TOWARDS TOPOLOGICAL HOCHSCHILD HOMOLOGY OF JOHNSON-WILSON SPECTRA

CHRISTIAN AUSONI AND BIRGIT RICHTER

Abstract

We offer a complete description of $\operatorname{THH}(E(2))$ under the assumption that the Johnson-Wilson spectrum $E(2)$ at a chosen odd prime carries an E_{∞}-structure. We also place $\mathrm{THH}(E(2))$ in a cofiber sequence $E(2) \rightarrow \mathrm{THH}(E(2)) \rightarrow \overline{\mathrm{THH}}(E(2))$ and describe $\overline{\mathrm{THH}}(E(2))$ under the assumption that $E(2)$ is an E_{3}-ring spectrum. We state general results about the $K(i)$-local behaviour of $\operatorname{THH}(E(n))$ for all n and $0 \leqslant i \leqslant n$. In particular, we compute $K(i) * \operatorname{THH}(E(n))$.

1. Introduction

The first Johnson-Wilson spectrum $E(1)$ at a prime p is the Adams summand of p-local periodic complex topological K-theory $K U_{(p)}$. It is known that it carries a unique E_{∞}-structure [MS93,BR05], thus THH $(E(1))$ is a commutative $E(1)$-algebra spectrum. McClure and Staffeldt show that the unit map $E(1) \rightarrow \operatorname{THH}(E(1))$ is a $K(1)$-local equivalence, hence its cofiber $\overline{\mathrm{THH}}(E(1))$ is a rational spectrum. It is easy to calculate the rational homology of $\mathrm{THH}(E(1))$ as

$$
H \mathbb{Q}_{*} \operatorname{THH}(E(1)) \cong \mathbb{Q}\left[v_{1}^{ \pm 1}\right] \otimes_{\mathbb{Q}} \Lambda_{\mathbb{Q}}\left(d v_{1}\right)
$$

using the Bökstedt spectral sequence with E^{2}-term

$$
E_{*, *}^{2}=\mathrm{HH}_{*, *}^{\mathbb{Q}}\left(\mathbb{Q}\left[v_{1}^{ \pm 1}\right]\right) .
$$

There is a map

$$
\Sigma^{2 p-1} E(1) \rightarrow \mathrm{THH}(E(1)) \rightarrow \overline{\mathrm{THH}}(E(1))
$$

that factors through $\Sigma^{2 p-1} E(1)_{\mathbb{Q}} \rightarrow \overline{\mathrm{THH}}(E(1))$ since $\overline{\mathrm{THH}}(E(1))$ is rational, and that is defined such that the latter map is an equivalence detecting the $H \mathbb{Q}_{*} E(1)$-summand generated by $d v_{1}$. Since the unit map $E(1) \rightarrow \mathrm{THH}(E(1))$ splits, this yields a splitting [MS93, Theorem 8.1]

$$
\operatorname{THH}(E(1)) \simeq E(1) \vee \Sigma^{2 p-1} E(1)_{\mathbb{Q}}
$$

as $E(1)$-modules. This computation was also carried out for $K U_{(p)}$ [Aus05], and pushed further to provide formulas for $\mathrm{THH}(K U)$ as a commutative $K U$-algebra by Stonek [Sto].

In this paper, we consider the higher Johnson-Wilson spectrum $E(n)$ with coefficient ring

$$
E(n)_{*}=\mathbb{Z}_{(p)}\left[v_{1}, \ldots, v_{n-1}, v_{n}, v_{n}^{-1}\right]
$$

for an arbitrary value of $n \geqslant 1$ and p an odd prime. A main motivation here is to investigate whether the spectrum $\operatorname{THH}(E(n))$ also splits into copies of $E(n)$ and its lower chromatic localizations, generalizing McClure and Staffeldt's intriguing transchromatic result.
As a first step, we compute the Hochschild homology $\mathrm{HH}_{*}^{K(i) *}\left(K(i)_{*} E(n)\right)$ of $K(i)_{*} E(n)$, where $K(i)$ is the i th Morava K-theory, for $0 \leqslant i \leqslant n$, at an odd prime, see Theorem 3.4. We shy away from the prime 2 because Morava K-theory is not homotopy commutative at the prime 2. Theorem 3.4 yields a computation of $K(i)_{*} \operatorname{THH}(E(n))$ under the modest assumption that $E(n)$ admits an E_{3}-structure.

[^0]We then focus on $E(2)$, and show in Theorem 5.2 that under the same commutativity assumption $\operatorname{THH}(E(2))$ sits in a cofiber sequence

$$
E(2) \rightarrow \mathrm{THH}(E(2)) \rightarrow \Sigma^{2 p-1} L_{1} E(2) \vee \Sigma^{2 p^{2}-1} E(2)_{\mathbb{Q}} \vee \Sigma^{2 p^{2}+2 p-2} E(2)_{\mathbb{Q}},
$$

where $L_{1} E(2)$ denotes the Bousfield localization of $E(2)$ with respect to $E(1)$. If the unit $E(2) \rightarrow \mathrm{THH}(E(2))$ splits, we then get a decomposition of $\mathrm{THH}(E(2))$ into four summands, a higher analogue of McClure-Staffeldt's formula for $\operatorname{THH}(E(1))$.
Remark 1.1. To study $\operatorname{THH}(E(n))$ by means of the Bökstedt spectral sequence, we need sufficient commutativity of $E(n)$. In this remark, we summarize what is known about multiplicative structures on $E(n)$ and related spectra. Basterra and Mandell showed [BM13] that the BrownPeterson spectrum $B P$ admits an E_{4} structure. The Johnson-Wilson spectra $E(n)$ are built out of the $B P\langle n\rangle=B P /\left(v_{i} \mid i \geqslant n+1\right)$ by inverting v_{n}. In [Law] Tyler Lawson shows that the Brown-Peterson spectrum $B P$ and the spectra $B P\langle n\rangle$ for $n \geqslant 4$ at the prime 2 do not possess an E_{12}-structure and hence no E_{∞}-structure. Andrew Senger [Sen] extends Lawson's result to odd primes p, and shows that $B P$ and the $B P\langle n\rangle$'s (for $n \geqslant 4$) do not have an $E_{2\left(p^{2}+2\right) \text {-structure, in }}$ particular they are not E_{∞}-ring spectra. Hence if $E(n)$ actually possesses an E_{∞}-structure, then this structure does not come from one on $B P$. At the prime 2, Lawson and Naumann [LN12] show that there is an E_{∞}-model of $B P\langle 2\rangle$ and Hill and Lawson [HL10] prove that $B P\langle 2\rangle$ at the prime 3 possesses a model as an E_{∞}-ring spectrum. With [MNN15, Theorem A.1] this yields E_{∞}-structures on the corresponding Johnson-Wilson spectra $E(2)$ at these primes.
Acknowledgements. The first named author acknowledges support from the project ANR-16-CE40-0003 ChroK. The second named author thanks the University of Paris 13 for its hospitality and for the possibility of a research stay as professeur invitée. Both authors benefited from a stay at the Hausdorff Institute for Mathematics in Bonn during the Trimester Program on K-theory and Related Fields.

We thank Paul Goerss for a crucial hint that simplified our original étaleness argument, and Agnès Beaudry, Gerd Laures, Mike Mandell, John Rognes, and Vesna Stojanoska for helpful comments.

