 3.4 ([3, Section 4.2.2]). A heteroclinic cycle whose stability is given
by the transition matrix M is asymptotically stable if b ≥ 0 (that is, t ≤ 0)
and a+ b > 1; otherwise it is completely unstable.

In terms of the oscillator coupling parameters we can now show that
the heteroclinic cycle loses stability completely in a (degenerate) transverse
bifurcation at r = 0 as both transverse eigenvalues pass through zero.

Theorem 3.5. For α = π
2 the heteroclinic cycle C2 is asymptotically stable

if r > 0 and completely unstable if r < 0.

Proof. Substituting the stability properties (11), (12), we obtain

a =
c

e
=

2K + 4r

2K − 4r
b = − t

e
=

4r

2K − 4r
.(22)

Simplifying the expressions b ≥ 0 and a+b > 1 now proves the assertion. �

3.2.3. Stability for α 6= π
2 . If α 6= π

2 , then the two transverse eigenvalues t1 =
2 cos(α)+4r cos(2α), t2 = −2 cos(α)+4r cos(2α) are distinct. Consequently,
there are two transverse bifurcations as the oscillator coupling parameters
are varied: we have

• t1, t2 < 0 if r > |cos(α)|
4 cos2(α)−2 ,

• t1, t2 > 0 if r < −|cos(α)|
4 cos2(α)−2 , and

• one positive and one negative transverse eigenvalue otherwise.

The stability of the heteroclinic cycle is now determined by the properties
of the transition matrix

M = MDDSMDSS =

(
b1b2 + a2 b1
a1b2 a1

)
.(23)

The stability calculations are analogous to those for simple heteroclinic cy-
cles in R4 of type C−2 [3, 9]; for such cycles, we have the following result.

Lemma 3.6 (Stability conditions for C−2 cycles given in [3, 9]). For asymp-
totic stability, we need t1, t2 < 0 and

max {b1b2 + a2 + a1, 2(b1b2 + a2 + a1 − a1a2)} > 2.

If t2 < 0 < t1 and b1b2 − a1 + a2 < 0, then the cycle is completely unstable.

These results can now be used to show that the heteroclinic cycle loses
stability completely as one of the transverse eigenvalues becomes positive.

Theorem 3.7. The heteroclinic cycle C2 is asymptotically stable if

r >
|cos(α)|

4 cos2(α)− 2

and completely unstable otherwise.
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Proof. First, observe that there are relations between the eigenvalues (11),
(12) of the linearization at the saddle points. Set S = 2K sin(α). We have
e1 = S + t2, c1 = S − t2, e2 = S + t1, c2 = S − t1 which are all positive.
Consequently, S > 0 and c1 = e1 − 2t2, c2 = e2 − 2t1.

If t1, t2 < 0 (the hypothesis of the theorem is satisfied) we have

b1b2 + a2 + a1 = 2 +
t1t2 − 2t1e1 − 2t2e2

e1e2
> 2(24)

since all terms are positive. Hence by Lemma 3.6, the heteroclinic cycle is
asymptotically stable.

Now suppose that t2 < 0 < t1 (the case t1 < 0 < t2 is analogous). We
have

b1b2 − a1 + a2 =
t1t2 − 2St1 + 2St2

e1e2
< 0(25)

since all terms are negative. By Lemma 3.6 the heteroclinic cycle is com-
pletely unstable. �

The dichotomy between asymptotic stability and complete instability ap-
pears to be nongeneric for C−2 -cycles compared to [9, Corollary 4.8]. This
is due to the fact that e2 and c2 are not independent of t1. In fact, the
case t1 = 0 coincides with the degenerate situation c2 = e2. Therefore, the
assumption in [9, Corollary 4.8] that b1b2−a1 +a2 > 0 even for small t1 > 0
cannot be satisfied here.

3.3. Eigenvalues and eigenvectors of the transition matrix prod-
ucts. In the previous section we used results from [3, 9] (stated as Lem-
mas 3.4 and 3.6) to determine the stability of the cycle. We now relate
these to the hypotheses in Propositions 2.6 and 2.7 by calculating eigenval-
ues and eigenvectors of the transition matrix products. This is useful for
our stability analysis in the higher-dimensional system in Section 4.

