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Abstract

Nash-Williams proved in [2] that for an undirected graph G the set E(G) can be par-
titioned into cycles if and only if every cut has either even or in�nite number of edges.
We prove the following directed analogue of his theorem: the edge-set of a digraph can be
partitioned into directed cycles if and only if for each subset of the vertices the cardinality
of the ingoing and the outgoing edges are equal.

1 Introduction

Nash-Williams was one of the greatest researchers of the theory of �nite and in�nite graphs
in the 20th century. One of his famous result is that the edges of a 2k-edge-connected graph can
be directed to obtain a k-edge-connected digraph. He proved it for �nite graphs and claimed to
be true for in�nite ones in [3]. For the in�nite case there is still no published proof. The best
partial result is due to C. Thomassen in [5], he showed that the edges of a 8k-edge-connected
in�nite graph can be directed to obtain a k-edge-connected digraph. An other famous result of
Nash-Williams is the following.

Theorem 1 (Nash-Williams, [2] (p. 235 Theorem 3)). If G is an undirected graph, then E(G)
can be partitioned into cycles if and only if every cut has either even or in�nite number of edges.

At the and of his article ([2] page 237 Theorem 3') he claimed without proof the following
directed analogue of his theorem:

Theorem 2. If D = (V,A) is a directed graph, then A can be partitioned into directed cycles if

and only if for all X ⊆ V the cardinalities of the ingoing and the outgoing edges of X are equal.

As far as we know there is no published (even partial) result about the directed version.
L. Soukup gave a new shorter proof to the undirected version (Theorem 5.1 of [4]) based on
elementary submodels but nothing about the directed case. The main di�culty in contrast to
the undirected case, applying elementary submodel approach, is that in the undirected case one
can �nd a �nite witness for the violation of the condition (an odd cut) but in the directed case
we do not necessarily have a �nite witness. Our main result is a proof of Theorem 2 by handling
the additional di�culties of the elementary submodel approach.
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2 Notation

Let D = (V,A) be a digraph. We denote by outD(X) and by inD(X) the set of outgoing
and ingoing edges of X in D respectively. For an X ⊆ V let D[X] the subgraph of D induced
by X. The weakly connected components of a digraph are the connected components of its
undirected underlying graph with the original orientations. We call a digraph weakly connected
if its undirected underlying graph is connected. If x, y are vertices of the path P , then we denote
by P [x, y] the segment of P between x and y. We will also use some basic standard notation
from set theory and model theory.

We call X ⊆ V overloaded (with respect to D = (V,A)) if |outD(X)| < |inD(X)| and we call
D balanced if there is no such an X. IfM is an arbitrary set, then let D(M) := (V ∩M,A∩M)
and let D 
 M := (V,A \M).

3 Preparations

3.1 An observation about overloaded sets

We need the following basic observation to �nd overloaded sets in an unbalanced digraph in
a special form.

Lemma 3. If D = (V,A) is an unbalanced digraph, then it has a weakly connected component

with vertex set Z and an X ∪ Y partition of Z such that D[X] and D[Y ] are weakly connected

and X is overloaded in D.

Proof: Let X ′ ⊆ V be overloaded and let Xi (i ∈ I) be the vertex sets of the weakly connected
components of D[X ′]. Then∑

i∈I
|outD(Xi)| = |outD(X ′)| < |inD(X ′)| =

∑
i∈I
|inD(Xi)|

therefore there is an i0 ∈ I such that |outD(Xi0)| < |inD(Xi0)|. Let Yj (j ∈ J) be the vertex sets
of the weakly connected components of D[V \Xi0 ] then∑

j∈J
|inD(Yj)| = |outD(Xi0)| < |inD(Xi0)| =

∑
i∈J
|outD(Yj)|

thus there is an j0 ∈ J such that |inD(Yj0)| < |outD(Yj0)|. Denote by Z the vertex set of the
weakly connected component of D that contains Yj0 then X := Z \ Yj0 is appropriate and Yj0
will be the desired Y .

3.2 Elementary submodels

We give here a quick survey about elementary submodel techniques that we use to prove
the main result of this chapter. One can �nd a more detailed survey with many combinatorial
applications in [4].