2. Rationalized $E(n)$

For $n \geqslant 1$ the homotopy algebra of $L_{K(0)} E(n)=E(n)_{\mathbb{Q}}$ is $\mathbb{Q}\left[v_{1}, \ldots, v_{n-1}, v_{n}^{ \pm 1}\right]$ and its algebra of cooperations is

$$
\pi_{*}\left(E(n)_{\mathbb{Q}} \wedge E(n)_{\mathbb{Q}}\right) \cong \pi_{*} E(n)_{\mathbb{Q}} \otimes_{\mathbb{Q}} \pi_{*} E(n)_{\mathbb{Q}} \cong \mathbb{Q}\left[v_{1}, \ldots, v_{n-1}, v_{n}^{ \pm 1}, v_{1}^{\prime}, \ldots, v_{n-1}^{\prime}, v_{n}^{\prime \pm 1}\right] .
$$

This implies the following result.
Lemma 2.1. There is a unique E_{∞}-ring structure on $E(n)_{\mathbb{Q}}$ for all $n \geqslant 1$.
Proof. The obstruction groups for such an E_{∞}-ring structure on $E(n)_{\mathbb{Q}}$ are contained in the Gamma cohomology groups of $\pi_{*}\left(E(n)_{\mathbb{Q}} \wedge E(n)_{\mathbb{Q}}\right)$ as a $\pi_{*} E(n)_{\mathbb{Q}}$-algebra [Rob03, Theorem 5.6]. As we work in characteristic zero, Gamma cohomology agrees with André-Quillen cohomology [RW02, Corollary 6.6]. The algebra $\mathbb{Q}\left[v_{1}, \ldots, v_{n-1}, v_{n}^{ \pm 1}, v_{1}^{\prime}, \ldots, v_{n-1}^{\prime}, v_{n}^{\prime \pm 1}\right]$ is smooth over $\mathbb{Q}\left[v_{1}, \ldots, v_{n-1}, v_{n}^{ \pm 1}\right]$ and therefore André-Quillen cohomology is concentrated in cohomological degree zero where it consists of derivations. The obstructions for existence and uniqueness of an E_{∞}-ring structure on $E(n)_{\mathbb{Q}}$ are concentrated in degrees bigger than zero.

As E_{∞}-ring structures can be rigidified to commutative ring structures (see e.g., [EKMM97, II.3]), we pass to the world of commutative ring spectra from now on.

Topological Hochschild homology of a ring spectrum A can be modelled as the geometric realization of a simplicial spectrum. Using the inclusion of the 1-skeleton, McClure and Staffeldt [MS93, §3] construct a map

$$
\begin{equation*}
\sigma: \Sigma A \rightarrow \operatorname{THH}(A) \tag{2.1}
\end{equation*}
$$

For a commutative ring spectrum A the multiplication maps from $A^{\wedge n+1}$ to A give rise to a map of commutative A-algebra spectra from $\operatorname{THH}(A)$ to A. Composing this map with the map $A \rightarrow \operatorname{THH}(A)$ gives the identity, hence we obtain a splitting of A-modules $\operatorname{THH}(A) \simeq A \vee \bar{T}_{A}$ where \bar{T}_{A} is the cofiber. The latter spectrum inherits the structure of a non-unital commutative A-algebra. In our case this implies the following result.
Corollary 2.2. The topological Hochschild homology of $E(n)_{\mathbb{Q}}$ splits, as an $E(n)_{\mathbb{Q}}-$ module, as

$$
\operatorname{THH}\left(E(n)_{\mathbb{Q}}\right) \simeq E(n)_{\mathbb{Q}} \vee \overline{\operatorname{THH}}(E(n))_{\mathbb{Q}}
$$

where $\overline{\operatorname{THH}}(E(n))_{\mathbb{Q}}$ is the cofiber of the unit map $E(n)_{\mathbb{Q}} \rightarrow \operatorname{THH}\left(E(n)_{\mathbb{Q}}\right)$. Moreover, the spectrum $\overline{\mathrm{THH}}(E(n))_{\mathbb{Q}}$ is a non-unital commutative $E(n)_{\mathbb{Q}}$-algebra.

In the sequel, we follow Loday [Lod98, Definition E.1] for the definition of étale algebras. It is straightforward to calculate the topological Hochschild homology of $E(n)_{\mathbb{Q}}$.

Proposition 2.3.

$$
\begin{equation*}
\pi_{*} \operatorname{THH}(E(n) \mathbb{Q}) \cong \mathbb{Q}\left[v_{1}, \ldots, v_{n-1}, v_{n}^{ \pm 1}\right] \otimes \Lambda_{\mathbb{Q}}\left(d v_{1}, \ldots, d v_{n}\right) \tag{2.2}
\end{equation*}
$$

with $\left|d v_{i}\right|=2 p^{i}-1$.
Proof. The Bökstedt spectral sequence for $\pi_{*} \operatorname{THH}\left(E(n)_{\mathbb{Q}}\right) \cong H \mathbb{Q}_{*} \operatorname{THH}(E(n)$ is of the form

$$
E_{*, *}^{2}=\mathrm{HH}_{*, *}^{\mathbb{Q}}\left(\pi_{*} E(n)_{\mathbb{Q}}\right) \Rightarrow \pi_{*} \operatorname{THH}\left(E(n)_{\mathbb{Q}}\right) .
$$

As $\mathbb{Q}\left[v_{1}, \ldots, v_{n-1}, v_{n}^{ \pm 1}\right]$ is étale over $\mathbb{Q}\left[v_{1}, \ldots, v_{n-1}, v_{n}\right]$ and as $\mathbb{Q}\left[v_{1}, \ldots, v_{n-1}, v_{n}\right]$ is smooth, we get

$$
\left.\mathrm{HH}_{*, *}^{\mathbb{Q}}\left(\pi_{*} E(n)\right)_{\mathbb{Q}}\right) \cong \mathbb{Q}\left[v_{1}, \ldots, v_{n-1}, v_{n}^{ \pm 1}\right] \otimes \Lambda_{\mathbb{Q}}\left(d v_{1}, \ldots, d v_{n}\right)
$$

with $d v_{i}$ having homological degree one and internal degree $2 p^{i}-2$. As the Bökstedt spectral sequence is multiplicative and as the algebra generator cannot support any differentials for degree reasons, the spectral sequence collapses at E^{2}. There are no multiplicative extensions and hence we get the result.

Remark 2.4. As we work rationally, $\operatorname{THH}\left(E(n)_{\mathbb{Q}}\right)$ is a commutative $H \mathbb{Q}$-algebra spectrum and hence corresponds to a commutative differential graded \mathbb{Q}-algebra (see [Shi07] or [RS17]).

$$
\text { 3. } K(i)_{*} E(n) \text { AND } K(i)_{*} \operatorname{THH}(E(n))
$$

In the following we assume that p is an odd prime, and that n and i are integers with $1 \leqslant i \leqslant n$. The Hopf algebroid $\left(B P_{*}, B P_{*} B P\right)$ represents the groupoid of strict isomorphisms of p-typical formal group laws [Lan75] (see also [Rav86, Theorem A2.1.27]). There are isomorphisms of graded $\mathbb{Z}_{(p)}$-algebras

$$
B P_{*} \cong \mathbb{Z}_{(p)}\left[v_{1}, v_{2}, \ldots\right] \text { and } B P_{*} B P \cong B P_{*}\left[t_{1}, t_{2}, \ldots\right]
$$

where $\left|v_{i}\right|=\left|t_{i}\right|=2\left(p^{i}-1\right)$. By convention $v_{0}=p$ and $t_{0}=1$. The i th Morava K-theory $K(i)$ is complex oriented, and its formal group law F_{i} (the Honda formal group law) corresponds to the map $B P_{*} \rightarrow K(i)_{*}=\mathbb{F}_{p}\left[v_{i}^{ \pm}\right]$sending v_{k} for $k \neq i$ to zero. The p-typical formal group law G_{n} over $E(n)_{*}$ comes from the map $B P_{*} \rightarrow E(n)_{*}$ that kills all v_{i} with $i>n$ and inverts v_{n}. Since $E(n)$ is a Landweber exact homology theory, we obtain an isomorphism

$$
\begin{equation*}
K(i)_{*} E(n) \cong K(i)_{*} \otimes_{B P_{*}} B P_{*} B P \otimes_{B P_{*}} E(n)_{*} \tag{3.1}
\end{equation*}
$$

Note that $K(i)_{*} E(n)$ is trivial for $i>n$ and that the Bousfield class of $E(n),\langle E(n)\rangle$, is $\langle K(0) \vee \ldots \vee K(n)\rangle$.