For α 6= π
2 the transition matrix product M as defined in (23) has eigen-

values λ1 > λ2 given by

λ1 =
1

2

(
a1 + a2 + b1b2 +

√
(a1 − a2 − b1b2)2 + 4a1b1b2

)
,

λ2 =
1

2

(
a1 + a2 + b1b2 −

√
(a1 − a2 − b1b2)2 + 4a1b1b2

)
and corresponding eigenvectors

u1 = (u11, u12) =

(
1,
a1 − a2 − b1b2 +

√
(a1 − a2 − b1b2)2 + 4a1b1b2

2b1

)
,

u2 = (u21, u22) =

(
1,
a1 − a2 − b1b2 −

√
(a1 − a2 − b1b2)2 + 4a1b1b2

2b1

)
.

If t1, t2 < 0, then both eigenvalues are real and hence condition (A) is
satisfied. Moreover, by the calculations in the proof of Theorem 3.7, we
have

λ1 >
1

2
(a1 + a2 + b1b2) > 1,
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so (B) is satisfied as well. Since in this case all transition matrices have only
nonnegative entries, Proposition 2.6 applies and the cycle is asymptotically
stable. We note that (C) is also satisfied, because 4a1b1b2 > 0 implies that

u11u12 = u12 >
a1 − a2 − b1b2 + |a1 − a2 − b1b2|

2b1
> 0.

Similarly, for the components of the other eigenvector we get

u21u22 = u22 <
a1 − a2 − b1b2 − |a1 − a2 − b1b2|

2b1
< 0.

This is not directly related to condition (C), but will also be used in the
following subsection.

On the other hand, if t2 < 0 < t1, the transition matrix M1 has a negative
entry. Again by the calculations in the proof of Theorem 3.7 we have a1 −
a2 − b1b2 > 0, and therefore

u11u12 = u12 <
a1 − a2 − b1b2

2b1
< 0.

Thus, (C) is violated and by Proposition 2.7(a) the cycle is completely un-
stable. The case t1 < 0 < t2 is analogous for the other transition matrix
product.

4. Four Coupled Oscillator Populations

4.1. Four interacting populations support a heteroclinic network.
In this section we consider M = 4 coupled populations with N = 2 phase
oscillators each. For the coupling function g as in (8) and parameter δ ∈
[−1, 1] define the interaction functions

G̃(4)(θτ ;ϑ) = −1

4

(
cos(θτ,1 − θτ,2 + ϑ+ α) + cos(θτ,2 − θτ,1 + ϑ+ α)

)
(26)

G̃(2)
σ (ϑ) = g(ϑ) +K

(
1− 1

N

)
Kσ cos(ϑ+ α)(27)

where K1 = 1, K2 = −1, K3 = −1+δ, K4 = −1−δ. Consider the oscillator
dynamics where the phase of oscillator k in population σ evolves according
to

θ̇1,k = ω + G̃
(2)
1 (θ1,3−k − θ1,k) +KG̃(4)(θ4, θ1,3−k − θ1,k)

−KG̃(4)(θ2, θ1,3−k − θ1,k) +KG̃(4)(θ3, θ1,3−k − θ1,k),
(28a)

θ̇2,k = ω + G̃
(2)
2 (θ2,3−k − θ2,k)−KG̃(4)(θ4, θ2,3−k − θ2,k)

+KG̃(4)(θ1, θ2,3−k − θ2,k)−KG̃(4)(θ3, θ2,3−k − θ2,k),
(28b)

θ̇3,k = ω + G̃
(2)
3 (θ3,3−k − θ3,k)−KG̃(4)(θ4, θ3,3−k − θ3,k)

−KG̃(4)(θ1, θ3,3−k − θ3,k) +K(1 + δ)G̃(4)(θ2, θ3,3−k − θ3,k),
(28c)

θ̇4,k = ω + G̃
(2)
4 (θ4,3−k − θ4,k)−KG̃(4)(θ1, θ4,3−k − θ4,k)

+K(1− δ)G̃(4)(θ2, θ4,3−k − θ4,k)−KG̃(4)(θ3, θ4,3−k − θ4,k).
(28d)

As shown in Appendix A, for δ = 0 this is a nonpairwise approximation of the
four interacting populations in [1]. The vector field is (SN×T)M -equivariant
as (2): SN acts by permuting oscillators within populations and TN by a
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DSSD DSSS DSDS

SSSD DDSS SSDS

SDSD SDSS SDDS

ψ1

ψ2

ψ3 ψ4

ψ1

ψ2
ψ4ψ1

ψ3

ψ2

ψ3 ψ4

ψ1

ψ3
ψ2 ψ4

ψ3 ψ1

ψ4

ψ2

ψ3 ψ4

ψ1

ψ4
ψ2ψ3

Figure 1. A heteroclinic network N2 arises in M = 4 cou-
pled populations of N = 2 oscillators. The types of arrow-
head (>, �, ≫) indicate the eigenvalues for α = π

2 and
δ = 0: λ≫ = −4K − 4r < λ� = −2K − 4r < λ> = −4r <
0 < 2K − 4r. The ψk along an arrow indicate the phase
difference that corresponds to the invariant subspace.

phase shift in each population. If δ = 0, the system is (SN × T)M o Z2

equivariant where Z2 = 〈(34)〉 acts by permuting populations three and
four. If δ 6= 0, then there is a parameter symmetry (δ, θ3, θ4) 7→ (−δ, θ4, θ3).