All the formulas and models in this chapter are in the �rst order language of set theory
and the models are ∈-models i.e. the �element of� relation in them is the real �∈�. A model
M0 is an elementary submodel of M1 if M0 ⊆ M1 and for each formula ϕ(x1, . . . , xn) and
a1, . . . , an ∈ M0 : M0 |= ϕ(a1, . . . , an) if and only if M1 |= ϕ(a1, . . . , an). Let Σ = {ϕ1, . . . , ϕn}
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be a �nite set of formulas where the free variables of ϕi are xi,1, . . . , xi,ni . We call a set M a
Σ-elementary submodel if the formulas in Σ are absolute between M and the universe i.e.

n∧
i=1

[∀a1, . . . , ani ∈M [(M |= ϕi(a1, . . . , ani))⇐⇒ ϕi(a1, . . . , ani)]] .

The common practice by elementary submodel techniques is to �x a large enough �nite set
Σ of formulas at the beginning and do not say explicitly what it is. After that, during the proof
the author refers �nitely many times that this and that formula is in Σ. If it is not satisfactory
for someone, then he or she may consider Σ as the set of those formulas that have length at most
1010 and contains at most the variables: v1, . . . , v1010 . Anyway, from now on Σ is a �xed, large
enough set of formulas.

Our next goal is to create Σ-elementary submodels. We will use the following two well-known
theorems. One can �nd them in [1] as well as in other textbooks in the topic.

Theorem 4 (Levy's Re�ection Theorem). For any ordinal α there is an ordinal β ≥ α such

that Vβ is a Σ-elementary submodel.

Theorem 5 (Downward Löwenheim�Skolem-Tarski Theorem). Let A be a �rst order struc-

ture for language L with basic set A. Denote the set of L-formulas by Form(L). Assume that

|Form(L)| ≤ |A|. Then for all B ⊆ A there exists an elementary submodel C of A with basic set

C such that B ⊆ C and |C| = |Form(L)|+ |B|.

Remark 6. In the case of set theory |Form(L)| = ℵ0 so if B is in�nite, then we may write |C| = |B|
in Theorem 5.

Now we can prove a fundamental fact about Σ-elementary submodels.

Proposition 7. For all in�nite set B there is a Σ-elementary submodel M such that B ⊆ M
and |M | = |B|.

Proof: By Theorem 4 there is a β ≥ rank(B) such that Vβ is a Σ-elementary submodel. Then
B ⊆ Vβ since β ≥ rank(B). Thus by using Theorem 5 with A = Vβ and with B we get an
elementary submodel M of Vβ such that |M | = |B| and B ⊆ M . Finally M is a Σ-elementary
submodel because it is an elementary submodel of a Σ-elementary submodel.

4 Main result

Proof of Theorem 2. A directed cycle has the same number of ingoing and outgoing edges for an
X ⊆ V thus if A can be partitioned into directed cycles, then D must be balanced. Next we deal
with the nontrivial direction of the equivalence.

Observe that the weakly connected components of a balanced digraph are strongly connected
thus each of their edges are in some directed cycle. Furthermore, a balanced digraph remains
balanced after the deletion of the edges of a directed cycle. If a balanced digraph is at most
countable and its edges are: e1, e2, . . . , then we can create a desired partition by the following
recursion: in the n-th step delete the edges of a directed cycle which contains en from the
remaining digraph if it still contains en, otherwise do nothing.

In the uncountable case the naive recursive method above does not work because in a trans-
�nite recursion one can not ensure that after the �rst limit step the remaining digraph is still
balanced.
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Lemma 8. For all in�nite set B there is a Σ-elementary submodel M such that B ⊆M, |M | =
|B|, and for any balanced digraph D ∈M the edge-set A(D)∩M can be partitioned into directed

cycles.