We first treat the case $i=n$.
Proposition 3.1. For all $n \geqslant 1$ the canonical map $E(n) \rightarrow \operatorname{THH}(E(n))$ is a $K(n)$-local equivalence.

Proof. The algebra $K(n)_{*} E(n)$ is known as $\Sigma(n)$ and it is of the form

$$
K(n)_{*}\left[t_{1}, t_{2}, \ldots\right] /\left(v_{n} t_{i}^{p^{n}}-v_{n}^{p^{i}} t_{i}, i \geqslant 1\right)
$$

see [Rav86, 6.1.16]. If we set

$$
C_{*}^{(k)}:=K(n)_{*}\left[t_{1}, \ldots, t_{k}\right] /\left(v_{n} t_{i}^{p^{n}}-v_{n}^{p^{i}} t_{i}, 1 \leqslant i \leqslant k\right)
$$

then $C_{*}^{(k)}$ is étale over $K(n)_{*}$ and $K(n)_{*} E(n)$ is the directed colimit of the $C_{*}^{(k)}$,s.
The $K(n)_{*}$-Bökstedt spectral sequence for $\operatorname{THH}(E(n))$ has as an E^{2}-term

$$
\mathrm{HH}_{*}^{K(n)_{*}}\left(K(n)_{*} E(n)\right) \cong K(n)_{*} E(n)
$$

concentrated in homological degree zero. Thus $K(n)_{*} \operatorname{THH}(E(n)) \cong K(n)_{*} E(n)$ and the isomorphism is induced by the map $E(n) \rightarrow \mathrm{THH}(E(n))$. Therefore, this map is a $K(n)$-equivalence and thus $K(n)$-locally $\operatorname{THH}(E(n))$ is equivalent to $E(n)$.

We calculate $K(i)_{*} E(n)$ for $1 \leqslant i \leqslant n-1$ using the following description of morphisms of graded commutative $B P_{*}$-algebras from $K(i)_{*} E(n)$ to some graded commutative ring B_{*}. For $n=2$ we had an argument that was rather involved and Paul Goerss suggested the following simpler proof.

We consider the map $g: B P_{*} B P \rightarrow K(i)_{*} E(n)$ of graded commutative $\mathbb{Z}_{(p)}$-algebras given by

$$
B P_{*} B P \rightarrow K(i)_{*} \otimes_{B P_{*}} B P_{*} B P \otimes_{B P_{*}} E(n)_{*} \cong K(i)_{*} E(n)
$$

which uses the canonical maps $B P_{*} \rightarrow K(i)_{*}$ and $B P_{*} \rightarrow E(n)_{*}$ and the isomorphism from (3.1). By [Rav86, Theorem A2.1.27] this map corresponds to a triple $\left(\left(\eta_{L}\right)_{*} F_{i},\left(\eta_{R}\right)_{*} G_{n}, f\right)$ where $\eta_{L}: K(i)_{*} \rightarrow K(i)_{*} E(n)$ is the left unit, $\eta_{R}: E(n)_{*} \rightarrow K(i)_{*} E(n)$ is the right unit and $\left(\eta_{L}\right)_{*} F_{i}$ and $\left(\eta_{R}\right)_{*} G_{n}$ are the p-typical formal group laws that are given by the corresponding change of coefficients. Here, f is a strict isomorphism between the p-typical formal group laws $\left(\eta_{L}\right)_{*} F_{i}$ and $\left(\eta_{R}\right)_{*} G_{n}$ over $K(i)_{*} E(n)$. By [Rav86, Lemma A2.1.26] such a strict isomorphism is always of the form

$$
f(x)=\sum_{j}{ }^{\left(\eta_{R}\right)_{*} G_{n}} t_{j} x^{p^{j}}
$$

The p-series of the Honda formal group law F_{i} is

$$
[p]_{F_{i}}(x)=v_{i} x^{p^{i}}
$$

and the same is true for $[p]_{\left(\eta_{L}\right)_{*}\left(F_{i}\right)}[x]$ because the left unit just embeds $K(i)_{*}$ into $K(i)_{*} E(n)$. The p-series of $\left(\eta_{R}\right)_{*} G_{n}$ is

$$
[p]_{\left(\eta_{R}\right)_{*} G_{n}}(x)=w_{1} x^{p}+{ }_{\left(\eta_{R}\right)_{*} G_{n}} \ldots+{ }_{\left(\eta_{R}\right)_{*} G_{n}} w_{n} x^{p^{n}}
$$

for $w_{i}=\eta_{R}\left(v_{i}\right)$.
First, we state an elementary lemma about powers of p.
Lemma 3.2. Let $m \geqslant 2$, let $r, \ell_{1}, \ldots, \ell_{m}$ be natural numbers bigger or equal to 1 , and assume that $\ell_{j} \neq \ell_{k}$ for $j \neq k$. Then p^{r} cannot be written as a sum $p^{\ell_{1}}+\ldots+p^{\ell_{m}}$.
Proof. Assume

$$
p^{r}=p^{\ell_{1}}+\ldots+p^{\ell_{m}}
$$

Without loss of generality let ℓ_{1} be minimal among the ℓ_{j} 's. Then

$$
p^{r}=p^{\ell_{1}}\left(1+p^{\ell_{2}-\ell_{1}}+\ldots+p^{\ell_{m}-\ell_{1}}\right)
$$

This is only possible if all the $\ell_{j}-\ell_{1}$ are equal to zero and if $m=p^{r-\ell_{1}}$. But $\ell_{j}-\ell_{1}=0$ for all $2 \leqslant j \leqslant m$ implies that all the ℓ_{j} 's are equal to ℓ_{1} and this contradicts our assumption.
Proposition 3.3. For all $1 \leqslant i \leqslant n K(i)_{*} E(n)$ is a colimit of étale $K(i)_{*}\left[w_{i+1}, \ldots, w_{n}^{ \pm 1}\right]$ algebras.