Theorem 4.1. The system of coupled phase oscillator populations (28) sup-
ports a robust heteroclinic network N2—shown in Figures 1 and 2—between
relative equilibria with localized frequency synchrony.

Proof. First, suppose that δ = 0. The dynamics on the invariant sub-
spaces ψ1ψ2ψ3S and ψ1ψ2Sψ4 reduce to (10). Hence by Lemma 3.1, the
coupled phase oscillator populations (28) have a heteroclinic network with

two quasi-simple cycles, denoted by Ĉ2 ⊂ ψ1ψ2ψ3S and Č2 ⊂ ψ1ψ2Sψ4.
Having δ 6= 0 constitutes an equivariant perturbation that maintains the
(SN ×T)M symmetry, with respect to which both cycles are robust. �

The eigenvalues of the linearization at the equilibria can be evaluated
explicitly. For example,

λSDSS
1 = −2K sin(α)− 2 cos(α) + 4r cos(2α),(29a)

λSDSS
2 = 2 cos(α) + 4r cos(2α),(29b)

λSDSS
3 = 2K(1 + δ) sin(α)− 2 cos(α) + 4r cos(2α),(29c)

λSDSS
4 = 2K(1− δ) sin(α)− 2 cos(α) + 4r cos(2α)(29d)

determine the stability of the phase configurations SDSS in each population
respectively. As above, this gives explicit bounds for parameter values which
support the heteroclinic network—note that linear stability of the equilibria
now also depends on δ—and conditions to linearize the flow around the
heteroclinic network (cf. Lemma 3.3).



14 CHRISTIAN BICK AND ALEXANDER LOHSE

DSSD DSSS DSDS

SSSD Č2 DDSS Ĉ2 SSDS

SDSD SDSS SDDS

σ̌6 σ̂6

σ̌1 σ̂1

σ̌2

σ̌3

σ̌4

σ̌5

σ̂2

σ̂3

σ̂4

σ̂5

Figure 2. The heteroclinic network N2 shown in Figure 1
is constituted by the heteroclinic cycles Ĉ2 ⊂ ψ1ψ2ψ3S and
Č2 ⊂ ψ1ψ2Sψ4. The stability indices along the saddle con-
nections are denoted by σ̂q and σ̌q, respectively.

Note that there are other equilibria that are not part of either cycle in
the heteroclinic network. For example, on SSSS all populations are phase
synchronized and its stability is governed by the (quadruple) eigenvalue
λSSSS = 4r cos(2α) − 2 cos(α). For δ = 0 we have λSSSS = λDDSS

3 which
implies that SSSS is linearly stable if the transverse eigenvalues within the
corresponding subspace of each cycle are negative; cf. Section 3.2.

4.2. Stability of the cycles. Note that by construction, the saddle SDSS
has a two-dimensional unstable manifold. Hence, neither cycle can be
asymptotically stable for δ ≈ 0 and α ≈ π

2 . Since the cycles are quasi-
simple, we can determine their stability by looking at the corresponding
transition matrices. Because of the parameter symmetry, we restrict our-
selves to the cycle Ĉ2 ⊂ ψ1ψ2ψ3S without loss of generality and just write C
and σq for the remainder of this subsection.

Within the invariant subspace ψ1ψ2ψ3S, we have one contracting, ex-
panding, and transverse direction with local coordinates denoted by v, w, z
as above. In addition there is another transverse direction—denoted by z⊥

in local coordinates—which is mapped to itself under the global map. The
second transverse eigenvalues (those transverse to ψ1ψ2ψ3S) evaluate to

t⊥DSSS = −2K sin(α)− 2 cos(α) + 4r cos(2α),(30a)

t⊥DDSS = −2Kδ sin(α)− 2 cos(α) + 4r cos(2α),(30b)

t⊥SDSS = 2K(1− δ) sin(α)− 2 cos(α) + 4r cos(2α),(30c)

t⊥SDDS = −2Kδ sin(α)− 2 cos(α) + 4r cos(2α),(30d)

t⊥SSDS = −2K sin(α)− 2 cos(α) + 4r cos(2α),(30e)

t⊥DSDS = −4K sin(α)− 2 cos(α) + 4r cos(2α).(30f)

There are two possibilities for transverse bifurcations when δ changes. If δ >
0, there is a transverse bifurcation at t⊥SDSS = 0. But since t⊥SDSS = eSDSS

the other cycle of the network then ceases to exist. If δ < 0, there is a possi-
bility of two simultaneous transverse bifurcations when t⊥DDSS = t⊥SDDS = 0.

