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Abstract

Land cover change (LCC) influences surface temperature locally via biogeophysical

effects by changing the water, energy, and momentum budget. In addition to these

locally induced changes (local effects), LCC at a given location can cause changes

in temperature elsewhere via advection and changes in circulation (nonlocal effects).

This dissertation presents an approach to separate local and nonlocal effects in climate

models. In three studies, the local and nonlocal effects on surface temperature are

analyzed separately.

First, local and nonlocal effects are separated in the land-atmosphere model

ECHAM6/JSBACH3 by simulating LCC in some model grid cells while leaving vege-

tation unchanged in others. The results show that the local effects do not depend on

the number of LCC grid cells used in the separation approach. The local effects on

surface temperature in the model agree reasonably well with observations. An energy

balance decomposition reveals that the mechanisms differ strongly between the local

and nonlocal effects.

In the second part, a new look-up approach is developed to investigate the local effects

on historical LCC and LCC in future scenarios. Historically, biogeophysical changes

in surface temperature are dominated by land use while in the future, the combina-

tion of warming background climate and subsequent natural shifts in the geographical

distribution of forests may become of equal importance.

The third part focuses on the nonlocal effects. Simulations with the fully coupled cli-

mate model MPI-ESM reveal that the nonlocal cooling of large-scale LCC substantially

contributes to the discrepancy between modeled and observed biogeophysical changes

in surface temperature. When globally averaged, the deforestation-induced cooling

from nonlocal effects outweighs the warming from local effects, and both local and

nonlocal effects largely scale linearly with the spatial extent of LCC. The globally av-

eraged nonlocal effects induce a cooling for deforestation in all latitudinal bands. In an

inter-model comparison of plausible deforestation scenarios, the nonlocal effects induce

a cooling also for most other investigated models.

This thesis bridges the gap between idealized studies on large-scale LCC and studies on

more plausible LCC extents. Furthermore, the separate analysis of local and nonlocal

effects reconciles previous model-based studies that found a negative radiative forcing

from deforestation and a global mean cooling, and observation-based studies that found

a deforestation-induced local warming in most regions.
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Zusammenfassung

Eine Änderung in der Bedeckung der Landoberfläche (”land cover change”, LCC) bee-

influsst lokal die Wasser-, Energie- und Impulsbilanz durch biogeophysikalische Effekte.

Zusätzlich zu diesen lokal verursachten veränderungen (”lokale Effekte”) können Tem-

peraturveränderungen auch durch LCC an anderen Orten ausgelöst werden (”nicht-

lokale Effekte”). In dieser Doktorarbeit wird eine Methode zum Auftrennen von lokalen

und nichtlokalen Effekten in Klimamodellen vorgestellt. In drei Studien werden lokale

und nichtlokale Effekte separat voneinander analysiert.

Zunächst werden lokale und nichtlokale Effekte im Land-Atmosphären-Modell

ECHAM6/JSBACH3 aufgeteilt, indem in manchen Modell-Gitterzellen LCC simuliert

wird, während die Vegetation in anderen Gitterzellen unverändert bleibt. Die Ergeb-

nisse zeigen, dass die lokalen Effekte weitestgehend unabhängig sind von der Anzahl der

Gitterzellen, die in der Separationsmethode verwendet werden. Der Einfluss der lokalen

Effekte auf die Oberflächentemperatur stimmt im Modell im Großen und Ganzen mit

Beobachtungen überein. Eine Zerlegung der Energiebilanz unterstreicht, dass sich die

Mechanismen von lokalen und nichtlokalen Effekten stark unterscheiden.

Im zweiten Teil wird eine Methode entwickelt, um die lokalen Effekte für historische

und zukünftige LCC zu untersuchen. Historisch werden biogeophysikalische Änderun-

gen in der Oberflächentemperatur von Landnutzung dominiert, aber in der Zukunft

kann die Kombination aus zwei Faktoren gleich wichtig werden: erstens das wärmere

Hintergrundklima, und zweitens die dadurch bedingten räumlichen Umverteilungen in

der Vegetationsbedeckung.

Der dritte Teil konzentriert sich auf die nichtlokalen Effekte. Simulationen im

voll gekoppelten Klimamodell MPI-ESM zeigen, dass die nichtlokale Abkühlung im

Fall von großflächigem LCC substantiell zur Diskrepanz zwischen modellierten und

beobachteten Änderungen der Oberflächentemperatur beitragen. Im globalen Mit-

tel überwiegt nach Entwaldung die Abkühlung durch nichtlokale Effekte gegenüber

der Erwärmung durch lokale Effekte, und sowohl lokale als auch nichtlokale Effekte

skalieren linear mit der räumlichen Ausdehnung von LCC. Die global gemittelten nicht-

lokalen Effekte sorgen bei Entwaldung in allen Breitengrad-Bändern für Abkühlung.

Im Vergleich von plausiblen Entwaldungs-Szenarien über verschiedene Modelle hin-

weg bewirken die nichtlokalen Effekte eine Abkühlung auch in den meisten anderen

untersuchten Modellen.

Diese Dissertation schließt die Lücke zwischen idealisierten Studien über großflächige

LCC und Studien über eine realistischere Ausdehnung von LCC. Außerdem bringt

die getrennte Untersuchung von lokalen und nichtlokalen Effekten frühere Studien

in Einklang: modellbasierte Studien, in denen Entwaldung zu einem negativen

Strahlungsantrieb und einer global gemittelten Abkühlung führte, und beobachtungs-

basierte Studien, die in den meisten Regionen eine lokale Erwärmung feststellten.
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Chapter 1

Introduction

1.1 Influence of land cover change on climate

Humans have substantially altered the land cover on the Earth’s surface in particular

via deforestation. More than 14Mkm2 of forests (approximately 12% of the global

ice-free land surface) have been cleared in the last millennium (Pongratz et al., 2008)

mainly for agricultural use, and forest cover has continued to decrease in the 21st

century (Hansen et al., 2013). Forests provide a large range of ecosystem services

which are put at risk when forests are lost (e.g., Foley et al., 2005). One key ecosystem

service that forests provide is their potential to mitigate climate change (Bonan, 2008).

Changes in forest cover affect climate not only by changing the land carbon storage

(e.g., Pongratz et al., 2010; Le Quéré et al., 2016) but can also affect the exchange

of water, heat and momentum between the land surface and the atmosphere via bio-

geophysical effects (e.g., Mahmood et al., 2014). Surface albedo increases when dark

forests are replaced by brighter grasslands, and thus more incoming solar radiation can

be reflected back into space (e.g., Betts, 2000; Boisier et al., 2013). In addition, defor-

estation decreases the evapotranspiration efficiency –the capability of the land surface

to release water to the atmosphere– for instance because forests have deeper roots and

a higher leaf area index and thus can transpire more compared to grasslands (e.g.,

Boisier et al., 2014). Finally deforestation decreases the surface roughness and thus

the ability of the land surface to exchange energy and momentum with the atmosphere

(e.g., Rotenberg and Yakir, 2010). Changes in surface temperature from biogeophysical

effects were found to be small in comparison to the carbon-related effects (Pongratz

et al., 2010) but these changes were substantial in regions where deforestation happened

(de Noblet-Ducoudré et al., 2012).

Changes in land cover comprise not only deforestation but also include changes between

other land cover types such as conversions from grasslands to croplands. This thesis

focuses on the conversion from forests to grasslands or vice versa, and throughout this
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thesis the term ’land cover change’ (LCC) refers to the conversion between these two

land cover types. The physical surface properties of natural grasslands, croplands,

shrubs and pastures are similar, and thus considering only the conversion between

forests and grasslands is sufficient to cover the potential range of responses to land

cover change (Gibbard et al., 2005).

A major achievement of this thesis is the development of a new method that enables the

separation of effects that are induced by LCC locally and effects that extend beyond

the deforested locations in climate models. The following sections provide a context

for the local and nonlocal effects and outline the contribution of this work to a better

understanding of both local and nonlocal effects.

1.2 Biogeophysical effects of LCC in climate models

1.2.1 Local and nonlocal impacts of LCC on the surface en-

ergy balance

Deforestation impacts surface temperature by changing the components of the surface

energy balance (Figure 1.1). At the surface, the available energy (given as surface

shortwave net radiation (SWnet) plus incoming surface longwave radiation (LW↓)) is on

an inter-annual timescale partitioned into outgoing surface longwave radiation (LW↑),

latent heat (LE), and sensible heat (H) (e.g., Luyssaert et al., 2014). Locally, a change

in any surface property due to LCC may influence any component of the surface energy

balance. For instance, an increase in surface albedo may decrease SWnet, and this may

locally be balanced by a decrease in the turbulent heat fluxes LE and H, and/or by

a decrease in LW↑ which is via the Stefan–Boltzmann law associated with a decrease

in surface temperature (e.g., Boisier et al., 2014). These locally induced changes in

the surface energy balance then influences the atmospheric conditions. For instance, a

change in LE or H influences the humidity and temperature of the atmosphere above

the deforested location.

Deforestation-induced changes in atmospheric moisture or temperature are then trans-

ferred to other regions via advection (e.g., West et al., 2011). There, the surface energy

balance is in turn influenced by the changes in the atmospheric conditions. For instance,

changes in precipitation may affect LE and H, or changes in atmospheric temperature

and humidity may affect LW↓. Via such mechanisms, the surface energy balance and

surface temperature may also be influenced at locations that experience no LCC.

Throughout this thesis, locally induced changes in surface temperature are referred to

as ’local effects’ whereas changes in surface temperature that also happen at locations

where land cover does not change are referred to as ’nonlocal effects’. The sum of local

and nonlocal effects is referred to as ’total effects’. The total effects were the subject of
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Figure 1.1: Surface temperature is affected by LCC via changes in components of the surface

energy balance (”SEB”). Some changes happen only at the location of LCC (”Local”, red)

and some changes happen also at locations that are not deforested (”Nonlocal”, blue).

most previous modeling studies on the biogeophysical effects of LCC because local and

nonlocal effects could not be distinguished. Studies on the LCC effects can broadly

be divided into two categories: idealized studies that simulate LCC in large areas and

studies that simulate plausible areal extents and spatial distributions of LCC. One aim

of this thesis is to establish a link between these two types of studies. The following

subsections outline the context and the research objectives of the three main chapters.

1.2.2 Separating local and nonlocal effects in simulations of

large-scale LCC

In order to investigate the biogeophysical effects of LCC, previous studies simulated

global-scale deforestation (e.g., Bala et al., 2007; Brovkin et al., 2009; Davin and

de Noblet-Ducoudré, 2010) or deforestation of large latitudinal bands (e.g., Claussen

et al., 2001; Swann et al., 2012; Devaraju et al., 2015). One reference simulation was

performed in which forests are prescribed over a specific region, and the climate in this

reference simulation was compared to the climate in a simulation where vegetation in

the respective region was replaced by grasslands. These studies revealed that boreal

deforestation leads to a cooling because of a large increase in surface albedo (e.g., Bo-

nan et al., 1992; Devaraju et al., 2015) while tropical deforestation leads to a regional

warming because the grasslands can transpire less compared to forests (e.g., Lejeune

et al., 2015) and cloud cover decreases (e.g., Claussen et al., 2001).

These studies share one notable limitation: The local and nonlocal effects mingle in

these simulations, and thus it is impossible to distinguish between the two effects in

regions of LCC. For two major reasons a separation of local and nonlocal effects in

simulations of large-scale LCC may be desirable: First, observation-based datasets by

construction only contain local effects (e.g., Li et al., 2015; Alkama and Cescatti, 2016;

Bright et al., 2017), while model simulations can contain substantial nonlocal effects

(Swann et al., 2012; Devaraju et al., 2015). Thus, an isolation of the local effects in the

models is essential for a consistent comparison of modeled and observed LCC effects on
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the global scale. Second, the physical mechanisms underlying the local and nonlocal

effects differ strongly (Figure 1.1) and thus a separate assessment of the two effects may

enable a deeper process understanding for both local and nonlocal effects. Without

a deeper process understanding the biogeophysical effects can not be considered as

a tool for adaptation at the locations of LCC or for climate change mitigation at

regions far away from LCC. In chapter 2, a new method for the separation of local

and nonlocal effects is developed and applied to simulations of global-scale LCC in

the land-atmosphere model ECHAM6/JSBACH3 (Giorgetta et al., 2013; Reick et al.,

2013) to close these existing research gaps:

• To enable an attribution of changes in surface temperature to local LCC in any

climate model, and to assess whether the local effects in one location are influ-

enced by LCC in other locations.

• To enable a consistent comparison of the local effects in climate models to global-

scale observations.

• To gain process understanding about the mechanisms that trigger local and non-

local effects.

1.2.3 Investigating the local effects in plausible LCC scenarios

While the idealized simulations of large-scale LCC provide process understanding, they

do not represent LCC that may happen in reality. Both for historical LCC and plausible

scenarios of future development, LCC does not happen in large latitudinal bands or

globally but instead in smaller spatial extents. Furthermore, in plausible scenarios

LCC is not distributed homogeneously in space but concentrates in specific areas,

for instance in North America and Eurasia in the case of historical LCC. Because of

these differences the climatic impacts may differ between scenarios of large-scale and

plausible LCC.

Previous studies aimed at identifying robust impacts of the biogeophysical effects across

models, both for historical land use (Pitman et al., 2009; de Noblet-Ducoudré et al.,

2012; Boisier et al., 2012) and land use in plausible future scenarios (Brovkin et al.,

2013a; Boysen et al., 2014). In regions in North America and Eurasia where land use

was simulated, historical land use was found to exert a cooling of similar magnitude

than the impact of elevated greenhouse gases (de Noblet-Ducoudré et al., 2012), but

the inter-model spread was found to be large (e.g., Pitman et al., 2009). This inter-

model spread may originate from several factors: First, models differ not only in their

parameterizations but also in the distribution of land use regions (Boisier et al., 2012).

Second, land use happens in each models’ specific background climate which may

substantially influence the land use effects (Pitman et al., 2011). Third, models differ
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in their representation of natural shifts in the spatial distribution of vegetation (e.g.,

Sitch et al., 2008).

A thorough analysis of the inter-model spread, and thus process understanding, was

further exacerbated by the poor signal-to-noise ratio of the total biogeophysical effects

(e.g. Boysen et al., 2014). The isolated local effects, on the other hand, are by con-

struction largely free of climate variability (e.g., Kumar et al., 2013; Malyshev et al.,

2015). Thus, the local effects provide a testbed to understand differences across models

(Lejeune et al., 2017b).

Not only models differ in the three factors described above, but also historical LCC dif-

fers from scenarios of future LCC. Thus, also within one model, process understanding

may benefit from comparing the local effects of LCC across different scenarios. This

is the focus of chapter 3, where the local effects for historical LCC and scenarios of

future LCC are analyzed to achieve the following:

• To quantify the locally induced changes in surface temperature for three factors:

land-use–induced LCC, warming background climate, and natural changes in the

spatial distribution of forests.

• To consistently compare these factors across scenarios within one model and using

one set-up.

In order to assess the local effects in the LCC scenarios, a newly developed look-up

approach serves to convert changes in forest fraction within a grid cell into a change in

surface temperature. For this approach, an investigation is required whether surface

temperature within any model grid cell responds nonlinearly to local changes in forest

cover. Such a nonlinearity may affect the results because the pre-LCC forest fractions

differ across scenarios. Thus, chapter 3 investigates to what extent such a nonlinearity

contributes to differences of the local effects across scenarios.

1.2.4 Investigating the nonlocal LCC effects

Deforestation may substantially influence climate far away from the region where LCC

happens. For instance, deforestation may shift precipitation bands (Swann et al.,

2012), and the shifts in precipitation may even be large for deforestation in remote

regions (Devaraju et al., 2015). Furthermore, deforestation may substantially cool sea

surface temperatures (e.g., Ganopolski et al., 2001) and this may even switch the sign of

the deforestation response from warming to cooling (Davin and de Noblet-Ducoudré,

2010). However, despite their possible importance the nonlocal effects could not be

investigated in previous studies, at least not in regions where also LCC happened,

because the local and nonlocal effects could not be distinguished.

It stands to reason that the nonlocal effects may differ strongly between the studies

of large-scale LCC and plausible LCC. The nonlocal effects may be stronger if more
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area is deforested. Furthermore, the nonlocal effects might be different in simulations

where LCC is geographically homogeneously distributed, concentrated in latitudinal

bands or in plausible LCC scenarios. However, because the nonlocal effects could not

be isolated, the link between studies of large-scale and plausible LCC could previously

not be established. In chapter 4, this research gap is closed and the nonlocal effects

are analyzed in simulations with the fully coupled MPI-ESM (Giorgetta et al., 2013)

to achieve the following:

• To investigate to what extent the nonlocal effects contribute to differences be-

tween the biogeophysical effects in models and observations.

• To assess the dependence of the nonlocal effects on the areal extent and spatial

distribution of LCC.

• To explore the role of changes in surface albedo for the nonlocal effects.

• To integrate the biogeophysical effects into a broader context by comparing the

magnitudes of the globally averaged temperature changes from local and nonlocal

effects to temperature changes from LCC-induced changes in land carbon storage.