Proof. In the following we fix i and n. We denote by $B(i, n)_{*}$ the graded commutative $K(i)_{*^{-}}$ algebra $K(i)_{*}\left[w_{i+1}, \ldots, w_{n-1}, w_{n}^{ \pm 1}\right]$. For a given $m \geqslant 1$ consider the graded commutative $B P_{*-}$ subalgebra $B P_{*}\left[t_{1}, \ldots, t_{m}\right]$ of $B P_{*} B P$ and define

$$
B_{m}=\operatorname{Image}\left(B(i, n)_{*}\left[t_{1}, \ldots, t_{m}\right] \rightarrow K(i)_{*} E(n)\right) .
$$

Thus we can express B_{m} as $B(i, n)_{*}\left[t_{1}, \ldots, t_{m}\right] / \sim$ where \sim denotes the quotient that arises from the relations that the t_{r} 's and w_{j} 's satisfy in $K(i)_{*} E(n)$. Note that B_{m+1} is free as a B_{m}-module for all $m \geqslant 1$. Indeed, in each step we adjoin a new polynomial generator x to a graded commutative ring R_{*} that satisfies relations of the form $x^{p^{r}}-u x-y$ with a unit $u \in R_{*}^{\times}$ and $y \in R_{*}$.
The strict isomorphism $f(x)=\sum_{j}\left(\eta_{R}\right) * G_{n} t_{j} x^{p^{j}}$ satisfies

$$
[p]_{\left(\eta_{R}\right) * G_{n}}(f(x))=f\left([p]_{\left(\eta_{L}\right)_{*} F_{i}}(x)\right)
$$

and this yields the equality

$$
\begin{equation*}
w_{1}(f(x))^{p}+_{\left(\eta_{R}\right) * G_{n}} \cdots+_{\left(\eta_{R}\right) * G_{n}} w_{n}(f(x))^{p^{n}}=f\left(v_{i} x^{p^{i}}\right)=\sum_{j}\left(\eta_{R}\right) * G_{n} t_{j}\left(v_{i} x^{p^{i}}\right)^{p^{j}} . \tag{3.2}
\end{equation*}
$$

On the right hand side in $\sum_{j}\left(\eta_{R}\right)_{*} G_{n} t_{j} v_{i}^{p^{j}} x^{p^{i+j}}$ the relations for the t_{r} are detected by the powers $x^{p^{i+r}}$. Lemma 3.2 ensures that for a given $x^{p^{i+r}}$ we only have to consider the coefficient $t_{j} v_{i}^{p^{j}}$ with $i+j=i+r$ coming from the linear term of the $\left(\eta_{R}\right)_{*} G_{n}$-sum $\sum_{j}\left(\eta_{R}\right)_{*} G_{n} t_{j} v_{i}^{p^{j}} x^{p^{i+j}}$ and this is $t_{r} v_{i}^{p^{r}}$.

As the right hand side starts with $x^{p^{i}}$, it is a direct consequence that $w_{1}, \ldots, w_{i-1}=0$ and from the coefficients of $x^{p^{i}}$ we obtain that $w_{i}=v_{i}$ in $K(i)_{*} E(n)$.

We prove that B_{1} is étale over $B(i, n)_{*}$ and that for every m, B_{m} is étale over B_{m-1}. It follows that the algebras B_{m} are étale over $B(i, n)_{*}$.

Thus we have to show that the modules of relative Kähler differentials $\Omega_{B_{1} \mid B(i, n) *}^{1}$ and $\Omega_{B_{m} \mid B_{m-1}}^{1}$ are trivial for all $m \geqslant 2$.

For $m=1$ we compare the coefficients of $x^{p^{i+1}}$ in (3.2). In this case only the linear terms of the $\left(\eta_{R}\right)_{*} G_{n}$-sums contribute something and we obtain

$$
v_{i} t_{1}^{p^{i}}+w_{i+1} t_{0}=t_{1} v_{i}^{p}
$$

and therefore $t_{1}=v_{i}^{-p}\left(v_{i} t_{1}^{p^{i}}+w_{i+1}\right)$. This gives a flat extension and the Kähler differential on t_{1} is equal to

$$
d t_{1}=0+v_{i}^{-p} d w_{i+1}
$$

and hence B_{1} is étale over $B(i, n)_{*}$.
Consider B_{m}. Then the first relation for t_{m} is given by the relation of the coefficients for $x^{p^{i+m}}$.

We know that the formal group law $G_{n}(x, y)$ is of the form

$$
G_{n}(x, y)=x+y+\sum_{i, j \geqslant 1} a_{i, j} x^{i} y^{j}
$$

where the $a_{i, j} \in E(n)_{*}=\mathbb{Z}_{(p)}\left[v_{1}, \ldots, v_{n-1}, v_{n}^{ \pm 1}\right]$. Equation (3.2) relates power series with coefficients in $K(i)_{*} E(n)$, hence the coefficients $\bar{a}_{i, j}$ of $\left(\eta_{R}\right)_{*} G_{n}$ are now considered in $K(i)_{*} E(n)$ and are elements of $\mathbb{F}_{p}\left[w_{i}, \ldots, w_{n-1}, w_{n}^{ \pm 1}\right]$. On the left hand side of (3.2) we get coefficients that involve some polynomials of $\bar{a}_{i, j}$'s, some p th powers of t_{j} 's and some expressions in w_{k} 's. For $m+i \leqslant n$ we actually get a coefficient $w_{m+i} t_{0}^{p^{m+i+0}}=w_{i+m}$.

The $\bar{a}_{i, j}$'s are in $B(i, n)_{*}$, so they don't contribute anything to the relative Kähler differentials. The Kähler differentials on the $t_{j}^{p^{k}}$ are trivial because we are over \mathbb{F}_{p}. Hence we can express the

Kähler differential $d t_{m}$ up to a factor of $v_{i}^{p^{m}}=w_{i}^{p^{m}}$ via Kähler differentials in the w_{k} 's. As $v_{i}^{p^{m}}$ is invertible in $B(i, n)_{*}$, the relative Kähler differentials $\Omega_{B_{m} \mid B_{m-1}}^{1}$ are trivial for all $m \geqslant 1$.

Theorem 3.4. For all $1 \leqslant i \leqslant n$ we have an isomorphism of $K(i)_{*} E(n)$-algebras

$$
\mathrm{HH}_{*}^{K(i)_{*}}\left(K(i)_{*} E(n)\right) \cong K(i)_{*} E(n) \otimes_{\mathbb{F}_{p}} \Lambda_{\mathbb{F}_{p}}\left(d w_{i+1}, \ldots, d w_{n}\right)
$$

Proof. We have shown that $K(i)_{*} E(n)$ is the sequential colimit of the B_{m} 's. As the $K(i)_{*^{-}}$ algebras B_{m} are étale over $B(i, n)_{*}$ and as Hochschild homology commutes with localization we can rewrite $\mathrm{HH}_{*}\left(B_{m}\right)$ as

$$
\begin{aligned}
\mathrm{HH}_{*}\left(B_{m}\right) & \cong B_{m} \otimes_{B(i, n)_{*}} \mathrm{HH}_{*}^{K(i)_{*}}\left(B(i, n)_{*}\right) \\
& \cong B_{m} \otimes_{B(i, n)_{*}}\left(B(i, n)_{*} \otimes_{\mathbb{F}_{p}} \Lambda_{\mathbb{F}_{p}}\left(d w_{i+1}, \ldots, d w_{n}\right)\right) \\
& \left.\cong B_{m} \otimes_{\mathbb{F}_{p}} \Lambda_{\mathbb{F}_{p}}\left(d w_{i+1}, \ldots, d w_{n}\right)\right)
\end{aligned}
$$

using [WG91] and the Hochschild-Kostant-Rosenberg theorem. Hochschild homology commutes with colimits, hence we obtain

$$
\mathrm{HH}_{*}^{K(i)_{*}}\left(K(i)_{*} E(n)\right) \cong \operatorname{colim}_{m} \mathrm{HH}_{*}^{K(i)_{*}}\left(B_{m}\right) \cong K(i)_{*} E(n) \otimes_{\mathbb{F}_{p}} \Lambda_{\mathbb{F}_{p}}\left(d w_{i+1}, \ldots, d w_{n}\right)
$$

