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Steffen Q. Mueller  

Pre- and within-season attendance forecasting in Major League 

Baseball: A random forest approach 

Abstract: This study explores the forecasting of Major League Baseball game ticket sales and identifies 

important attendance predictors by means of random forests that are grown from classification and re-

gression trees (CART) and conditional inference trees. Unlike previous studies that predict sport demand, 

I consider different forecasting horizons and only use information that is publicly accessible in advance of 

a game or season. Models are trained using data from 2013 to 2014 to make predictions for the 2015 reg-

ular season. The static within-season approach is complemented by a dynamic month-ahead forecasting 

strategy. Out-of-sample performance is evaluated for individual teams and tested against least-squares 

regression and a naive lagged attendance forecast. My empirical results show high variation in team-spe-

cific prediction accuracy with respect to both models and forecasting horizons. Linear and tree-ensemble 

models, on average, do not vary substantially in predictive accuracy; however, OLS regression fails to ac-

count for various team-specific peculiarities.  

Keywords: Attendance, Major League Baseball, Random forest, Conditional forest, Sport demand, Sports 

forecasting, Ticket sales, Variable importance  
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1 Introduction 

According to sport franchises, predicting sport demand in advance of a season is neces-

sary for ticket pricing, and forecasting short-run fluctuations in attendance is important 

for staffing (Kleps, 2014). However, existent studies on predicting sport demand do not 

consider multiple forecasting horizons and mainly use linear and normal censored re-

gression methods (e.g. Beckman et al., 2012; J. Borland & Macdonald, 2003; Denaux et 
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al., 2011; Lemke et al., 2010).1 In contrast, this paper investigates tree-based ensemble 

methods for both pre- and within-season attendance forecasting. 

In this study, I forecast ticket sales by means of random forest regressions for all 29 US 

Major League Baseball (MLB) teams for the regular 2015 season using data from 2013 to 

2014 for model training. Precisely, I predict individual game attendance and identify im-

portant predictors by random forests that are grown from classification and regression 

trees (CART) (Breiman, 2001) and conditional inference trees (Strobl et al., 2007, 2008). 

To this extent, I distinguish between two sets of predictors. The first set includes varia-

bles that are known in advance of a season (e.g. game and promotion schedule), while 

the second set is extended to include variables that are observed as a season progresses 

(e.g. lagged attendance and team performance). Similar to McHale & Morton (2011), who 

forecast tennis match results, I complement my static predictions by introducing a dy-

namic month-ahead forecasting strategy in which the training data and models are it-

eratively updated on a monthly basis. 

The random forest (RF) ensemble technique is a state-of-the-art machine learning algo-

rithm that has been shown to yield accurate predictions in a wide range of regression 

and classification tasks (e.g. Lessmann et al., 2010; Lessmann & Voß, 2017; Nedellec et 

al., 2014; Swartz et al., 2017). RF automatically accounts for complex non-linear depend-

encies between considered predictors and the dependent variable (Hastie et al., 2009). 

This ability makes RF a promising tool in attendance forecasting, since there are many 

variables that are likely to impact fans’ preferences in various and interdependent ways. 

As an example, fans want to experience an exciting game and, at the same time, want 

their home team to win, which is not necessarily the same objective and may interact 

                                                             

1 It is common practice in the sport demand literature to use attendance and ticket sales as proxies for 

sport demand (J. Borland & Macdonald, 2003). Furthermore, the officially reported attendance figures 

are the total number of sold tickets per game, not the number of fans that were present at a game. In 

this paper, the terms sport demand, ticket sales, and attendance are used interchangeably. 



HCED 65 –Attendance forecasting in Major League Baseball: A random forest approach 

3/41 

 

with additional factors such as game importance, fan rivalries, and media coverage 

(Forrest et al., 2005). 

This study makes several important contributions. First, it introduces a novel strategy 

for both pre- and within-season attendance forecasting by exploring the predictive ca-

pabilities of static and dynamic random forest approaches. Second, out-of-sample per-

formance is evaluated for individual teams and tested against least-squares regression 

and a naive lagged attendance forecast. Third, I restrict the set of considered predictors 

exclusively to measures that are observable and publicly accessible before a season 

starts or a game is played. Fourth, I provide a robust assessment of variables’ impact on 

predictive accuracy by comparing permutation importance measures that are derived 

from the random and conditional forest predictions.  

The remainder of the paper is organized as follows: Section 2 discusses aspects in pre-

dicting attendance, and Section 3 describes the data that are employed in this study. 

Section 4 briefly reviews the methodologies of RF and CF regression. Section 5 shows the 

results for both the static pre- and within-season approach and the dynamic short-run 

forecasting strategy. Section 6 presents the conclusions of the paper. 

2 Predicting game attendance and determinants of demand 

Fans decide to attend a game based on not only economic variables of demand theory 

such as income and ticket price but also specific sport and game characteristics, e.g. 

competitive balance and outcome uncertainty (e.g. Dennis Coates et al., 2014; Forrest & 

Simmons, 2002). The list of potentially relevant predictors is extensive. Among others, 

additional attendance drivers are the day and time of a game, promotions, weather con-

ditions, newly constructed stadiums, and city and population characteristics (e.g. 

Denaux et al., 2011; Feddersen et al., 2006; Winfree et al., 2004). 

Studies on predicting season or game attendance usually focus on single sports, e.g. soc-

cer (Villa et al., 2011), basketball (Zhang et al., 1995), ice hockey (D. Coates & Humphreys, 
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2012), Australian football (Jeff Borland & Lye, 1992), U.S. football (Welki & Zlatoper, 

1999), and MLB (Lemke et al., 2010). However, most articles on sport demand attempt to 

explain in-sample attendance variation and use information on exogenous variables 

that is not strictly observable or publicly accessible in advance of a game (J. Borland & 

Macdonald, 2003). Examples include average season ticket prices, team payroll, game-

day temperature, and macroeconomic variables on various geographical levels (e.g. 

Beckman et al., 2012; Lemke et al., 2010; Tainsky & Winfree, 2010; Villa et al., 2011; 

Winfree et al., 2004). I found only two studies that predict stadium attendance without 

relying on information that is not accessible before a game has started and both use 

artificial neural network models to forecast short-run soccer match attendance rates 

(Şahin & Erol, 2017; Strnad et al., 2017). 

Frequently employed models in predicting attendance are linear regression methods 

such as OLS, and censored-normal regression models since stadium capacity limits game 

attendance (Beckman et al., 2012; Denaux et al., 2011; Lemke et al., 2010). A commonly 

applied variable transformation is the natural logarithm of game attendance, and some 

studies consider interaction terms between certain predictors, e.g. squared stadium age 

(Tainsky & Winfree, 2010). Conversely, RF is a data-driven method that accounts for the 

impact of higher-order interactions and non-linear dependencies without the need for 

pre-specification (Hastie et al., 2009). 

To the best of my knowledge, only one article has been published in a peer-reviewed 

journal that also applies tree-based methods to analyze sport demand. King (2017) pre-

dicts individual NBA game attendance by CART RF. In contrast to my study, King (2017) 

employs a static forecast without considering multiple forecasting horizons and in-

cludes information on predictors that is not accessible at the time of model training and 

prediction. Furthermore, tree-based ensemble methods have already been applied in 

MLB research. Mills & Salaga (2011) and Freiman (2010) predict the election of hitters 

and pitchers into the National Hall of Fame by the Baseball Writers’ Association by RF 

classification and Swartz et al. (2017) estimate pitch quality by RF regression.  
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3 Data description 

The variables that are employed in this study are all publicly accessible in advance of a 

season or the night before game-day. My data sources are retrosheet.org (game-log 

data), MLB.com (promotions), seamheads.com (information on stadiums), covers.com 

(betting odds), darksky.net (weather API), and Beckman et al. (2012) and Lemke et al., 

(2010) (team rivalries).2 

The original data sample covers all 7290 games that were played over the course of the 

2013, 2014 and 2015 regular seasons. Since I include lagged attendance as a predictor in 

my analysis, I drop the corresponding 90 first home games. Furthermore, I only consider 

US teams in this study and, thus, drop the remaining 240 home games that were hosted 

by the Toronto Blue Jays. After additional minor adjustments that are common in the 

sport economics literature, the final data sample includes observations on 6852 games: 

4571 records from the 2013 and 2014 seasons as a training set and 2281 records from the 

2015 season as a hold-out test set. Concise descriptions of the data cleaning process, 

variable specifications, and descriptive statistics are provided in the Appendix. The 38 

predictor variables that are employed in this study are summarized in Table 1. 

                                                             

2 http://www.retrosheet.org, https://www.mlb.com, http://www.seamheads.com, https://www.co-

vers.com, https://darksky.net. 

 

http://www.retrosheet.org/
https://www.mlb.com/
http://www.seamheads.com,/
https://www.covers.com/
https://www.covers.com/
https://darksky.net/
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Table 1 Description of pre- and within-season predictor variables 

 
Variables observed in advance of a season 

 5 variables related to the date and time a game is scheduled 

 6 variables related to stadium, city, and team characteristics 

 5 variables related to team rivalries and specific match characteristics 

 6 variables related to teams' former season success 

 4 variables related to game promotions 

Variables observed as a season progresses 

 Lagged home team game attendance 

 Home team's winning probability (calculated from betting odds) 

 4 variables related to relative team performance 

  5 variables related to weather conditions (day before game-day) 

 Season (only included in the dynamic forecast) 

Notes: This study includes 38 predictor variables: 12 numerical and 26 categorical variables with a total of 98 

levels (see Section 2 in the Appendix). 

Although weather conditions can be expected to have an impact on game attendance, 

they are often not considered in empirical research or only refer to the temperature that 

is measured at the beginning of a game (e.g. Kappe et al., 2014; Lemke et al., 2010). In 

contrast, I include several measures that account for the weather conditions of the day 

before a game is played. However, there are numerous potential attendance factors that 

are not considered in this study. For example, one may include information on fans’ pref-

erences that is derived from social-media activities. 