Chapter 4 focuses on the nonlocal effects in the MPI-ESM. The analysis within this

one model is beneficial for gaining process understanding, but the exact quantification

of the nonlocal effects may be different in other models. Thus, for an overview over

the nonlocal effects of plausible LCC in other fully coupled climate models, chapter 4

also provides an inter-model comparison.
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Chapter 2

Robust identification of local

biogeopysical effects of land cover

change in a global climate model1

Land cover change (LCC) happens locally. However, in almost all simulation studies

assessing biogeophysical climate effects of LCC, local effects (due to alterations in a

model grid cell) are mingled with nonlocal effects (due to alteration in wide-ranging

climate circulation). This study presents a method to robustly identify local effects

by changing land surface properties in selected “LCC cells” (where local plus nonlocal

effects are present), while leaving others unchanged (where only nonlocal effects are

present). While this study focuses on climate effects of LCC, the method presented here

is applicable to any land surface process that is acting locally but capable of influencing

wide-ranging climate when applied on a larger scale. Concerning LCC, the method is

more widely applicable than methods used in earlier studies. The study illustrates

the possibility of validating simulated local effects by comparison to observations on a

global scale, and contrasts the underlying mechanisms of local and nonlocal effects. In

the MPI-ESM, the change in background climate induced by extensive deforestation

is not strong enough to influence the local effects substantially, at least as long as sea

surface temperatures are not affected. Accordingly, the local effects within a grid cell

are largely independent of the number of LCC cells in the isolation approach.

2.1 Introduction

Humans have altered the land surface extensively by changing land cover, e.g., by

replacing forests with grasslands (e.g., Pongratz et al., 2008). Such land cover change

1This chapter has been published with minor modifications as ”Winckler, J., C. H. Reick and J.

Pongratz (2017), Robust identification of local biogeopysical effects of land cover change in a global

climate model, J. Clim., 30(3), 1159-1176, doi:10.1175/JCLI-D-16-0067.1.”
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(LCC) not only affects the carbon balance (IPCC, 2013), but also disturbs the energy

and hydrological balance of the land surface via biogeophysical effects: First, surface

albedo increases when replacing a forest with a typically brighter grassland, reflecting

more sunlight and altering the surface shortwave radiation budget (e.g., Bonan, 2008);

Second, LCC induces changes in non-radiative properties, such as evapotranspiration

efficiency (as defined in the study by Davin and de Noblet-Ducoudré (2010)) and surface

roughness. These biogeophysical effects can alter climate within a grid cell undergoing

LCC, which we refer to as the “local effects”. However, additionally to these locally

induced effects, climate within a grid cell can also be altered by LCC in nearby or

remote grid cells, which we refer to as “nonlocal effects”.

In the past, two types of studies have been performed to quantify and understand the

effects of LCC: Studies investigating plausible LCC scenarios and studies investigating

idealized extensive LCC. The first type investigated the climate effects of plausible

LCC scenarios such as the historical evolution of land-use–induced LCC or future LCC

(e.g., Pitman et al., 2009; Boysen et al., 2014), based on scenarios derived from socio-

economic models (e.g., Hurtt et al., 2011). Considering temperature on the local scale,

the biogeophysical (BGP) effects of historical LCC have been simulated to have similar

magnitude as the effect of the increase in greenhouse gases since the preindustrial

period (de Noblet-Ducoudré et al., 2012). However, models do not agree in sign and

amplitude of temperature changes following land-use–induced LCC, neither regionally

nor globally (e.g., Pitman et al., 2009; Boysen et al., 2014). Part of the uncertainty

in studies on plausible LCC scenarios originates from the fact that in most grid cells,

these scenarios alter only a small fraction of the vegetation cover. This results in a

climatic signal that is small compared to weather-related noise, especially as regions

with a large historical land-use–induced LCC are located in the northern temperate

latitudes, where weather-related noise is high (e.g., Mahlstein et al., 2011).

The second type of LCC study investigated the effects of idealized extensive (instead of

plausible) LCC, such as complete deforestation of wide latitudinal bands (e.g., Claussen

et al., 2001; Bala et al., 2007; Bathiany et al., 2010), with a focus on understanding

the more general role of vegetation changes in the Earth system. While such idealized

simulations improve the signal/noise ratio, they also feature substantial nonlocal ef-

fects, because extensive changes in surface properties can alter global circulation (e.g.,

Goessling and Reick, 2011; Swann et al., 2012). Within a region, the nonlocal effects

can even be larger than the local effects of deforestation (Devaraju et al., 2015). How-

ever, in the traditional approach of simulating spatially homogeneous LCC in every

grid cell within a large region, local and nonlocal effects are mingled and cannot be

distinguished. This brings complications: Observations of LCC effects only comprise

the local LCC effects because they compare climate in forested areas with nearby open

land, and thus both weather-related noise and nonlocal effects cancel. Thus, the total

(local plus nonlocal) simulated effects cannot be compared to observations consistently.

In addition, simulations of idealized extensive LCC cannot represent the effects of any

plausible LCC scenario due to substantial nonlocal effects. In particular, with the
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model set-up used in most previous studies, the results within a grid cell are not only

determined by the extent of LCC within that grid cell, but also strongly dependent on

LCC in neighboring or remote grid cells, see e.g. the boreal cooling simulated for tropi-

cal deforestation due to a reduction in atmospheric water vapor (Claussen et al., 2001).

Therefore, the total effect of LCC within a grid cell strongly depends on the chosen

geographical distribution of LCC cells, impeding inference of the climatic relevance of

LCC in a specific grid cell from one global LCC distribution to the other.

The local effects have been implicitly isolated for historical and future projected LCC

(Kumar et al., 2013) in order to deal with the problem of low signal/noise-ratio in plau-

sible LCC scenarios. Similar to observational studies, they compare climatic changes

in grid cells with LCC to climatic changes in grid cells without LCC within a region

where changes in climatic conditions are assumed to be homogeneous, and thus both

weather-related noise and nonlocal effects cancel. Malyshev et al. (2015) isolate local

effects in a model that calculates canopy air temperature separately for each land use

type within a grid cell. They calculate local effects as the temperature difference be-

tween the different land use types within a grid cell. Furthermore, they compare their

local effects with the total effects that result from the typical model set-up of earlier

studies comparing a simulation with LCC to a reference with undisturbed vegetation.

Here, we present a method to isolate the local effects by specifying regularly spaced

“LCC cells” (where both local plus nonlocal effects are present) and “no-LCC cells”

(where only nonlocal effects are present). The presented approach goes beyond the

previous approaches in several respects: First, it provides information on the local

effects in every land grid cell globally, and avoids applying ad-hoc thresholds in the

amount of LCC to identify areas of LCC as in the study by Kumar et al. (2013). Sec-

ond, our set-up captures all simulated land-atmosphere feedbacks within a grid cell,

even via local changes in clouds and precipitation. This complements previous studies

calculating local effects using offline models (e.g., West et al., 2011) or a subgrid tile

approach as in the study by Malyshev et al. (2015). Third, our method is applicable to

all DGVMs, even if they do not calculate temperature for each subgrid tile separately,

as in the study by (Malyshev et al., 2015).

In this study, we examine the sensitivity of the local effects to the number of LCC

cells used in this separation method. Potentially, a high number of LCC cells could

change background climate strong enough to influence the local effects (Pitman et al.,

2011). We assess if the change in background climate via the nonlocal effects is strong

enough to influence the local effects substantially, or whether we can still robustly

identify the local effects. To this end, we compare the local effects in two extreme

cases: LCC only at a few grid cells, similar to plausible LCC scenarios, and LCC in

almost all grid cells, representative for idealized extensive LCC. If the local effects can

be identified irrespective of the number of LCC cells, this isolation is a step towards

consistent comparison of LCC effects between models and observational datasets. The

presented method allows for isolating the local, but also to additionally quantify the

nonlocal effects. This separation of local and nonlocal effects opens ways for a better
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understanding of the processes underlying the climatic effects of LCC and related

interactions with local and large-scale climate.

2.2 Methods

2.2.1 Model and set-up

We use the Max-Planck-Institute Earth System Model (MPI-ESM), which has been

validated in depth with respect to the energy and hydrological balance at the land

surface by Hagemann et al. (2013). Deforestation effects in an offline land surface model

differ substantially from the results in a set-up accounting for atmospheric feedbacks

(Gibbard et al., 2005). Thus, we choose a configuration with the land surface model

JSBACH (Reick et al., 2013) coupled to the atmospheric model ECHAM6 (Giorgetta

et al., 2013) with horizontal resolution T63 (approximately 2◦ at the equator) and 47

vertical layers. In each simulation, we use the last 30 out of 35 years (1976-2005)

for analysis. To exclude carbon effects of LCC and thus isolate the BGP effects, we

prescribe CO2 from the historical simulation performed within the Coupled Model

Intercomparison Project, Phase 5 (CMIP5) by the fully coupled MPI-ESM. From this

simulation, we also prescribe 1976-2005 inter-annually varying SSTs and sea ice in

order to reduce weather-related noise induced by ocean variability. A similar set-

up has been used in an intercomparison of the BGP effects of historical land-use–

induced LCC, where ECHAM5/JSBACH was within the range of the other models,

both for radiative and non-radiative processes (Boisier et al., 2012). Prescribing SST

substantially influences simulated LCC effects (Davin and de Noblet-Ducoudré, 2010).

Nevertheless, SSTs are prescribed by purpose in our study in order to identify the local

effects of LCC more clearly – its only the nonlocal effects that are affected by land-

ocean interactions. This issue is further discussed in the “Discussions and Conclusions”

section.

As described in the next paragraph, we choose two set-ups, in each of which land

cover is changed in some grid cells (“LCC cells”), and land cover remains unchanged

at other grid cells. For each of the two spatial distributions of LCC cells described

below, we perform two simulations: In the first simulation, we set the vegetated part

in the LCC cells to 100% forest cover. In the second simulation, we set the vegetated

part of the LCC cells to 100% grass cover. When scaling to 100% grass cover, we

keep the ratio between C3 and C4 grasses, and when scaling to 100% forest cover, we

keep the ratio between the four forest PFTs in JSBACH (tropical broadleaf evergreen,

tropical broadleaf deciduous, extratropical evergreen, extratropical deciduous). In the

remaining “no-LCC cells” we do not change land cover, but prescribe present-day land

cover (the CMIP5 mean state of 1976-2005) in both simulations. We calculate the total

deforestation effect as the difference between these two simulations.
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2.2.2 Definition of sparse and extensive LCC

We are interested in the local LCC effects. The most accurate way to directly simulate

these local effects at a given grid cell would be to simulate LCC at only this one grid

cell. However, this would require one “forest” and one “grass” simulation for each land

grid cell. Our approach to reduce the number of required simulations is to change land

cover in more than one land grid cell per simulation pair. First, we deforest one out of

eight grid cells (gray grid cells in Fig. 2.1b), which we define as sparse LCC. The local

effects can then be separated as described in the next subsection. This scheme of sparse

LCC is a trade-off: By deforesting only a small number of grid cells, we can assume

that the deforestation effects of any two cells do not influence each other substantially,

but we can still get information about the local effects on a global scale.

The choice of 1 out of 8 LCC cells seems arbitrary. To test the sensitivity of the local

effects to the number of LCC cells, we choose an additional scheme of deforestation in

7 out of 8 grid cells (gray grid cells in Fig. 2.1g), which we define as extensive LCC.

This choice of the extensive LCC scheme is again a trade-off: It approximates the case

of the maximal possible number of LCC cells, but still allows us to separate local and

nonlocal effects, as explained below. The two LCC schemes only differ in the number

of LCC cells. We prescribe the same SSTs as in the sparse LCC case in order to ensure

comparability of the results.

2.2.3 Separation of local and nonlocal effects

We define the local effects within a grid cell as the changes that are present only due to

changes in surface properties of only this one grid cell. We define the nonlocal effects as

LCC-induced changes that arise remotely from the location of LCC, mediated e.g. by

induced changes in circulation. In our set-up of introducing LCC only in the LCC cells,

nonlocal effects may be active in both LCC cells and no-LCC cells. In the following,

we assume that the total effects in LCC cells consist of the sum of local and nonlocal

effects, while the total effects in no-LCC cells consist of only nonlocal effects.

Several computational steps are necessary to separate local and nonlocal contributions

to the total effect of LCC. These steps are illustrated in the subfigures of Fig. 2.1:

(a) From the described pair of simulations we identify the total effects of LCC.

(b) The nonlocal effects can be seen in the no-LCC cells (colored grid cells in Fig.

2.1b).

(c) We assume that these nonlocal effects are present also at the LCC cells. We

obtain the nonlocal effects at the LCC cells by horizontal interpolation.

(d) We then calculate the local effects at the LCC cells. To this, we assume that both

local and nonlocal effects are present within LCC cells. Consequently, in order
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Figure 2.1: Sketch illustrating the separation approach (arbitrary color scale). The simulation

result, the total effects, is depicted in subfigure a. The LCC grid cells stand out because there,

the total effects (local plus nonlocal) are mostly stronger than in the surrounding no-LCC

grid cells (only nonlocal). The nonlocal effects at no-LCC cells can be seen in b. The nonlocal

effects are interpolated to LCC cells c. The difference at the LCC cells between total effects a

and interpolated nonlocal effects c is shown in d, which we then interpolate in order to obtain

global information on the local effects e. This approach works analogously for extensive

deforestation f − j. Grid cells whose information is not used for interpolation in b, d, g, and

i are shown in gray. For results on local and nonlocal effects see Fig. 2.2.
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to obtain the local effects at the LCC cells, we substract the nonlocal effects, as

calculated in the previous step, from the total effects (local plus nonlocal).

(e) Finally, we obtain a global map of the local effects by interpolation of the iden-

tified local effects from the LCC cells to all land grid cells.

The local contribution to the total effects of LCC is in a statistical sense “cleaner” than

the simulated total effects: for the total effects a longer simulation period is needed to

decrease the signal/noise ratio compared to the signal/noise ratio of the local effects

(Fig. A.1.1), because climate variability (e.g., Deser et al., 2012) is by construction

mostly contained in the nonlocal effects. Simulating longer time periods than 30 years

does not increase the signal/noise ratio for the local effects, as demonstrated in Ap-

pendix A.1.

Both approaches, sparse and extensive LCC, include horizontal interpolation from one

out of eight grid cells (for the interpolation of local or nonlocal effects, respectively).

The error associated with interpolation depends on the distance between the interpola-

tion knots, so the distance between the grid cells that the values are interpolated from.

In order to assess the interpolation errors in the performed simulations, and to decrease

dependence on the location of the LCC cells, we repeat all simulations with the LCC

cells shifted by two. For the further analysis, we average local effects obtained from

the unshifted and shifted simulations, and apply the same averaging to the nonlocal

effects. Details on the interpolation method and interpolation errors are presented in

Appendix A.4.

2.2.4 Energy balance decomposition

In the presented results, we contrast the mechanisms underlying local and nonlocal

effects. For the exploration of these mechanisms, we employ an energy balance decom-

position approach as in, e.g., the study by Luyssaert et al. (2014). Here, we provide a

short introduction to this method, in which a change in simulated surface temperature

can be split into contributions from the individual terms of the surface energy balance.

The surface energy budget is balanced between shortwave and longwave net radiation

(SWnet and LWnet), latent heat (LE), sensible heat (H) and a residual term (G, mainly

consisting of ground heat flux):

SWnet + LWnet = LE + H+G. (2.1)

The component LWnet can be rewritten by applying the Stefan-Boltzmann law:

LWnet = ǫLWdown − LWup = ǫLWdown − σǫT4
surf, (2.2)

where σ is the Stefan-Boltzmann constant, ǫ is emissivity and is set to 1, and Tsurf is

surface temperature. Inserting (2.2) into (2.1), we obtain

σT 4
surf = SWnet + LWdown − LE− H−G.
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Applying the total derivative, we obtain

∆Tsurf =
1

4σT3

surf

(

∆SWnet +∆LWdown −∆LE−∆H−∆G
)

.

Because the multi-year mean ground heat flux is largely unaffected by deforestation

(not shown), we omit the residual term ∆G in the further analysis. Note that the

energy balance decomposition approach does not allow us to attribute changes in the

energy balance to changes in surface properties. As an example, a simulated change

in LE could originate from a change in surface albedo, evapotranspiration efficiency,

surface roughness, or a combination of all three (Davin and de Noblet-Ducoudré, 2010).

However, the surface energy balance decomposition (see Fig. 1.1) illustrates the im-

portance of changes in the individual flux terms that each are influenced by changes in

various surface properties and include feedbacks.

2.3 Contrasting local and nonlocal effects of global

deforestation

2.3.1 Mechanisms underlying local and nonlocal effects differ

To study the effects of global deforestation, we contrast the local and nonlocal effects

from the extensive LCC experiment. The local effects of deforestation on surface

temperature in ECHAM6/JSBACH are a warming in the tropics and a cooling in

the northern high latitudes (Fig. 2.2 b). This is in accordance with the local effects

shown in the study by Malyshev et al. (2015) and qualitatively also in accordance

with previous idealized extensive LCC studies that considered the total (local plus

nonlocal) effects (e.g. Claussen et al., 2001; Davin and de Noblet-Ducoudré, 2010).

The dynamic global vegetation model JSBACH is known to underestimate bare land

fraction in subtropical deserts (Brovkin et al., 2013b), which explains why there are still

substantial local effects in these regions. Note that 2m-air temperature responds much

weaker to LCC as compared to surface temperature, see Appendix A.3. Precipitation

decreases in the local effects in the northern temperate and boreal regions, and even

more strongly in the humid tropics (Fig. 2.3 b). Concerning the total effects, most

previous studies hinted at a decrease in rainfall, e.g., for deforestation of the Amazon

rainforest (Lejeune et al., 2015).

The nonlocal effects for surface temperature (Fig. 2.2 d) and precipitation (Fig. 2.3

d) are similar in magnitude as compared to the local effects. While for both effects,

temperature is increased and precipitation is reduced in the Amazon region and central

Africa, there are also regions where local and nonlocal effects disagree significantly in

sign (Fig. 2.2 b versus 2.2 d and 2.3 b versus 2.3 d). These are, e.g., the southern part of

Australia, where the local effects show a warming while the nonlocal effects are cooling,
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Figure 2.2: Change in mean surface temperature [K] due to a,c sparse and b,d extensive

deforestation. a,b local effects, c,d nonlocal effects. Mean over 30 years and another 30

years from a simulation with LCC cells shifted by two. Statistical significance is calculated

according to a 5 % level in a Student’s t-test accounting for autocorrelation (Zwiers and von

Storch, 1995). Note that we mark grid cells that are not statistically significant.

