Highly connected infinite digraphs without edge-disjoint back and forth paths between a certain vertex pair

Attila Joó *

2015

This is the peer reviewed version of the following article: [3], which has been published in final form at http://dx.doi.org/10.1002/jgt.22046. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.

Abstract

We construct for all $k \in \mathbb{N}$ a k-edge-connected digraph D with $s, t \in V(D)$ such that there are no edge-disjoint $s \rightarrow t$ and $t \rightarrow s$ paths. We use in our construction "self-similar" graphs which technique could be useful in other problems as well.

1 Introduction

1.1 Basic notions

In this paper by "path" we mean a finite, simple, directed path. Sometimes we define a path of a digraph $D=(V, A)$ by a finite sequence v_{0}, \ldots, v_{n} of vertices of D. If there are more than one edges from v_{i} to v_{i+1} for some $i<n$, then it is not specified which edge is used by the path, so we use this kind of definition only if it does not matter. An $u \rightarrow v$ path is a path with initial vertex u and terminal vertex v. Its length is the number of its edges. We call a digraph D connected if for all $u, v \in V(D)$ there is a $u \rightarrow v$ path in D. For $U \subseteq V$ let $\operatorname{span}_{D}(U)$ be the set of those edges of D whose heads and tails are contained in U and let $D[U]=\left(U, \operatorname{span}_{D}(U)\right)$. If it is clear what digraph we talk about, then we omit the subscripts.

1.2 Background and Motivation

R. Aharoni and C. Thomassen proved by a construction the following theorem that shows that several theorems about edge-connectivity properties of finite graphs and digraphs become "very" false in the infinite case.

Theorem 1 (R. Aharoni, C. Thomassen [1]). For all $k \in \mathbb{N}$ there is an infinite graph $G=(V, E)$ and $s, t \in V$ such that E has a k-edge-connected orientation but for each path P between s and t the graph $G=(V, E \backslash E(P))$ is not connected.

In this article we would like to introduce a similar result. If D is a k-edge-connected finite digraph, then for all $s_{1}, t_{1}, \ldots, s_{k}, t_{k} \in V(D)$ there are pairwise edge-disjoint paths P_{1}, \ldots, P_{k}

[^0]such that P_{i} is an $s_{i} \rightarrow t_{i}$ path. This fact is implied by the following Theorem of W. Mader as well as the (strong form of) Edmonds' Branching theorem (see [2] p. 349 Theorem 10.2.1).

Theorem 2 (W. Mader [4]). Let $D=(V, A)$ be a $k+1$-edge-connected, finite digraph and $s, t \in V$. Then there is an $s \rightarrow t$ path P such that $(V, A \backslash A(P))$ is k-edge-connected.

We will show that in the infinite case there is no $k \in \mathbb{N}$ such that k-edge-connectivity guarantees even the existence of edge-disjoint $s_{1} \rightarrow t_{1}$ and $s_{2} \rightarrow t_{2}$ paths for all $s_{1}, t_{1}, s_{2}, t_{2}$ vertices. Not even in the special case where the two ordered vertex pair is the reverse of each other.

2 Main result

Theorem 3. For all $k \in \mathbb{N}$ there exists a k-edge-connected digraph without back and forth edgedisjoint paths between a certain vertex pair.

Proof. Let $k \geq 2$ be fixed, $I=\{0, \ldots, 2 k-1\}, I_{e}=\{i \in I: i$ is even $\}, I_{o}=I \backslash I_{e}$. Denote by I^{*} the set of finite sequences from I. Let the vertex set V of the digraph is the union of the disjoint sets $\left\{s_{\mu}: \mu \in I^{*}\right\}$ (we mean $s_{\mu}=s_{\nu}$ iff $\mu=\nu$) and $\left\{t_{\mu}: \mu \in I^{*}\right\}$ ($t_{\mu}=t_{\nu}$ iff $\left.\mu=\nu\right)$. If μ is the empty sequence we write simply s, t and we denote the concatenation of sequences by writing them successively. For $\nu \in I^{*}$ let denote the set $\left\{r_{\nu \mu}\right.$: $\left.r \in\{s, t\}, \mu \in I^{*}\right\} \subseteq V$ by V_{ν}. The edge-set A of the digraph consists of the following edges. For all $\mu \in I^{*}$ there are k edges in both directions between the two elements of the following pairs: $\left\{s_{\mu}, t_{\mu 1}\right\},\left\{s_{\mu i}, t_{\mu(i+2)}\right\}(i=0, \ldots, 2 k-3)$, $\left\{s_{\mu(2 k-2)}, t_{\mu}\right\}$. Simple directed edges are $\left(s_{\mu}, t_{\mu 0}\right),\left(t_{\mu i}, s_{\mu(i+1)}\right)_{i \in I_{e}},\left(s_{\mu i}, t_{\mu(i+1)}\right)_{i \in I_{o} \backslash\{2 k-1\}},\left(s_{\mu(2 k-1)}, t_{\mu}\right)$ for all $\mu \in I^{*}$. Finally $D \stackrel{\text { def }}{=}(V, A)$ (see figure 1).