Theorem 3.5. Assume that p is an odd prime and that $E(n)$ is an E_{3}-ring spectrum. Then, for all $1 \leqslant i \leqslant n$, we have an isomorphism of $K(i)_{*} E(n)$-algebras

$$
K(i)_{*} \operatorname{THH}(E(n)) \cong K(i)_{*} E(n) \otimes_{\mathbb{F}_{p}} \Lambda_{\mathbb{F}_{p}}\left(d w_{i+1}, \ldots, d w_{n}\right)
$$

Proof. We use the Bökstedt spectral sequence [Bök], [EKMM97, IX.2.9], with E^{2}-term

$$
E_{r, s}^{2}=\left(\mathrm{HH}_{r}^{K(i)_{*}}\left(K(i)_{*} E(n)\right)\right)_{s}
$$

where r denotes the homological and s the internal degree. By a result of Angeltveit and Rognes [AR05, Prop. 4.3], an E_{3}-structure on $E(n)$ implies that this spectral is one of commutative $K(i)_{*} E(n)$-algebras. The multiplicative generators $d w_{j}$ for $i \leqslant j \leqslant n$ sit in bidegree $\left(1,2 p^{j}-2\right)$ and hence they cannot carry any non-trivial differentials. Therefore the spectral sequence collapses at the E^{2}-term. As the abutment is a free graded commutative $K(i)_{*} E(n)$ algebra, there cannot be any multiplicative extensions.

Remark 3.6. Note if $E(n)$ admits an E_{2} structure, the Bökstedt spectral sequence is one of $K(i)_{*}$-algebras by [AR05, Prop. 4.3]. It therefore collapses since all $K(i)_{*}$-algebra generators lie in columns 0 and 1. This gives the same formula for $K(i)_{*} \operatorname{THH}(E(n))$ as a $K(i)_{*}-$ module, but not as a $K(i)_{*}$-algebra, since there is now room for $K(i)_{*}$-algebra extensions.

4. Towards chromatic cubes for general THH $(E(n))$

If we assume that p is an odd prime and that $E(n)$ is an E_{∞}-ring spectrum, then $\operatorname{THH}(E(n))$ is a commutative $E(n)$-algebra spectrum and the cofiber of the unit map

$$
\overline{\mathrm{THH}}(E(n))=\operatorname{cofiber}(E(n) \rightarrow \mathrm{THH}(E(n)))
$$

is a non-unital commutative $E(n)$-algebra spectrum. If $E(n)$ carries an E_{3}-structure, then by [BFV07, §3.3], [BM11] the morphism $E(n) \rightarrow \operatorname{THH}(E(n))$ is an E_{2}-map. This implies the following useful fact:

Lemma 4.1. If $E(n)$ is an E_{3}-spectrum, then $\operatorname{THH}(E(n))$ is an $E(n)$-module spectrum and in particular, $\operatorname{THH}(E(n))$ is $E(n)$-local.

Let L_{n} denote the localization at $E(n)$, and in particular L_{0} is the rationalization. Recall that there is a well-known chromatic fracture square

It is shown for instance in [ACB, Example 3.3] and [Bau14, Proposition 2.2] that the homotopy pullback of

is an $E(n)$-localization of X. The statement in [Bau14, Proposition 2.2] is more general and [ACB] work out far more general local-to-global statements.

We always know from Proposition 3.1 that the unit map is a $K(n)$-local equivalence. The chromatic square for $\overline{\operatorname{THH}}(E(n))$ is:

The $K(n)$-homology of $\overline{\operatorname{THH}}(E(n))$ is zero by Proposition 3.1. It follows that the localization $L_{K(n)} \overline{\mathrm{THH}}(E(n))$ is trivial, and hence $L_{E(n-1)}\left(L_{K(n)} \overline{\mathrm{THH}}(E(n))\right)$ is also trivial. Therefore the vertical map on the left hand side is an equivalence and we obtain:

Lemma 4.2. If $E(n)$ is an E_{3}-spectrum, then the cofiber $\overline{\operatorname{THH}}(E(n))$ is $E(n-1)$-local.

5. Topological Hochschild homology of $E(2)$

In this section, we discuss in more detail the topological Hochschild homology of $E(2)$, which we will denote by $E=E(2)$ to simplify the notation. As explained in the proof of Lemma 5.1, the computations of Theorem 3.5 for $E(2)$ can be expressed as follows:

$$
\begin{aligned}
K(0)_{*} \mathrm{THH}(E) & \cong K(0)_{*} E \otimes \Lambda_{\mathbb{Q}}\left(d t_{1}, d t_{2}\right) \\
K(1)_{*} \mathrm{THH}(E) & \cong K(1)_{*} E \otimes \Lambda_{\mathbb{F}_{p}}\left(d t_{1}\right) \\
K(2)_{*} \mathrm{THH}(E) & \cong K(2)_{*} E
\end{aligned}
$$

Notice that these computations do not require the assumption that E is an E_{3}-ring spectrum: for the rational case we have a commutative structure anyhow, while in the $K(1)$ and $K(2)$ cases, the E^{2} page of the Bökstedt spectral sequences is concentrated on columns 0 and 1 (respectively 0).
Lemma 5.1. For $i=1,2$, there exist classes $\lambda_{i} \in \mathrm{THH}_{2 p^{i}-1}(E)$ with the following properties. Under the Hurewicz homomorphism
(a) the class λ_{i} maps to $d t_{i} \in K(0)_{2 p^{i}-1} \mathrm{THH}(E)$, for $i=1,2$;
(b) the class λ_{1} maps to $d t_{1} \in K(1)_{2 p^{2}-1} \mathrm{THH}(E)$.

Proof. We use McClure-Staffeldt's computation of $\mathrm{THH}_{*}(B P)$ in [MS93, Remark 4.3], which we briefly recall. The integral, rational and mod p homology of $B P$ are given as

$$
\left.H \mathbb{Z}_{*} B P \cong \mathbb{Z}_{(p)}\left[t_{i} \mid i \geqslant 1\right], \quad K(0)_{*} B P \cong \mathbb{Q}\left[t_{i} \mid i \geqslant 1\right] \quad \text { and } \quad H \mathbb{F}_{p_{*}} B P \cong \mathbb{Z}^{[} \bar{\xi}_{i} \mid i \geqslant 1\right]
$$

where the class $t_{i} \in H \mathbb{Z}_{2 p^{i}-1} B P$ maps to $\bar{\xi}_{i}$ under mod (p) reduction [Rav86, Proof of Theorem 5.2.8] and to the class with same name t_{i} under rationalization. The associated Bökstedt spectral sequences collapse, providing isomorphisms

$$
\begin{aligned}
H \mathbb{Z}_{*} \operatorname{THH}(B P) & \cong H \mathbb{Z}_{*}(B P) \otimes \Lambda_{\mathbb{Z}_{(p)}}\left(d t_{i} \mid i \geqslant 1\right), \\
K(0)_{*} \operatorname{THH}(B P) & \cong K(0)_{*}(B P) \otimes \Lambda_{\mathbb{Q}}\left(d t_{i} \mid i \geqslant 1\right) \text { and } \\
H \mathbb{F}_{p_{*}} \mathrm{THH}(B P) & \cong H \mathbb{F}_{p_{*}}(B P) \otimes \Lambda_{\mathbb{F}_{p}}\left(d \bar{\xi}_{i} \mid i \geqslant 1\right),
\end{aligned}
$$