Figure 2.3: Difference in mean precipitation [mm/y] for a,c sparse and b,d extensive defor-

estation. a,b local effects, c,d nonlocal effects. Statistical significance is calculated according

to a 5 % level in a Student’s t-test accounting for autocorrelation (Zwiers and von Storch,

1995). Note that we mark grid cells that are not statistically significant.
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or the Malay Archipelago, where the local effects show a decrease in precipitation while

the nonlocal effects show an increase in precipitation.

Not only the spatial patterns, but also the mechanisms underlying local and nonlocal

effects differ. Considering, for example, the local effects in the boreal winter months

DJF (Fig. 2.4 b for extensive LCC), we obtain an increase in surface temperature

south of 40◦N. In the arid tropics (e.g., Fig. A.2.5 d), this warming can be attributed

to changes in surface sensible heat flux, probably triggered by a reduction in surface-

atmosphere exchange of heat because of a decreased surface roughness, consistent with

the study by Rotenberg and Yakir (2010). In the humid tropics (e.g., Fig. A.2.5 e), the

response is dominated by changes in latent heat flux, probably triggered by a changes

in evapotranspiration efficiency. North of 40◦N, the surface cooling of the local effects is

partly originating from a strong decrease in surface shortwave net radiation due to the

albedo increase after deforestation, which is especially strong in the presence of snow

(not shown). Considering the nonlocal effects (Fig. 2.4 d), we see that the underlying

mechanisms differ from the local effects: The changes in latent and sensible heat in the

tropics indicate a southward shift of the tropical rain bands (not shown). In contrast

to the local effects, increased surface shortwave and decreased longwave net radiation

hint at a reduction in atmospheric water vapor and cloud cover.

The processes underlying local and nonlocal effects are inherently different. While

nonlocal effects are driven by changes in global or regional climatic conditions, local

effects result from changes in local surface properties and are only enhanced by changes

in local climate conditions. Both for local and nonlocal effects, the mechanisms vary

between regions and seasonally (see Appendix A.2). This analysis is not meant to be

exhaustive but demonstrates that the mechanisms underlying local and nonlocal effects

differ. Thus, it is important to distinguish local and nonlocal effects of LCC in Earth

system simulations aimed at process understanding.

2.3.2 Local effects enable consistent comparison with obser-

vations

Due to the limited availability of time series covering LCC, observational studies often

approximate LCC effects from a “paired-site set-up”, i.e. from the difference in climate

variables in adjacent locations with the same background climate but different land

cover (e.g., Lee et al., 2011; Li et al., 2015; Alkama and Cescatti, 2016). Thus by

construction, these observational studies cover only the local effects. The presence of

nonlocal effect has impeded validation of the effects of simulated extensive deforestation

with observational datasets in past studies (Zhang et al., 2014b). Thus, isolation

of local effects enables a more consistent comparison of deforestation effects against

observations, as noted by Malyshev et al. (2015).

In Fig. 2.5, we compare the local effects from the extensive LCC set-up with remote-

sensing based paired-site observations from Li et al. (2015). In their observational
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Figure 2.4: Energy balance decomposition for the boreal winter months (DJF). The dashed

line denotes changes in surface temperature Tsurf [K], caused by a,c sparse and b,d extensive

deforestation, a,b local effects and c,d nonlocal effects. The solid lines, which approximately

add up to the dashed line, represent surface temperature changes due to changes in compo-

nents of the surface energy budget. All values are latitudinally averaged over land areas. The

horizontal axis is scaled with the area that the respective latitude occupies.

study, they investigate the local effects of deforestation on a global scale by compar-

ing surface temperature of forest with that of open land within a small region (ap-

proximately 50 km × 28 km based on MODIS satellite imagery). In the model, the

simulated local response (Fig. 2.5 c) is weaker than in the observations (Fig. 2.5 d)

in most seasons and latitudes, part of which can be explained by the fact that the

observational dataset only captures clear-sky conditions (Li et al., 2015). Nevertheless,

local effects in ECHAM6/JSBACH and observations generally agree with respect to

the seasonal pattern in the extratropics. However, in the tropics, seasonal cycles do

not match, which becomes evident in low temporal correlations (northern tropics) or

even negative temporal correlations (southern tropics) between simulated local effects

and observations (Fig. 2.5 e). Both the high correlation in the extratropics (at around

30 to 45◦N) and the low correlation in the tropics (at around 5 to 15◦S) are less evident

when comparing observations to the total (local plus nonlocal) effects, and thus a more

thorough assessment is enabled by isolation of the local effects. This once more puts
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Figure 2.5: Surface temperature change [K] of deforestation, for a the total (local plus non-

local effects), b the nonlocal effects, c the local effects, evaluated where observations were

available, d remote sensing observations from Li et al. (2015) (their Fig. 2c), with the lati-

tudes regridded to our model resolution, and e correlation coefficient of the monthly means

(averaged over the available time period) in the respective latitudes for observations versus

local (solid line) and observations versus total effects (dashed line). The vertical axis is scaled

with the area that the respective latitude occupies.

emphasis on the importance of isolating the local effects when comparing simulated

deforestation effects to observational datasets.

2.3.3 Dependence of nonlocal and local effects on the number

of LCC cells

The comparison of sparse and extensive LCC shows that nonlocal effects strongly

depend on the areal extent of LCC. For sparse LCC, the nonlocal effects have the

order of magnitude of weather-related noise in almost all regions, as shown by the small

number of significant grid cells (Fig. 2.2 c and 2.3 c). For extensive LCC, the nonlocal

effects have the same order of magnitude as the local effects. In contrast, the local

effects within this set-up do not differ substantially between sparse and extensive LCC
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(Fig. 2.2 a versus 2.2 b). This is not only the case for changes in surface temperature,

but also precipitation (Fig. 2.3 a versus 2.3 b) and 2m-air temperature (Fig. A.3.1 a

versus A.3.1 b).

To quantify the similarity of the local effects in the two LCC cases, we determine the

mean absolute difference of surface temperature over land between local effects from

extensive and sparse LCC, respectively. We compute the numbers below only from

values at the sparse LCC cells in both cases in order to reduce differences due to the

different number of LCC cells. The mean absolute difference between the two local

effects is 0.15K, and thus of secondary importance as compared to the effect itself

(the mean absolute change in surface temperature on land for the local effects in the

sparse LCC is 0.69K). There is no systematic bias: the mean difference between local

effects for sparse versus extensive LCC is 0.05 K. At the same time, spatial correlation

between the two is 0.96, so also the spatial pattern of the local effects is practically

identical for the two LCC cases.

Not only the spatial pattern, but also the mechanisms underlying the local effects are

identical for sparse and extensive LCC, as can be seen in Fig. 2.4 a versus 2.4 b. The

peaks are more pronounced for extensive LCC (Fig. 2.4 b) due to the different number

of LCC cells that the local effects are interpolated from. Still, the latitudinal patterns

of the energy balance decompositions match well for the local effects from sparse and

extensive LCC, illustrating that the underlying mechanisms are the same. Therefore,

on the grid cell level, the local effects are largely independent of the number of LCC

cells in the separation approach, although background climate is strongly influenced

by the nonlocal effects due to the grossly differing areal LCC extent. While an even

stronger change in background climate than can be induced by LCC might be capable of

influencing the local effects, our results suggest that – at least in the case of unaffected

SSTs – the local effects on a grid cell level will be robust for a wide range of chosen

numbers of LCC cells in the separation approach.

2.4 Discussion and conclusions

In simulations of idealized extensive LCC, local effects are masked by the strong pres-

ence of nonlocal effects. The results presented here confirm previous studies (e.g.,

Swann et al., 2012; Devaraju et al., 2015) that illustrate that the sum of LCC on a

larger scale can trigger substantial nonlocal effects. However, the effects of deforesta-

tion of a single model grid cell are initially local. Thus, the total simulated effects

of large-scale LCC are not representative for the effects of deforestation in plausible

LCC scenarios, in which nonlocal effects are less pronounced. Previous studies have

focused on isolating the local –that is, locally induced– biogeophysical climate effects of

LCC, either in plausible LCC scenarios (Kumar et al., 2013) or in models with climate

information on subgrid vegetation tiles (Malyshev et al., 2015). Here, we present a
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method that is capable of robustly isolating the local effects, accounting for local at-

mospheric feedbacks. Our results based on two extreme cases of sparse and extensive

LCC, respectively, suggest that the local effects in the MPI-ESM can be robustly iso-

lated irrespectively of the number of LCC cells. Thus, follow-up studies that require an

isolation of the local effects may use a a chessboard-like pattern of one out of two LCC

cells (see Appendix A.4) in order to only rely on interpolation from directly adjacent

grid cells and thus reduce the horizontal interpolation errors.

Interpretation of the nonlocal effects is more complex than interpretation of the local

effects for several reasons: First, for the nonlocal effects of one concrete geographical

distribution of LCC, we cannot determine the relative importance of LCC of each

grid cell for triggering those nonlocal effects. Second, while the nonlocal effects are

determined by a modification of wide-ranging meteorological relationships, the local

effects within a grid cell can be largely explained directly by changes in local surface

properties. Thus, we can understand the mechanisms underlying the local effects better

than those underlying the nonlocal effects. Third, the nonlocal effects depend not only

on the spatial extent, but also strongly on the concrete geographical LCC distribution

because LCC changes atmospheric circulation. This impedes inference of the climatic

relevance of LCC from one LCC distribution to the other. We have shown that the

local effects within a grid cell can be robustly isolated using a wide range of spatial

LCC patterns, even in the presence of substantial nonlocal effects. This is a step

towards a better attribution of climatic changes to local LCC. This attribution is

important, as there are various plausible scenarios for future LCC (Hurtt et al., 2011).

Independent of the investigated scenario, the local effects thus allow for an assessment

in an adaptation/mitigation context.

Changes in background climate can influence the effects of LCC (Pitman et al., 2011).

In order to isolate the local effects, we want to keep LCC-induced changes in back-

ground climate small, and thus we prescribe SSTs. In this set-up of prescribed SSTs,

the local effects are very similar for sparse and extensive LCC, indicating that changes

in background climate by extensive LCC are not strong enough to substantially influ-

ence the local effects. It is not clear if this conclusion still holds with an interactive

ocean: accounting for oceanic feedbacks in a global deforestation experiment has been

simulated to substantially influence deforestation effects (1K less tropical warming

and about 2K more northern-hemispheric cooling in one climate model (Davin and

de Noblet-Ducoudré, 2010)). We speculate that, if we used interactive SSTs in our

simulations, most of these feedbacks would be included in the nonlocal effects, as they

would also be seen in hypothetical no-LCC cells. The oceanic feedback strength from

the study by Davin and de Noblet-Ducoudré (2010) could thus lead up to a doubling of

the nonlocal effects in terms of surface temperature changes. In order to avoid an influ-

ence of these amplified nonlocal effects on the local effects, we recommend prescribing

SSTs for applications that aim at a robust isolation of the local effects.

We acknowledge that land surface models differ in their methods of implementing LCC
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(Pitman et al., 2009). Thus, the results presented here, both for local and nonlocal

effects, are specific for our model (MPI-ESM), in particular for exact quantifications.

However, the approach presented in this study opens ways to an intercomparison of

local and nonlocal effects across climate models. If models disagree mainly with respect

to the nonlocal effects, this would hint at large-scale advective processes and changes

in global circulation to be responsible for inter-model differences. However, an inter-

model spread in the local effects would suggest a different representation of processes

relevant within a grid cell to be responsible for the inter-model uncertainties. Thus,

due to their different nature, analyzing local and nonlocal effects separately allows for

a deeper process understanding of LCC effects in climate models.

An isolation of the local effects has a wide range of applications in the LCC context. As

we illustrated, isolation of the local effects enables a consistent comparison to observed

climate effects of LCC, such as ground-based (e.g., Lee et al., 2011; Zhang et al., 2014b)

or remote-sensing studies (e.g., Li et al., 2015). Further studies can investigate whether

night-time and day-time effects of LCC (e.g., Lee et al., 2011; Li et al., 2015) are well

represented in climate models, and whether models correctly capture the effects on

temperature and precipitation during extreme events, as in the study by Teuling et al.

(2010). As weather-related noise and advection processes are largely excluded from

the local effects, they can be employed to determine the influence of land-atmosphere

coupling strength on the LCC effects, as performed for the total biogeophysical effects

by Lorenz and Pitman (2014).

In a broader context, the method described here of separating local and nonlocal effects

is not restricted to LCC studies but can be employed in studies focusing on any land

surface process that is mainly acting locally but capable of influencing wide-ranging

climate when applied on a larger scale. For instance, this method could be used in

studies on the climate effects of irrigation or wildfires. Analogous to the findings in

our study, isolating local effects can improve signal/noise ratio in realistic scenarios.

Additionally, the method of separating local and nonlocal effects can be used in ideal-

ized large-scale studies, and enhance understanding in processes influencing local and

large-scale climate.
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Chapter 3

Why does the locally induced

temperature response to land cover

change differ across scenarios?1

Land cover change (LCC) affects temperature locally. The underlying biogeophysical

effects are influenced by land use (location and extent), but also by natural biogeo-

graphic shifts and background climate. We examine these three factors’ contribution

to surface temperature changes upon LCC and compare them across CMIP5 scenarios.

To this end, we perform global deforestation simulations with an Earth system model

to deduce locally induced changes in surface temperature for historical and projected

forest cover changes. We find that the dominant factors differ between historical and

future scenarios. The local temperature response is historically dominated by the fac-

tor land use change, but the two other factors become just as important in scenarios

of future land use and climate. An additional factor contributing to differences across

scenarios is the dependence on the extent of forests before LCC happens. For most

locations, the temperature response is strongest when starting deforestation from low

forest cover fractions.

3.1 Introduction

Land cover change (LCC), such as a conversion from forests to grasslands, perturbs

the local surface energy and water balance. Historically, these biogeophysical effects

have been found to cool global climate (e.g., de Noblet-Ducoudré et al., 2012; Boisier

et al., 2012). For future LCC in the Representative Concentration Pathway (RCP)

scenarios (Moss et al., 2010), the simulated biogeophysical effects were found to be

1This chapter has been published with minor modifications as ”Winckler, J., C. H. Reick and

J. Pongratz (2017): Why does the locally induced temperature response to land cover change differ

across scenarios?, Geophys. Res. Lett., 44, 3833-3840, doi:10.1002/2017GL072519.”
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substantially weaker (Brovkin et al., 2013b; Boysen et al., 2014; Davies-Barnard et al.,

2015). The overall sign of the future response depends of course on the type of LCC

(de- or afforestation dominating (Davies-Barnard et al., 2015)), but even scenarios with

the same general direction of LCC, such as the deforestation scenarios of RCP2.6 and

RCP8.5, differ in their climatic effects (Brovkin et al., 2013b). Several factors have

been proposed that are responsible for differences in LCC effects across scenarios (e.g.,

Brovkin et al., 2013b; Zhang et al., 2014b; Pitman et al., 2011). In this chapter, we

explore three factors (see next paragraph) that are relevant for the locally induced

effects in past and future scenarios, and we compare their relative importance. We

focus our analysis on the locally induced changes in surface temperature (e.g., Kumar

et al., 2013; Malyshev et al., 2015). Additionally, LCC may affect climate by nonlocal

effects, such as advection of local changes in air temperature and humidity to neigh-

boring regions. However, these nonlocal effects are triggered locally, such that a better

understanding of inter–scenario differences should begin at a local level. Furthermore,

local temperature changes are directly relevant for local living conditions.

The relative importance of the following three factors is assessed in our study: First,

the effects of LCC vary strongly across regions (Pongratz et al., 2011), and thus past

and future effects may differ because of differences in areal extent and geographical

distribution of land-use–induced land cover change (LULCC) in the scenarios (Brovkin

et al., 2013b). Second, the effects of LCC at a given location will be modified by a

warming background climate (WARM), which may lead to a reduction in snow cover and

changing evapotranspiration (Pitman et al., 2011). While the change in background

climate between pre-industrial and present-day conditions did not influence the LCC

effects substantially (de Noblet-Ducoudré et al., 2012), the influence of a warming

background climate may be substantial in future scenarios. Third, any change in

background climate might cause natural biogeographic shifts, which we refer to as

climate–induced land cover change (CILCC); for instance, due to global warming, the

tree-line in boreal regions is shifting northwards (ACIA, 2004), and effects of this tree-

line shift might accelerate warming locally (e.g., Zhang et al., 2014b). While the factors

LULCC, CILCC and WARM have been investigated individually in previous studies

(e.g., Brovkin et al., 2013b; Zhang et al., 2014b; Pitman et al., 2011), our approach

enables us to determine their relative contribution within one set of simulations. This

assessment of their relative contribution is essential to understand differences in the

climate effects of LCC across scenarios.

In addition to the above factors, past and future scenarios differ in their initial forest

cover fraction: In some areas that where partially deforested historically, deforestation

or afforestation might take place in the future, but starting from a lower initial forest

cover fraction. Further, depending on the scenario, LCC happens in different regions

showing more or less forest cover. These differences in initial forest cover fractions

would not affect the results if, on a grid cell level, climate responds linearly to defor-

estation. However, if climate responds nonlinearly to deforestation, this difference in

initial forest cover fractions will contribute to the difference of the deforestation effects
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across the scenarios. Such a nonlinearity has been demonstrated in simulations by Li

et al. (2016) for the total effects (locally induced plus remotely induced). We examine if

this nonlinearity is also present for the locally induced changes in surface temperature,

and to what extent this nonlinearity contributes to the differences in the temperature

response across LCC scenarios.