Theorem 2 follows directly from Lemma 8: let D be an arbitrary balanced digraph and use
Lemma 8 with B = {D}∪V (D)∪A(D). Then D = D(M) and hence we get a desired partition.
Proof: We prove Lemma 8 by trans�nite induction on |B|. Consider �rst the case |B| = ℵ0 and
let M be a Σ-elementary submodel such that B ⊆M and |M | = ℵ0. It exists by Proposition 7.
Assume that D ∈M is a digraph such that A(D)∩M can not be partitioned into directed cycles.
We have to show that D is unbalanced. We know that D(M) must be unbalanced because it is
countable and we have already proved Theorem 2 for countable digraphs. Let X ⊆ V ∩M be an
overloaded set in D(M). Then

∣∣outD(M)(X)
∣∣ is �nite because

∣∣outD(M)(X)
∣∣ < ∣∣inD(M)(X)

∣∣ ≤
|M | = ℵ0. Let S be the set whose elements are the tails of the edges in outD(M)(X) and the

heads of
∣∣outD(M)(X)

∣∣ + 1 many edges of inD(M)(X). Consider the set X ′ of vertices that are
reachable from S in D(M) without using the edges in outD(M)(X). Note that X ′ is de�nable in
M as a certain subset of V using �nitely many parameters from A ∩M . We may assume that
Σ contains the appropriate instances of the subset axiom of ZFC hence X ′ ∈ M . Furthermore
outD(M)(X) = outD(M)(X

′) and X ′ has at least
∣∣inD(M)(X)

∣∣ + 1 ingoing edges hence it is true
in the model M that X ′ is an overloaded set in D. We also assume that the formula ϕ(x) that
says: �x is an unbalanced digraph� is in Σ thus from M |= ϕ(D) we may conclude D is really
unbalanced.

Let λ > ℵ0 be a cardinal and assume that Lemma 8 is true for sets with size lesser than λ.
Let B = {bα : α < λ} be arbitrary and let Bα = {bγ : γ < α}. We de�ne a chain of Σ-elementary
submodels 〈Mα : ω ≤ α < λ〉 by trans�nite recursion such that for all ω ≤ α < λ:

1. α,Bα ⊆Mα,

2. |Mα| = |α|,

3. Mγ ∈Mα and Mγ ⊆Mα if γ < α,

4. if D ∈Mα+1 is a balanced digraph, then the edge-set of D(Mα+1) (i.e. A ∩Mα+1) can be
partitioned into directed cycles,

5. Mα =
⋃
β<αMβ if α is a limit ordinal.

Mω can be an arbitrary countable Σ-elementary submodel with Bω ⊆ Mω. Suppose that
Mγ is already de�ned if ω ≤ γ < α for some ω < α < λ and satis�es the conditions above. If
α is a limit ordinal, then let Mα =

⋃
{Mγ : γ < α}. If α = δ + 1, then do the following. Let

Sα = α∪Bα∪Mδ∪{Mδ} thus |Sα| ≤ |α|+ |α|+ |α| = |α| < λ. By the induction hypothesis there
is a Σ-elementary submodel Mα such that Sα ⊆ Mα, |Mα| = |Sα| = |α|, and for all balanced
digraph D ∈ Mα the edge-set A(D) ∩M can be partitioned into directed cycles. The recursion
is done.

Let M =
⋃
{Mα : ω ≤ α < λ}. Then B ⊆M and |M | = λ = |B|. Clearly M is Σ-elementary

submodel since M is the union of an increasing chain of Σ-elementary submodels. Let D ∈ M
be balanced and let β+ 1 < λ be the smallest ordinal such that D ∈Mβ+1. Let Dβ = D(Mβ+1)
and for β < α < λ let Dα = (D 
 Mα)(Mα+1). These are edge-disjoint subdigraphs of D(M)
moreover A(Dα) (β ≤ α < λ) is a partition of A(D)∩M . Since D,Mα ∈Mα+1 we get (by using
Σ-elementarity with an appropriate formula) (D 
Mα) ∈Mα+1.

Claim 9. If M is a Σ-elementary submodel with |M | ⊆ M and D ∈ M is a balanced digraph,

then D 
M is also balanced.
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If we prove Claim 9, then we are done with the proof of Lemma 8 as well. Indeed, by Claim
9, the digraphs D 
 Mα are balanced and therefore by using the 4th property of the recursion
with D
Mα and with Mα+1 we can partition A(Dα) into directed cycles for all β ≤ α < λ thus
we get a desired partition of A ∩M by uniting the partitions of the edge sets A(Dα).

Before the proof of Claim 9 we need some preparations.

Proposition 10. Let G be an undirected graph an let M be a Σ-elementary submodel such that

G ∈ M and |M | ⊆ M . Assume that λG
M (u, v) > 0 for some u 6= v ∈ V (G) ∩ M . Then

λG(u, v) > |M |.