Write b⊥q = −t⊥q /eq. Again, the global maps are permutations of the local
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coordinate axes and the return map evaluates to

hq(w, z, z
⊥) = (Bqw

bqz,Dqw
aq , Eqw

b⊥q z⊥).

where Bq, Dq, Eq are constants.

In logarithmic coordinates (η, ξ, ξ⊥) this gives the transition matrix

Mq =

 bq 1 0
aq 0 0
b⊥q 0 1

(31)

that governs the stability of the cycle. Note that the upper left 2×2 subma-
trix is the same as the transition matrix (20). In order to simplify notation
we write ξ1 =̂ SDSS and ξ2, . . . , ξ6 for the subsequent equilibria of C. As-
suming that we are in a parameter region where the network exists, see
Theorem 4.1, we can now make the following statement about the stability
of its subcycles.

Theorem 4.2. Assume that the cycle C is asymptotically stable3 within the
three-dimensional subspace it is contained in and |δ| sufficiently small. Then
we have the following dichotomy.

(i) If the transition matrix product M(2) satisfies the eigenvector condi-
tion (C), then C is f.a.s. and its stability indices σq, q = 1, . . . , 6,
(with respect to the dynamics in TM ) are given by

σq = F ind(µq, νq, 1) > −∞,

where µq = bqµq+1 + aqνq+1 + b⊥q , νq = µq+1 for q = 2, . . . , 6 and

µ1 = b⊥1 , ν1 = 0.

(ii) If M(2) does not satisfy condition (C), then C is completely unstable.

Proof. Since t⊥1 > 0 is the only positive transverse eigenvalue of an equilib-
rium in C, the transition matrix M1 is the only one with a negative entry,
b⊥1 < 0. By Proposition 2.7 the stability of C depends on whether or not

all M(q) satisfy conditions (A)–(C) in Section 2. Statement (ii) follows im-
mediately by Proposition 2.7(a).

For (i), we want to apply Proposition 2.7(b). By [4, Lemma 3.6] it suffices

to show that M(2) satisfies conditions (A) and (B), because then all M(q)

satisfy (A)–(C). We calculate

M(2) = M1M6 · · ·M2 =

 ∗ ∗ 0
∗ ∗ 0

b⊥1 µ+ ν b⊥1 µ̃+ ν̃ 1

 ,

where µ, ν, µ̃, ν̃ > 0. For a moment, suppose that δ = 0. Due to the
symmetry of the system in the subspace ψ1ψ2ψ3S, the upper left 2 × 2
submatrix is the third power of the matrix M in (23) and we can use our

calculations from Section 3.3. Note that M(2) has an eigenvalue λ = 1 with
eigenvector (0, 0, 1). Its other two eigenvalues are the third powers of those
of M, call them λ1 > λ2, by a slight abuse of notation. Then λmax = λ1 >
1 under the assumptions of this theorem, so conditions (A) and (B) are

3For δ = 0 explicit conditions are given in Theorem 3.7. These can be amended for
δ 6= 0 to take the δ-dependency into account.
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satisfied. Proposition 2.7(b) applies and C is f.a.s.. Since eigenvectors and
eigenvalues vary continuously in δ, the same is true for |δ| sufficiently small.

In order to derive expressions for the stability indices we have to find the
arguments β(l) ∈ R3 of the function F ind from Proposition 2.7. As is shown
in [4], this becomes simpler if for all q = 1, . . . , 6 we have

U−∞(M(q)) :=

{
x ∈ R3

−

∣∣∣∣ lim
k→∞

(
M(q)

)k
x = −∞

}
= R3

−,(32)

where R3
− = { (x1, x2, x3) | x1, x2, x3 < 0} and the convergence is demanded

in every component. Clearly, this asymptotic behavior is controlled by the
eigenvectors of M(q). Consider first the case q = 2. Under our assump-
tions, all components of the eigenvector corresponding to the largest eigen-
value λmax > 1 have the same sign. Another eigenvector is (0, 0, 1). From
Section 3.3 we know that the first two components of the remaining eigenvec-
tor have opposite signs. It follows that any x ∈ R3

− written in the eigenbasis

of M(2) must have a nonzero coefficient for the largest eigenvector. Therefore,
x ∈ U−∞(M(2)), so (32) holds. For q 6= 2 note that all M(q) are similar, hence
they have the same eigenvalues. Their eigenvectors are obtained by multi-
plying those of M(2) by M2,M3M2, . . . ,M6M5M4M3M2, respectively. This
involves only matrices with nonnegative entries and thus does not affect our
conclusions using the signs of the entries of the eigenvectors. Therefore, (32)
holds for all q = 1, . . . , 6.