3.2 Methods: Look-up approach for the local ef-

fects

To infer locally induced changes in surface temperature from LCC –modeled here as a

replacement of forests by grasslands– we proceed as follows (Fig. 3.1a): We simulate

changes in surface temperature following a step-wise reduction in the fraction that is

covered with forest within each grid cell (’forest fraction’). Then, we isolate the local

effects as described in chapter 2. In each grid cell, we interpolate the values that we

obtained from the step-wise deforestation. The resulting curves then serve as look-up

tables to infer temperature change from different LCC scenarios without the need for

additional simulations: We insert the forest fractions at the start and the end of a

scenario, and we obtain the change in surface temperature that is locally induced by

this change in forest fraction (black arrow in Fig. 3.2).

3.2.1 From simulations to look-up tables

First, we simulate changes in surface temperature following a reduction of forest frac-

tion. We use the coupled land–atmosphere model ECHAM6/JSBACH (Giorgetta et al.,

2013; Reick et al., 2013) at horizontal resolution T63 (about 1.9◦). In each experiment,

we simulate 30 years after a 5-year spin-up. We impose present-day background cli-

mate: we prescribe sea surface temperatures, sea ice, and CO2 for the years 1976 - 2005

from the MPI-ESM CMIP5 (Coupled Model Intercomparison Project, phase 5) his-

torical simulation (Giorgetta, 2012a). Following the approach of ’sparse’ deforestation

described in chapter 2, the conversion from forests to grasslands is performed in 1 out

of 8 grid cells arranged in a regular spatial pattern (see Fig. 1 there). In the remaining

cells, present-day vegetation is left unchanged. This way, we ensure that background

climate (the influence of which we investigate separately, see section 3.2.3) is not al-

tered substantially by deforestation. To decrease the dependence of our results on the

exact location of the deforestation grid cells, we additionally simulate deforestation in

1 out of 8 grid cells in a spatial pattern that is shifted by two grid cells. For both the

’shifted’ and ’unshifted’ simulations, we then isolate the local effects by removing non-

local effects and noise related to climate variability (for details see chapter 2). In the

following, we consider the mean of the local effects from the ’shifted’ and ’unshifted’

simulations. Going beyond the simulations described in chapter 2, we isolate the local
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Figure 3.1: Conceptual diagram illustrating how changes in surface temperature are obtained

for a given scenario of changes in forest fraction. See also section 3.2 for a methodological

overview of the look-up approach. a) We insert forest fraction for land-use (LULCC) or

climate–induced land cover change (CILCC) into the look-up tables (see Fig. 3.2) to obtain

the corresponding temperature changes. The change in surface temperature ∆Tsurf depends

on the forest fractions at the beginning (c1) and end (c2) of the scenario. b) We obtain the

effect of warmer background climate (WARM) by comparing the effects in present-day back-

ground climate to the effects in a warmer background climate. To this end, we insert changes

in LULCC+CILCC into two look-up tables that were obtained for different background cli-

mates. The colors correspond to the colors in Fig. 3.

effects not only for complete deforestation within a grid cell, but deforest in steps of

25% starting from 100% forest cover in the vegetated part of each grid cell. The bare

land part of each grid cell is left unchanged. We have then 5 forest fractions × 2

(shifted and unshifted) = 10 simulations.

For each land grid cell, we compute 30-year means for each of the five experiments

(illustrated by the red dots in Fig. 3.2). We interpolate these means with a cubic

spline. Using this curve s() as a look-up table, we can convert a given change in forest

fraction within the respective grid cell (induced by LULCC, CILCC or both) into a

locally induced change in surface temperature (black arrow):

∆Tsurf (c1, c2) = s(c2)− s(c1), (3.1)

where c1 and c2 denote the forest fractions in the start and end of the LCC scenario.
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Figure 3.2: Illustration of the look-up approach for one selected grid cell. Shown are the

local effects from the five simulations with different forest fractions (red dots), the resulting

interpolated look-up curve (black) and an artificial look-up line interpolating linearly between

100% and 0% forest cover (gray). The vertical axis denotes locally induced changes in surface

temperature with respect to zero forest fraction. The arrows show the respective changes in

surface temperature for a change in forest fraction from c1 to c2. In this example, the

calculated change in surface temperature would be underestimated when using the linear

look-up line.

3.2.2 Forest fraction scenarios

We calculate the locally induced changes in surface temperature for various LCC scenar-

ios: The historical scenario (between 1850 and 2005) and the future scenarios RCP2.6,

RCP4.5, and RCP8.5 (between 2006 and 2099) of CMIP5. To determine the respective

temperature response, we require the initial and final forest fractions (see equation

3.1). These forest fractions are based on the land-use transitions dataset by Hurtt

et al. (2011), which is translated into geographical distributions of the plant functional

types of the MPI-ESM for CMIP5 as described in the paper by Reick et al. (2013)

(see Fig. 3.4 for LULCC–induced forest fraction changes in the respective scenarios).

While we change the forest fractions within the vegetated part of a grid cell, we keep

this vegetated fraction fixed (see Appendix section B.1).

For calculating forest fraction changes due to CILCC in the respective scenarios, we

follow the approach by Schneck et al. (2015) and use the cover fractions from two

existing simulations: The changes in forest fractions in the MPI-ESM simulations for

CMIP5 (Giorgetta, 2012a,b,c,d) include both LULCC from the land-use transitions by

Hurtt et al. (2011), and CILCC from JSBACH’s dynamic vegetation module (Reick

et al., 2013) for the respective background climate. In a second dataset, forest frac-

tion changes are derived from the transitions by Hurtt et al. (2011), but the dynamic

vegetation module is switched off (Schneck et al., 2015). We calculate CILCC as the
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difference in forest fraction change between these two datasets (see Fig. 3.5 for CILCC–

induced forest fraction changes in the respective scenarios). The forest fraction changes

can then be applied to the look-up tables to assess the impacts of LULCC and CILCC

on surface temperature. In the case of a nonlinear response of surface temperature to

deforestation, it matters whether LULCC or CILCC are applied first. However, in our

study this is irrelevant, as LULCC and CILCC are affecting different regions, and thus

the synergies between them are negligible (see Appendix Fig. B.1).

3.2.3 Determining the influence of a warmer background cli-

mate

In different background climates, a given change in land cover may affect surface tem-

perature differently. While in reality, background climate varies transiently, we consider

the difference between the effects in two distinct background climates: present-day and

the warmer RCP8.5 background climate. In addition to the look-up tables for present-

day background climate (described in section 3.2.1), we create separate look-up tables

for the warmer RCP8.5 background climate. For this, we repeat all 10 simulations

described in section 3.2.1, but we prescribe SSTs, sea ice and CO2 from the years 2070-

2099 from an MPI-ESM RCP8.5 simulation (Giorgetta, 2012d). Instead of RCP8.5, we

could also assess the effect of the climate change projected under RCP2.6 or RCP4.5.

However, for comparability across scenarios, we want to assess how one given change in

background climate influences the results for the respective LCC scenarios. We choose

the RCP8.5 forcing scenario because it exhibits the strongest warming of the RCP

scenarios, and thus can be seen as an upper bound for the relevance of background

warming.

We calculate the influence of the warmer background climate as follows (see Fig. 3.1

b): The LCC effects are calculated seperately for the look-up table corresponding to

the warmer background climate s̃() and the present-day background climate s(). Then,

we define the influence of the warming background climate as the difference between

these two results:

∆TWARM
surf (c1, c2) = [s̃(c2)− s̃(c1)]− [s(c2)− s(c1)]. (3.2)

Here, c1 and c2 are the forest fractions within a grid cell in the years 1850 and 2099. We

choose to include LCC since 1850 (and not only LCC in the RCP scenarios starting

in 2006) in the analysis of warming background climate for the following reasons:

Background warming (mainly warming SSTs) is projected to occur only in the future.

However, the resulting change of surface temperature within a land grid cell is not only

determined by LCC in the future, but also by the forest fraction before the background

warming. For instance, a given decrease in snow cover might cause warming in a fully

forested grid cell. However, if this grid cell was deforested before the year 2005, this
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warming might be even more pronounced: The albedo in the grassland grid cell (now

without snow masking of trees) might respond stronger to the change in snow cover.

Thus, the response of a grid cell to post-2005 background warming also depends on

pre-2005 LCC. Consequently, for calculating the effect of warming background climate,

we also account for LCC prior to the year 2005. Since our LCC scenario starts in the

year 1850, we do not account for LCC prior to the year 1850.

3.3 Causes of differences in temperature response

to LCC across scenarios

3.3.1 Land-use–induced and climate–induced land cover

change
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Figure 3.3: Comparison of LCC effects across scenarios. a) Changes in global forest area.

Within a scenario, there can be both areas of forest gain (positive values) and forest loss

(negative values). b) Contributions to local surface temperature changes from land-use–

induced LCC, climate–induced LCC, and warming background climate. The vertical axis

denotes surface temperature change averaged over land. For each scenario, the left bars

account for the nonlinear response, the right bars assume a linear response to deforestation.

When averaged over land, the locally induced changes in surface temperature of LULCC

cause a cooling in the afforestation scenario RCP4.5, but warming in all other scenarios,

which are the deforestation scenarios (Fig. 3.3 b; corresponding maps in Fig. 3.4).
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Figure 3.4: Land-use–induced land cover change (LULCC): changes in forest fraction and

resulting changes in local surface temperature. The changes in surface temperature are

obtained using the look-up map for present-day background climate and accounting for the

nonlinearity. For a description of the idealized scenario, see Appendix B.2.
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Figure 3.5: Climate–induced land cover change (CILCC): changes in forest fraction and

resulting changes in local surface temperature. The changes in surface temperature are

obtained using the look-up map for present-day background climate and accounting for the

nonlinearity.

The temperature changes of CILCC are negligible for historical deforestation and in-

duce a warming in all RCPs. As opposed to land-use–induced changes in forest cover,

in every scenario there are both areas with forest gain and forest loss (Fig. 3.5). Large

parts of these climate–induced gains and losses of forest area compensate for each other

and result in a relatively small temperature signal when averaged over the land sur-

face. Note that CILCC in semi-arid and arid regions may be overestimated because the

vegetated fraction of the grid cells there is overestimated by JSBACH (Brovkin et al.,

2013b). However, this overestimation has only a small impact on our globally averaged

results: Warming and cooling from forest fraction decrease and increase largely cancel
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each other out from these regions on a global scale. More important for the land-mean

signal are a forest die-back in the Amazon (especially in RCP8.5), where forest has a

cooling effect, and a northern shift of the treeline in the boreal regions (in all RCPs),

where forest has a warming effect. While the likelihood of forest die-back in a warmer

climate is still unclear (e.g., Sitch et al., 2008; Rammig et al., 2010), there is a broad

consensus that the boreal treeline is about to shift northwards while global warming

proceeds (ACIA, 2004).

3.3.2 Influence of changing background climate

In the warmer background climate, the surface warming induced locally by defor-

estation is stronger compared to the effects in present-day background climate. In

present-day background climate, a conversion from 100% forests to 100% grasslands

in an average grid cell leads to a warming of 0.61K, while the same effect in the

warmer background climate is a warming of 0.75K (see maps in Appendix Fig. B.3).

In the temperate and boreal regions, these changes are associated with reduced snow

cover fraction in the warmer background climate (not shown), in accordance with the

study by Pitman et al. (2011). Due to this reduced snow cover, deforestation leads

to a smaller albedo increase, and thus deforestation in the boreal regions becomes less

cooling. Also tropical deforestation in the warmer climate warms the surface more

compared to deforestation in present-day climate. This additional warming results

from stronger deforestation–induced decreases of turbulent heat fluxes in a warmer cli-

mate (not shown). Qualitatively, the change due to a warming background climate is

in accordance with the study by Armstrong et al. (2016): In their model, deforestation

leads to a cooling, and in a warmer background climate this cooling effect decreases.

The change in background climate affects the results for the RCP scenarios: The

effects of LCC in the warmer background climate are more warming compared to

deforestation effects in present-day background climate (yellow bars in Fig. 3.3 b).

For instance in RCP8.5, the influence of background warming on the LCC effects is

0.0204K. This number consists of the contributions from historical LCC (0.0128K) and

LCC occurring between the years 2006 to 2099 (0.0076K). Note that these two time

spans are summarized in the yellow bars because we assign LCC in both time spans

to the future scenario where background warming might occur. In contrast, the green

and black bars only contain the contributions from LCC in the respective scenario.

3.3.3 Influence of the forest fraction prior to LCC

Here, we assess whether surface temperature responds nonlinearly to the extent of

deforestation within a grid cell. Such a nonlinearity is relevant for the LCC scenarios:

In case of a strong nonlinearity, the LCC effect depends on the forest fraction prior to

deforestation. For instance in Fig. 3.2, the change from c1 to c2 (black arrow) would
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Figure 3.6: Influence of background climate warming (WARM): changes in local surface

temperature, for the LCC scenarios Historical+RCP2.6, Historical+RCP4.5, and Histori-

cal+RCP8.5. These are the areas where LCC takes place cumulatively during the whole

study period (years 1850 - 2100), and thus the areas that are affected by the changing back-

ground climate. The changes in surface temperature are obtained using the look-up maps for

present-day and RCP8.5 background climate accounting for the nonlinearity (see Appendix

Fig. B.3 for the effect of warming background climate on complete deforestation).

have caused substantially less warming if the same extent of deforestation, c2− c1, had

started from a higher forest fraction. In contrast, in case of a linear surface temperature

response the deforestation effect would be independent of the forest fraction prior to

LCC (gray arrow). The forest fraction prior to LCC varies across scenarios, and thus

a nonlinearity, if existing, could contribute to differences in the LCC effects across

scenarios.

Indeed, surface temperature responds nonlinearly to deforestation within most grid

cells (Fig. 3.7). Deforestation is generally more efficient (that means, deforestation

causes more temperature change per unit forest fraction change) when starting from a

low forest fraction. This nonlinearity is particularly strong in the temperate, arid and

tropical ecoregions, where surface temperature responds stronger to the last 25% than

the first 75% of deforestation (Fig. 3.7). The nonlinearity might arise from a nonlinear

response of the turbulent heat fluxes to changes in surface roughness (not shown).



3.3 Causes of differences in temperature response to LCC across scenarios 33

Figure 3.7: The nonlinearity differs across ecoregions. Top: Spatial averages of the already

interpolated look-up maps for different ecoregions. The vertical axis denotes locally induced

changes in surface temperature with respect to zero forest fraction. Bottom: Ecoregions that

are used for averaging.

Similar to this study, nonlinearities have been found in a previous simulation study by

Li et al. (2016). In their study, temperate and boreal changes in surface temperature

were particularly strong when starting deforestation from high initial forest fractions.

However, it is unclear if their nonlinearities were also present in the isolated locally

induced effects, or if their nonlinearities originated from changes in global circulation

due to their approach of global deforestation. Our results show that nonlinearities are

not only present in the total (local plus nonlocal) effects, but can also be strong for

the isolated locally induced changes in surface temperature. Thus, the deforestation

impact depends on the forest fraction prior to LCC.

The nonlinearity contributes to the differences across the scenarios. To show this, we

contrast our previous results (using the nonlinear look-up tables) by the results that

would be obtained when ignoring the dependence on the forest fraction prior to LCC,

and thus calculating surface temperature changes using linear look-up tables (black

curve versus gray line in Fig. 3.2). The results are summarized in Fig. 3.3 b: For

historical LULCC, the impact calculated using the nonlinear look-up tables is smaller

than using the artificial linear look-up tables because the forest fraction prior to LCC

in the historical scenario is relatively high (54% in the year 1850). The same is true for

in RCP4.5, because LULCC largely consists of a reversal of historical deforestation. In

the RCP2.6 scenario, the difference between the results for linear and nonlinear look-up

tables becomes smaller, and in RCP8.5 the effect using the nonlinear look-up tables

is even stronger compared to the results for the linear look-up tables. This is partly

because the forest fractions prior to LCC are smaller than in the historical scenario
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(30% in the year 2005 for both RCP2.6 and RCP8.5).

3.4 Discussion

We use a look-up approach to calculate the locally induced changes in surface temper-

ature. Compared to other methods for isolating the local effects (Kumar et al., 2013;

Malyshev et al., 2015; Lejeune et al., 2017b), this approach has two advantages: First,

the look-up approach allows us to assess the relative contribution of the three factors

LULCC, CILCC, and WARM, without the need to perform computationally expensive

simulations for each factor and scenario separately. Second, our approach allows us to

assess the importance of the nonlinearity in the response, and thus the dependence on

the forest fraction prior to deforestation.

The look-up approach requires mutual independence of the LCC effects between dif-

ferent grid cells. For the local effects in this study, this independence is given because

the local effects within a grid cell are largely independent of LCC elsewhere (chapter

2). However, the nonlocal contributions from LCC are highly dependent on the spatial

extent and distribution of LCC (e.g., Swann et al., 2012; Devaraju et al., 2015). Thus,

the look-up approach cannot be extended to include remotely triggered effects such as

sea-ice–albedo feedbacks (e.g., Swann et al., 2010; Davies-Barnard et al., 2014).

The locally induced changes in surface temperature are relatively small when averaged

over land, but can be substantial on the local scale (Figs 3.4, 3.5, and 3.6). However, we

display land average values in Fig. 3.3 for the sake of comparability across factors and

scenarios. Apparently, the averaging over all land areas partly obscures the fact that

particularly the factors CILCC and WARM are warming locally in some regions, while

they cool locally in others. Thus, their relative importance is larger than suggested by

Fig. 3.3b because the averaging artificially attenuates some of their effects (Appendix

Fig. B.5).

There is a large spread in the response to LCC across the CMIP5 models, even for the

isolated local effects (Kumar et al., 2013; Lejeune et al., 2017b). Also the dependence

on forest fraction prior to LCC and the three considered factors may differ across

models, both concerning their relative importance and absolute quantification. Rather

than giving an exact quantification, this study should be seen as illustrating that the

relative contribution of the three factors can differ substantially across scenarios, up

to a similar contribution of CILCC and WARM as compared to LULCC for future

scenarios. Thus, our study suggests that all three factors contribute substantially to

the total climate effects of LCC.