4 Methodology 

4.1 Random forest regression 

The RF technique is an ensemble method that combines multiple de-correlated decision 

tree predictors on the basis of various sub-sets of a data sample (Hastie et al., 2009). The 

original RF approach averages the predictions that are generated from many unpruned 

single CART trees that are fitted to random draws of the training data with replacement, 

which is referred to as bootstrap aggregation (‘bagging’) (Breiman, 1994, 2001; Breiman 

et al., 1984). An RF is grown from 𝐵 bootstrap samples that each include individual ob-

servations multiples times, while some observations are not included (approximately 
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one third). The observations that are not included in the data that are used to fit a tree 

are called out-of-bag (OOB) observations. In contrast to bagging, the RF procedure im-

poses an additional form of randomness by only considering a random subset of 𝑀 pre-

dictors for the respective candidate variable any time a node is split in the tree building 

process. As a result, RF generates more diverse trees by allowing splitting rules on vari-

ables at early stages of a single tree that would otherwise be neglected (Breiman, 2001). 

A convenient feature of bagged models is that they allow hyper-parameters to be deter-

mined in a way that is similar to cross-validation. Precisely, we can evaluate model per-

formance by predicting the outcome for an observation 𝑖 using each of the single trees 

in which this observation was not included in the training process, i.e. in which this ob-

servation was OOB. This evaluation yields approximately 𝐵/3 predictions for the 𝑖th ob-

servation. The RF OOB prediction for the 𝑖th observation is simply the average of those 

𝐵/3 predictions (or majority vote for classification). Using the OOB estimates for model 

tuning is less computationally demanding than cross-validation since no additional 

models (forests) must be trained to test a set of parameters (Lessmann et al., 2010). 

The importance of each predictor in the RF tree building process can be assessed via dif-

ferent measures of variable importance. The arguably most-advanced RF measure is 

computed by calculating the difference in prediction accuracy that results from ran-

domly permuting a predictor variable using the observations that are recorded in the 

OOB data (Strobl et al., 2007). The reasoning is intuitive: Let us assume that the differ-

ence in the prediction accuracy on the OOB records is substantially affected by whether 

we include a predictor 𝑋𝑗 or not, i.e. 𝑋𝑗 is a strong predictor. Then, it is reasonable to as-

sume that assigning a different value to 𝑋𝑗 increases the resulting prediction error. 

Hence, permuting a variable over its values that were recorded in the OOB data enables 

one to mimic the exclusion of the predictor and calculate the resulting mean difference 

in MSE on the OOB data (Breiman, 2001; Strobl et al., 2007).  
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4.2 Conditional random forest regression 

While the RF permutation importance measure covers both the individual impact of the 

assessed predictor and complex higher-order interactions with other predictors, it is bi-

ased in favor of numerical over categorical variables and similarly favors categorical var-

iables with many levels (e.g. Archer & Kimes, 2008; Strobl et al., 2007). Precisely, Strobl 

et al. (2007) show that the RF inhibits a variable selection bias that emerges from CART 

and an additional bias that is induced by bootstrap sampling. As an alternative to CART, 

Strobl et al. (2007) propose using conditional inference trees as base learners. The main 

difference with RF is that the conditional forest (CF) aggregation scheme of the single-

tree predictors within a forest involves averaging observation weights that are extracted 

from each of the trees, not simply averaging the predictions directly (Strobl et al., 2007, 

2008). 

In a later study, Strobl et al. (2008) find that the CF approach in Strobl et al. (2007) still 

favors correlated predictors in the tree building process; this bias is induced by the un-

conditional variable importance permutation scheme of CF. To account for this bias, 

Strobl et al. (2008) suggest conditionally permuting predictor variables to correlated 

ones, which they refer to as conditional permutation importance. However, there is no 

general consensus on how to interpret the importance measures when predictors are 

correlated and, more importantly, it is unclear how those correlations effectively impact 

CF importance measures (e.g. Nicodemus et al., 2010). 

5 Implementation and results 

I use R (R Core Team, 2017) and the packages randomForest (Liaw & Wiener, 2002), party 

(Hothorn et al., 2015), and lattice (Sarkar, 2008) for the main computations and graphics 

in this paper.  
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5.1 Static pre- and within-season forecasts  

This study employs 37 within-season predictor variables, which are denoted as 𝑋𝑤𝑠, in 

the static forecasting approach: 26 pre-season variables 𝑋𝑝𝑠 and 11 short-run variables 

𝑋𝑠𝑟. I forecast individual game attendance 𝑦𝑖 by random forest regressions based on 

CART (RF) and conditional inference trees (CF), a standard OLS regression model, and a 

naive forecast that equals the lagged home-team game attendance (Lag). 

5.1.1 Model performance evaluation 

In this paper, I follow the suggestion of Hastie et al. (2009) and exclusively grow trees to 

their maximal depths. This procedure simplifies parameter tuning and, with respect to 

this study, requires a justifiable increase in computational cost. Moreover, I quickly ob-

served that the predictive performance for both pre- and within-season models is not 

very sensitive to the number of included trees per forest. For example, using the sug-

gested default value (one third) for the number of randomly chosen predictors in the 

tree building process, the RMSE on the OOB and test data for both the RF and CF ap-

proaches stabilizes after averaging the prediction results of less than 100 trees (see Sec-

tion 4 of the Appendix). However, in the further analyses, I train RF and CF models on 

the basis of 𝐵 = 500 trees to ensure stable estimates of variable importance measures 

(Liaw & Wiener, 2002). Figure 1 shows the OOB and test set RMSEs for the pre-season 

[within-season] forecasts that are generated by the RF, CF, OLS, and lagged attendance 

models as functions of the number 𝑀𝑝𝑠 = {1, 3, … , 25} [𝑀𝑤𝑠 = {1, 4, … , 37}] of randomly 

considered predictors at each split in the tree building process.  
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Figure 1 Model performance evaluation: RMSE by number of randomly chosen predictors 

 
Notes: Out-of-sample (test) and out-of-bag (OOB) MLB game attendance RMSEs by random forest regressions 

based on CART (RF) and conditional inference trees (CF), OLS regression, and a simple lagged home -team 

attendance forecast (Lag). Maximal complex RF and CF are trained using 𝐵 =  500 trees. 

The RF yields the most accurate results but only slightly outperforms OLS and CF regres-

sions for both the pre- (a) and within-season (b) forecasting horizons. The RF and CF per-

formances on the OOB records appear to be relatively stable after the inclusion of 10 

randomly chosen predictors at each split. However, the suggested default value of one 

third for the number of randomly considered predictors 𝑀 appears to approximately 

minimize RMSE for the RF and CF approaches for both the pre-season (a) and within-

season (b) test data. For (a), the corresponding results for the RF [CF] model with 𝑀𝑝𝑠 = 7 

yield minimum RMSEs of 3912 [4686] on the OOB data and 5241 [5522] on the test data. 

For (b), the corresponding results for RF [CF] with 𝑀𝑤𝑠 = 12 yield a minimal RMSE of 4205 

[4478] on the OOB data and 4634 [4743] on the test data. The OLS model RMSEs are 5858 

(a) and 4908 (b), while the simple home-team-specific lagged attendance forecast (Lag) 

achieves an RMSE of 6377 (b). Hence, the differences in prediction accuracy among RF, 

CF, and OLS are stronger for the pre-season forecast, but do not vary substantially when 

trained with the additional information that is provided by the within-season variables.  

5.1.2 Team-specific results 

Based on the performance evaluation in Section 5.1.1, I use 𝐵 = 500 trees and set the 

number of randomly chosen predictors to 𝑀𝑝𝑠 = 7 and 𝑀𝑤𝑠 = 12 for all static pre- and 
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within-season RF and CF models. Table 2 shows the corresponding out-of-sample RMSEs 

for each home team for the static pre- and within-season predictions, together with the 

attendance summary statistics for the regular seasons from 2013 to 2015. 

Table 2 Out-of-sample MLB game attendance prediction accuracy by home team 

 

   Seasons 2013 to 2015 Out-of-sample RMSE for the 2015 season       

 Attendance summary  Random forest      OLS       Lag att 

Team name Abr. Mean  SD   Pre Within    Diff    Pre Within   Diff   Within 

All - 30283 9609   5241 4634 607   5858 4908 950   6377 

Arizona Diamond Backs ARI 25639 7029  4959 4393 566  4820 4531 289  8737 
Atlanta Braves ATL 28313 8735  7063 6273 790  7465 5634 1831  8799 
Baltimore Orioles BAL 29671 9277  6861 6257 604  6421 6391 30  10230 
Boston Red Sox BOS 35694 2039  2048 1818 230  3381 3349 32  1532 
Chicago Cubs CHC 33869 4373  5023 4296 727  5657 3850 1807  3025 
Chicago White Sox CHW 21369 6265  4532 4300 232  4812 4275 537  6762 
Cincinnati Reds CIN 30366 7543  5047 4848 199  5886 5132 754  7797 
Cleveland Indians CLE 18386 6580  3850 3809 41  3815 3538 277  5702 
Colorado Rockies COL 32965 6746  5428 4572 856  4596 4035 561  6653 
Detroit Tigers DET 35781 5219  3430 3024 406  4868 3657 1211  4671 
Houston Astros HOU 22626 6579  6907 4833 2074  6805 3892 2913  6361 
Kansas City Royals KCR 26297 8176  5002 5280 -278  10447 8510 1937  5298 
Los Angeles Angels LAA 37479 4053  4139 3949 190  3400 3285 115  5282 
Los Angeles Dodgers LAD 46377 5100  3789 3905 -116  4023 4237 -214  5215 
Miami Marlins MIA 20676 4200  3880 3871 9  4684 4373 311  5349 
Milwaukee Brewers MIL 32223 6316  4794 4328 466  4403 4164 239  6700 
Minnesota Twins MIN 28560 5231  4652 4272 380  5020 4123 897  5641 
New York Mets NYM 28208 6260  7262 6562 700  6905 5418 1487  7341 
New York Yankees NYY 40892 4723  4748 4368 380  4737 4696 41  5193 
Oakland Athletics OAK 22944 7516  4851 4805 46  5089 4914 175  7779 
Philadelphia Phillies PHI 30047 7172  8955 6358 2597  9622 6531 3091  5148 
Pittsburgh Pirates PIT 29614 7926  4369 3900 469  5199 4463 736  6470 
San Diego Padres SDP 27886 8042  6121 5790 331  8077 6780 1297  8881 
Seattle Mariners SEA 24522 8773  7061 6345 716  7683 6650 1033  8717 
San Francisco Giants SFG 41583 618  427 410 17  3960 3685 275  406 
St. Louis Cardinals STL 42851 2464  2069 1874 195  3589 3193 396  2223 
Tampa Bay Rays TBR 17069 5895  4746 4283 463  4400 3696 704  5214 
Texas Rangers TEX 34169 6701  7355 5728 1627  7717 6554 1163  7002 
Washington Nationals WAS 32254 5339  3939 3848 91  4338 3930 408  5827 

 R2 - - -   0.697 0.763 0.066   0.630 0.737 0.107   0.551 

Notes: Summary statistics and static pre-and within-season forecasts for US home-team game attendance. 