Since (32) is satisfied, the only arguments β(l) ∈ R3 that must be con-
sidered for F ind in the calculation of σq are the rows of the (products of)
transition matrices Mq,Mq+1Mq,Mq+2Mq+1Mq and so on. Among these, we
only need to take rows into account where at least one entry is negative; if
there are none, the respective index is equal to +∞. Negative entries can
only occur when M1 is involved in the product, and then only in the last
row. So for σq the last row of M1M6 · · ·Mq must be considered. Since M2

has no negative entries and its third column is (0, 0, 1), the first two en-
tries in the last row of M2M1M6 · · ·Mq are greater than the respective en-

tries of M1M6 · · ·Mq, yielding a greater value for F ind. The same goes for
M3M2M1M6 · · ·Mq and so on. Thus, σq is indeed obtained by plugging the

last row of M1M6 · · ·Mq into F ind. We get

σ1 = F ind(last row of M1),

σ2 = F ind(last row of M1M6M5M4M3M2),

σ3 = F ind(last row of M1M6M5M4M3),

σ4 = F ind(last row of M1M6M5M4),

σ5 = F ind(last row of M1M6M5),

σ6 = F ind(last row of M1M6).

The lower right entry of all these matrices is 1, so for all q = 1, . . . , 6 we
can write σq = F ind(µq, νq, 1) > −∞. Since the last row of M1 is (b⊥1 , 0, 1),

we have µ1 = b⊥1 and ν1 = 0 as claimed. The recursive relations now follow
immediately from (31). �
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Figure 3. Stability indices of the heteroclinic cycles Ĉ2

and Č2 as in Figure 2 for (α,K, r) = (π2 , 0.2, 0.01). The
symbol ‘+’ for a stability index denotes ‘positive and finite’
and ‘−’ denotes ‘negative and finite’.

We conclude this section with a few remarks on these stability results.
First, consider condition (C). Let umax = (umax

1 , umax
2 , umax

3 ) be the eigen-

vector of M(2) associated with λmax. For δ = 0, note that (umax
1 , umax

2 ) is an
eigenvector of M associated with its largest eigenvalue, so both of its com-
ponents have the same sign. To fulfill (C), we need sgn(umax

3 ) = sgn(umax
1/2 ).

A straightforward calculation yields

umax
3 =

(b⊥1 µ+ ν)umax
1 + (b⊥1 µ̃+ ν̃)umax

2

λmax − 1
,

so it is sufficient to have ν > −b⊥1 µ and ν̃ > −b⊥1 µ̃. This condition is stronger
than assuming (C), and as soon as it is satisfied, we have σ2 = +∞.

By contrast, the indices σ1 and σ6 are always finite because F ind has
at least one positive and at least one negative argument through b⊥1 . This
makes sense because they are indices along connections shared with the
other cycle in the network, while σ2 belongs to the trajectory that is fur-
thest away from the common ones. For the other indices σ3,σ4,σ5 there is
not necessarily a negative argument, so they could be equal to +∞. From
the recursive relations between the µq and νq we see that σq = +∞ im-
plies σq−1 = +∞ for q ∈ {3, 4, 5}, which is also plausible in view of the
architecture of the heteroclinic network.

Since σq > −∞ for all q, we have shown that under the assumptions of
Theorem 4.2 the cycle C is not only f.a.s., but indeed attracting a positive
measure set along each of its connections. Straightforward constraints on
µq, νq given through the definition of F ind determine the signs of all σq and
thus yield necessary and sufficient conditions for C to be even e.a.s. A simple
example for such a necessary condition is b⊥1 > −1, so that σ1 > 0. This is
the same as eSDSS > t⊥SDSS and in terms of the network parameters amounts
to δ > 0, cf. Figure 3.