While forest fractions prior to LCC have a relatively minor effect on the considered

scenarios, they can be essential in other LCC scenarios. To illustrate this, we extend

our assessment of realistic LULCC scenarios by an “idealized” deforestation scenario

(see Appendix B.2) similar to the experimental set-up proposed for the Land-Use Model
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Intercomparison Project (LUMIP) within CMIP6 (Lawrence et al., 2016). In such an

idealized scenario, surface temperature responds particularly weak because of the high

forest fractions prior to deforestation (see Fig. 3.4 and Appendix Fig. B.4). These

results highlight the need to be aware of the nonlinearity when comparing deforestation

effects across scenarios. To evaluate whether the temperature response depends on

the forest fraction prior to LCC in reality, further studies might assess the nonlinear

behavior in observational datasets (e.g., Li et al., 2015; Alkama and Cescatti, 2016).

3.5 Conclusions

Previous studies found that the climate effects of LCC differ across scenarios because

of differences in the spatial extent and spatial distribution of land use (e.g., Brovkin

et al., 2013b). Going beyond this, we identify two reasons why the locally induced

changes in surface temperature differ across scenarios:

First, the relative contribution from land use, natural vegetation dynamics and warm-

ing background climate vary across scenarios. Historically, the locally induced changes

in surface temperature have been dominated by land-use–induced land cover change

(LULCC). In the scenarios for future development, the more indirect factors (warm-

ing background climate (WARM) and subsequent climate–induced land cover change

(CILCC) might become of equal importance compared to land use. Background cli-

mate varies across scenarios, models and ensemble members (e.g., Hawkins et al., 2009),

and for a given background climate, natural vegetation dynamics can differ substan-

tially across dynamic global vegetation models (e.g., Sitch et al., 2008). Our results

suggest that both uncertainties in the development of background climate and natural

vegetation dynamics might add to the uncertainty of the LCC effects across models

beyond the uncertainties in the implementation of LULCC and differences in the model

parametrizations.

Second, forest fractions prior to deforestation vary between the historical scenario and

future projections. These initial forest fractions influence the LCC effects, because

surface temperature within a grid cell responds nonlinearly to deforestation. These

results have implications beyond this study: pre-LCC forest fractions differ not only

across scenarios, but also across models (e.g., de Noblet-Ducoudré et al., 2012). Thus,

the nonlinearity might contribute to inter-model differences of LCC effects. If obser-

vational studies confirm our findings, the nonlinearity may also be relevant for local

climate change mitigation.
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Chapter 4

The neglected nonlocal

biogeophysical effects of

deforestation1

Deforestation impacts surface temperature locally by altering the exchange of heat,

moisture and momentum between the land surface and the atmosphere (’local effects’),

but also at neighboring or remote regions (’nonlocal effects’). Observations indicate

that local effects induce a warming in most locations while climate models show a global

mean cooling when simulating global deforestation. Here, we show that a strong albedo-

induced nonlocal cooling in climate models strongly contributes to these conflicting

results. When averaged globally, we find nonlocal cooling not only when simulating

the biogeophysical effects of global deforestation, but also when simulating realistic

areal extents and spatial distributions of deforestation. We conclude that, because the

observations cannot capture the nonlocal effects, climate models are needed to better

understand and quantify the full climate effect of deforestation.

4.1 Introduction

In the recent years, global-scale datasets based on observations revealed that defor-

estation substantially influences surface temperature locally (Li et al., 2015; Alkama

and Cescatti, 2016; Bright et al., 2017). Satellite-based observations measured the dif-

ference in surface temperature of forested versus open land either in space (Li et al.,

2015) or in time (Alkama and Cescatti, 2016), and a semi-empirical approach em-

ployed in-situ observations from the FLUXNET database (Bright et al., 2017). The

observation-based datasets provide valuable information not only for local mitigation

and adaptation measures (Bright et al., 2017) but can also serve as a benchmark for

1In collaboration with C. H. Reick, Q. Lejeune, and J. Pongratz.
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the evaluation of deforestation effects in climate models (Alkama and Cescatti, 2016).

Although the underlying methods differ substantially (Methods), these observation-

based datasets largely agree that local effects of deforestation induce a warming in

most regions, especially in the low and mid latitudes while there is less agreement

about a slight cooling from the local effects of high-latitude deforestation (Appendix

Fig. C.1).

Similar to the observations, the biogeophysical effects of global-scale deforestation in

climate models induce a warming in low latitudes and a cooling in high latitudes

(Brovkin et al., 2009; Davin and de Noblet-Ducoudré, 2010; Devaraju et al., 2015).

However, the latitude at which deforestation becomes cooling is shifted much further

south in models (e.g., Zhang et al., 2014a), and also the oceans contribute to a cooling

(e.g., Davin and de Noblet-Ducoudré, 2010). There seems to be a surprising discrepancy

between a strong global mean cooling of more than 1.3K for global deforestation in fully

coupled climate models (Bala et al., 2007; Brovkin et al., 2009; Davin and de Noblet-

Ducoudré, 2010; Devaraju et al., 2015) and a domination of deforestation-induced

warming in the observations.

We hypothesize that the nonlocal effects are responsible for this apparent discrepancy.

Large-scale deforestation in climate models may trigger substantial nonlocal effects via

advection and changes in circulation (Swann et al., 2012; Devaraju et al., 2015). On the

other hand, nonlocal effects in the observations cancel out by construction because

changes triggered by deforestation at one location affect both forested and nearby open

land at other locations in a paired-site set-up (Bright et al., 2017). Thus, the absence of

nonlocal deforestation effects in observation-based datasets may explain the apparent

discrepancy of ’mostly warming’ in observations and ’mostly cooling’ in climate models.

This hypothesis could previously not be tested because until recently (see chapter 2)

local and nonlocal effects in climate models could not be separated. Despite their

possible importance, the nonlocal effects are still lacking a thorough understanding.

For instance, it is unclear whether the nonlocal effects only exist in idealized scenarios

of large-scale deforestation or also in more realistic deforestation scenarios because the

nonlocal effects may depend on the areal extent (Lawrence and Vandecar, 2014) and

location (Devaraju et al., 2015) of deforestation.

Here we investigate to what extent a cooling associated with nonlocal effects can explain

differences between simulations and observations. In simulations of deforestation with

the fully coupled climate model MPI-ESM (Giorgetta et al., 2013) we use a recently

developed method (see section 2.2.3) to separate local and nonlocal biogeophysical

effects. We bridge the gap between simulations of idealized large-scale deforestation

and more plausible scenarios of deforestation by analyzing the local and nonlocal effects

of different areal extents and different spatial distributions of deforestation. To assess

the robustness of the nonlocal effects, we compare changes in surface temperature for

historical and future deforestation across a wide range of climate models.
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4.2 Methods

4.2.1 Separation of local and nonlocal effects in the MPI-ESM

In simulations from the MPI-ESM, we separate local and nonlocal effects as follows

(see also section 2.2.3): We define the nonlocal effects as the simulated signal ad grid

boxes that were not deforested. We spatially interpolate the nonlocal effects to the

deforested grid cells located in between. At these deforested grid cells we then define

the local effects as the simulated signal minus the nonlocal effects. For the local effects

displayed in Figs. 4.1 and C.1, we spatially interpolate the local effects also to the

un-deforested grid cells.

We apply this separation of local and nonlocal effects to simulations with the climate

model MPI-ESM at about 1.9◦ resolution. For all simulations, we use an interactive

ocean because this is essential for capturing the full biogeophysical response to defor-

estation (Davin and de Noblet-Ducoudré, 2010). We run each simulation experiment

for 350 years and analyze the last 200 years. In order to only simulate the biogeo-

physical effects, we prescribe CO2 concentrations at preindustrial level. We simulate

climate in a forest world where forest cover is prescribed in the entire vegetated part

of all model grid cells. In order to investigate the sensitivity of the nonlocal effects

to an increasing deforestation area, we completely replace forest by grasslands in one,

two, or three of four grid cells (simulations ’1/4’, ’2/4’, and ’3/4’) in a regularly spaced

pattern (coloured grid boxes in Fig. C.2).

A better understanding of the nonlocal effects requires knowledge about the location

of deforestation where the nonlocal effects are triggered. While a given nonlocal effect

cannot be attributed to a specific deforestation location, we can constrain the nonlocal

effects to deforestation of the high, mid, and low latitudes by simulating deforestation

in these latitudinal bands separately (simulations ’low latitudes’ (17◦ S - 17◦N), ’mid

latitudes’(17◦ - 41◦ S and 17◦ - 41◦N), and high latitudes (>41◦ S and >41◦N)). The

exact latitudes were chosen such that the areal extents of deforestation (about twice

the historically deforested area) are approximately equal to the areal extent in the ’1/4’

simulation in all three simulations. To analyze the nonlocal effects of a more realistic

spatial distribution, we deforest the same areal extent but we locate deforestation grid

cells near areas that were historically deforested (simulation ’1/4 historical’). In these

four simulations, we deforest only three of four grid cells in the respective region, so we

are still able to separate local and nonlocal effects. While in these simulations all surface

properties (albedo, evapotranspiration efficiency, surface roughness) are changed from

forest to grass values, in an additional simulation we only change surface albedo from

forest to grass values in 3/4 of all grid cells (simulation ’only albedo’). Like this, we can

assess the role of changes in surface albedo for the local and nonlocal effects separately.
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4.2.2 Isolation of local and nonlocal effects across models

In order to compare local and nonlocal effects across climate models, we isolate the local

effects from existing simulations of the biogeophysical effects of changes in forest cover

in other fully coupled climate models. For this particular set of existing simulations

(historical, RCP2.6 and RCP8.5, see Table 5.1), we cannot use the separation approach

described above because deforestation in these plausible scenarios deforestation does

not happen in a regular spatial pattern that includes no-deforestation grid cells. Thus,

we isolate the local effects by using the moving-window approach of (Lejeune et al.,

2017a). We then calculate the nonlocal effects as the simulated total minus local effects,

which is different from the approach above where we first isolated the nonlocal effects

and then used them for obtaining the local effects. We use the last 30 years in which

data are available for all models. These years are 1971 - 2000 for historical changes

in forest cover, and 2070 - 2099 for changes in forest cover in the RCP simulations.

Different numbers of ensemble members are available for the different models. For

instance, for RCP2.6 in the MPI-ESM, there are 3 ensemble members with and 2

without deforestation. Thus, in Fig. 4.4 we show 3× 2 = 6 combinations of ensemble

members. For the numbers of available ensemble members in the respective models,

see Appendix Table 5.1.

4.2.3 Comparison of the effects on surface temperature in the

MPI-ESM to observational datasets

We compare simulated total, local and nonlocal effects on surface temperature in the

MPI-ESM to two datasets inferred from satellite observations (Li et al., 2015; Alkama

and Cescatti, 2016) and one semi-empirical dataset (Bright et al., 2017) based on

FLUXNET observations. A these datasets should be compared with care not only

because the spatial coverage and the underlying methods differ strongly. While the

two satellite-based datasets (Li et al., 2015; Alkama and Cescatti, 2016) only employ

observations under cloud-free conditions, the ground-based observations (Bright et al.,

2017) are free of this cloud bias. Conversions between different vegetation types are

analyzed in the different datasets. The dataset by (Li et al., 2015) considers differences

between forests and ’open land’ (grasslands and croplands). The dataset by Alkama and

Cescatti (2016) considers forest cover changes related to different drivers such as forest

clearings for agriculture, forestry, or disturbances such as forest fires or windstorms

(Hansen et al., 2013). For the dataset by Bright et al. (2017), we average the data of

their Figs. 2 d), e), and f) which examine the conversion between different forest types

and grass. We weigh this average with the occurrence of the respective forest type in

MPI-ESM.

For the observational range in Fig. 4.1, we average latitudinally over locations where

values in at least one of the three datasets are available. For the dataset by Alkama
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and Cescatti (2016), we weighted the data for the latitudinal average with the forest

loss at the respective locations. The corresponding Appendix Fig. C.1 shows only

locations where forest loss exceeds 1% in the analysis time frame (years 2003 - 2012).

4.2.4 Deforestation-induced warming due to land carbon loss

To provide a first-order estimate of the importance of biogeophysical effects to those of

deforestation–related carbon emissions we estimate how much carbon would be released

to the atmosphere by the deforestation applied in the ’1/4 historical’ simulation. For

this, we scale the respective deforestation areas with carbon values of different forest

types as used in a bookkeeping model for land-use emissions (Hansis et al., 2015). The

range in Fig. 4.2 includes an upper estimate (starting with values for primary forest

of the default dataset used in that study) and a lower estimate (starting with values

for secondary forest of the alternative dataset with lower carbon values). The resulting

change in carbon is then converted in a change into global mean temperature using

the MPI-ESM value of the transient response to cumulative emissions (Gillett et al.,

2013).

4.3 Towards an understanding of the nonlocal ef-

fects

4.3.1 Nonlocal effects exacerbate comparison against obser-

vations

We find that our hypothesis is confirmed. In regions where observations are available,

the changes in surface temperature from nonlocal effects contribute to the difference

between the local effects in the observation-based datasets (Li et al., 2015; Alkama and

Cescatti, 2016; Bright et al., 2017) and the total (local plus nonlocal) effects in the MPI-

ESM (Fig. 4.1 and Appendix Fig. C.1). The local effects from the MPI-ESM largely

lie within the range of these observations. In the northern mid and high latitudes,

the local effects in the model match the observations reasonably well. However, for

deforestation of three of four grid cells (simulation ’3/4’) a nonlocal cooling of up to

0.9K strongly contributes to the difference between total effects and observations. The

nonlocal effects may depend on the areal extent of deforestation (see next paragraph)

and thus even be stronger in the case of deforestation in all grid cells globally.

There are regions where even the isolated local effects in the model do not match the

observations particularly well. For instance, in the southern-hemisphere tropics the
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Figure 4.1: Comparison of biogeophysical effects on surface temperature in the MPI-ESM

versus observations. The shaded area in the latitudinal plot indicates the range of three

observation-based datasets (Li et al., 2015; Alkama and Cescatti, 2016; Bright et al., 2017),

the lines indicate total, local and nonlocal effects when simulating deforestation of three of

four grid cells (’3/4’) in the coupled climate model MPI-ESM. For the latitudinal averages,

values in the MPI-ESM are restricted to areas where values in at least one of the observational

datasets is available (bottom, land grid cells that are not stippled). The results for the MPI-

ESM are shown on the right. Top: total (local plus nonlocal) deforestation effects. Bottom:

local effects isolated as in section 2.2.3. The map for the nonlocal effects is shown in Fig. 4.3

a), and maps of the observation-based datasets are shown in Appendix Fig. C.1.

deforestation-induced local warming is underestimated by the MPI-ESM. There, either

the model could be biased due to a misrepresentation of processes, or the observations

could be biased because of high cloud cover in the satellite-based observations (Li et al.,

2015; Alkama and Cescatti, 2016) and large spatial gaps between the FLUXNET sites

(Bright et al., 2017).

4.3.2 Analysis of the nonlocal effects in the MPI-ESM

The importance of the nonlocal effects becomes even more apparent when not only

focusing on temperature changes in regions where observations are available but con-
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Figure 4.2: Drivers of the nonlocal cooling. The thin horizontal lines denote the globally

averaged temperature changes, and the colored rectangles denote the 95% confidence inter-

vals. The globally averaged nonlocal changes in surface temperature depend on a) the areal

extent of deforestation (1, 2 or 3 of 4 grid cells) and b) the location of deforestation (near

historically deforested areas or in low, mid, and high latitudes). The gray bar (’carbon’) rep-

resents an estimate of the temperature increase due to land carbon loss associated with the

’1/4 historical’ scenario; the corresponding values are obtained using a bookkeeping approach

and the transient response to cumulative emissions (Methods). c) the simulated processes.

The effects of only changing albedo are largely restricted to the nonlocal effects.

sidering changes in global mean surface temperature (Fig. 4.2). Spatially homogeneous

deforestation of three of four grid cells (simulation ’3/4’) results in a global mean warm-

ing of ∼ 0.1K for the local effects and a global mean cooling of ∼ -0.3K for the nonlocal

effects. The local warming is thus overwhelmed by a nonlocal cooling in our simula-

tions. The simulated ratio of 1 : -3 between global mean local warming and nonlocal

cooling remains constant when simulating deforestation of one, two, or three of four

grid cells. Thus, in contrast to previous studies (Lawrence and Vandecar, 2014), we

find that both local and nonlocal effects scale linearly with the number of deforested

grid cells (see also maps in Appendix Fig. C.2). Thus, the nonlocal effects dominate

the globally averaged response not only when simulating idealized large-scale defor-

estation as frequently performed in previous studies (Brovkin et al., 2006; Bathiany

et al., 2010), but also when simulating smaller areal extents of deforestation closer to



4.3 Towards an understanding of the nonlocal effects 43

3/4

41°S

41°N

high lats

41°S

17°S

17°N

41°N

intermediate lats

17°S

17°N

low lats

5.0 4.0 3.0 2.0 1.5 1.0 0.5 0.1 0.1 0.5 1.0 1.5 2.0 3.0 4.0 5.0
 Tsurf [K]

Figure 4.3: Nonlocal effects on surface temperature [K] in the MPI-ESM and the contributions

from deforestation in latitudinal bands. Changes in surface temperature when simulating

deforestation of three of four grid cells globally, in the high-, mid-, and low latitudes. The

dashed lines denote the borders of deforestation in the respective simulations.

those altered historically or projected for the next century.