With respect to average team results, the RF model performs only slightly better than the OLS 

model for both pre-season (PS) and within-season (WS) predictions. For the pre-season (PS), the 

RF model yields an RMSE of 5241 and within-season (WS) an RMSE of 4634. The naive home-

team-specific lagged attendance (LAG) model performs worst, with an average RMSE of 6377. 

The CF results do not differ substantially from the RF results and, therefore, are included in the 
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Appendix. The RMSEs for the OLS regression are 5858 (PS) and 4908 (WS), and 6377 (WS) for the 

LAG predictions. 

Most importantly, the results in Table 2 reveal the high variation in prediction accuracy within 

and across teams, models, and forecasting horizon. A good example for team-specific peculiari-

ties are the San Francisco Giants (SFG). With respect to team-specific differences in the PS and 

WS results for the RF approach, the corresponding RMSEs are only 427 (PS) and 410 (WS) sold 

tickets per game. In contrast, with RMSEs of 3960 (PS) and 3685 (WS), the OLS model is not able 

to account for the unique peculiarities that are associated with SFG. Precisely, SFG’s standard 

deviation in ticket sales per game across the 2013, 2014 and 2015 seasons is as low as 618 and 

the average game attendance is 41583. SFG’s stadium capacity is reported as 41915 over all sea-

sons, which implies that practically every game was almost sold out. As a result, the lagged at-

tendance model (LAG) achieves a corresponding RMSE of 406 sold tickets per game. Similarly, 

the LAG is also more accurate than RF and OLS are for BOS, CHC, and PHI, and more accurate 

than OLS is for STL and KCR. 

There are also instances in which the OLS model performs best with respect to the PS forecasting 

horizon (ARI, BAL, CLE, COL, HOU, LAA, MIL, NYM, NYY, and TBR) and the WS predictions (ATL, 

CHW, CLE, COL, HOU, LAA, MIL, NYM, MIN, and TBR). However, the corresponding differences 

between OLS and RF are small for the teams for which the OLS performs better, e.g. the maximal 

difference for PS is 832 (COL) and for WS 1144 (NYM). In contrast, the maximal difference in 

RMSEs for the teams for which the RF outperforms the OLS model are 5445 for PS (KCR) and 3275 

for WS (KCR). Moreover, there are substantial differences with respect to the improvement in 

prediction accuracy that is obtained by including short-run information in the WS framework. 

For the RF approach, the difference between the PS and WS RMSEs is negative for KCR and LAD, 

and for the OLS model for LAD. Lastly, the highest RMSEs for the RF model are 8955 for PS (PHI) 

and 6562 for WS (NYM), and for the PS and WS OLS model 10447 (KCR) and 8510 (KCR), respec-

tively. However, I train and evaluate the RF and CF approaches over all teams. To improve pre-

diction accuracy, we may simply train and optimize models with respect to each team individu-

ally.  
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5.1.3 Variable importance analysis 

Table 3 shows the ranking of predictors according to their impact on the forest building process 

in terms of the permutation importance measures of the RF (scaled mean decrease in MSE) 

(Breiman, 2001), the unconditional CF (Strobl et al., 2007), and the conditional CF (CCF) (Strobl et 

al., 2008) approaches. Precisely, I present the RF, CF, and CCF rankings for the ten most important 

predictors of the RF pre-season and within-season models (lowest rank corresponds to highest 

impact).  

Table 3 Comparison of random and conditional forest variable importance rankings  

 

  Pre-season     Within-season   

Variable  RF  CF  CCF    RF   CF CCF 

Variables observed before a season starts           

Weekday 1 3 1  1 3 1 
Home team (HT) indicator 2 1 2  2 1 15 
HT season game number 3 9 10  4 14 30 
Distance between stadiums 4 14 5  10 23 34 
Month 5 7 4  13 9 36 
Visiting team (VT) indicator 6 13 3  16 16 18 
Fireworks promotion 7 12 16  7 7 17 
Stadium capacity 8 2 6  8 4 23 
Day or night game 9 15 17  14 13 16 
VT is Division Series Winner 10 18 13  22 22 32 

Variables observed before a game starts 

HT lagged attendance     3 2 2 
Maximum temperature     5 20 11 
HT games behind     6 17 10 
Minimum temperature      9 18 21 
HT winning percentage 12 10 6 
VT winning percentage  15 19 3 
VT games behind     17 26 7 
HT implied winning probability 20 24 5 
Relative humidity     21 27 8 
Weather conditions      30 33 26 

Notes: Permutation importance rankings (lowest rank corresponds to highest impact) are derived from the OOB 

estimates for the 2013 and 2014 regular seasons from the random and conditional forest regressions for 

US home-team-specific MLB game attendance (see Section 5.1.2). 𝑃𝑝𝑠 = 26 [𝑃𝑤𝑠 = 37] included predictors 

for the pre-season [within-season] forecast. Ranking of predictor relevance in the forest building process 

according to permutation variable importance is performed using the (scaled) CART random forest (RF) 

and conditional forest (CF) measures and the conditional permutation importance CF measure (CCF).  

For the pre-season forecast, the rankings in terms of RF, CF, and CCF largely appear to 

identify the same predictors as being of relatively high importance in the tree and forest 

building process. Weekday and home team (HT) effects are consistently ranked among 
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the three most important predictors. However, there are differences among the consid-

ered ranking approaches: The CF measure ranks ballpark capacity as the second most 

important variable, and the third rank in the CCF approach is assigned to the dummy 

variable that indicates whether a game is played against BOS, CHC, or NYY (VT). 

The largest differences in rankings are observed for the distance between stadiums, VT, 

and fireworks promotions. Conversely, an HT’s season game number is a numeric varia-

ble that seems to be artificially preferred in the RF. With respect to highly correlated 

variables, in contrast to the RF and CCF, the CF assigns the first and second ranks to sta-

dium capacity and the HT indicator.  

The differences among the RF, CF, and CCF rankings appear to be more severe for the 

within-season forecast. First, the rank for lagged HT attendance is between two and 

three for RF, CF, and CCF. However, CCF results in a vastly different ranking compared to 

all other PS and WS rankings for an HT’s indicator and the number of games, distance, 

and month. This result is unexpected and seems unreasonable since the WS forecast is 

not substantially better than the PS forecast is for the RF or the CF model (see Table 2). 

Although the RF and CF results suggest that the additional WS information (e.g. relative 

team rankings) has no substantial impact on the predictive accuracy, CCF still ranks 

many of the additional WS variables among the ten most important predictors. Lastly, 

the differences between the RF and CF ranking are small. However, similar to the PS 

rankings, the RF appears to rank specific numeric and continuous variables relatively 

higher. However, one should be careful when interpreting these results since the sta-

dium capacities and distances between competing teams’ ballparks do not vary sub-

stantially within seasons, and there is high correlation between current- and previous-

season success and individual teams (Tainsky & Winfree, 2010). 

Lastly, similar to Lessmann et al. (2010), I assess the observed significance in the differ-

ences among the variable importance rankings that are produced by CF, RF, and CCF by 

computing the corresponding ranking correlation coefficients by means of Kendall’s tau. 

The WS CCF ranking is reported to be statistically significantly different from all other 
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PS and WS rankings at a minimum 𝑝-value of 0.311. All other combinations of differences 

in importance rankings across models for both PS and WS are similar. The precise results 

are included in the Appendix. 

5.2 Dynamic within-season forecast 

In the dynamic within-season forecast, I iteratively update the training data after each 

month. The models are trained using the updated training set to make predictions for 

the games of the next consecutive month. Then, I repeat this procedure for all months 

of the 2015 regular season. Moreover, in contrast to the static within-season approach, I 

include an additional categorical variable that indexes the corresponding season, which 

results in 𝑋𝑑𝑦𝑛 = 38 predictors for the dynamic forecasting strategy. Unlike the static 

predictions, this approach allows one to account for seasonal differences in preferences 

for game attendance. Table 4 shows the out-of-sample results for the dynamic RF, CF, 

OLS, and lagged attendance month-ahead predictions. As in the static forecasting ap-

proach, I train the RF and CF models using 𝐵 = 500 trees and 𝑀𝑤𝑠 = 12 randomly chosen 

predictors.   
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Table 4 Dynamic within-season attendance forecasts 

 

Model 
 Out-of-sample month-ahead prediction accuracy 

  Apr May Jun Jul Aug Sep 

Random forest RMSE 4608 4481 3994 4373 4424 4405 

  R2 0.79 0.78 0.80 0.76 0.76 0.80 

Conditional forest RMSE 4780 4655 4198 4589 4523 4519 

  R2 0.77 0.76 0.78 0.73 0.75 0.80 

OLS RMSE 4540 4481 4411 4432 4419 4427 

  R2 0.74 0.75 0.78 0.78 0.79 0.78 

Lagged attendance RMSE 7863 6587 5846 5983 6505 5694 

  R2 0.39 0.52 0.57 0.54 0.48 0.67 

Notes: Training data and models are iteratively updated after each month of the MLB 2015 season. 