Proof: We assume that Σ contains the formulas that expressing the followings:

1. λG(u, v) = κ, (∀G)(∀u 6= v ∈ V (G))∃κ(λG(u, v) = κ)

2. E′ ⊆ E(G) separates the vertices u and v in graph G,

3. f is a bijection between the sets X and Y .

Let u 6= v ∈ V (G) ∩M arbitrary and suppose that λG(u, v) = κ ≤ |M |. We have to show that
λG
M (u, v) = 0. Since G, u, v ∈M and κ is de�nable from them by a formula in Σ (see 1 above)
we know that κ ∈M andM |= λG(u, v) = κ. Then there is some E′ such thatM |= “E′ ⊆ E(G)
separates the vertices u and v in graph G and f is a bijection between κ and E′�. Formulas 2
and 3 ensures that E′ ⊆ E(G) separates the vertices u and v in graph G and f is a bijection
between κ and E′. Since f ∈M and κ ≤ |M | ⊆M the range of f is a subset of M i.e. E′ ⊆M
therefore λG
M (u, v) = 0 since E′ separates v and u.

We need the following result of L. Soukup (see [4] Lemma 5.3 on p. 16):

Proposition 11. Let G be an undirected graph and let M be a Σ-elementary submodel such that

G ∈ M and |M | ⊆ M . Assume that x 6= y ∈ V (G) are in the same component of G 
 M and

F ⊆ E(G 
M) separates them where |F | ≤ |M |. Then F separates x and y in the whole G.

Proof: Assume (reductio ad absurdum) that it is false and G,F, x, y,M witness it. Take a path
P between x and y in G 
 F . Denote by x′ and by y′ the �rst and the last intersection of P
with V ∩M with respect to some direction of P . The vertices x′ and y′ are well-de�ned and
distinct since P necessarily uses some edge from E(G) ∩M . Fix also a path Q between x and
y in G 
 M . The paths P [x′, x], Q, P [y, y′] shows that x′ and y′ are in the same component
of G 
 M . Thus by Proposition 10 λG(x′, y′) > |M |. We may �x a path R between x′ and y′

in G 
 F since λG(x′, y′) > |M | ≥ |F |. But then P [x, x′], R, P [y′, y] shows that F does not
separate x and y in G 
M which is a contradiction.

Now we turn to the proof of Claim 9. Assume, seeking for contradiction, that D 
 M is
unbalanced. Then by Lemma 3 there is a weakly connected component of D
M with vertex set
Z and an X∪Y partition of Z such that (D
M)[X] and (D
M)[Y ] are weakly connected and X
is overloaded in D
M . Let F = cutD
M (X). We want to show that |F | ≤ |M |. We may suppose
that F is in�nite and thus cutD(X) as well since F ⊆ cutD(X). Thus ℵ0 ≤ |outD(X)| = |inD(X)|.
The inequality

∣∣outD
M (X)
∣∣ < |outD(X)| holds because otherwise∣∣outD
M (X)

∣∣ = |outD(X)| = |inD(X)| ≥
∣∣inD
M (X)

∣∣
which contradicts to the choice of X. Hence M contains |outD(X)| elements of outD(X) and
thus |outD(X)| ≤ |M |. Then

|F | =
∣∣inD
M (X)

∣∣+
∣∣outD
M (X)

∣∣ ≤ |inD(X)|+ |outD(X)| = |outD(X)| ≤ |M | .
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By using Proposition 11 to the undirected underlying graph of D with F and with arbitrary
x ∈ X and y ∈ Y vertices we conclude that X and Y belongs to distinct weakly connected
components of D
F . Let us denote by X ′ and Y ′ the vertex set of these components. We claim
that cutD
M (X) = cutD(X ′). Indeed, cutD(X ′) might not have element that not in F by the
de�nition of X ′ and the elements of F goes between X and Y and therefore between X ′ and Y ′.
But then

∣∣outD
M (X)
∣∣ = |outD(X ′)| and

∣∣inD
M (X)
∣∣ = |inD(X ′)| thus

|outD(X ′)| =
∣∣outD
M (X)

∣∣ < ∣∣inD
M (X)
∣∣ = |inD(X ′)|

therefore X ′ is overloaded in D which is a contradiction.
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