The climate effects depend not only on the areal extent, but also on the location of

deforestation. While the 1 : -3 ratio was obtained by simulations in which deforestation

is distributed homogeneously across the globe, the nonlocal cooling also dominates

when simulating a more realistic spatial distribution of deforestation (’1/4 historical’)

in which deforestation is simulated in a spatial pattern similar to historical deforesta-

tion. Furthermore, the nonlocal effects exert a global mean cooling for deforestation

in all three latitudinal bands. For high-latitude deforestation, this cooling is in line

with the total biogeophysical effects in previous studies (Bonan et al., 1992; Betts,

2000; Mahmood et al., 2014). However, the nonlocal cooling in our simulations is even
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stronger for low- and mid-latitude deforestation (Fig. 4.2 b).

The global mean nonlocal cooling signal of low-latitude deforestation challenges the

wide-spread idea that the biogeophysical effects of tropical deforestation induce a warm-

ing (Bonan, 2008; Mahmood et al., 2014). Three aspects shed light into this apparent

contradiction: First, while we consider only biogeophysical effects, some studies in-

cluded the effect of land carbon losses related to tropical deforestation (Bala et al.,

2007; Bathiany et al., 2010), which contribute a strong warming. Second, some stud-

ies look only at the local effects (Li et al., 2015; Alkama and Cescatti, 2016; Bright

et al., 2017) or at least include the local effects (Claussen et al., 2001; Findell et al.,

2006), for which the global mean effect of low-latitude deforestation is also warming

in our simulations (Fig. 4.2 b). Third, even in our simulations the nonlocal effects

cause a regional surface warming of the low latitudes (Fig. 4.3) because of a regional

decrease in clouds and precipitation. However, the global average of the effects of low-

latitude deforestation is dominated by the nonlocal cooling that extends much beyond

the deforested regions (Claussen et al., 2001) (Fig. 4.3).

The change in surface albedo has been identified as the driver of the biogeophysical

cooling in deforestation simulations (Davin and de Noblet-Ducoudré, 2010). For a

better understanding of this cooling, we separate local and nonlocal effects resulting

from a change in only surface albedo from forest to grass values while preserving all

other surface properties. As expected, an increase in surface albedo leads to a cooling

in both the local and nonlocal effects because more solar incoming radiation is reflected

by the brighter grasslands. Surprisingly, the vast majority of this cooling is excluded

from the local effects (Fig. 4.2 c and Appendix Fig. C.2): within a brightened grid

box, the decrease in net solar radiation is largely balanced by latent and sensible heat

fluxes (Appendix Fig. C.3) and thus the local surface cooling is small. The decrease

in latent and sensible heat fluxes in the brightened grid cells leads to cooler and drier

air, and this cooler air is carried to neighboring and remote grid cells via advection.

Therefore the albedo-induced cooling is mostly found in the nonlocal effects and may

thus be lacking in the observations. This implies that, while the local temperature

response to deforestation is driven by non-radiative processes (Bright et al., 2017), the

radiative processes are essential for the nonlocal (and thus also the full) temperature

response.

4.3.3 Intermodel comparison of nonlocal effects

The nonlocal cooling is not only apparent in the MPI-ESM, but also in other climate

models. The global mean cooling in the MPI-ESM is rather small in comparison to

other models ranging between -1.3K and -1.6K for the biogeophysical cooling resulting

from global-scale deforestation (Bala et al., 2007; Davin and de Noblet-Ducoudré, 2010;

Devaraju et al., 2015). In realistic scenarios of deforestation, we assess the robustness

of the nonlocal cooling across a wide range of fully coupled climate models (Fig. 4.4).
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Figure 4.4: Comparison of local and nonlocal effects on surface temperature [K] across models.

Changes in global mean surface temperature for (red, blue) different combinations of ensemble

members and (black) the mean of all available ensemble members (Methods). Local effects

are isolated as in (Lejeune et al., 2017a) (Methods). The nonlocal effects are approximated

as the difference between simulated total and local effects. Shown are averages over the last

30 years of historical deforestation (years 1860 - 2000) and deforestation in the RCP2.6 and

RCP8.5 scenario (years 2006 - 2100).

We use a method to isolate the local biogeophysical effects from existing simulations

(Lejeune et al., 2017a) (Methods) of historical deforestation and deforestation in the

scenarios RCP2.6 and RCP8.5 (Moss et al., 2010), and we define the nonlocal effects as

the simulated total minus local effects. Consistently with our idealized experiments in

the MPI-ESM, the nonlocal effects induce a cooling in all models except in models where

only few ensemble members are available. Within one model, the spread across the

ensemble members is much smaller for the local effects (most values in Fig. 4.4 happen

to be plotted on top of each other) than for the nonlocal effects because the climate

variability is by construction largely included in the nonlocal effects (Kumar et al.,

2013; Lejeune et al., 2017b). The method that we use here to isolate the local effects

across models might underestimate the local effects (Lejeune et al., 2017a) (Appendix

Fig. C.4). An underestimated local warming would imply an underestimated nonlocal

cooling, so we think that this underestimation of the local effects does not affect our

conclusion that there is a tendency towards nonlocal cooling across the models.
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4.4 Conclusions and outlook

We conclude that the local effects alone –and thus also observations– yield a highly

incomplete picture of the climatic consequences of deforestation. The nonlocal effects

can strongly contribute to the mismatch between models and observations because

the albedo-induced nonlocal cooling may largely be excluded from observation-based

datasets. When focusing on global mean surface temperature, the nonlocal cooling by

far exceeds the local warming. Whether the local or nonlocal effects are considered to

be more important depends on the perspective. While the local effects are important

for a consistent model evaluation (Alkama and Cescatti, 2016) and may support local

adaptation and mitigation strategies (Bright et al., 2017), our results show that the

nonlocal effects are essential if the biogeophysical effects are considered for an imple-

mentation in policies that aim at mitigating global climate change.

Forests have been identified as a key component for the mitigation of global climate

change (Grassi et al., 2017). Observation-based studies suggested that afforestation,

originally intended to store carbon, might co-benefit from a local biogeophysical cooling

(Li et al., 2015; Alkama and Cescatti, 2016; Bright et al., 2017). But instead, when

including the nonlocal effects, we find that the biogeophysical effects may reduce the

carbon-related climate benefits of afforestation (estimated as ’carbon’ in Fig. 4.2, see

Methods). Before the biogeophysical effects can be included in climate policies, a

better understanding of the nonlocal effects is needed. Because the observations lack

the nonlocal effects, climate models are essential to better understand and quantify the

full climate effect of deforestation.
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Chapter 5

Summary, Conclusions and Outlook

5.1 Summary of methods

This thesis focuses on the separate analysis of the local and nonlocal effects of land

cover change (LCC) on surface temperature. In the following, the employed methods

are briefly summarized. A more detailed description can be found in the methods

section of the respective chapter.

All three main chapters of this thesis employ simulations of LCC using the Max Planck

Institute Earth System Model MPI-ESM (Giorgetta et al., 2013). The effects of de-

forestation in the MPI-ESM is calculated by comparing climate in two simulations:

In one simulation forests are prescribed in specific model grid cells, and in a second

simulation grasslands are prescribed in these grid cells. In all simulations atmospheric

CO2 concentrations are prescribed to simulate only the biogeophysical effects of LCC.

The local and nonlocal biogeophysical effects can be separated because LCC was only

performed in specific grid cells while leaving vegetation unchanged in other grid cells

in a regularly spaced pattern. For details of the separation approach, see section 2.2.3.

There are some methodological features that link all three main chapters, such as

the separation method for local and nonlocal effects, or methods that are shared by

two chapters, such as the comparison of local and nonlocal effects with observations

in chapters 2 and 4. However, there are also some methodological features that are

unique to the respective chapters:

• Chapter 2 focuses on the local effects. All simulations for this chapter are

performed using the land-atmosphere model ECHAM6/JSBACH3. Sea surface

temperatures (SSTs) and sea ice are prescribed in order to prevent strong LCC-

induced changes in background climate and in order to reduce climate-related

noise, and thus 30 years of simulations were sufficient for an analysis of the local

effects. The changes in the components of the surface energy balance are analyzed

separately, e.g. as in the paper by Luyssaert et al. (2014). This energy balance
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decomposition is employed separately for the local and nonlocal effects on surface

temperature to enhance process understanding.

• Chapter 3 investigates differences between the local effects between historical

LCC and plausible scenarios of future LCC. The background climate may differ

for LCC in the past and in the future and background climate may substan-

tially influence the LCC effects (Pitman et al., 2011). To study this, the set

of simulations from chapter 2 in present-day background climate is extended by

simulations in a warmer RCP8.5 background climate. Furthermore, a look-up ap-

proach for the local effects is developed by which a change in forest cover within a

grid cell can be directly converted into a resulting change in surface temperature.

To assess whether locally surface temperature responds linearly to a decrease in

forest cover, the experiments from chapter 2 of 100% of deforestation within the

grid boxes are extended by simulations of deforestation in steps of 25%.

• Chapter 4 focuses on the nonlocal effects. An interactive ocean model is es-

sential to simulate the full climate effect of LCC (Ganopolski et al., 2001; Davin

and de Noblet-Ducoudré, 2010), in particular for the nonlocal effects because

changes in climate that are induced by changes in SSTs are felt also in model

grid cells where vegetation remains unchanged. Thus, all simulations for this

chapter are performed using the fully coupled climate model MPI-ESM. Because

of the substantial climate variability the analysis is based on longer simulations

than in chapter 2, 200-year means are analyzed instead of 30-year means. Local

and nonlocal effects on surface temperature are separated not only for a regularly

spaced pattern of LCC but also for LCC concentrated in specific regions. In order

to improve process understanding, local and nonlocal effects are separated in a

simulation where forests are replaced by a ’bright forest’, so only surface albedo is

increased from forest to grass values while all other surface properties of the for-

est areas remain unchanged. An inter-model comparison for the nonlocal effects

is employed to assess the robustness of the nonlocal effects across models.

5.2 Lessons learnt from the isolation of the local

effects

Chapters 2 and 3 focus on the locally induced changes in surface temperature, which

could not be investigated independently of nonlocal effects (including climate variabil-

ity) in most previous studies. The main findings concerning the local effects are:

1. The approach that is developed in chapter 2 to isolate the local effects is robust.

Within one grid cell the local effects are largely independent of the areal extent

of LCC outside of this grid cell. Thus, the local effects are largely independent

of the LCC scenario.
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2. Both concerning the sign and the order of magnitude, the locally induced

changes in surface temperature in the MPI-ESM agree reasonably well with three

observation-based datasets (Li et al., 2015; Alkama and Cescatti, 2016; Bright

et al., 2017). Deforestation in the MPI-ESM locally induces an annual mean

warming in the tropics and mid latitudes as well as a cooling –with a strong

seasonal cycle– in the high latitudes.

3. The local effects depend on the background climate (Pitman et al., 2011), and

chapter 3 shows that this substantially contributes to differences between the

local effects for historical LCC and future LCC in the RCP scenarios.

4. Surface temperature in ECHAM6/JSBACH3 locally responds nonlinearly to

LCC. In the low and mid latitudes, the deforestation-induced warming is only

weak when reducing forest cover within a model grid cell from 100% to 25%, but

removing the last 25% of forests locally leads to a strong warming.

5.3 Lessons learnt from the isolation of the nonlocal

effects

Chapter 2 emphasizes that the nonlocal effects depend strongly on the areal extent

of LCC and that the nonlocal effects of global LCC, which could not be isolated in

previous studies, can be as large as the local effects in a set-up with prescribed SSTs.

In order to capture the full nonlocal effects, chapter 4 systematically investigates the

nonlocal effects of LCC in a fully coupled climate model. The main findings concerning

the nonlocal effects are:

1. In the case of where deforestation is applied in a regular spatial pattern, the

globally averaged nonlocal effects scale linearly with the number of deforested

grid cells. Thus, nonlocal effects can also be triggered for a small areal extent of

LCC.

2. The nonlocal effects depend on the spatial distribution of LCC. Deforestation in

the inner tropics leads to a nonlocal warming regionally, but on a global average

the nonlocal effects lead to a cooling for deforestation in the low, mid, and high

latitudes.

3. The increase in albedo is responsible for this nonlocal cooling. When only in-

creasing the albedo, the nonlocally induced cooling is even stronger compared to

simulations where all surface properties are switched from forest- to grassland

state.

4. The nonlocal cooling is not only apparent in the MPI-ESM but also in other

climate models, although a definite conclusion is exacerbated because in most

models the nonlocal effects are small compared to climate-induced variability.
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5.4 Both local and nonlocal effects matter

As described in chapter 2, the separate analysis of local and nonlocal effects, which

was not possible in previous studies, enables a deeper process understanding of the

underlying mechanisms for the local and nonlocal effects. The local effects are mainly

driven by changes in local surface properties whereas the nonlocal effects are driven by

changes in atmospheric conditions that are via advection also transported to locations

where no LCC happened. Because the mechanisms differ so strongly between local

and nonlocal effects, there are good reasons to investigate either of the two effects in

isolation. Whether the local or nonlocal effects should be considered depends on the

application, as is elaborated the following two paragraphs.

An isolation of the local effects may be beneficial in many situations. For instance,

the isolated local effects may serve as a testbed for an inter-model comparison of

biogeophysical LCC effects (Lejeune et al., 2017b). Previous inter-model comparison

studies struggled with a poor signal/noise ratio. As shown in chapter 2 and previ-

ous studies (e.g., Kumar et al., 2013), the local effects largely exclude climate-induced

noise thus an isolation of the local effects is essential in inter-model comparisons, espe-

cially for variables with a particularly poor signal/noise ratio such as precipitation. In

addition, even if the areal extent and spatial distribution of LCC differs across mod-

els (de Noblet-Ducoudré et al., 2012), the local effects are largely independent of the

spatial distribution of LCC (see chapter 2), and this robustness warrants a consistent

comparison across models. Furthermore, as shown in chapter 4, an isolation of the

local effects is essential when comparing observations against models because

the nonlocal effects substantially contribute to a mismatch between the local effects

in observations and the total effects of global deforestation in climate models. Finally,

a quantification of the local effects may be required for policies that aim at reducing

surface temperature locally.

Some applications may not require the isolated local effects but the nonlocal effects.

For instance, most people do not live in forests, but rather next to forests or even far

away from any forest. Thus for assessing the climatic consequences of LCC on living

conditions the nonlocal effects may be the key aspect. In particular the nonlocal

effects are essential for a possible implementation of the biogeophysical effects in in-

ternational policies that aim at mitigating regional to global climate change. Thus, a

better understanding and quantification of the nonlocal effect is required.

To conclude, this thesis establishes a link between the biogeophysical effects of large-

scale LCC and more plausible LCC scenarios. The local effects within a grid box are

largely independent of LCC elsewhere, while the nonlocal effects strongly depend on

the extent and spatial distribution of LCC. Furthermore, the nonradiative processes

are dominating the local effects (Bright et al., 2017) but this thesis emphasizes that

the radiative processes (mainly due to albedo change) are essential for the nonlocal ef-

fects and thus the total climate response. Thus, this thesis reconciles the gap between
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previous estimates of deforestation-induced negative radiative forcing (e.g., Rotenberg

and Yakir, 2010; Pongratz et al., 2010) and local warming in many locations in obser-

vations (Li et al., 2015; Alkama and Cescatti, 2016; Bright et al., 2017). Finally, the

new method to separate local and nonlocal effects opens pathways for further research

as outlined in the next section.

5.5 Pathways for further research

Expanding the understanding of LCC effects in the MPI-ESM

While this thesis contributes to clarifying how surface temperature is influenced by

LCC locally and LCC elsewhere, there are still open questions regarding the local and

nonlocal LCC effects in the MPI-ESM. Most of the following research questions might

even be tackled with existing simulations that were performed in the context of this

thesis.

1. Deforestation in the MPI-ESM influences temperature not only at the surface

but also temperature of the atmosphere. The decrease in surface rough-

ness that is associated with deforestation alters the redistribution of latent and

sensible heat between surface and atmosphere. Thus, surface temperature and

atmospheric temperature can be expected to react quite differently to deforesta-

tion. While we have shown that the local effects are much weaker for 2m-air

temperature (Fig. A.3.1) compared to surface temperature (Fig. 2.2), it is not

clear whether local effects exist for temperature of even the lowest layer of the at-

mosphere model or whether any temperature signal that reaches the atmosphere

is immediately advected away into neighboring and remote grid cells.

2. While this thesis focuses on surface temperature, the focus of further studies

may extend to additional variables and processes. For instance, it is unknown

how LCC-induced changes in cloud cover and associated cloud radiative effects

influence climate locally and elsewhere. Furthermore both local and nonlocal

changes in cloud cover and precipitation may be sensitive to the choice of the

convection scheme that is employed in the atmospheric part of the model.

Finally, both productivity and respiration on land are influenced by temperature

and the availability of soil water, both of which are influenced by the local effects.

This warrants research on the influence of the biogeophysical effects on the land

carbon storage.

3. Appendix A.2 and previous studies highlighted the strong seasonality of the local

effects (e.g., Malyshev et al., 2015) and the strong mitigation potential of the

local effects during heat extremes (Lejeune et al., 2017a). However, the role of

the nonlocal effects during heat extremes and the seasonality of the nonlocal
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effects remains largely unknown. Furthermore, a changing background cli-

mate may not only affect the land carbon storage (Schneck et al., 2015; Sonntag

et al., 2016) and the local biogeophysical effects of LCC (e.g., chapter 3), but also

the nonlocal effects may be substantially influenced e.g. by a decrease in snow

cover.

4. Chapter 4 opens pathways for a better understanding of the nonlocal ef-

fects. The different length scales at which the nonlocal effects act warrant more

research. For instance, Fig. 4.3 suggests that the nonlocal effects of low-latitude

deforestation induce a regional warming whereas the nonlocal cooling extends

much beyond the deforestation region. It remains unclear where the nonlocal

effects are exactly triggered, and new methodologies are needed for the more pre-

cise attribution of nonlocal effects to originating regions. Process understanding

may be improved by not only separating local and nonlocal effects of changes in

surface albedo but also the other surface properties evapotranspiration efficiency

and surface roughness.