The dynamic forecasting approach produces only slightly more accurate predictions 

than those of the static approach. For example, the difference between the RMSE of the 

static WS RF approach and the average monthly RMSE of the dynamic WS RF approach 

is only 299 tickets per game. The RF model performs only marginally better than the OLS 

model does, and both explain, on average, 78% of the variation in attendance, while the 

monthly average for the CF model is 76%. For the July and August game attendance pre-

dictions, the OLS model is even more accurate than the RF and CF models are. Further-

more, the lagged attendance prediction results indicate that variation in game-to-game 

attendance at the beginning of the 2015 season is relatively high (April), but relatively 

low during the end (September). Instead of the team-specific RMSE, I show the aggre-

gated monthly prediction errors by season game number and team for the dynamic RF 

model in Figure 2.  
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Figure 2 Dynamic random forest attendance forecast 

 
Notes: Dynamic random forest attendance forecasts for the 2015 MLB regular season by aggregated out-of-sam-

ple month-ahead prediction error for US home-team-specific game attendance. Orange lines correspond 

to LOESS smoothing curves. 

As in the static pre- and within-season forecasts, the dynamic approach shows high het-

erogeneity in the predictive accuracy for game attendance across home teams. In con-

trast to the team-specific results that are presented in Section 4.1, Figure 1 shows for 

which games the RF forecasts over- and underestimate attendance. A casual inspection 

reveals a bell-shaped LOESS curve, especially for BAL, HOU, LAA, MIN, PHI, and WAS. 

However, there are also teams that show more linear and approximately unbiased 

curves, e.g. MIL, PIT, and SFG. Furthermore, SEA appears to be an interesting case in 
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which the variance of prediction accuracy decreases as the season progresses. The low-

est prediction errors are obtained for BOS, SFG, and STL. Examples of high variation in 

predictive accuracy in terms of magnitude and direction are produced for ATL, BAL, SDP, 

and SEA. 

However, Figure 1 does not account for the large differences in team-specific attendance 

rates. To complete my analysis, I show the differences in observed and predicted game 

attendance relative to stadium capacity in Figure 2.  
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Figure 3 Dynamic random forest attendance rate forecast 

 
Notes: Dynamic random forest attendance forecast for the MLB 2015 regular season by aggregated out-of-sample 

month-ahead prediction error for US home-team-specific game attendance rates and stadium capacities. 

Orange lines correspond to LOESS smoothing curves. Dashed lines indicate a perfect attendance rate fore-

cast. 

The results in Figure 3 reveal that there is high variation not only in team-specific pre-

diction accuracy of absolute attendance but also in attendance relative to stadium ca-

pacity. The general pattern seems reasonable since the games of teams with consist-

ently high attendance rates throughout the season are well predicted, e.g. the games of 

BOS, SFG, and STL. In contrast, ticket sales for teams that face a greater variation in game 

attendance are predicted less well, e.g. ATL, SDP, and SEA. Moreover, with respect to 
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teams with low attendance rates throughout the season, RF appears to overestimate 

attendance for TBR and PHI and underestimate attendance for, e.g. CIN, KCR, and NYM. 

6 Conclusions 

The vast majority of studies that predict stadium attendance have employed linear and 

censored regression models, do not consider multiple forecasting horizons, and use in-

formation on variables that is nonexistent or not publicly accessible in advance of a 

game or season. In contrast, this study explores the predictive capabilities of RF and CF 

regressions for pre- and within-season attendance forecasting without relying on such 

information. In addition to static predictions, I propose a dynamic month-ahead fore-

casting strategy in which the training data are iteratively updated on a monthly basis. 

In an example of forecasting game ticket sales and identifying important attendance 

predictors in MLB, I find that prediction accuracy and within-season information gain 

can highly depend on team-specific characteristics. My empirical results show that OLS 

regression, on average, performs only slightly worse than RF does. However, OLS fails to 

account for the peculiarities of a small number of teams. Consequently, this study shows 

that data-driven methods are promising tools in sports demand forecasting since rele-

vant attendance factors are likely to impact fans’ preferences across teams in different 

and interdependent ways.  

References 

Archer, K. J., & Kimes, R. V. (2008). Empirical characterization of random forest variable 

importance measures. Computational Statistics and Data Analysis, 52(4), 2249–2260. 

Beckman, E. M., Cai, W., Esrock, R. M., & Lemke, R. J. (2012). Explaining Game-to-Game 

Ticket Sales for Major League Baseball Games Over Time. Journal of Sports 

Economics, 13(5), 536–553. 

Borland, J., & Lye, J. (1992). Attendance at Australian Rules football: A panel study. 

Applied Economics, 24(9), 1053–1058. 



HCED 65 –Attendance forecasting in Major League Baseball: A random forest approach 

21/41 

 

Borland, J., & Macdonald, R. (2003). Demand for Sport. Oxford Review of Economic Policy, 

19(4), 478–502. 

Breiman, L. (1994). Bagging predictors: Technical Report No. 421. Machine Learning. 

Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. 

Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and 

Regression Trees. Wadsworth International Group. 

Coates, D., & Humphreys, B. R. (2012). Game Attendance and Outcome Uncertainty in 

the National Hockey League. Journal of Sports Economics, 13(4), 364–377. 

Coates, D., Humphreys, B. R., & Zhou, L. (2014). Reference-dependent preferences, loss 

aversion, and live game attendance. Economic Inquiry, 52(3), 959–973. 

Denaux, Z. S., Denaux, D. A., & Yalcin, Y. (2011). Factors Affecting Attendance of Major 

League Baseball: Revisited. Atlantic Economic Journal, 39(2), 117–127. 

Feddersen, A., Maennig, W., & Borcherding, M. (2006). The Novelty Effect of the New 

Football Stadia: The Case of Germany. International Journal of Sport Finance, 1(3), 

174–188. 

Forrest, D., & Simmons, R. (2002). Outcome uncertainty and attendance demand in 

sport: The case of English soccer. Journal of the Royal Statistical Society Series D: The 

Statistician, 51(2), 229–241. 

Forrest, D., Simmons, R., & Buraimo, B. (2005). Outcome uncertainty and the couch 

potato audience. Scottish Journal of Political Economy. 

Freiman, M. H. (2010). Using Random Forests and Simulated Annealing to Predict 

Probabilities of Election to the Baseball Hall of Fame. Journal of Quantitative Analysis 

in Sports, 6(2). 

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The Elements of Statistical Learning (2nd 

ed.). New York: Springer. 

Hothorn, T., Hornik, K., Strobl, C., & Zeileis, A. (2015). party: A Laboratory for Recursive 

Partytioning. R Package Version 0.9-0, (1994), 37. 

Kappe, E., Stadler Blank, A., & DeSarbo, W. S. (2014). A general multiple distributed lag 

framework for estimating the dynamic effects of promotions. Management Science, 



HCED 65 –Attendance forecasting in Major League Baseball: A random forest approach 

22/41 

 

60(6), 1489–1510. 

King, B. E. (2017). Predicting National Basketball Association Game Attendance Using 

Random Forests. Journal of Computer Science and Information Technology, 5(1), 1–14. 

Kleps, K. (2014). Indians are forecasting, studying park attendance. Retrieved January 1, 

2017, from http://www.crainscleveland.com/article/20140727/SUB1/307279990/ 

indians-are-forecasting-studying-park-attendance. 

Lemke, R. J., Leonard, M., & Tlhokwane, K. (2010). Estimating Attendance at Major League 

Baseball Games for the 2007 Season. Journal of Sports Economics, 11(3), 316–348. 

Lessmann, S., Sung, M. C., & Johnson, J. E. V. (2010). Alternative methods of predicting 

competitive events: An application in horserace betting markets. International 

Journal of Forecasting, 26(3), 518–536. 

Lessmann, S., & Voß, S. (2017). Car resale price forecasting: The impact of regression 

method, private information, and heterogeneity on forecast accuracy. International 

Journal of Forecasting, 33(4), 864–877. 

Liaw, A., & Wiener, M. (2002). Classification and Regression by randomForest. R News, 

2(December), 18–22. 

McHale, I., & Morton, A. (2011). A Bradley-Terry type model for forecasting tennis match 

results. International Journal of Forecasting, 27(2), 619–630. 

Mills, B. M., & Salaga, S. (2011). Using Tree Ensembles to Analyze National Baseball Hall 

of Fame Voting Patterns: An Application to Discrimination in BBWAA Voting. Journal 

of Quantitative Analysis in Sports, 7(4). 

Nedellec, R., Cugliari, J., & Goude, Y. (2014). GEFCom2012: Electric load forecasting and 

backcasting with semi-parametric models. International Journal of Forecasting, 

30(2), 375–381. 

Nicodemus, K. K., Malley, J. D., Strobl, C., & Ziegler, A. (2010). The behaviour of random 

forest permutation-based variable importance measures under predictor 

correlation. BMC Bioinformatics, 11. 

R Core Team. (2017). R: A Language and Environment for Statistical Computing. R 

Foundation for Statistical Computing. 



HCED 65 –Attendance forecasting in Major League Baseball: A random forest approach 

23/41 

 

Şahin, M., & Erol, R. (2017). A Comparative Study of Neural Networks and ANFIS for 

Forecasting Attendance Rate of Soccer Games. Mathematical and Computational 

Applications, 22(4), 43. 

Sarkar, D. (2008). Lattice multivariate data visualization with R. Use R!, xvii, 265 p. 

Strnad, D., Nerat, A., & Kohek, Š. (2017). Neural network models for group behavior 

prediction: a case of soccer match attendance. Neural Computing and Applications, 

28(2), 287–300. 