Figure 1: The digraph D in the case $k=3$. Thick, two-headed arrows stand for k parallel edges in both directions. The (just partially drawn) $D\left[V_{i}\right]$'s are isomorphic to the whole D by Proposition 5.

Remark 4. One can avoid using parallel edges (without losing the desired properties of the digraph) by dividing each of these edges with one-one new vertex and drawing between them $k(k-1)$-many new directed edges, one-one for each ordered pair. One can also achieve k connectivity instead of k-edge-connectivity by using some similarly easy modification.

Proposition 5. For $\nu \in I^{*}$ the function $f_{\nu}: V \rightarrow V_{\nu}, f_{\nu}\left(r_{\mu}\right) \stackrel{\text { def }}{=} r_{\nu \mu}(r \in\{s, t\})$ is an isomorphism between D and $D\left[V_{\nu}\right]$.
Proof: It is a direct consequence of the definition of the edges since the number of edges from r_{μ} to $r_{\mu^{\prime}}^{\prime}$ are the same as from $r_{\nu \mu}$ to $r_{\nu \mu^{\prime}}^{\prime}$ for all $r, r^{\prime} \in\{s, t\}, \nu, \mu, \mu^{\prime} \in I^{*}$.
Proposition 6. Denote by D_{v} the digraph that we obtain from D by contracting for all $i \in I$ the set V_{i} to a vertex v_{i}. Then D_{v} is k-edge-connected.
Proof: In the vertex-sequence $s, v_{1}, v_{3}, \ldots, v_{2 k-1}$ there are k edges in both directions between the neighboring vertices such as in the sequence $v_{0}, v_{2}, \ldots, v_{2 k-2}, t$. Finally there are in both directions at least k edges between the vertex sets of the sequences above.

For $u \neq v$ we denote by $\lambda(u, v)$ the local edge-connectivity from u to v in D (i.e. $\lambda(u, v)=$ $\min \left\{\left|A^{\prime}\right|: A^{\prime} \subseteq A\right.$, there is no path from u to v in $\left.\left.\left(V, A \backslash A^{\prime}\right)\right\}\right)$ and let $\lambda\{u, v\} \stackrel{\text { def }}{=} \min \{\lambda(u, v), \lambda(v, u)\}$.

Proposition 7. D is connected.
Proof: We will show that $\lambda\left\{s, r_{\mu}\right\} \geq 1$ for all $r \in\{s, t\}, \mu \in I^{*}$. We will use induction on length of μ (which is denoted by $|\mu|$). Consider first the $|\mu|=0,1$ cases directly.

The path $s, t_{0}, s_{1}, t_{2}, s_{3}, \ldots, t_{2 k-2}, s_{2 k-1}, t$ shows that $\lambda(s, t) \geq 1$. Using the isomorphism f_{i} (see Proposition 5) we may fix an $s_{i} \rightarrow t_{i}$ path $P_{s_{i}, t_{i}}$ in $D\left[V_{i}\right]$ for all $i \in I$. The path

$$
t, P_{s_{2 k-2}, t_{2 k-2}}, \ldots, P_{s_{2 k-2 j}, t_{2 k-2 j}}, \ldots, P_{s_{0}, t_{0}}, P_{s_{1}, t_{1}}, s
$$

justifies that $\lambda(t, s) \geq 1$ (thus $\lambda\{s, t\} \geq 1)$. Then we may fix a $t_{i} \rightarrow s_{i}$ path $P_{t_{i}, s_{i}}$ in $D\left[V_{i}\right](i \in I)$. The paths

$$
\begin{aligned}
& s, P_{t_{1}, s_{1}}, P_{t_{3}, s_{3}}, \ldots, P_{t_{2 j+1}, s_{2 j+1}}, \ldots, P_{t_{2 k-1}, s_{2 k-1}} \\
& P_{s_{2 k-1}, t_{2 k-1}}, P_{s_{2 k-3}, t_{2 k-3}}, \ldots, P_{s_{2 k-1-2 j}, t_{2 k-1-2 j}}, \ldots, P_{s_{1}, t_{1}}, s
\end{aligned}
$$