with $d x=\sigma_{*}(x)$, where $\sigma: \Sigma B P \rightarrow \operatorname{THH}(B P)$ is the map given in (2.1). There is an isomorphism

$$
\mathrm{THH}_{*}(B P) \cong B P_{*} \otimes \Lambda_{\mathbb{Z}_{(p)}}\left(\lambda_{i} \mid i \geqslant 1\right)
$$

and the Hurewicz homomorphism

$$
\mathrm{THH}_{*}(B P) \rightarrow H \mathbb{Z}_{*} \mathrm{THH}(B P)
$$

is an inclusion mapping λ_{i} to $d t_{i}$. In particular, the classes $d t_{i}$ (integral and rational) and $d \bar{\xi}_{i}$ are spherical: they are the image of λ_{i} under the Hurewicz homomorphism mapping from $\mathrm{THH}_{*}(B P)$. For $i \geqslant 1$, let us define

$$
\lambda_{i} \in \mathrm{THH}_{2 p^{i}-1}(E)
$$

as the image of the class with same name under the natural map

$$
\mathrm{THH}_{*}(B P) \rightarrow \mathrm{THH}_{*}(E)
$$

In the rational case, we have

$$
\eta_{R}\left(v_{i}\right) \equiv \alpha_{i} t_{i}
$$

modulo decomposables in $K(0)_{*}(B P)$, where $\alpha_{i} \in \mathbb{Q}$ is a unit. We deduce that

$$
K(0)_{*} E \cong \mathbb{Q}\left[t_{1}, t_{2}\right]\left[\eta_{R}\left(v_{2}\right)^{-1}\right]
$$

and the Bökstedt spectral sequence recovers

$$
K(0)_{*} \mathrm{THH}(E) \cong K(0)_{*} E \otimes \Lambda_{\mathbb{Q}}\left(d t_{1}, d t_{2}\right)
$$

By naturality, comparing with the case of $B P$, we deduce that the Hurewicz homomorphism $\mathrm{THH}_{*}(E) \rightarrow K(0)_{*} \mathrm{THH}(E)$ maps λ_{i} to $d t_{i}$.

For $K(1)_{*}$-homology, we argue similarly, using the commutative square

We have $K(1)_{*} B P \cong K(1)_{*}\left[t_{i} \mid i \geqslant 1\right]$, and the Bökstedt spectral sequence yields

$$
K(1)_{*} \operatorname{THH}(B P) \cong K(1)_{*}(B P) \otimes \Lambda_{\mathbb{F}_{p}}\left(d t_{i} \mid i \geqslant 1\right)
$$

Comparing the Bökstedt spectral sequences for $H \mathbb{Z}_{*} \mathrm{THH}(B P)$ and $K(1)_{*} \mathrm{THH}(B P)$, we deduce that the class $\lambda_{1} \in \mathrm{THH}_{*}(B P)$ maps to $d t_{1} \in K(1)_{*} \mathrm{THH}(B P)$. Recall that

$$
K(1)_{*} E=K(1)_{*}\left[t_{i} \mid i \geqslant 1\right]\left[\eta_{R}\left(v_{2}\right)^{-1}\right] /\left(\eta_{R}\left(v_{j}\right) \mid j \geqslant 3\right)
$$

is a colimit of étale algebras over $K(1)_{*}\left[w_{2}, w_{2}^{-1}\right]$, where

$$
w_{2}=\eta_{R}\left(v_{2}\right)=v_{1}^{p} t_{1}-v_{1} t_{1}^{p}
$$

In particular $d w_{2}=v_{1}^{p} d t_{1}$, and the Bökstedt spectral sequence provides the formula given above for $K(1)_{*} \mathrm{THH}(E)$. Now obviously $d t_{1} \in K(1)_{*} \mathrm{THH}(B P)$ maps to $d t_{1} \in K(1)_{*} \mathrm{THH}(E)$. This implies assertion (b) of the lemma.

The class $\lambda_{1} \in \mathrm{THH}_{2 p-1}(E)$ of Lemma 5.1 corresponds to a map $\lambda_{1}: S^{2 p-1} \rightarrow \mathrm{THH}(E)$. Smashing with E, using the E-module structure of $\operatorname{THH}(E)$ (assuming an E_{3} structure on E), and composing with the cofiber $\mathrm{THH}(E) \rightarrow \overline{\mathrm{THH}}(E)$ of the unit, we obtain a map

$$
j_{1}: \Sigma^{2 p-1} E \cong E \wedge S^{2 p-1} \rightarrow E \wedge \mathrm{THH}(E) \rightarrow \mathrm{THH}(E) \rightarrow \overline{\mathrm{THH}}(E)
$$

In the same fashion, we obtain maps

$$
j_{2}: \Sigma^{2 p^{2}-1} E \rightarrow \overline{\mathrm{THH}}(E) \quad \text { and } \quad j_{12}: \Sigma^{2 p^{2}+2 p-2} E \rightarrow \overline{\mathrm{THH}}(E)
$$

corresponding to the classes λ_{2} and $\lambda_{1} \lambda_{2} \in \mathrm{THH}_{*}(E)$. Summing these maps, we obtain a map

$$
\alpha: \Sigma^{2 p-1} E \vee \Sigma^{2 p^{2}-1} E \vee \Sigma^{2 p^{2}+2 p-2} E \rightarrow \overline{\mathrm{THH}}(E)
$$

We also define

$$
\gamma: \Sigma^{2 p-1} E \vee \Sigma^{2 p^{2}-1} E \vee \Sigma^{2 p^{2}+2 p-2} E \rightarrow \Sigma^{2 p-1} L_{1} E \vee \Sigma^{2 p^{2}-1} L_{0} E \vee \Sigma^{2 p^{2}+2 p-2} L_{0} E
$$

as the sum of the localization maps.
Theorem 5.2. Let p be an odd prime such that $E=E(2)$, the second Johnson-Wilson spectrum at p, is an E_{3}-ring spectrum. Then the map α factors as $\alpha=\beta \gamma$, where

$$
\beta: \Sigma^{2 p-1} L_{1} E \vee \Sigma^{2 p^{2}-1} L_{0} E \vee \Sigma^{2 p^{2}+2 p-2} L_{0} E \rightarrow \overline{\mathrm{THH}}(E)
$$

is a weak equivalence of E-modules.
Proof. Recall from Lemma 4.2 that the cofiber $\overline{\mathrm{THH}}(E)$ of the unit map is $E(1)$-local. In particular, the map j_{1} factors through a map

$$
\bar{j}_{1}: \Sigma^{2 p-1} L_{1} E \rightarrow \overline{\mathrm{THH}}(E)
$$

we claim that \bar{j}_{1} is a $K(1)$-isomorphism (it induces an isomorphism in $K(1)$-homology). Indeed, consider the localization map $E \rightarrow L_{1} E$. This map is a $K(1)$-isomorphism, and therefore so are the induced maps $\ell: \mathrm{THH}(E) \rightarrow \mathrm{THH}\left(L_{1} E\right)$ and $\bar{\ell}: \overline{\mathrm{THH}}(E) \rightarrow \overline{\mathrm{THH}}\left(L_{1} E\right)$, by convergence of the $K(1)$-based Bökstedt spectral sequence. Hence, to prove the claim, it suffices to show that the composition