5. All simulations were performed with a model version of the MPI-ESM that may

over-simplify some processes. For instance, all plant types within a grid cell

share one soil moisture reservoir, which may not be adequate in cases where

forests and grasslands are spatially clearly separated. A more adequate represen-

tation of hydrology and the implementation of a canopy model in the MPI-ESM

may improve the inclusiveness of the processes that are relevant for the bio-

geophysical LCC effects.

6. Living conditions not only depend on temperature but rather on perceived

temperature which is also influenced by humidity, solar and thermal radiation

and wind speed (e.g., Staiger et al., 2011). Future studies may focus on local and

nonlocal effects of LCC on perceived temperature.

Going beyond effects in the MPI-ESM and going beyond LCC

In this thesis, the approach to separate local and nonlocal effects was applied to the

biogeophysical effects of LCC with a focus on surface temperature in the MPI-ESM.

The separation approach presented in chapter 2.2.3 enables a wide range of applications

that reach far beyond this work.

A separate analysis of the local and nonlocal effects opens ways for improving process

understanding across models in inter-model comparison studies. Local and

nonlocal effects may be compared separately across models. Such a comparison may

identify whether the large spread that was found in previous intercomparison studies

(e.g., Pitman et al., 2009; de Noblet-Ducoudré et al., 2012; Boysen et al., 2014) orig-

inates from differences in land surface models or from differences in how atmosphere

models react to a given change in the land forcing.
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A ’cloud bias’ exists for local effects inferred from satellite-based observations. Satel-

lites can observe surface radiometric temperature only during cloud-free conditions

(e.g., Alkama and Cescatti, 2016), and the LCC effects under cloud-free conditions

may be different in cloudy conditions (e.g., Li et al., 2015). In addition, the satellite

observations may be biased because forests can actively influence cloud cover (Teul-

ing et al., 2017) and thus under certain conditions satellite observations might still be

available over open land but not over forests. To assess to what extent a cloud bias

influences satellite observations, surface radiometric temperature from fluxnet sites –

where temperature can be measured both under cloudy and cloud-free conditions– may

be employed. In a paired-site set-up (one over forest, one over grassland) the LCC ef-

fects may be separately analyzed for cloudy versus cloud-free conditions. In studies

that compare models and observations, the simulation results should be filtered for

cloud-free conditions in order to ensure a consistent comparison.

Local and nonlocal effects may enable a deeper process understanding not only for

the biogeophysical effects of land cover change but also for land management such

as irrigation and forest management. In addition, the separation approach may shed

more light onto a multitude of other land surface processes that may also influence

climate elsewhere such as wildfires. Finally, the separation approach could be employed

in studies on land-atmosphere–interactions such as the influence of soil moisture on heat

extremes.
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Appendix

A Appendix for chapter 2

A.1 Number of necessary simulation years for robust local

effects

Throughout this chapter we use 30 years of simulations in our data analysis. To

assess whether those 30 years are sufficient to identify the local contribution, we create

an ensemble of 5 members for sparse LCC. For each of those members, we compare

the mean of the first k years against the mean of all the years of the remaining four

members, for the local effects and the total effects (local plus nonlocal), respectively. As

a measure of inaccuracy, we calculate the Root Mean Square (RMS) deviation between

the two maps, evaluated at all LCC cells. Fig. A.1.1 illustrates that, for sparse LCC,

the RMS deviation is lower for the local effects than for the total effects. For the local

effects, the RMS deviation seems to stabilize after 30 years, indicating that simulating

longer than 30 years does not markedly increase accuracy of the results.

A.2 Regional analysis of seasonality for extensive LCC

Here we provide additional evidence for local and nonlocal effects being qualitatively

different. For this purpose, we explore the seasonality of local and nonlocal effects

separately. Local and nonlocal effects for boreal winter (DJF) and summer (JJA) are

shown in Figs. A.2.1 to A.2.4 for changes in surface temperature and precipitation. The

local changes in surface temperature vary seasonally: In the high northern latitudes,

the local effects in winter are a cooling of up to 3K (Fig. A.2.1 b), while in summer,

the local effects are a warming of up to 0.5K (Fig. A.2.2 b). In contrast, the nonlocal

effects on surface temperature have the same sign in DJF and JJA in large parts of

the boreal zone, such as northern Asia and Canada (Fig. A.2.1 d versus Fig. A.2.2 d).

For precipitation, the largest difference between DJF and JJA is the location of zones

in the tropics/subtropics where LCC leads to a reduction in precipitation; these zones

are further north in JJA for both local and nonlocal effects (Figs. A.2.3 and A.2.4).

While the maps presented in Figs. A.2.3 to A.2.4 provide information about the season-

ality of LCC-induced changes in surface temperature and precipitation, these figures
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Figure A.1.1: Root Mean Square (RMS) deviation of surface temperature Tsurf [K] for a

January and b July, RMS deviation over all land areas. The lines show means of the 5

obtained values. The y-axis denotes the number of averaging years.

do not give insight in the underlying mechanisms. We select four regions, indicated

by rectangles in Fig. A.3.1, where we identify the dominant mechanisms for local and

nonlocal effects of extensive LCC in different climate regimes. To this end, we performe

an energy balance decomposition in these four regions, and present the results in Fig.

A.2.5.

Canada and Europe represent temperate regions with and without long-lasting snow

cover. The local cooling in Canada in the winter and spring months (which is not

apparent in Europe) originates from a reduction in shortwave net radiation, induced

by an increase in surface albedo due to a combination of the local increase in snow

cover and the loss of snow masking after deforestation. In contrast, the nonlocal effects

exhibit an increase in shortwave net radiation, which partly originates from a nonlocal

decrease in snow cover. The Amazon and Australia represent regions with humid

and arid tropical/subtropical conditions, respectively. The local changes in latent and

sensible heat in the Amazon are presumably linked to the LCC-induced changes in
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Figure A.2.1: Boreal winter (DJF) change in mean surface temperature [K] due to a,c sparse

and b,d extensive deforestation. a,b local effects, c,d nonlocal effects. Mean over 30 years and

another 30 years from a simulation with LCC cells shifted by two.

Figure A.2.2: Boreal summer (JJA) change in mean surface temperature [K] due to a,c sparse

and b,d extensive deforestation. a,b local effects, c,d nonlocal effects. Mean over 30 years and

another 30 years from a simulation with LCC cells shifted by two.

local evapotranspirative efficiency, but also to local changes in precipitation. The local

changes in sensible heat in Australia are presumably originating from the local LCC-

induced decrease in surface roughness. In contrast, the nonlocal changes in latent and

sensible heat in Australia seem to be driven by the changes in precipitation. Local

and nonlocal effects can differ in sign (e.g., local increase versus nonlocal decrease in
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Figure A.2.3: Boreal winter (DJF) change in mean precipitation [mm/y] due to a,c sparse

and b,d extensive deforestation. a,b local effects, c,d nonlocal effects. Mean over 30 years and

another 30 years from a simulation with LCC cells shifted by two.

Figure A.2.4: Boreal summer (JJA) change in mean precipitation [mm/y] due to a,c sparse

and b,d extensive deforestation. a,b local effects, c,d nonlocal effects. Mean over 30 years and

another 30 years from a simulation with LCC cells shifted by two.

snow cover fraction in Canada) and seasonality of the respective climatic drivers (e.g.,

precipitation in the Amazon).
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Figure A.2.5: Energy balance decomposition of monthly mean changes in surface temperature

(Tsurf [K]) caused by extensive deforestation. Shown are a-d local effects and e-h nonlocal

effects as averages over regions indicated in Fig. A.3.1 b. The bars represent surface tem-

perature changes due to changes in components of the surface energy budget. The black line

indicates total changes in surface temperature, which is approximately the sum of the bars

in the respective month. The blue and gray lines indicate changes in precipitation (precip)

and snow cover fraction (snow fract).
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A.3 Results for 2m-air temperature

Fig. A.3.1 shows results analogous to Fig. 2.2 for 2m-air temperature for comparison

against other published or follow-up studies. The conclusions are qualitatively the same

as for surface temperature and precipitation: The two local effects are similar, while the

nonlocal effects differ substantially. Note that the local effects on 2m-air temperature

in our model are substantially weaker than the effects on surface temperature. In

contrast to the local effects, our nonlocal effects influence 2m-air temperature and

surface temperature to a similar degree (subfigures d of Fig. 2.2 versus Fig. A.3.1).

Figure A.3.1: Difference in mean 2m-air temperature [K] for a,c sparse and b,d extensive

deforestation. a,b Local effects, c,d nonlocal effects. Statistical significance is calculated

according to a 5 % level in a Student’s t-test accounting for autocorrelation (Zwiers and von

Storch, 1995). Note that we mark grid cells that are not statistically significant. The regions

shown as rectangles in b,d denote areas selected for the regional energy balance decomposition

in Fig. A.2.5.

This different impact of local and nonlocal effects on 2m-air temperature may arise

from the different underlying mechanisms: The local effects originate from changes in

local surface properties and the land surface directly responds, while the lowest at-

mospheric layer (which represents the lowest ∼40m) mainly adjusts to these changes

in surface variables. This adjustment is incomplete, because some of the tempera-

ture change is diluted by horizontal advection. In MPI-ESM, 2m-air temperature is

calculated by interpolation between surface temperature and the lowest level of the

atmosphere, based on Monin-Obukhov similarity theory. Thus, similar to the lowest

atmospheric layer, 2m-air temperature is less affected by LCC compared to surface

temperature. In contrast, the nonlocal effects (e.g., changes in global circulation pat-

terns) are primarily affecting the atmosphere, and the land surface variables adjust to
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the changed atmospheric conditions. Because the temperature change in the land grid

cells is not diluted by advection to adjacent land grid cells, the surface temperature

can fully adjust to the changed atmospheric conditions. Thus, the nonlocal effects on

surface temperature and 2m-air temperature are almost equally affected by LCC.

A.4 Interpolation method and interpolation errors

The separation method includes horizontal interpolation between grid cells for the

isolation of both local and nonlocal effects. Inland, where data points with known

values are available at all four surrounding sides, we apply bilinear interpolation. At

coastal regions, where values for at least one side is missing, we apply nearest-neighbor

extrapolation. For simplification, we refer to this combination of interpolation and

extrapolation as “interpolation” here and in the main text.

Figure A.4.1: Analysis of interpolation error for changes in surface temperature due to sparse

LCC. The panels show a,c,e, local effects and b,d,f nonlocal effects of a,b the unshifted

simulations, c,d the shifted simulations and e,f the differences between unshifted and shifted

simulations.

In order to assess errors associated with this interpolation, the simulations with the

LCC cells at their original location (here referred to as “unshifted”) are complemented
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Figure A.4.2: Analysis of interpolation error for changes in surface temperature due to exten-

sive LCC. The panels show a,c,e, local effects and b,d,f nonlocal effects of a,b the unshifted

simulations, c,d the shifted simulations and e,f the differences between unshifted and shifted

simulations.

with additional simulations. In these additional simulations, we shift the LCC cells

by two (here referred to as “shifted”). We isolate local and nonlocal effects separately

for the unshifted and shifted simulations, both for sparse LCC (Fig. A.4.1) and for

extensive LCC (Fig. A.4.2). Considering the nonlocal effects, a fair amount of inter-

annual variability can be seen in the differences between the unshifted and shifted

versions (see subfigure f of Fig. A.4.1). The local effects are by construction largely free

of this inter-annual variability, so the differences between unshifted and shifted local

effects largely consist of interpolation errors. Furthermore, the local effects already

include the interpolation errors from the nonlocal effects (via step d of the step-by-step

instruction of the separation approach in the main text). Thus, when analyzing the

overall interpolation errors, we focus on the local effects in the following.

The shifted and unshifted local effects are generally in good agreement (subfigures

a versus c in Figs. A.4.1 and A.4.2). Globally, the interpolation errors are similar

for sparse and extensive LCC: the root mean square difference over land between the

unshifted and shifted local effects is 0.35K for sparse LCC and 0.39K for extensive

LCC. In some regions, the interpolation errors can not be neglected, especially in the
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surroundings of mountain ranges such as the Andes or the Himalaya (subfigures e in

Figs. A.4.1 and A.4.2) where the interpolation errors are larger than 1K. Thus, for

the analysis in the main text, we consider the combined information from shifted and

unshifted simulations in order to decrease the dependence on the exact location of the

LCC cells.

Figure A.4.3: Analysis of interpolation error for changes in surface temperature due to chess-

board LCC. The panels show a,c,e, local effects and b,d,f nonlocal effects of a,b the unshifted

simulations, c,d the shifted simulations and e,f the differences between unshifted and shifted

simulations.

In follow-up studies that require an isolation of the local effects, the horizontal inter-

polation errors can be reduced as follows: Instead of choosing a sparse or extensive

pattern in the isolation approach, a chessboard-like pattern of altering one out of two

grid cells may be chosen. Thus, the calculation of both local and nonlocal effects re-

quires horizontal interpolation only from directly adjacent grid cells. This “chessboard

LCC” reduces the horizontal interpolation errors (see subfigure e in Fig. A.4.3): The

root mean square difference over land between the unshifted and shifted local effects

is then reduced to 0.29K.
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A.5 Total local plus nonlocal effects

To give an idea about the total (local plus nonlocal) effects of extensive deforestation,

we provide the sum of local and nonlocal effects for changes in surface temperature

and precipitation (Fig. A.5.1). The surface temperature change maps were obtained

by adding the local and nonlocal effects of Fig. 2.2, The precipitation change maps

were obtained by adding the local and nonlocal effects of Fig. 2.3. Because the nonlocal

effects of sparse LCC are small, the local plus nonlocal effects of sparse deforestation

are similar to the local effects alone. In contrast, the strong nonlocal effects of extensive

LCC magnify the local effects in some regions, as can be seen in the inner tropics or

the high northern latitudes.

Figure A.5.1: Sums of local and nonlocal effects for a,c sparse and b,d extensive deforestation.

Subfigures a and b denote changes in surface temperature [K], c and d denote changes in

precipitation [mm/y].
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B Appendix for chapter 3

This appendix provides additional information for chapter 3. The figures are numbered

according to the order of their reference in the main text.

• Fig. B.1 shows that the synergies between land-use–induced and climate–induced

land cover change are small. Thus, our choice of fist applying LULCC and then

CILCC for the results in the main text does not influence our conclusions.

• In section B.1 and Fig. B.2, we assess the influence of changes in the vegetated

fraction within a grid cell.

• Fig. B.3 displays the changes in surface temperature for complete deforestation

in two different background climates, and the difference of the two effects. This

difference is used for calculating the influence of a changing background climate

on the locally induced changes in surface temperature in the LCC scenarios as

described in section 3.3.2 of the main text.

• In Appendix B.2 and Fig. B.4, an idealized scenario is added to our assessment.

• Fig. B.5 shows results separately for areas where LCC leads to cooling and

warming, respectively.
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Figure B.1: Despite the nonlinearity it does not substantially matter whether we first cal-

culate LULCC or CILCC. The synergies (pink bars) between LULCC and CILCC are small

in all considered LCC scenarios, because LULCC and CILCC are active in different regions

(the affected regions in Figs 3.4 and 3.5 are mostly disjoint).

B.1 Influence of changes in the vegetated fraction

In addition to changing forest cover fractions (c) within the vegetated part of each grid

cell, the vegetated fraction (vegmax) is changing in a warmer climate due to natural

vegetation dynamics, altering the total forest fraction within a grid cell. For the results

in the main text, we fixed vegmax to the grid values of the year 2005, and only consid-

ered changes in c. Keeping this vegmax constant possibly leads to an underestimation

of the role of climate-induced land cover change. Here we want to estimate how big the

influence of changing vegmax can become. Note that when vegetated fraction increases,

bare land is replaced by both grasslands and forests, while our method only allows cal-

culating the effects of replacing forests by grasslands and vice versa, so the calculations

here should be understood as a rough estimate for the influence of changing vegmax.

Using the present-day look-up curve s for each grid cell, we estimate the contributions

of ∆c, ∆vegmax, and the synergy term ∆c∆vegmax as follows:

∆Tsurf(∆c) = s(c2100 − c2005) (5.1)

∆Tsurf(∆vegmax) = s(c2005 + c2005(vegmax2100 − vegmax2005))− s(c2005) (5.2)

∆Tsurf(∆c∆vegmax) = s(c2005 + (c2100 − c2005)(vegmax2100 − vegmax2005))− s(c2005)

(5.3)

where equation (5.1) describes the response in locally induced surface temperature due

to changes in c when vegmax is kept constant, equation (5.2) describes the response due
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Figure B.2: Influence of the changing vegmax in the RCP8.5 scenario. Changes in forest

fraction (left) and corresponding locally induced changes in surface temperature (right). Top,

middle and bottom figures correspond to equations 1, 2 and 3 in section B.1.

to changes in vegmax when c is kept constant, and equation (5.3) describes the synergy

between these two.

We assess the impact of the changing vegmax exemplary for the RCP8.5 scenario as

shown in Fig. B.2. The response due to a changing c (here land-use-induced plus

climate-induced land cover change) clearly dominates the response to changing vegmax

and the synergy term.

B.2 Influence of the pre-LCC forest fraction for an idealized

scenario

In section 3.3.3 of the main text, we examine the influence of pre-LCC forest fractions

on the temperature response in realistic LCC scenarios. Here, we complement this

assessment of realistic LULCC scenarios by an idealized deforestation scenario similar

to the experimental set-up proposed for the Land-Use Model Intercomparison Project

(LUMIP) within CMIP6 [Lawrence et al., 2016]: We deforest the same areal extent

as for historical deforestation, but we distribute the deforestation uniformly in highly
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forested areas (higher forest fraction than in 70% of all grid cells) by deforesting propor-

tionally to the 1850 forest fraction. Like this, we redistribute historical deforestation

to areas with high forest cover (see Fig. 3.4).