certify that $\lambda\left\{s, r_{i}\right\} \geq 1$ if $r \in\{s, t\}, i \in I_{o}$. The paths

$$
\begin{aligned}
& t, P_{s_{2 k-2}, t_{2 k-2}}, P_{s_{2 k-4}, t_{2 k-4}}, \ldots, P_{s_{2 k-2-2 j}, t_{2 k-2-2 j}} \ldots, P_{s_{0}, t_{0}} \\
& P_{t_{0}, s_{0}}, P_{t_{2}, s_{2}}, \ldots, P_{t_{2 j}, s_{2 j}}, \ldots, P_{t_{2 k-2}, s_{2 k-2}}, t
\end{aligned}
$$

certify that $\lambda\left\{t, r_{i}\right\} \geq 1$ if $r \in\{s, t\} \geq 1, i \in I_{e}$ and thus (by $\lambda\{s, t\} \geq 1$ and by transitivity) $\lambda\left\{s, r_{i}\right\} \geq 1$ if $r \in\{s, t\}, i \in I_{e}$. Hence the cases $\mu \in I *$ with $|\mu| \leq 1$ are settled.

Let be $l \geq 1$ and suppose $\lambda\left\{s, r_{\mu}\right\} \geq 1$ if $r \in\{s, t\}, \mu \in I^{*},|\mu| \leq l$. Let $\nu=\mu i$, where $i \in I$ and $|\mu|=l$. By the induction hypothesis we have $\lambda\left\{s, s_{\mu}\right\} \geq 1$. By the induction hypothesis for $l=1$ we have $\lambda\left\{s, r_{i}\right\} \geq 1$ and so $\lambda\left\{s_{\mu}, r_{\mu i}\right\} \geq 1$ by the isomorphism f_{μ}. Combining these, we get $\lambda\left\{s, r_{\mu i}\right\} \geq 1$.
Lemma 8. D is k-edge-connected.
Proof: Let $k>l \geq 1$.
Proposition 9. Let $\mu \in I^{*}$ arbitrary. If we delete at most l edges of the digraph $D\left[V_{\mu}\right]$ in such a way that its subgraphs $D\left[V_{\mu i}\right](i \in I)$ remain connected after the deletion, then $D\left[V_{\mu}\right]$ also remains connected after the deletion.

Proof: Because the isomorphism f_{μ} it is enough to deal with the case where μ is the empty sequence. Denote by D^{\prime} the digraph that we have after the deletion. Let D_{v}^{\prime} be the digraph that we get from D^{\prime} by contracting the sets V_{i} to a vertex v_{i} for all $i \in I$. The digraphs $D^{\prime}\left[V_{i}\right](i \in I)$ are connected by assumption, thus D^{\prime} is connected iff D_{v}^{\prime} is connected. The digraph D_{v}^{\prime} arises by deleting at most $l<k$ edges of the k-edge-connected digraph D_{v} (see Proposition 6) hence it is connected.

We will prove that if D is l-edge-connected, then it is also $l+1$ edge-connected. This is enough since we have already proved 1-connectivity of D in Proposition 7. Assume that D is l-edge-connected. Let $C \subseteq A,|C|=l$ arbitrary and $D^{\prime} \stackrel{\text { def }}{=}(V, A \backslash C)$. By the definition of $l+1$-edge connectivity we need to show that D^{\prime} is connected. Suppose for contradiction that it is not. Since the connectivity of the subgraphs $D^{\prime}\left[V_{i}\right](i \in I)$ implies the connectivity of D^{\prime} (by Proposition 9) there is an $i_{0} \in I$ such that $D^{\prime}\left[V_{i_{0}}\right]$ is not connected. Since the connectivity of the subgraphs $D^{\prime}\left[V_{i_{0} i}\right](i \in I)$ implies the connectivity of $D^{\prime}\left[V_{i_{0}}\right]$ there is an $i_{1} \in I$ such that $D^{\prime}\left[V_{i_{0} i_{1}}\right]$ is not connected... By recursion we obtain an infinite sequence $\left(i_{n}\right)_{n \in \mathbb{N}}$ such that the digraphs $D^{\prime}\left[V_{i_{0} \ldots i_{n}}\right](n \in \mathbb{N})$ are all disconnected. Note that the digraphs $D\left[V_{i_{0} \ldots i_{n}}\right](n \in \mathbb{N})$ are l-connected because D is l-connected by assumption and they are isomorphic to it, hence necessarily $C \subseteq \operatorname{span}\left(V_{i_{0} \ldots i_{n}}\right)$ for all $n \in \mathbb{N}$. But then