Similar conditions for the other σq become increasingly cumbersome to
write down explicitly and we gain little insight from them. Instead, we
evaluated the stability indices (of both cycles) numerically. Two cases are
illustrated in Figure 3. We conjecture that there is an open parameter
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Figure 4. The two-dimensional unstable manifold
W u(SDSS) ⊂ SDψ3ψ4 of SDSS (bottom left circle) not only
contains points (shaded) which are in the stable manifold
of DSDS (top left circle) and SDSD (bottom right circle) but
also points in the stable manifold of SDDD (top right cir-
cle). The stable manifolds of the additional equilibria ξSDψ3D

and ξSDDψ4 (black squares) separate the initial conditions.
The other parameters are (α,K, r) = (π2 , 0.2, 0.01).

region where the assumptions of Theorem 4.2 are satisfied and the network
is maximally stable (though not asymptotically stable) due to both cycles
being e.a.s.. We comment further on this in the next subsection.

4.3. Stability of the heteroclinic network. Even if the stability of all
cycles that constitute a heteroclinic network is known, it is hard to make
general conclusions about the stability of the network as a whole. For “sim-
ple” cases, like the Kirk and Silber network [18], a comprehensive study
can be found in [19]. Based on the results in the previous section, one can
draw several conclusions. If one cycle of N2 is f.a.s.—conditions are given in
Theorem 4.2—then the network itself is f.a.s. Moreover, if one cycle, say Ĉ2,
is e.a.s. and the heteroclinic trajectories in Č2 that are not contained in Ĉ2

have positive stability indices, then the network is e.a.s.—this is the case in
Figure 3(b).

The geometry of the two-dimensional manifold W u(SDSS) ⊂ SDψ3ψ4

gives insight into the dynamics near the heteroclinic network N2. For sim-
plicity, we focus on the case α = π

2 . By (28), the dynamics of the phase
differences on SDψ3ψ4 are given by

ψ̇3 = sin(ψ3) (K cos(ψ4)− 4r cos(ψ3) +K(1 + 2δ))(33a)

ψ̇4 = sin(ψ4) (K cos(ψ3)− 4r cos(ψ4) +K(1− 2δ)) .(33b)

Note that if |δ|K < 2 |r| there is a (saddle) equilibrium ξSDψ3D ∈ SDψ3D
with ψ3 = arccos(δK/2r) ∈ (0, π). For the same condition there is an
analogous equilibrium ξSDDψ4 ∈ SDDψ4 with ψ4 = arccos(−δK/2r) ∈ (0, π).
The stable manifolds of these saddle equilibria now organize the dynamics
on SDψ3ψ4.
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Proposition 4.3. For the heteroclinic network in Theorem 4.1 and param-
eters α ≈ π

2 , δ ≈ 0, and an open interval of r there is robustly an open wedge
of initial conditions on W u(SDSS) such that the trajectories converge to an
equilibrium which is not contained in either cycle constituting N2.

Proof. We first give conditions on the parameters that ensure that there
are no asymptotically stable sets in the invariant set (0, π)2 ⊂ SDψ3ψ4. It
suffices to show that there are no equilibria in (0, π)2. By direct calculation,
one can verify that for α = π

2 , δ = 0 any equilibrium in (0, π)2 must lie

in {ψ := ψ3 = ψ4} ⊂ (0, π)2. The dynamics of ψ are given by ψ̇ = (K −
4r) cos(ψ) +K. Hence, there are no equilibria if 0 < r < K/2 given K > 0;
these are exactly the conditions for there to be an asymptotically stable
heteroclinic cycle in each subspace by Lemma 3.1 and Theorem 3.5.

Now W s(ξSDψ3D), W s(ξSDDψ4) are—as source-saddle connections—robust
heteroclinic trajectories [SDSS → ξSDψ3D], [SDSS → ξSDDψ4 ]. These sepa-
rate (0, π)2 into three distinct sets of initial conditions which completes the
proof. �

The dynamics on (0, π)2 ⊂ SDψ3ψ4 are shown in Figure 4. The stable
manifolds of ξSDψ3D and ξSDDψ4 subdivide (0, π)2 robustly into three wedges
with nonempty interior that lie in the stable manifolds of SDDS, SDSD, and
SDDD, respectively. In particular, this suggests that a significant part of
trajectories passing by SDSS will approach SDDD which is not contained in
either heteroclinic cycle of the network N2.

Remark 4.4. Let N be a heteroclinic network and let ξp, p = 1, . . . , P , denote
the equilibria of all its cycles. Abusing the ambiguity of Definition 2.14, we
call N complete [20] or clean [21] if W u(ξp) ⊂

⋃P
q=1W

s(ξq) for all p and

almost complete if the set W u(ξp) ∩
⋃P
q=1W

s(ξq) is of full measure for all p

and any Riemannian measure on W u(ξp); see also [2] for a detailed discussion
in the context of coupled oscillator populations.