$$
\begin{equation*}
\Sigma^{2 p-1} L_{1} E \xrightarrow{\bar{j}_{1}} \overline{\mathrm{THH}}(E) \xrightarrow{\bar{\ell}} \overline{\mathrm{THH}}\left(L_{1} E\right) \tag{5.1}
\end{equation*}
$$

is a $K(1)$-isomorphism. The $K(1)$-based Bökstedt spectral sequence for $L_{1} E$ is identical to the one of E, computed above as

$$
E_{*, *}^{2}=K(1)_{*} E \otimes \Lambda_{\mathbb{F}_{p}}\left(d t_{1}\right) \Rightarrow K(1)_{*} \operatorname{THH}(E)
$$

where $K(1)_{*} E$ is in filtration degree zero and $K(1)_{*} E\left\{d t_{1}\right\}$ is in filtration degree 1 , and where all differentials are zero. By definition of the map j_{1}, if $1 \in K(1)_{0} E$ is the unit, then $j_{1 *}\left(\Sigma^{2 p-1} 1\right)$ is represented modulo lower filtration by the permanent cycle $d t_{1}$ in $E_{1, *}^{2}$. Since this is a spectral sequence of $K(1)_{*} E$-modules, the composition (5.1) induces a map in $K(1)$ homology that is represented modulo lower filtration by the isomorphism $\Sigma^{2 p-1} K(1)_{*} E \rightarrow E_{1, *}^{2}=K(1)_{*} E\left\{d t_{1}\right\}$ sending a class $\Sigma^{2 p-1} w$ to $w d t_{1}$. It is therefore a $K(1)$-isomorphism, proving the claim.

Now we consider the cofiber $C\left(\bar{j}_{1}\right)$ of \bar{j}_{1}, sitting in an exact triangle

$$
\begin{equation*}
\Sigma^{2 p-1} L_{1} E \xrightarrow{\bar{j}_{1}} \overline{\mathrm{THH}}(E) \xrightarrow{k} C\left(\bar{j}_{1}\right) \xrightarrow{\delta} \Sigma^{2 p} L_{1} E \tag{5.2}
\end{equation*}
$$

Since \bar{j}_{1} is a $K(1)$-isomorphism, we know that $K(1)_{*} C\left(\bar{j}_{1}\right)=0$, and since $\overline{\mathrm{THH}}(E)$ and thus $C\left(\bar{j}_{1}\right)$ are $E(1)$-local, we deduce (as in Lemma 4.2$)$ that $C\left(\bar{j}_{1}\right)$ is $E(0)$-local (i.e., rational). Therefore, the composition

$$
\Sigma^{2 p^{2}-1} E \vee \Sigma^{2 p^{2}+2 p-2} E \xrightarrow{j_{2} \vee j_{12}} \overline{\mathrm{THH}}(E) \xrightarrow{k} C\left(\bar{j}_{1}\right)
$$

factors through its $E(0)$-localization

$$
\bar{j}_{2} \vee \bar{j}_{12}: \Sigma^{2 p^{2}-1} L_{0} E \vee \Sigma^{2 p^{2}+2 p-2} L_{0} E \rightarrow C\left(\bar{j}_{1}\right)
$$

The composition $\delta \circ\left(\bar{j}_{2} \vee \bar{j}_{12}\right)$ is trivial, so that $\bar{j}_{2} \vee \bar{j}_{12}$ lifts to a map h :

Indeed, $\Sigma^{2 p} L_{1} E$ fits in the chromatic fracture pullback diagram

The composition of $\delta \circ\left(\bar{j}_{2} \vee \bar{j}_{12}\right)$ with the left vertical map to $\Sigma^{2 p} L_{0} E$ is trivial, since it factors over the composition

$$
L_{0} \overline{\mathrm{THH}}(E) \rightarrow L_{0} C\left(\bar{j}_{1}\right) \rightarrow \Sigma^{2 p} L_{0} E
$$

of two consecutive maps in the $(E(0)$-localized) cofiber sequence (5.2). The composition of $\delta \circ\left(\bar{j}_{2} \vee \bar{j}_{12}\right)$ with the top map to $\Sigma^{2 p} L_{K(1)} E$ is trivial as well; indeed, there is no non-trivial map from a $K(1)$-acyclic to a $K(1)$-local spectrum. This finishes the proof that $\delta \circ\left(\bar{j}_{2} \vee \bar{j}_{12}\right)$ is trivial and that the lift h exists. We now define β as the sum

$$
\beta=\bar{j}_{1} \vee h: \Sigma^{2 p-1} L_{1} E \vee \Sigma^{2 p^{2}-1} L_{0} E \vee \Sigma^{2 p^{2}+2 p-2} L_{0} E \rightarrow \overline{\mathrm{THH}}(E)
$$

and by definition α factors as $\alpha=\beta \gamma$. Finally, we claim that β is a $K(0)$-isomorphism: this is analogous to the proof above that \bar{j}_{1} is a $K(1)$-isomorphism, working this time with the $K(0)$ based Bökstedt spectral sequence. Since β is a $K(0)$ - and a $K(1)$-isomorphism of $E(1)$-local spectra, it is a weak equivalence.

Assume now that in addition to E being an E_{3}-ring spectrum, the unit map $E \rightarrow \mathrm{THH}(E)$ splits in the homotopy category (this holds for example if E is an E_{∞}-ring spectrum). We then have a weak equivalence of E-modules $E \vee \overline{\mathrm{THH}}(E) \rightarrow \mathrm{THH}(E)$. On the other hand, summing β with the identity of E gives a weak equivalence

$$
\text { id } \vee \beta: E \vee \Sigma^{2 p-1} L_{1} E \vee \Sigma^{2 p^{2}-1} L_{0} E \vee \Sigma^{2 p^{2}+2 p-2} L_{0} E \rightarrow E \vee \overline{\operatorname{THH}}(E)
$$

This implies the following corollary of Theorem 5.2.
Corollary 5.3. Assume that p is an odd prime, and that the second Johnson-Wilson spectrum $E=E(2)$ admits an E_{3}-structure. If the unit map $E \rightarrow \mathrm{THH}(E)$ splits in the homotopy category, then the maps above provide a weak equivalence of E-modules

$$
E \vee \Sigma^{2 p-1} L_{1} E \vee \Sigma^{2 p^{2}-1} L_{0} E \vee \Sigma^{2 p^{2}+2 p-2} L_{0} E \rightarrow \mathrm{THH}(E)
$$

Remark 5.4. Corollary 5.3 implies that

- the 2^{0} summand of $K(2)_{*} E$ in $K(2)_{*} \mathrm{THH}(E)$ indexed by 1 ,
- the 2^{1} summands of $K(1)_{*} E$ in $K(1)_{*} \mathrm{THH}(E)$ indexed by 1 and $d t_{1}$,
- the 2^{2} summands of $K(0)_{*} E$ in $K(0)_{*} \operatorname{THH}(E)$ indexed by $1, d t_{1}, d t_{2}$ and $d t_{1} d t_{2}$
assemble, in $\operatorname{THH}(E)$, into
- the 2^{0} summand E indexed by 1 and detected by $K(0)_{*}, K(1)_{*}$ and $K(2)_{*}$,
- the $2^{1}-2^{0}$ summand $L_{1} E$ indexed by $d t_{1}$ and detected by $K(0)_{*}$ and $K(1)_{*}$, and
- the $2^{2}-2^{1}$ summands $L_{0} E$ indexed by $d t_{2}$ and $d t_{1} d t_{2}$ and detected by $K(0)_{*}$.