Strobl, C., Boulesteix, A. L., Kneib, T., Augustin, T., & Zeileis, A. (2008). Conditional 

variable importance for random forests. BMC Bioinformatics, 9, 1–11. 

Strobl, C., Boulesteix, A. L., Zeileis, A., & Hothorn, T. (2007). Bias in random forest variable 

importance measures: Illustrations, sources and a solution. BMC Bioinformatics, 

8(25). 

Swartz, P., Grosskopf, M., Bingham, D., & Swartz, T. B. (2017). The Quality of Pitches in 

Major League Baseball. The American Statistician, To appear, 1–18. 

Tainsky, S., & Winfree, J. A. (2010). Short-Run Demand and Uncertainty of Outcome in 

Major League Baseball. Review of Industrial Organization, 37(3), 197–214. 

Villa, G., Molina, I., & Fried, R. (2011). Modeling attendance at Spanish professional 

football league. Journal of Applied Statistics, 38(6), 1189–1206. 

Welki, A. M., & Zlatoper, T. J. (1999). U.S. Professional Football Game-Day Attendance. 

Atlantic Economic Journal, 27(3), 285–298. 

Winfree, J. A., McCluskey, J. J., Mittelhammer, R. C., & Fort, R. (2004). Location and 

attendance in major league baseball. Applied Economics, 36(19), 2117–2124. 

Zhang, J. J., Pease, D. G., Hui, S. C., & Michaud, T. J. (1995). Variables affecting the 

spectator decision to attend NBA games. Sport Marketing Quarterly, 4(4), 29–39. 



HCED 65 –Attendance forecasting in Major League Baseball: A random forest approach 

24/41 

 

Appendix  

1 Introduction 

This Appendix provides additional information on the data that are used in this study, 

empirical specifications, and descriptive statistics, complementing the main analysis by 

providing robustness verification and detailed results for variable importance rankings 

and the dynamic within-season forecasting approach. Although this Appendix includes 

text and results from the main paper for clarity, it is not meant to stand alone. 

2 Data and context 

Major League Baseball (MLB) is divided into the American League and the National 

League, which are each divided into three divisions: East, Central, and West. Since 2013, 

each League has consisted of fifteen teams. There are 29 US teams and one Canadian 

team, which are equally distributed among the six divisions. The regular season is played 

from April to September and includes 2430 officially scheduled games in total.3 In this 

study, the corresponding 162 games per team and season include 20 inter-league games, 

66 inter-division games, and 76 intra-division games. 

2.1 Sources and empirical specifications 

The data that are used in this study are collected from various sources and only cover 

variables that are observed and publicly accessible before a season starts (pre-season) 

and before a game is played (within-season). Most of the variables are obtained from 

retrosheet.org4 (game-log data), MLB.com5 (promotions), seamheads.com6 (information 

                                                             

3 There are a few games that are scheduled at the end of March or at the beginning of October. In addition, 

very few games are usually cancelled at the end of a season, e.g. due to bad weather conditions. How-

ever, games are only cancelled if the game does not affect team rankings.  

4 http://www.retrosheet.org 

5 https://www.mlb.com 

6 http://www.seamheads.com 

http://www.retrosheet.org/
https://www.mlb.com/
http://www.seamheads.com/
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on stadiums), covers.com7 (betting odds), and Lemke et al. (2010) and Beckman et al. 

(2012) (team rivalries). The geographical regions of the historic weather data are speci-

fied with respect to a ballparks’ longitude and latitude coordinates. The precise meas-

urements refer to the day before a game is played and are obtained using Dark Sky’s 

weather API8. 

The data sample covers all 7290 games that were played over the course of the 2013, 

2014 and 2015 regular seasons. Since lagged attendance is included as a predictor in this 

analysis, I drop the corresponding 90 first home games. Furthermore, I only consider US 

teams in this study and, thus, drop the remaining 240 home games that were hosted by 

the Toronto Blue Jays. In addition to those adjustments, I follow a standard practice in 

the sport economics literature and discard all 106 rescheduled games from the data 

sample.9 Those games are usually rescheduled due to bad weather conditions or other 

extreme events and sometimes the same games are rescheduled more than once. Lastly, 

there are two observations with missing attendance numbers for unknown reasons, 

which are dropped as well. However, I calculate all relevant variables using the whole 

data sample before I discard any observations, e.g. I include all observations in calculat-

ing a team’s winning percentage and games behind. In this context, in 2015, three home-

team games of the Baltimore Orioles against the Texas Rangers were rescheduled to be 

played in Arlington. I defined those games as home-team games that were played by 

the Rangers. As a matter of course, I exclude the two observations with missing attend-

ance data before computing the lagged home-team-specific game attendance. The final 

data sample includes observations on 6852 games: 4571 records for the training set (2013 

and 2014 seasons) and 2281 records for the hold-out test set (2015 season).  

Moreover, there are 11 games in the data sample that were not finished during their of-

ficially scheduled day. Instead, they were extended and finished one or two days after 

the scheduled game day. Unfortunately, no attendance numbers are available for the 

                                                             

7 https://www.covers.com 

8 https://darksky.net. 

9 The average model accuracy only decreases marginally when rescheduled games are included. The main 

reason I discard rescheduled games is to provide an approach that does not rely on data that are not 

observable or publicly accessible in advance of a season. 

https://www.covers.com/
https://darksky.net/
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games that were extended and finished on another day or the second game day of a 

double-header. As is common practice by the MLB Association and in the sports econom-

ics literature, I treat the outcomes of extended games as if they had been realized during 

the first official game day and set the second-day game attendance equal to the first-

day game attendance for double-headers, instead of discarding those observations (e.g. 

Lemke et al., 2010). In the remaining sample, there are two games that were played in 

March and 53 games that were played in October. I specify those games as if they had 

been played in April and September, respectively. The predictor variables that are em-

ployed in this study are described in Table A.1.  
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Table A.1 Pre- and within-season predictor variable descriptions 

 

Predictor Description Levels 

Variables observed before a season starts (#26) 

HT.id Home-team identification number: ARI, ATL, BAL, BOS, CHC, … , WAS 29 

HT.NoGa HT’s number of games within seasons Numeric 

WDaya Weekday: Mon, Tue, Wed, Thu, Fri, Sat, Sun 7 

Montha Month: Apr., May, Jun., Jul., Aug, Sep. 6 

Nighta Night: No, Yes 2 

PHoliday Public holiday: No, Yes (Labor Day, 4th, or Memorial Day) 2 

CTeams Number of teams in HT’s city or county: One, two 2 

Capacityb Stadium capacity Numeric 

STypeb Stadium type: Open, retractable roof, dome 3 

SBuildb Stadium age: 1-5 years, 6-10 years, +10 years 3 

ILGamec Interleague game: No, Yes 2 

DivGamec Division game: No, Yes 2 

DRgamed Division rivalry game: No, Yes 2 

ILRGamed Interleague rivalry game: No, Yes 2 

VTeam Visiting team (VT): Other, BOS, CHC, NYY 4 

HT.WSWc HT is last season’s World Series winner: No, Yes 2 

VT.WSWc VT is last season’s World Series winner: No, Yes 2 

HT.LCSWc HT is last season’s league championship series winner: No, Yes 2 

VT.LCSWc VT is last season’s league championship series winner: No, Yes 2 

HT.DSWc HT is last season’s league division series winner: No, Yes 2 

VT.DSWc VT is last season’s league division series winner: No, Yes 2 

Distanceb Distance between HT’s and VT’s stadiums (in miles) Numeric 

FWorksc Fireworks promotion: No, Yes 2 

BHeadsc Bobblehead promotion: No, Yes 2 

OPromoc Other promotion or giveaway: No, Yes 2 

DHeadera Game is played as a double-header: No, first game, second game 3 

Variables observed as a season progresses (#12) 

Lag.GAttenda Lagged HT-specific game attendance Numeric 

HT.Wprobe HT’s winning probability (calculated from betting odds) Numeric 

HT.GB Games behind between HT and its division-leading team Numeric 

VT.GB Games behind between VT and its division-leading team Numeric 

HT.Wper HT’s winning percentage (within-season) Numeric 

VT.Wper VT’s winning percentage (within-season) Numeric 

Humidityf Relative humidity during the game before game day (day before) Numeric 

TempMaxf Maximum temperature (day before) Numeric 

TempMinf Minimum temperature (day before) Numeric 

Weatherf Clear, partly cloudy, cloudy, wind, fog, rain, snow (day before) 6 

Precipf Precipitation: No, Yes (day before) 2 

Season Season year: 2013, 2014, 2015 (only included in the dynamic forecast) 3 

Notes: The data sample covers 6852 games from the 2013, 2014, and 2015 MLB regular seasons for all 29 US teams. 

Each HT’s first game of the season and rescheduled games are not included. The HT’s winning probability 

is calculated from betting odds. Game log data are obtained from a Retrosheet.com. Additional data 

sources: b Seamheads.com, c MBL.com, d Lemke et al. (2010), Beckman et al. (2012), e covers.com f and dark-

sky.net (API).  
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While most variable descriptions are self-explanatory, in the following, I discuss further 

details with respect to their empirical specifications and corresponding implications. 

The categorical variable that accounts for home-team-specific effects also captures de-

pendencies with respect to city characteristics such as market size, income, and demo-

graphic structure variables (Tainsky & Winfree, 2010). Similarly, team-specific ticket 

prices do not vary substantially from season to season and home-team effects also ac-

count for differences in ticket prices across teams (Beckman et al., 2012). The distance 

between ball parks is defined with respect to their longitude and latitude coordinates 

as the geodetic ellipsoidal distance using Vincenty's (1975) equations. In addition to a 

dummy variable for fireworks during a game, I include two additional distinctive but not 

mutually exclusive promotion categories: Bobblehead promotions are found to have a 

significant effect on attendance in MLB (Kappe et al., 2014; Siegfried & Eisenberg, 1980); 

therefore, I include a dummy variable to account for their impact. An additional dummy 

variable captures all other promotions, e.g. kids’ days, autograph signing events, and 

free T-shirts or other giveaways. 