For N2 to be almost complete for δ ≈ 0, the set W u(SDSS)∩(W s(SDDS)∪
W s(SDSD)) would have to be of full (Lebesgue) measure in SDψ3ψ4. How-
ever, Lemma 4.3 shows that there is a set of nonvanishing measure in SDψ3ψ4

which lies in the stable manifold of SDDD, an equilibrium which is not in
the network. Hence, N2 cannot be almost complete (nor complete).

We further explored the dynamics near the heteroclinic network forM = 4
populations of N = 2 oscillators using numerical simulations with additive
noise. Specifically, for (28) written as θ̇σ,k = ω + Yσ,k(θ)—see (2)—and
independent Wiener processes Wσ,k, we solved the stochastic differential
equation

(34) θ̇σ,k = ω + Yσ,k(θ) + ηWσ,k

4Definition 2.1 is somewhat ambiguous since it does not specify how many heteroclinic
connections belong to the heteroclinic network. If N2 only contains one (one-dimensional)
heteroclinic trajectory (as suggested by the proof of Theorem 4.1) then it is clearly not
almost complete since dim(W u(SDSS)) = 2. Strictly speaking, for the discussion of com-

pleteness we actually consider a network N2 that contains the equilibria of N2 and all
connecting heteroclinic trajectories.
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Figure 5. The phase dynamics of system (34) with noise
strength η = 10−4 shows different realizations of transitions
along the heteroclinic network; we have α = π

2 , r = 0.01,
K = 0.2 and δ = 0 in Panel (a) and δ = 0.01 in Panel (b).
Since the network is not stable, trajectories may go away
from the heteroclinic network along the connection [SDSS→
SDDD] either to return to a neighborhood of the network
(top left) or to converge to the sink SSSS (top right).

using XPP [22]. As shown in Figure 5, the solutions show transitions either
along the heteroclinic trajectory [SDSS→ SDDS] or [SDSS→ SDSD]. Since
the heteroclinic network is not asymptotically stable, the dynamics also
show excursions away from the network: there are trajectories that follow
the heteroclinic connection [SDSS → SDDD] before either returning to the
neighborhood of the network (Figure 5(a) left) or approaching the sink SSSS
(Figure 5(a) right). If the symmetry is broken by δ > 0 (Figure 5(b)),
trajectories appear to predominantly follow the principal direction [SDSS→
SDDS] with the largest unstable eigenvalue as expected [23].
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5. Discussion

Coupled populations of identical phase oscillators do not only support
heteroclinic networks between sets with localized frequency synchrony but
the stability properties of these networks can also be calculated explicitly.
Rather than looking at dynamical systems with generic properties at the
equilibria, we focus on a specific class of vector fields and obtain explicit ex-
pressions for the stability of a heteroclinic network—a feature of the global
dynamics of the system—in terms of the coupling parameters. In partic-
ular, this does not exclude the possibility that stability properties depend
nonmonotonously on the coupling parameters. The coupling parameters
themselves can be related to physical parameters of interacting real-world
oscillators, for example through phase reductions of neural oscillators [24].

Our results motivate a number of further questions and extensions, in
particular in the context of the first part of the paper [2]. First, we here
restricted ourselves to the quotient system; this is possible by considering
nongeneric interactions between oscillator populations. The question what
the dynamics look like if the resulting symmetries are broken, will be ad-
dressed in future research. Second, what happens for coupled populations
with N > 2 oscillators? The existence conditions for cycles in [2] and the
numerical results in [1] suggest existence of such a network, but stability
conditions would rely on the explicit calculation of the stability indices [3].
In particular, the main tool used here, namely the results for quasi-simple
cycles [4], ceases to apply since the unstable manifold of SDSS would be of
dimension four and contain points with different isotropy; cf. [2].

How coupling structure shapes the global dynamics of a system of oscil-
lators is a crucial question in many fields of application. Hence, our results
may be of practical interest: in the neurosciences for example, some oscilla-
tors may fire at a higher frequency than others for some time before another
neural population becomes more active [25]. The networks here mimic this
effect to a certain extent: trajectories which move along the heteroclinic
network correspond to sequential speeding up and slowing down of oscil-
lator populations. At the same time, large scale synchrony is thought to
relate to neural disfunction [26]. From this point of view, the (in)stability
results of Section 4 appear interesting, since trajectories in numerical simu-
lations may get “stuck” in the fully phase synchronized configuration SSSS.
Hence, our results may eventually elucidate how to design networks that
avoid transitions to a highly synchronized pathological state.
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Appendix A. Phase Oscillator Populations with Nonpairwise
Coupling

Interaction of phase oscillators through state-dependent phase shift may
be approximated by nonpairwise coupling as shown in [1]; here we generalize
these calculations to allow for arbitrary coupling topologies.