$$
C \subseteq \bigcap_{n=0}^{\infty} \operatorname{span}\left(V_{i_{0} \ldots i_{n}}\right)=\operatorname{span}\left(\bigcap_{n=0}^{\infty} V_{i_{0} \ldots i_{n}}\right)=\operatorname{span}(\varnothing)=\varnothing
$$

which is a contradiction since $|C|=l \geq 1$.
Lemma 10. There are no edge-disjoint back and forth paths between s and t in D.
Proof: Suppose, seeking a contradiction, that there are. Let $P_{s, t}$ be an $s \rightarrow t$ path and $P_{t, s}$ be a $t \rightarrow s$ path such that they are edge-disjoint and have a minimal sum of lengths among these path pairs. For $u, v \in V$ call a set $U \subseteq V$ an $u v$-cut iff $u \in U$ and $v \notin U$. The set $\{t\} \cup \bigcup\left\{V_{i}: i \in I_{e}\right\}$ is a $t s$-cut and its outgoing edges are $\left\{\left(t_{i}, s_{i+1}\right)\right\}_{i \in I_{e}}$. Let $i_{0} \in I_{e}$ be the maximal index such that $P_{t, s}$ uses the edge $\left(t_{i_{0}} s_{i_{0}+1}\right)$. Then an initial segment of $P_{t, s}$ is necessarily of the form $t, P_{s_{2 k-2}, t_{2 k-2}}, P_{s_{2 k-4}, t_{2 k-4}}, \ldots, P_{s_{i_{0}}, t_{i_{0}}}, s_{i_{0}+1}$ where $P_{s_{i}, t_{i}}$ is an $s_{i} \rightarrow t_{i}$ path in $D\left[V_{i}\right]$. The set $T \stackrel{\text { def }}{=}\{t\} \cup \bigcup\left\{V_{i}: i_{0} \leq i \in I\right\}$ is also a $t s$-cut and all the tails of its outgoing edges are in $\left\{t_{i_{0}}, t_{i_{0}+1}\right\} . P_{t, s}$ has already used the edge $\left(t_{i_{0}}, s_{i_{0}+1}\right)$ so it may not use another edge with tail $t_{i_{0}}$ hence $P_{t, s}$ leave T using an edge with tail $t_{i_{0}+1}$. But then $P_{t, s}$ contains an $s_{i_{0}+1} \rightarrow t_{i_{0}+1}$ subpath $P_{s_{i_{0}+1}, t_{i_{0}+1}}$ in $D\left[V_{i_{0}+1}\right]$.
$S \stackrel{\text { def }}{=}\{s\} \cup \bigcup\left\{V_{i}: i_{0}+1 \geq i \in I\right\}$ is an st-cut and all the tails of its outgoing edges are in $\left\{s_{i_{0}}, s_{i_{0}+1}\right\}$. Therefore $P_{s, t}$ has an initial segment in $D[S]$ that terminates in this set. We know that $P_{s, t}$ does not use the edge $\left(t_{i_{0}}, s_{i_{0}+1}\right)$ because $P_{t, s}$ has already used it. Therefore there is an $m \in\left\{i_{0}, i_{0}+1\right\}$ such that $P_{s, t}$ has a $t_{m} \rightarrow s_{m}$ subpath $P_{t_{m}, s_{m}}$ in $D\left[V_{m}\right]$. But then the paths $P_{t_{m}, s_{m}}$ and $P_{s_{m}, t_{m}}$ are proper subpaths of $P_{s, t}$ and $P_{t, s}$ respectively. By Proposition $5 f_{m}$ is an isomorphism between D and $D\left[V_{m}\right]$ and thus the inverse-images of the paths $P_{t_{m}, s_{m}}$ and $P_{s_{m}, t_{m}}$ are edge-disjoint back and forth paths between s and t with strictly less sum of lengths than the added length of paths $P_{s, t}$ and $P_{t, s}$, which contradicts with the choice of $P_{s, t}$ and $P_{t, s}$.

References

[1] Aharoni, R., and Thomassen, C. Infinite, highly connected digraphs with no two arcdisjoint spanning trees. Journal of graph theory 13, 1 (1989), 71-74.
[2] Frank, A. Connections in combinatorial optimization, vol. 38. OUP Oxford, 2011.
[3] Joó, A. Highly connected infinite digraphs without edge-disjoint back and forth paths between a certain vertex pair. Journal of Graph Theory 85, 1 (2017), 51-55.
[4] Mader, W. On a property of n-edge-connected digraphs. Combinatorica 1,4 (1981), 385386.

[^0]: *MTA-ELTE Egerváry Research Group, Department of Operations Research, Eötvös Loránd University, Budapest, Hungary. Email: joapaat@cs.elte.hu