A home team’s implied winning probability is calculated from the historic betting odds 

(money line) that are taken from covers.com. A negative money line (𝑀𝑙 < −100) results 

in an implied winning probability (𝑊𝑃) of greater 50%, which is calculated as 𝑊𝑃 =

(𝑀𝑙/(𝑀 − 100)). A positive money line (𝑀𝑙 > 100) results in a 𝑊𝑃 that is smaller 50%, 

which is calculated as 𝑊𝑃 = (𝑀𝑙/(𝑀𝑙 + 100)). However, although betting odds are com-

monly used to approximate a home team’s winning probability, they are not equivalent 

to the winning probability and betting odds may inhibit several biases (Coates & 

Humphreys, 2012; Forrest & Simmons, 2002; Tainsky & Winfree, 2010). Moreover, I as-

sign the same home-team winning probabilities for second games of included double-

headers as were retrieved and computed for the corresponding first games. However, 

the vast majority of double-headers in the data are the result of rescheduled games, 

which I do not include in this analysis. 

All variables that account for relative within-season team performance are computed 

such that they include the outcome of the last game that was scheduled on the day be-

fore game day, e.g. games behind (GB). GB is a popular measure that accounts for the 

differences in relative team success between a leading team 𝐿 and another team 𝑖 at 
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time 𝑡. I define games behind with respect to a team’s assigned division 𝑑 and compute 

it as 𝐵𝑖,𝑡,𝑑 = ((∑ 𝑊𝑖𝑛𝐿,𝑡,𝑑
𝑡
𝑡=1 − ∑ 𝑊𝑖𝑛𝑖,𝑡,𝑑

𝑡
𝑡=1 ) + (∑ 𝐿𝑜𝑠𝑠𝑖,𝑡,𝑑

𝑡
𝑡=1 − ∑ 𝐿𝑜𝑠𝑠𝐿,𝑡,𝑑

𝑡
𝑡=1 )) /2. It follows 

that a leading team’s GB equals zero. However, the leading team is defined in terms of 

the highest (positive) difference between wins (∑ 𝑊𝑖𝑛𝐿,𝑡
𝑡
𝑡=1 ) and losses (∑ 𝐿𝑜𝑠𝑠𝐿,𝑡

𝑡
𝑡=1 ) at 

time 𝑡. Hence, GB does not take into account the number of remaining games in the 

season and several teams of the same division can show a GB of zero at the same time.   

Home-team division and interleague rivalry data are taken from Beckman et al. (2012) 

and Lemke et al. (2010). Assignment of division rivals is not constrained to be symmetric 

and, furthermore, I make two adjustments due to changes in teams’ assigned divisions 

over time. CIN changed their division in 2008 and HOU their league and division in 2013. 

Both teams have no assigned division rivals in Lemke et al. (2010) and HOU and TEX are 

still interleague rivals in 2012. Therefore, I define HOU’s former interleague rival TEX as 

their division rival and vice versa. Following the MLB attendance literature, I also include 

a categorical variable that accounts for games against BOS, CHC, or NYY (e.g. Beckman 

et al., 2012; Lemke et al., 2010). The precise division and interleague rivalry mapping is 

presented in Table A.2. 
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Table A.2 MLB home-team names and team rivalries 

 

Notes: The home-team division and interleague rivalry data are obtained from Lemke et al. (2010) and Beckman 

et al. (2012). Assignment of division rivals is not constrained to be symmetric and I made two adjustments 

due to changes in teams’ assigned divisions over time. CIN changed their division in 2008 and HOU their 

league and division in 2013. Both teams have no assigned division rivals in Lemke et al. (2010). HOU and 

TEX are still interleague rivals in 2012. Therefore, I define HOU’s former interleague rival TEX as their divi-

sion rival and vice versa. 

2.2 Descriptive statistics 

This section shows a list of the included predictor variables, their precise encodings, and the cor-

responding summary statistics in Table A.3.  

Team Home-team name Division rivals Interleague rival 

ARI Arizona Diamond Backs COL - 
ATL Atlanta Braves NYM, MIA - 
BAL Baltimore Orioles NYY, BOS WAS 
BOS Boston Red Sox NYY - 

CHC Chicago Cubs MIL, STL CHW 

CHW Chicago White Sox CLE, DET CHC 

CIN Cincinnati Reds - CLE 

CLE Cleveland Indians DET CIN 

COL Colorado Rockies ARI - 

DET Detroit Tigers CLE - 

HOU Houston Astros TEX - 

KCR Kansas City Royals - STL 

LAA Los Angeles Angels OAK LAD 

LAD Los Angeles Dodgers SFG LAA 

MIA Miami Marlins ATL TBR 

MIL Milwaukee Brewers CHC MIN 

MIN Minnesota Twins CLE MIL 

NYM New York Mets ATL, PHI NYY 

NYY New York Yankees BOS NYM 

OAK Oakland Athletics LAA SFG 

PHI Philadelphia Phillies NYM - 

PIT Pittsburgh Pirates - - 

SDP San Diego Padres - - 

SEA Seattle Mariners - - 

SFG San Francisco Giants LAD OAK 

STL St. Louis Cardinals  CHC KCR 

TBR Tampa Bay Rays - MIA 

TEX Texas Rangers HOU - 

WAS Washington Nationals - BAL 
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Table A.3 Variable specifications and descriptive statistics 

 

Variable Value Description Mean St. Dev Min Max  

Dependent variable 

GAttenda - Game attendance (as ticket sales) 30283 9609 8701 53509 
Variables observed before a season starts 

HT.NoG - 
HT’s number of games (within sea-
son) 82 46 2 163 

Weekdaya 1 Monday 0.10 0.30 0 1 
 2 Tuesday 0.15 0.36 0 1 
 3 Wednesday 0.16 0.36 0 1 
 4 Thursday 0.11 0.31 0 1 
 5 Friday 0.16 0.37 0 1 
 6 Saturday 0.16 0.37 0 1 
 7 Sunday 0.16 0.37 0 1 

Montha 1 March / April 0.14 0.35 0 1 
 2 May 0.18 0.38 0 1 
 3 June 0.17 0.38 0 1 
 4 July 0.16 0.37 0 1 
 5 August 0.18 0.38 0 1 
 6 September / October 0.17 0.38 0 1 

Nighta 1 During the night 0.68 0.47 0 1 

Pholiday 1 
Labor Day / 4th of July / Memorial 
Day 0.02 0.13 0 1 

CTeams 1 1 Team in HT’s City/County 0.86 0.34 0 1 
 2 2+ Teams in HT’s City/County 0.14 0.34 0 1 

Capacityb - Stadium capacity 42980 5037 31042 55500 

STypeb 1 Open stadium 0.79 0.41 0 1 
 2 Dome 0.04 0.18 0 1 
 3 Retractable roof 0.18 0.38 0 1 

SBuildb 1 Stadium is 0-5 years old 0.15 0.36 0 1 
 2 Stadium is 6-10 years old 0.77 0.42 0 1 
 3 Stadium is 10+ years old 0.08 0.27 0 1 

ILGamec 1 Interleague game 0.12 0.33 0 1 

DivGamec 1 Division game 0.47 0.50 0 1 

DRgamed 1 Division rival game 0.11 0.31 0 1 

ILRGamed 1 Interleague rival game 0.02 0.13 0 1 

VTeam 0 Other VT 0.91 0.29 0 1 
 1 VT is BOS 0.03 0.17 0 1 
 2 VT is CHC 0.03 0.18 0 1 
 3 VT is NYY 0.03 0.17 0 1 

HT.WSWc 1 HT is last season’s WS winner 0.03 0.18 0 1 

VT.WSWc 1 VT is last season’s WS winner 0.03 0.18 0 1 

HT.LCSWc 1 HT is last season’s LCS winner 0.07 0.25 0 1 

VT.LCSWc 1 VT is last season’s LCS winner 0.07 0.25 0 1 
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Variable Value Description Mean St. Dev Min Max  

HT.DSWc 1 HT is last season’s DS winner 0.14 0.34 0 1 

VT.DSWc 1 VT is last season’s DS winner 0.13 0.34 0 1 

Distanceb - Between stadiums (in miles) 995 698 7 2732 

FWorksc 1 Fireworks promotion 0.08 0.27 0 1 

BHeadsc 1 Bobblehead promotion 0.05 0.22 0 1 

OPromoc 1 Other promotion 0.66 0.47 0 1 

DHeadera 0 Regular game 0.01 0.11 0 1 
 1 First game of a double-header 0.01 0.11 0 1 
 2 Second game of a double-header 0.00 0.01 0 1 

Variables observed as a season progresses 

Lag.GAttenda - Lagged HT’s game attendance 30405 9672 8701 53518 

HT.Wprobe - HT‘s winning probability 0.55 0.08 0.252 0.780 

HT.GB - HT games behind  6.91 7.16 0 44 

VT.GB - VT games behind  6.85 7.14 0 43 

HT.Wper - HT’s winning percentage 0.50 0.09 0 1 

VT.Wper - VT’s winning percentage 0.50 0.09 0 1 

Humidityf - Humidity 0.67 0.14 0.07 0.95 

TempMaxf - Maximal measured temperature 24.782 6.523 -1.867 44.439 

TempMinf - Minimal measured temperature 16.501 6.130 -11.000 32.711 

Weatherf 1 Clear day 0.46 0.50 0 1 

 2 Cloudy day 0.31 0.46 0 1 

 3 Snowy day 0.00 0.04 0 1 

 4 Rainy day 0.16 0.37 0 1 

 5 Windy day 0.06 0.23 0 1 

 6 Foggy day 0.01 0.09 0 1 

Precipf 1 Precipitation  0.23 0.42 0 1 

Seasonf 1 2013 0.33 0.47 0 1 

 2 2014 0.33 0.47 0 1 

 3 2015 0.33 0.47 0 1 

Notes: The data sample covers 6852 games from the 2013, 2014, and 2015 MLB regular seasons for all 29 US teams. 