Consider a system of M populations of N phase oscillators where θσ,k
denotes the phase of oscillator k of population σ. Recall that the Kuramoto
order parameter

Zσ =
1

N

N∑
j=1

exp(iθσ,j)

encodes the level of synchrony of population σ. In particular, Rσ = |Zσ| = 1
if and only if all oscillators are phase synchronized. Now suppose that the
phase of oscillator k in population σ evolves according to

(35) θ̇σ,k = ω +
∑
j 6=k

g(θσ,j − θσ,k +K∆ασ)

where the interaction is mediated through the coupling function

(36) g(ϑ) = sin(ϑ+ α)− r sin(a(ϑ+ α)),

a ∈ N, and the phase-shifts

∆ασ =
∑
τ 6=σ

Kστ (1−R2
τ )

are linear combination of the (square of the) Kuramoto order parameters.
Here K ≥ 0 is the overall interaction strength and Kστ ≥ 0 determines the
strength of interaction between populations σ and τ . Set Kσ :=

∑M
τ=1Kστ .

To approximate the dynamics we expand the coupling function. We have

g(ϑ+K∆ασ) = g(ϑ) +K∆ασ cos(ϑ+ α) +O(Kr) +O
(
K2
)
.(37)

Using trigonometric identities we obtain

R2
τ =

1

N2

N∑
p,q=1

cos(θτ,p − θτ,q)

which implies

R2
τ cos(ϑ+ α) =

1

N
cos(ϑ+ α) +

1

N2

∑
p6=q

cos(θτ,p − θτ,q + ϑ+ α).(38)

Now define the interaction functions

G̃(2)(ϑ) = g(ϑ) +K

(
1− 1

N

)
Kσ cos(ϑ+ α),(39)

G̃(4)(θτ ;ϑ) = − 1

N2

∑
p 6=q

cos(θτ,p − θτ,q + ϑ+ α).(40)
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Substituting (37) and (38) into (35) and dropping the O(Kr), O
(
K2
)

terms
yields

θ̇σ,k = ω +
∑
j 6=k

(
G̃(2)(θσ,j − θσ,k) +K

M∑
τ=1

Kστ G̃
(4)(θτ ; θσ,j − θσ,k)

)
(41)

as an approximation for (35). Note that the interaction between different
populations is through nonpairwise coupling terms: the arguments of the
trigonometric functions in G̃(4) depend on four phase variables rather than
just differences between pairs of phases.

The M = 3 coupled populations of N = 2 oscillators above are determined
by the coupling matrix

(Kστ ) =

 0 −1 1
1 0 −1
−1 1 0

 .

Note that Kσ = 0 for all σ. Thus,

G̃(2)(ϑ) = g(ϑ)

G̃(4)(θτ ;ϑ) = −1

4

(
cos(θτ,1 − θτ,2 + ϑ+ α) + cos(θτ,2 − θτ,1 + ϑ+ α)

)
and (41) reduce to equations (10) in the main text above.

Now consider M = 4 populations of N = 2 oscillators with coupling
matrix

(Kστ ) =


0 −1 1 1
1 0 −1 −1
−1 1 + δ 0 −1
−1 1− δ −1 0


where the parameter δ parametrizes the asymmetry between populations
three and four. For δ = 0 the coupling corresponds to the phase-shifts

∆α1 = −(1−R2
2) + (1−R2

3) + (1−R2
4),(42a)

∆α2 = (1−R2
1)− (1−R2

3)− (1−R2
4),(42b)

∆α3 = −(1−R2
1) + (1−R2

2)− (1−R2
4),(42c)

∆α4 = −(1−R2
1) + (1−R2

2)− (1−R2
3).(42d)

considered in [1]. We have

G̃(4)(θτ ;ϑ) = −1

4

(
cos(θτ,1 − θτ,2 + ϑ+ α) + cos(θτ,2 − θτ,1 + ϑ+ α)

)
(43)

G̃(2)
σ (ϑ) = g(ϑ) +K

(
1− 1

N

)
Kσ cos(ϑ+ α)(44)

with K1 = 1, K2 = −1, K3 = −1 + δ, K4 = −1 − δ. Hence, equation (28)
is the nonpairwise approximation (41) of the system (35).
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