Notice that Bruner and Rognes [BR] obtain very similar computations for $K(i)_{*} \mathrm{THH}(\mathrm{tmf})$ for $i=0,1,2$, where tmf denotes the connective spectrum of topological modular form.

We can picture the summands of $\operatorname{THH}(E)$ in a 2-dimensional cube of local pieces (up to suspensions, where $E=L_{2} E$):

	1	$d t_{1}$
1	E	$L_{1} E$
$d t_{2}$	$L_{0} E$	$L_{0} E$

We conjecture that this picture extends to describe a decomposition of $\mathrm{THH}(E(n))$ into 2^{n} summands, with summands placed in an n-dimensional cube, where the i th edge has two coordinates 1 and $d t_{i}$. We formulate this as follows.

Conjecture 5.5. If p is an odd prime such that $E(n)$ is a sufficiently commutative S-algebra, then $\operatorname{THH}(E(n))$ decomposes as a sum of 2^{n} factors, namely 2^{n-i-1} suspended copies of $L_{i} E(n)$ for each $0 \leqslant i \leqslant n-1$, plus one copy of $E(n)$. More precisely, the $L_{i} E(n)$ summands are indexed by the 2^{n-i-1} monomial generators

$$
\omega \in \Lambda_{\mathbb{Q}}\left(d t_{1}, \ldots, d t_{n-i-1}\right)\left\{d t_{n-i}\right\} \subset K(0)_{*} \operatorname{THH}(E(n)),
$$

and the summand corresponding to such a monomial ω is $\Sigma^{|\omega|} L_{i} E(n)$.

References

[AR05] Vigleik Angeltveit and John Rognes, Hopf algebra structure on topological Hochschild homology, Algebr. Geom. Topol. 5 (2005), 1223-1290.
[ACB] Omar Antolìn-Camarena and Tobias Barthel, Chromatic fracture cubes, available at https://arxiv. org/abs/1410.7271. Preprint.
[Aus05] Christian Ausoni, Topological Hochschild homology of connective complex K-theory, Amer. J. Math. 127 (2005), no. 6, 1261-1313.
[BR05] Andrew Baker and Birgit Richter, On the Γ-cohomology of rings of numerical polynomials and E_{∞} structures on K-theory, Comment. Math. Helv. 80 (2005), no. 4, 691-723.
[BM11] Maria Basterra and Michael A. Mandell, Homology of E_{n} ring spectra and iterated THH, Algebr. Geom. Topol. 11 (2011), no. 2, 939-981.
[BM13] Maria Basterra and Michael A. Mandell, The multiplication on BP, J. Topol. 6 (2013), no. 2, 285-310.
[Bau14] Tilman Bauer, Bousfield localization and the Hasse square, Topological modular forms (Christopher L. Douglas, John Francis, André G. Henriques, and Michael A. Hill, eds.), Mathematical Surveys and Monographs, vol. 201, American Mathematical Society, Providence, RI, 2014, pp. 112-121.
[Bök] Marcel Bökstedt, The topological Hochschild homology of \mathbb{Z} and of $\mathbb{Z} / p \mathbb{Z}$. Unpublished preprint.
[BFV07] Morten Brun, Zbigniew Fiedorowicz, and Rainer M. Vogt, On the multiplicative structure of topological Hochschild homology, Algebr. Geom. Topol. 7 (2007), 1633-1650.
[BR] Robert Bruner and John Rognes, Topological Hochschild homology of topological modular forms. notes available on John Rognes' webpage, see https://folk.uio.no/rognes/papers/ntnu08.pdf).
[EKMM97] A. D. Elmendorf, I. Kriz, M. A. Mandell, and J. P. May, Rings, modules, and algebras in stable homotopy theory, Mathematical Surveys and Monographs, vol. 47, American Mathematical Society, Providence, RI, 1997. With an appendix by M. Cole.
[HL10] Michael Hill and Tyler Lawson, Automorphic forms and cohomology theories on Shimura curves of small discriminant, Adv. Math. 225 (2010), no. 2, 1013-1045.
[Lan75] Peter S. Landweber, $\mathrm{BP}_{*}(\mathrm{BP})$ and typical formal groups, Osaka J. Math. 12 (1975), no. 2, 357-363.
[Law] Tyler Lawson, Secondary power operations and the Brown-Peterson spectrum at the prime 2, available at https://arxiv.org/abs/1703.00935. Preprint.
[LN12] Tyler Lawson and Niko Naumann, Commutativity conditions for truncated Brown-Peterson spectra of height 2, J. Topol. 5 (2012), no. 1, 137-168.
[Lod98] Jean-Louis Loday, Cyclic homology, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 301, Springer-Verlag, Berlin, 1998. Appendix E by María O. Ronco; Chapter 13 by the author in collaboration with Teimuraz Pirashvili.
[MNN15] Akhil Mathew, Niko Naumann, and Justin Noel, On a nilpotence conjecture of J. P. May, J. Topol. 8 (2015), no. 4, 917-932.
[MS93] J. E. McClure and R. E. Staffeldt, On the topological Hochschild homology of bu. I, Amer. J. Math. 115 (1993), no. 1, 1-45.
[Rav86] Douglas C. Ravenel, Complex cobordism and stable homotopy groups of spheres, Pure and Applied Mathematics, vol. 121, Academic Press, Inc., Orlando, FL, 1986.
[RS17] Birgit Richter and Brooke Shipley, An algebraic model for commutative $H \mathbb{Z}$-algebras, Algebr. Geom. Topol. 17 (2017), no. 4, 2013-2038.
[Rob03] Alan Robinson, Gamma homology, Lie representations and E_{∞} multiplications, Invent. Math. 152 (2003), no. 2, 331-348.
[RW02] Alan Robinson and Sarah Whitehouse, Operads and Γ-homology of commutative rings, Math. Proc. Cambridge Philos. Soc. 132 (2002), no. 2, 197-234.
[Rog08] John Rognes, Galois extensions of structured ring spectra. Stably dualizable groups, Mem. Amer. Math. Soc. 192 (2008), no. 898, viii+137.
[Sen] Andrew Senger, The Brown-Peterson spectrum is not $E_{2\left(p^{2}+2\right)}$ at odd primes, available at https: //arxiv.org/abs/1710.09822. Preprint.
[Shi07] Brooke Shipley, HZ्Z-algebra spectra are differential graded algebras, Amer. J. Math. 129 (2007), no. 2, 351-379.
[Sto] Bruno Stonek, Higher topological Hochschild homology of periodic complex K-theory, available at https://arxiv.org/abs/1801.00156. Preprint.
[WG91] Charles A. Weibel and Susan C. Geller, Étale descent for Hochschild and cyclic homology, Comment. Math. Helv. 66 (1991), no. 3, 368-388.

LAGA (UMR7539), Institut Galilée, Université Paris 13 Sorbonne-Paris-Cité, 99 avenue J.-B. Clément, 93430 Villetaneuse, France

E-mail address: ausoni@math.univ-paris13.fr
URL: http://www.math.univ-paris13.fr/~ausoni/
Fachbereich Mathematik der Universität Hamburg, Bundesstrasse 55, 20146 Hamburg, Germany
E-mail address: birgit.richter@uni-hamburg.de
URL: http://www.math.uni-hamburg.de/home/richter/

[^0]: Date: July 9, 2018.
 2000 Mathematics Subject Classification. 55P43, 55N35.
 Key words and phrases. Topological Hochschild homology, Johnson-Wilson spectra, E_{∞}-structures on ring spectra, chromatic squares.