First home team (HT)-specific season games and rescheduled games are not included (see Section 2.1 for 

a detailed description of the data cleaning process). Each HT’s implied winning probability is calculated 

from betting odds. Data sources: aRetrosheet.org, bSeahmheads.com, cMBL.com, dLemke et al. (2010), 

Beckman et al. (2012), ecovers.com, and fdarksky.net (API). 
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2.3 Variable importance ranking and predictor correlations 

To compare and assess the observed significance of the differences in the variable im-

portance rankings that are produced by CF, RF, and CCF for the static pre- and within-

season forecasts, I follow Lessmann et al. (2010) and compute the corresponding ranking 

correlation coefficients by means of Kendall’s 𝜏. Table A.4 shows all correlation coeffi-

cients and the associated 𝑝-values for the inter- and intra-season comparisons of the RF, 

CF, and CCF rankings. 

Table A.4 Correlation between variable importance rankings by Kendall’s tau.  

 

(a) Intra-season model correlation    (b) Inter-season model correlation 

  Within-season         

Ranking RF CF CCF  Ranking Within RF Within CF Within CCF 

RF 1 0.582*** 0.083  Pre RF 0.797*** 0.465*** 0.015 

  (0.000) (0.567)   (0.000) (0.001) (0.930) 

         

CF 0.471*** 1 0.145  Pre CF 0.526*** 0.871*** 0.102 

 (0.001)  (0.311)   (0.000) (0.000) (0.481) 

         

CCF 0.551*** 0.440*** 1  Pre CCF 0.422*** 0.397*** -0.114 

  (0.000) (0.002)      (0.003) (0.005) (0.428) 

  Pre-season             

Notes: Kendall’s rank correlation coefficient (Kendall’s 𝜏) for variable importance ranking is derived from OOB 

estimates of random forest and conditional random forest regressions for US home-team-specific MLB 

game attendance for 4571 games of the regular 2013 and 2014 seasons as a training set. Maximal complex 

forests are trained using 𝐵 = 500 trees for 𝑀𝑝𝑠 = 7 [𝑀𝑤𝑠 = 12] randomly chosen predictors at each node 

of the 𝑃𝑝𝑠 =  26 [𝑃𝑤𝑠 = 37] included predictors for the pre-season [within-season] model (Hothorn et al., 

2015; Liaw & Wiener, 2002). The dynamic month-ahead approach includes an additional categorical 

variable that accounts for seasonal differences in game attendance. The results show the rankings of pre-

dictors’ relevance in the forest building process for the permutation importance measures of the  biased 

RF (scaled mean decrease in MSE), the CF (Strobl et al., 2007), and the conditional CF (CCF) approaches 

(Strobl et al., 2008). *** 𝑝 < 0.01. 

The WS CCF ranking is reported to be statistically significantly different from all other 

PS and WS rankings at a minimum 𝑝-value of 0.311. All other combinations of differences 

in importance rankings across models for both PS and WS are not significantly different 

from each other. Moreover, I note that for the inter-season rank comparison, only the 

rankings of the PS variables are compared to the relative ranks of the 27 variables in the 

WS rankings. 
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The main text only shows the ten most important pre- and within-season predictors for 

the static forecasting approach. The complete variable importance rankings for the 

static and dynamic RF and CF permutation importance measures are reported in Table 

A.5. 
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Table A.5 Random forest and conditional random forest variable importance rankings.  

 

    
Pre 

  
Within 

  Month-ahead 

   
  Apr   May   Jun   Jul   Aug   Sep   

# Variable RF CF   RF CF   RF CF RF CF RF CF RF CF RF CF RF CF 

1 WDay 1 3  1 3  1 3 1 3 1 3 1 3 1 3 1 3 

2 HT.id 2 1  2 1  2 1 2 1 2 2 2 2 2 2 2 2 

3 HT.NoG 3 9  4 14  4 14 4 13 4 13 4 14 4 13 4 13 

4 Distance 4 14  10 23  11 23 10 24 11 24 8 24 12 23 8 23 

5 Month 5 7  13 9  12 10 8 9 8 11 11 9 7 10 12 10 

6 VTeam 6 13  16 16  15 19 16 19 14 18 14 15 15 18 13 18 

7 FWorks 7 12  7 7  5 8 6 7 5 8 6 7 9 7 10 7 

8 Capacity 8 2  8 4  8 4 9 4 9 4 12 4 10 4 9 4 

9 Night 9 15  14 13  16 13 12 14 13 14 13 13 13 12 15 11 

10 VT.DSW 10 18  22 22  25 24 25 23 26 23 25 25 25 25 26 29 

11 OPromo 11 10  18 12  19 11 18 12 19 12 19 12 19 14 19 12 

12 BHeads 12 16  11 15  13 15 13 15 15 15 15 16 14 15 14 17 

13 SBuild 13 6  23 8  23 7 23 8 25 7 23 8 23 8 23 8 

14 DivGame 14 19  32 30  30 31 31 31 36 32 30 30 32 30 29 30 

15 HT.DSW 15 5  19 5  20 5 22 5 21 6 20 6 21 6 21 5 

16 SType 16 4  24 6  24 6 24 6 23 5 24 5 24 5 24 6 

17 ILGame 17 20  27 28  32 27 35 29 34 29 31 28 29 29 33 28 

18 VT.LCSW 18 24  31 35  28 36 32 35 28 35 29 36 34 35 31 33 

19 CTeams 19 11  25 21  27 22 28 22 27 20 26 21 27 21 27 21 

20 DRGame 20 22  29 32  34 32 34 34 32 37 34 33 36 34 34 35 

21 ILRGame 21 21  26 29  26 30 26 32 24 30 27 32 26 32 25 31 

22 Pholiday 22 23  34 34  37 34 30 33 33 33 35 35 31 37 35 36 

23 HT.LCSW 23 8  28 11  29 12 29 11 29 9 28 11 28 11 28 14 

24 VT.WSW 24 25  33 36  31 37 33 37 31 36 32 34 33 31 32 37 

25 HT.WSW 25 17  35 25  33 25 36 25 35 26 37 23 37 24 37 24 

26 DHeader 26 26  37 37  38 38 38 38 38 38 38 38 38 38 38 38 

27 lag.GAttend - -  3 2  3 2 3 2 3 1 3 1 3 1 3 1 

28 TempMax - -  5 20  10 20 5 20 7 21 10 20 6 20 5 20 

29 HT.GB - -  6 17  6 16 14 16 12 17 7 18 11 16 11 15 

30 TempMin - -  9 18  7 17 7 17 6 19 9 19 8 19 7 19 

31 HT.Wper - -  12 10  9 9 11 10 10 10 5 10 5 9 6 9 

32 VT.Wper - -  15 19  14 21 15 21 16 22 18 22 16 22 16 22 

33 VT.GB - -  17 26  18 29 17 27 18 27 17 29 17 28 17 27 

34 HT.Wprob - -  20 24  17 28 20 28 22 25 21 26 20 26 22 26 

35 Humidity - -  21 27  22 26 21 26 20 28 22 27 22 27 20 25 

36 Weather - -  30 33  35 35 27 30 30 31 33 31 30 33 30 34 

37 Precip - -  36 31  36 33 37 36 37 34 36 37 35 36 36 32 

38 Season - -   - -   21 18 19 18 17 16 16 17 18 17 18 16 

Notes: Variable importance rankings are derived from OOB estimates of RF and CF regressions for US home-team-

specific MLB game attendance for 4571 games of the regular 2013 and 2014 seasons as a training set. 

Maximal complex forests are trained using 𝐵 = 500 trees for 𝑀𝑝𝑠 = 7 [𝑀𝑤𝑠 = 12] randomly chosen 

predictors at each node of the 𝑃𝑝𝑠 = 26 [𝑃𝑤𝑠 = 37] included predictors for the pre-season [within-season] 

model (Hothorn et al., 2015; Liaw & Wiener, 2002). The dynamic month-ahead approach includes an 

additional categorical variable that accounts for seasonal differences in game attendance. The results 

show the rankings of predictors’ relevance in the forest building process for the permutation importance 

measures of the RF (scaled mean decrease in MSE) and the CF approaches (Strobl et al., 2007).  

Lastly, Table A.6 shows the linear correlations between all numeric predictor variables that are 

employed in this study. 
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Table A.6 Correlations between numeric predictor variables and game attendance. 
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GAttend 1.000             

Lag.GAttend 0.773 1.000            

Distance -0.050 -0.042 1.000           

HT.Wprob 0.181 0.188 0.005 1.000          

HT.GB -0.235 -0.251 -0.016 -0.400 1.000         

VT.GB -0.008 -0.006 -0.021 0.405 0.135 1.000        

HT.Wper 0.264 0.268 -0.011 0.390 -0.580 0.069 1.000       

VT.Wper 0.032 0.007 -0.013 -0.372 0.084 -0.566 -0.285 1.000      

HT.NoG 0.062 0.027 -0.021 0.004 0.449 0.444 -0.017 0.009 1.000     

Humidity -0.029 -0.040 -0.011 0.030 0.031 0.066 0.034 -0.005 0.141 1.000    

TempMax -0.021 -0.029 0.033 -0.033 0.179 0.159 -0.036 0.003 0.396 -0.216 1.000   

TempMin -0.075 -0.090 0.071 -0.039 0.215 0.174 -0.076 0.007 0.442 0.081 0.853 1.000  

Precip -0.088 -0.103 -0.078 -0.013 -0.013 -0.036 -0.003 0.020 -0.071 0.405 -0.093 0.039 1.000 

Notes: Correlations between the 13 numeric variables that are employed in this study (see Table A1). Data are 

based on 6852 individual MLB games from the 2013, 2014, and 2015 regular seasons. 