The deforestation-induced warming of historical and idealized deforestation is similar

when using the linear look-up lines, so on average, LCC in both scenarios is located

in areas which respond similarly to deforestation (see Fig. B.4). However, accounting

for the nonlinearity reduces the effect of historical deforestation substantially less than

idealized deforestation. This difference has two reasons: First, the pre-deforestation

forest fractions differ (on average 56% for historical, 70% for idealized deforestation in

the year 1850). Since deforestation is generally more efficient (that means, deforesta-

tion causes more temperature change per unit forest fraction change) when starting

from a low forest fraction (Fig. 3.7 in the main text), historical deforestation is on

average more efficient than deforestation in the idealized scenario. Second, historical

deforestation is concentrated on comparably few grid cells, and others remain largely

untouched. In contrast, idealized deforestation is distributed over many grid cells, so

the deforestation of each grid cell is small (Fig. 3.4) and does not reach the low forest

fractions, at which deforestation would be more efficient.

2.5 2.0 1.5 1.0 0.5 0.2 0.1 0.1 0.2 0.5 1.0 1.5 2.0 2.5

Figure B.3: Locally induced changes in surface temperature [K] for a conversion from 100%

to 0% forest cover in (top) present-day (1976 - 2005) background climate, and (middle) a

warmer (RCP8.5 in 2070 - 2099) background climate. Bottom: Difference of the two (in

RCP8.5 minus in present-day). Surface temperature responds strongly also in semi-arid and

arid regions because there the vegetated fraction is overestimated by JSBACH.
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Figure B.4: Comparison of LCC effects across scenarios. Same as Fig. 3.3 but including the

idealized scenario. a) Changes in forest area. b) Contributions to land-averaged local surface

temperature changes [K] from land-use-induced LCC, climate-induced LCC, and warming

background climate. The left bars account for the nonlinear surface temperature response,

the right bars assume a linear response to deforestation.
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Figure B.5: Taking spatial averages over land hides some of the signal because positive

and negative contributions cancel, especially for LULCC and WARM in the RCP scenarios.

a) Land averages of the influence of land-use–induced land cover change (LULCC), climate-

induced land cover change (CILCC) and warming background climate (WARM) on the locally

induced changes in surface temperature [K]. b) These values are split into areas where the

respective contribution was warming (left bars) or cooling (right bars).
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C Appendix for chapter 4

This appendix provides additional information for chapter 4. The figures are numbered

according to the order of their reference in the main text.

• Fig. C.1 shows the changes in radiometric surface temperature due to the local

effects of deforestation in the MPI-ESM and in three observation-based datasets.

These maps correspond to the latitudinal averages in Fig. 4.1 in the main text.

• Fig. C.2 shows the maps for the local and nonlocal effects on surface temperature

for a selection of the global mean values shown in Fig. 4.2.

• In Fig. C.3, the mechanisms underlying local effects on surface temperature are

analyzed separately for deforestation and changes in surface albedo. To this end,

we decompose changes in the surface energy balance into changes in net available

energy and changes in turbulent heat fluxes.

• Fig. C.4 compares the two different methods used in this thesis for calculating

the local effects on surface temperature in plausible LCC scenarios.

• Table 5.1 provides an overview over the simulations used in Fig. 4.4.
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Figure C.1: Local effects of deforestation on surface temperature [K] in the MPI-ESM and

observation-based datasets. These datasets comprise a semi-empirical approach based on

fluxnet observations (Bright et al., 2017), and satellite-based observations on potential (Li

et al., 2015) and actual deforestation (Alkama and Cescatti, 2016). These datasets are difficult

to compare directly (Methods).
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Figure C.2: Local and nonlocal effects of deforestation simulated by the MPI-ESM. See

Methods section for meaning of simulation names. Shown are changes in surface temperature

[K] induced by deforestation (rows 1 - 4) or induced by changes in surface albedo (last row).

Land grid cells where vegetation is not changed are masked in gray.
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Figure C.3: Role of radiation and turbulent heat fluxes for the local effects as simulated

in the MPI-ESM. Left: Local effects due to deforestation of three out of four grid cells

(simulation ’3/4’, as in Fig. 4.1 and C.2). Right: Local effects if only albedo is changed

from forest to grass values (simulation ’only albedo’). Top: Changes in surface temperature

[K]. Bottom: Changes in the energy balance [W/m2], split further into changes in radiation

(longwave incoming + shortwave net radiation) and turbulent heat fluxes (latent + sensible

heat). Even if only the albedo is changed, the resulting radiative cooling is largely buffered

locally by the turbulent heat fluxes.
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Figure C.4: Comparison of the two approaches used in the present study for the local effects

on surface temperature [K] in the MPI-ESM. The local effects of RCP2.6 and RCP8.5 are

calculated as in the study by Lejeune et al. (2017a) and section 3.2, respectively. The spatial

patterns match well, but the magnitude of the effects differ by a factor of about two. The

regression used in the first of the two approaches may lead to an underestimation of the local

effects (Lejeune et al., 2017a).
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Pitman, A. J., de Noblet-Ducoudré, N., Cruz, F. T., Davin, E. L., Bonan, G. B.,

Brovkin, V., Claussen, M., Delire, C., Ganzeveld, L., Gayler, V., van den Hurk, B.

J. J. M., Lawrence, P. J., van der Molen, M. K., Müller, C., Reick, C. H., Seneviratne,

S. I., Strengers, B. J., and Voldoire, A. (2009). Uncertainties in climate responses

to past land cover change: First results from the LUCID intercomparison study.

Geophysical Research Letters, 36:6.

Pongratz, J., Reick, C., Raddatz, T., Claussen, M., and Caldera, K. (2011). Past land

use decisions have increased mitigation potential of reforestation. Geophys. Res.

Lett., 38.

Pongratz, J., Reick, C. H., Raddatz, T., and Claussen, M. (2008). A reconstruction of

global agricultural areas and land cover for the last millennium. Global Biogeochem-

ical Cycles, 22:1–16.

Pongratz, J., Reick, C. H., Raddatz, T., and Claussen, M. (2010). Biogeophysical ver-

sus biogeochemical climate response to historical anthropogenic land cover change.

Geophys. Res. Lett., 37:1–5.

Rammig, A., Jupp, T., Thonicke, K., Tietjen, B., Heinke, J., Ostberg, S., Lucht, W.,

Cramer, W., and Cox, P. (2010). Estimating the risk of Amazonian forest dieback.

New Phytologist, 187:694–706.

Reick, C. H., Raddatz, T., Brovkin, V., and Gayler, V. (2013). Representation of

natural and anthropogenic land cover change in MPI-ESM. Journal of Advances in

Modeling Earth Systems, 5:459–482.

Rotenberg, E. and Yakir, D. (2010). Contribution of semi-arid forests to the climate

system. Science, 327:451–454.

Schneck, R., Reick, C. H., Pongratz, J., and Gayler, V. (2015). The mutual importance

of anthropogenically and climate-induced changes in global vegetation cover for fu-

ture land carbon emissions in the MPI-ESM CMIP5 simulations. Global Biogeochem.

Cycles, 29:1816–1829.

Sitch, S., Huntingford, C., Gedney, N., Levy, P. E., Lomas, M., Piao, S. L., Betts,

R., Ciais, P., Cox, P., Friedlingstein, P., Jones, C. D., Prentice, I. C., and Wood-

ward, F. I. (2008). Evaluation of the terrestrial carbon cycle, future plant geography

and climate-carbon cycle feedbacks using five Dynamic Global Vegetation Models

(DGVMs). Global Change Biology, 14:2015–2039.



REFERENCES 81

Sonntag, S., Pongratz, J., Reick, C. H., and Schmidt, H. (2016). Reforestation in a

high-CO 2 world – Higher mitigation potential than expected , lower adaptation

potential than hoped for. 43:1–8.

Staiger, H., Laschewski, G., and Graetz, A. (2011). The perceived temperature –

a versatile index for the assessment of the human thermal environment. Part A:

Scientific basics. International Journal of Biometeorology, 56:165–176.

Swann, A. L., Fung, I. Y., Levis, S., Bonan, G. B., and Doney, S. C. (2010). Changes

in Arctic vegetation amplify high-latitude warming through the greenhouse effect.

Proceedings of the National Academy of Sciences, 107:1295–1300.

Swann, A. L. S., Fung, I. Y., and Chiang, J. C. H. (2012). Mid-latitude afforestation

shifts general circulation and tropical precipitation. Proceedings of the National

Academy of Sciences, 109:712–716.
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Acronyms

CMIP5 Coupled Model Intercomparison Project, phase 5

CILCC Climate–induced land cover change

DJF Winter season

LAI Leaf area index [m2/m2]

LE Latent heat flux [W/m2]

LCC Land cover change (here mostly deforestation or afforestation)

LULCC Land-use–induced land cover change

LUCID ”Land-Use and Climate, IDentification of robust impacts” project

LW Surface longwave radiation

ECHAM6 Atmosphere model applied in this thesis

G Ground heat flux

JJA Summer season

JSBACH Land surface model applied in this thesis

MPI-ESM Earth system model applied in this thesis

PFT Plant functional type

RCP Representative concentration pathway

RMS Root mean square

SEB Surface energy balance

SSTs Sea surface temperatures

SW Surface shortwave radiation

Tsurf Surface temperature [K]

WARM Influence of warming background climate on the locally induced

changes in surface temperature
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1.1 Surface temperature is affected by LCC via changes in components of the

surface energy balance (”SEB”). Some changes happen only at the location of

LCC (”Local”, red) and some changes happen also at locations that are not

deforested (”Nonlocal”, blue). . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Sketch illustrating the separation approach (arbitrary color scale). The simula-

tion result, the total effects, is depicted in subfigure a. The LCC grid cells stand

out because there, the total effects (local plus nonlocal) are mostly stronger

than in the surrounding no-LCC grid cells (only nonlocal). The nonlocal ef-

fects at no-LCC cells can be seen in b. The nonlocal effects are interpolated

to LCC cells c. The difference at the LCC cells between total effects a and

interpolated nonlocal effects c is shown in d, which we then interpolate in or-

der to obtain global information on the local effects e. This approach works

analogously for extensive deforestation f − j. Grid cells whose information is

not used for interpolation in b, d, g, and i are shown in gray. For results on

local and nonlocal effects see Fig. 2.2. . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Change in mean surface temperature [K] due to a,c sparse and b,d extensive

deforestation. a,b local effects, c,d nonlocal effects. Mean over 30 years and

another 30 years from a simulation with LCC cells shifted by two. Statistical

significance is calculated according to a 5 % level in a Student’s t-test account-

ing for autocorrelation (Zwiers and von Storch, 1995). Note that we mark grid

cells that are not statistically significant. . . . . . . . . . . . . . . . . . . . . 15

2.3 Difference in mean precipitation [mm/y] for a,c sparse and b,d extensive de-

forestation. a,b local effects, c,d nonlocal effects. Statistical significance is

calculated according to a 5 % level in a Student’s t-test accounting for auto-

correlation (Zwiers and von Storch, 1995). Note that we mark grid cells that

are not statistically significant. . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Energy balance decomposition for the boreal winter months (DJF). The dashed

line denotes changes in surface temperature Tsurf [K], caused by a,c sparse and

b,d extensive deforestation, a,b local effects and c,d nonlocal effects. The solid

lines, which approximately add up to the dashed line, represent surface tem-

perature changes due to changes in components of the surface energy budget.

All values are latitudinally averaged over land areas. The horizontal axis is

scaled with the area that the respective latitude occupies. . . . . . . . . . . . 17
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2.5 Surface temperature change [K] of deforestation, for a the total (local plus

nonlocal effects), b the nonlocal effects, c the local effects, evaluated where

observations were available, d remote sensing observations from Li et al. (2015)

(their Fig. 2c), with the latitudes regridded to our model resolution, and e

correlation coefficient of the monthly means (averaged over the available time

period) in the respective latitudes for observations versus local (solid line) and

observations versus total effects (dashed line). The vertical axis is scaled with

the area that the respective latitude occupies. . . . . . . . . . . . . . . . . . . 18

3.1 Conceptual diagram illustrating how changes in surface temperature are ob-

tained for a given scenario of changes in forest fraction. See also section 3.2

for a methodological overview of the look-up approach. a) We insert forest

fraction for land-use (LULCC) or climate–induced land cover change (CILCC)

into the look-up tables (see Fig. 3.2) to obtain the corresponding temperature

changes. The change in surface temperature ∆Tsurf depends on the forest

fractions at the beginning (c1) and end (c2) of the scenario. b) We obtain

the effect of warmer background climate (WARM) by comparing the effects in

present-day background climate to the effects in a warmer background climate.

To this end, we insert changes in LULCC+CILCC into two look-up tables that

were obtained for different background climates. The colors correspond to the

colors in Fig. 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Illustration of the look-up approach for one selected grid cell. Shown are the

local effects from the five simulations with different forest fractions (red dots),

the resulting interpolated look-up curve (black) and an artificial look-up line

interpolating linearly between 100% and 0% forest cover (gray). The verti-

cal axis denotes locally induced changes in surface temperature with respect

to zero forest fraction. The arrows show the respective changes in surface

temperature for a change in forest fraction from c1 to c2. In this example, the

calculated change in surface temperature would be underestimated when using

the linear look-up line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Comparison of LCC effects across scenarios. a) Changes in global forest area.

Within a scenario, there can be both areas of forest gain (positive values)

and forest loss (negative values). b) Contributions to local surface tempera-

ture changes from land-use–induced LCC, climate–induced LCC, and warming

background climate. The vertical axis denotes surface temperature change av-

eraged over land. For each scenario, the left bars account for the nonlinear

response, the right bars assume a linear response to deforestation. . . . . . . 28

3.4 Land-use–induced land cover change (LULCC): changes in forest fraction and

resulting changes in local surface temperature. The changes in surface temper-

ature are obtained using the look-up map for present-day background climate

and accounting for the nonlinearity. For a description of the idealized scenario,

see Appendix B.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
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3.5 Climate–induced land cover change (CILCC): changes in forest fraction and

resulting changes in local surface temperature. The changes in surface temper-

ature are obtained using the look-up map for present-day background climate

and accounting for the nonlinearity. . . . . . . . . . . . . . . . . . . . . . . . 30

3.6 Influence of background climate warming (WARM): changes in local surface

temperature, for the LCC scenarios Historical+RCP2.6, Historical+RCP4.5,

and Historical+RCP8.5. These are the areas where LCC takes place cumula-

tively during the whole study period (years 1850 - 2100), and thus the areas

that are affected by the changing background climate. The changes in surface

temperature are obtained using the look-up maps for present-day and RCP8.5

background climate accounting for the nonlinearity (see Appendix Fig. B.3

for the effect of warming background climate on complete deforestation). . . . 32

3.7 The nonlinearity differs across ecoregions. Top: Spatial averages of the already

interpolated look-up maps for different ecoregions. The vertical axis denotes

locally induced changes in surface temperature with respect to zero forest

fraction. Bottom: Ecoregions that are used for averaging. . . . . . . . . . . . 33

4.1 Comparison of biogeophysical effects on surface temperature in the MPI-ESM

versus observations. The shaded area in the latitudinal plot indicates the range

of three observation-based datasets (Li et al., 2015; Alkama and Cescatti, 2016;

Bright et al., 2017), the lines indicate total, local and nonlocal effects when

simulating deforestation of three of four grid cells (’3/4’) in the coupled cli-

mate model MPI-ESM. For the latitudinal averages, values in the MPI-ESM

are restricted to areas where values in at least one of the observational datasets

is available (bottom, land grid cells that are not stippled). The results for the

MPI-ESM are shown on the right. Top: total (local plus nonlocal) deforesta-

tion effects. Bottom: local effects isolated as in section 2.2.3. The map for

the nonlocal effects is shown in Fig. 4.3 a), and maps of the observation-based

datasets are shown in Appendix Fig. C.1. . . . . . . . . . . . . . . . . . . . . 41

4.2 Drivers of the nonlocal cooling. The thin horizontal lines denote the glob-

ally averaged temperature changes, and the colored rectangles denote the 95%

confidence intervals. The globally averaged nonlocal changes in surface tem-

perature depend on a) the areal extent of deforestation (1, 2 or 3 of 4 grid

cells) and b) the location of deforestation (near historically deforested areas or

in low, mid, and high latitudes). The gray bar (’carbon’) represents an esti-

mate of the temperature increase due to land carbon loss associated with the

’1/4 historical’ scenario; the corresponding values are obtained using a book-

keeping approach and the transient response to cumulative emissions (Meth-

ods). c) the simulated processes. The effects of only changing albedo are

largely restricted to the nonlocal effects. . . . . . . . . . . . . . . . . . . . . . 42
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4.3 Nonlocal effects on surface temperature [K] in the MPI-ESM and the contribu-

tions from deforestation in latitudinal bands. Changes in surface temperature

when simulating deforestation of three of four grid cells globally, in the high-,

mid-, and low latitudes. The dashed lines denote the borders of deforestation

in the respective simulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.4 Comparison of local and nonlocal effects on surface temperature [K] across

models. Changes in global mean surface temperature for (red, blue) different

combinations of ensemble members and (black) the mean of all available en-

semble members (Methods). Local effects are isolated as in (Lejeune et al.,

2017a) (Methods). The nonlocal effects are approximated as the difference

between simulated total and local effects. Shown are averages over the last

30 years of historical deforestation (years 1860 - 2000) and deforestation in the

RCP2.6 and RCP8.5 scenario (years 2006 - 2100). . . . . . . . . . . . . . . . . 45

A.1.1Root Mean Square (RMS) deviation of surface temperature Tsurf [K] for a
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