3 Model performance evaluation  

A popular approach in machine learning model tuning is a systematic grid-search over 

specific hyper-parameters (Hamza & Larocque, 2005; Lessmann et al., 2010). However, I 

quickly observed that the predictive performances of both the RF and CF approaches for 

the pre- and within-season models are not very sensitive to the number of trees per for-

est. The model performance evaluation in terms of the number of randomly considered 

predictors at each split is presented in the main paper in Section 3.1.  

Figure A.1 shows the predictive accuracy in terms of RMSE on the OOB and test samples 

for the RF and CF regressions, together with the OLS and naive home-team-specific 

lagged attendance forecasts (Lag) as a benchmark. The number of randomly chosen pre-

dictors in the tree building process, which is denoted as 𝑀, is set to the suggested default 

value (one third) and RMSE is reported as the number of trees per forest 𝐵 =

{25, 50, … , 300}. The corresponding results show that RF yields the most accurate results 

and RF and CF outperform the OLS model for both the pre-season (a) and the within–

season forecasts (b). The OLS model yields RMSEs of 5858 (a) and 4908 (b), while the 

naive HT-specific lagged attendance forecast (Lag) results in an RMSE of 6377 (b).  
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Figure A.1 Model performance evaluation: RMSE by number of ensembled trees 

 

Notes: Out-of-sample MLB attendance predictions by the CART (RF), conditional inference random forests (CF), 

OLS, and lagged attendance (Lag) models for 2281 games of the regular season of 2015 are used as a test 

set and 6852 games of the regular 2013 and 2014 seasons as a training set. OOB refers to a forest’s 

predictive performance on the out-of-bag (OOB) data. Maximal complex RF and CF are trained using Mps =

7 [𝑀𝑤𝑠 = 12] randomly chosen predictors at each node. The pre-season [within-season] model includes 

𝑃𝑝𝑠 = 26 [𝑃𝑤𝑠 = 37] predictors and I grow 𝐵 = {25, 50, … , 300} trees per forest. 

The RMSEs for both the RF and CF approaches on the OOB and test data stabilize after 

averaging the prediction results of 50 trees. For (a), the RF (CF) yields minimum RMSEs 

of 3906 (4693) on the OOB data and 5231 (5503) on the test data. For (b), the RF (CF) yields 

minimum RMSEs of 4201 (4444) on the OOB data and 4638 (4670) on the test data. 

While the differences in prediction accuracy across models are stronger for the pre-sea-

son forecast, they do not vary substantially when trained with the additional infor-

mation that is provided by the within-season variables. Moreover, the RF appears to be 

more affected by issues that are associated with overfitting to the training data, thereby 

resulting in a low RMSE on the OOB data in (a), which is adjusted based on the additional 

within-season information in (b). In contrast, the differences in prediction accuracy be-

tween the OOB and test data are smaller for the CF approach.  

4 Pre- and within-season random forest predictions 

Section 5 shows the team-specific RF and CF results that are omitted in the main text. 

Table A.7 shows the resulting prediction accuracy for the dynamic within-season RF ap-

proach and Table A.8 shows the static and dynamic CF forecasting results. 
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Table A.7 Random forest predictions and attendance summary statistics by month and team 

 

  Season 2015   Out-of-sample monthly step-ahead RMSE 

 Attendance summary   Random forest  

HT N Mean SD  Apr May Jun Jul Aug Sep 

All 2281 30197 9515   4608 4481 3994 4373 4424 4405 

ARI 80 25389 7504  3989 4668 3255 5353 3454 4724 

ATL 79 24748 8298  4498 3436 4567 6544 7265 6987 

BAL 72 30001 8746  5140 6597 4041 6077 5991 6726 

BOS 79 35572 1709  1987 2047 1736 1503 1114 1374 

CHC 76 36467 4210  1523 2583 4459 4428 3219 2776 

CHW 78 21687 7391  2233 4910 3423 3847 5253 4182 

CIN 77 29568 7778  5264 4513 3562 4531 5893 4700 

CLE 77 17573 5783  3570 3144 2848 3583 3880 5090 

COL 76 31341 6719  4559 4461 3017 6042 5076 4063 

DET 79 33576 4648  2660 3221 3202 2512 2103 3592 

HOU 80 26373 6622  1843 2253 5263 6259 4724 4233 

KCR 79 33422 5061  5614 5690 4878 4694 2880 2765 

LAA 79 37092 5085  4954 4834 4302 3448 2020 3175 

LAD 80 46391 4242  4564 3834 3838 3930 3106 3755 

MIA 80 21441 4439  3269 3704 4649 4807 3347 3330 

MIL 80 31207 5795  3693 4518 3932 3275 4238 5207 

MIN 79 27173 6134  5391 4280 4581 3030 3602 4433 

NYM 79 31447 7151  8807 4828 2549 4608 6022 4651 

NYY 79 39814 4983  5265 3884 3640 4102 4009 4419 

OAK 80 21651 6461  3985 3586 4015 4636 5869 5694 

PHI 77 23189 4564  5911 6177 5303 4107 3128 6591 

PIT 78 30744 7163  4216 4643 4031 2705 3350 3566 

SDP 79 30287 7795  7213 6464 4590 5047 5465 5221 

SEA 80 26846 8984  7167 8214 6446 6564 3958 3750 

SFG 80 41673 387  602 331 343 627 237 230 

STL 79 43380 1957  2450 1912 1979 1366 1190 1855 

TBR 83 15133 4940  3426 5335 2779 3984 4043 4203 

TEX 80 30537 6412  5281 4147 4593 5088 7459 5235 

WAS 77 32453 5351  2232 4120 4375 4571 3144 3884 

R2 - - -   0.790 0.778 0.798  0.755 0.761  0.804 

Monthly season 2015 attendance summary           

N 6852 6852 0  287 408 386 362 402 436 

Mean - - -  28154 29639 30748 33006 31158 28355 

SD - - -   10055 9519 8879 8842 9057 9945 

Notes: The out-of-sample month-ahead prediction accuracies for US home-team-specific MLB game attendance 

for 2281 games of the regular season 2015 are used as a test set. The 4571 games of the regular 2013 and 

2014 seasons are used as a training set that is updated after each month. Maximal complex random and 

conditional forests are trained using 𝐵 = 500 trees for 𝑀𝑤𝑠 =12 randomly chosen predictors at each node 

of the 𝑃𝑤𝑠 = 38 included predictors for the dynamic within-season forecast (Hothorn et al., 2015; Liaw & 

Wiener, 2002). 
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Table A.8 Static and dynamic conditional random forest predictions by month and team. 

 

Conditional random forest out-of-sample RMSEs 

 Static forecast     Dynamic monthly step-ahead forecast 

HT Pre Within Diff  Apr May Jun Jul Aug Sep 

All 5523 4705 818   4780 4655 4198 4589 4523 4519 

ARI 4793 4523 270  4183 4790 3258 5622 3747 4710 
ATL 7516 6436 1080  5968 3892 4852 6932 7638 7005 
BAL 6589 6213 376  4858 6897 4393 5987 6292 6938 
BOS 1886 1411 475  1566 1545 1548 1548 1055 1409 
CHC 5116 3619 1497  2264 2409 4444 4162 3347 2853 
CHW 5176 4603 573  3180 4997 3761 3834 5682 4467 
CIN 5400 4988 412  5878 4692 3564 4588 5597 4869 
CLE 4922 4016 906  4138 3422 3032 3956 4518 5650 
COL 5874 4809 1065  4581 4857 2928 6195 5056 4246 
DET 3493 3208 285  3934 3645 3262 2468 2119 3545 
HOU 7059 4770 2289  1603 2176 5324 6475 4774 4616 
KCR 4976 5480 -504  5746 6655 5407 5544 3808 3414 
LAA 4438 4079 359  4792 5277 4564 3647 2292 3389 
LAD 4238 3886 352  4567 3946 4061 4032 3076 3747 
MIA 4051 3887 164  3037 4018 4625 5177 3395 3130 
MIL 4343 4600 -257  4003 4757 4058 3573 4305 5577 
MIN 5699 4434 1265  5788 4507 4569 3362 3873 4367 
NYM 7536 6387 1149  8156 4981 2709 4826 5680 5185 
NYY 4720 4251 469  5232 4161 3709 4207 3979 4100 
OAK 5135 5096 39  4862 3113 4194 5179 6257 6163 
PHI 10259 6400 3859  6185 6283 5494 4683 3235 6112 
PIT 4684 4196 488  5217 4878 4498 3624 3591 3914 
SDP 6533 5890 643  6659 6660 4528 5455 5600 5501 
SEA 7317 6580 737  6595 8240 7054 6535 3942 3912 
SFG 772 380 392  375 307 378 565 292 355 
STL 2205 1697 508  2132 1641 2016 1413 1259 1469 
TBR 4625 4095 530  3227 5046 3303 4070 4254 3800 
TEX 7356 5868 1488  6357 4691 5205 4908 6616 5394 
WAS 4260 4047 213   2849 4016 4790 4907 3616 3843 

R2 0.663 0.755 -0.092   0.773   0.76 0.776 0.73 0.75 0.793 

Monthly season 2015 attendance summary           

N - - -  287 408 386 362 402 436 

Mean - - -  28154 29639 30748 33006 31158 28355 

SD - - -   10055 9519 8879 8842 9057 9945 

Notes: The out-of-sample month-ahead prediction accuracies for US home-team-specific MLB game attendance 

for 2281 games of the regular season 2015 are used as a test set. The 4571 games of the regular 2013 and 

2014 seasons are used as a training set that is updated after each month. Maximal complex forests are 

trained using 𝐵 = 500 trees for 𝑀𝑝𝑠 = 7 [𝑀𝑤𝑠 = 12] randomly chosen predictors at each node of the 𝑃𝑝𝑠 =

 26 [𝑃𝑤𝑠 = 37] included predictors for the pre-season [within-season] model (Hothorn et al., 2015). The 

dynamic month-ahead approach includes an additional categorical variable that accounts for seasonal 

differences in game attendance. 
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