UBIQUITY IN GRAPHS I: TOPOLOGICAL UBIQUITY OF TREES

NATHAN BOWLER, CHRISTIAN ELBRACHT, JOSHUA ERDE, PASCAL GOLLIN, KARL HEUER, MAX PITZ, AND MAXIMILIAN TEEGEN

Abstract

Let \triangleleft be a relation between graphs. We say a graph G is \triangleleft-ubiquitous if whenever Γ is a graph with $n G \triangleleft \Gamma$ for all $n \in \mathbb{N}$, then one also has $\aleph_{0} G \triangleleft \Gamma$, where αG is the disjoint union of α many copies of G.

The Ubiquity Conjecture of Andreae, a well-known open problem in the theory of infinite graphs, asserts that every locally finite connected graph is ubiquitous with respect to the minor relation.

In this paper, which is the first of a series of papers making progress towards the Ubiquity Conjecture, we show that all trees are ubiquitous with respect to the topological minor relation, irrespective of their cardinality. This answers a question of Andreae from 1979.

§1. Introduction

Let \triangleleft be a relation between graphs, for example the subgraph relation \subseteq, the topological minor relation \leqslant or the minor relation \preccurlyeq. We say that a graph G is \triangleleft-ubiquitous if whenever Γ is a graph with $n G \triangleleft \Gamma$ for all $n \in \mathbb{N}$, then one also has $\aleph_{0} G \triangleleft \Gamma$, where αG is the disjoint union of α many copies of G.

Two classic results of Halin [10, 11] say that both the ray and the double ray are \subseteq ubiquitous, i.e. any graph which contains arbitrarily large collections of disjoint (double) rays must contain an infinite collection of disjoint (double) rays. However, even quite simple graphs can fail to be \subseteq or \leqslant-ubiquitous, see e.g. [1, 18, 13], examples of which, due to Andreae [4], are depicted in Figures 1.1 and 1.2 below.

FIGURE 1.1. A graph which is not \subseteq-ubiquitous.

[^0]

Figure 1.2. A graph which is not \leqslant-ubiquitous.
However, for the minor relation, no such simple examples of non-ubiquitous graphs are known. Indeed, one of the most important problems in the theory of infinite graphs is the so-called Ubiquity Conjecture due to Andreae [3].

The Ubiquity Conjecture. Every locally finite connected graph is \preccurlyeq-ubiquitous.
In [3], Andreae constructed a graph that is not $\preccurlyeq-u b i q u i t o u s . ~ H o w e v e r, ~ t h i s ~ c o n s t r u c t i o n ~$ relys on the existence of a counterexample to the well-quasi-ordering of infinite graphs under the minor relation, for which counterexamples are only known with very large cardinality [17]. In particular, it is still an open question whether or not there exists a countable connected graph which is not $\preccurlyeq-u b i q u i t o u s$.

In his most recent paper on ubiquity to date, Andreae [4] exhibited infinite families of locally finite graphs for which the ubiquity conjecture holds. The present paper is the first in a series of papers $[5,6,7]$ making further progress towards the ubiquity conjecture, with the aim being to show that all graphs of bounded tree-width are ubiquitous.

As a first step towards this, we in particular need to deal with infinite trees, for which one even gets affirmative results regarding ubiquity under the topological minor relation. Halin showed in [12] that all trees of maximum degree 3 are \leqslant-ubiquitous. Andreae improved this result to show that all locally finite trees are \leqslant-ubiquitous [2], and asked if his result could be extended to arbitrary trees [2, p. 214]. Our main result of this paper answers this question in the affirmative.

Theorem 1.1. Every tree is ubiquitous with respect to the topological minor relation.
The proof will use some results about the well-quasi-ordering of trees under the topological minor relation of Nash-Williams [15] and Laver [14], as well as some notions about the topological structure of infinite graphs [9]. Interestingly, most of the work in proving Theorem 1.1 lies in dealing with the countable case, where several new ideas are needed. In fact, we will prove a slightly stronger statement in the countable case, which will allow us to derive the general result via transfinite induction on the cardinality of the tree, using some ideas from Shelah's singular compactness theorem [16].

To explain our strategy, let us fix some notation. When H is a subdivision of G we write $G \leqslant{ }^{*} H$. Then, $G \leqslant \Gamma$ means that there is a subgraph $H \subseteq \Gamma$ which is a subdivision
of G, that is, $G \leqslant^{*} H$. If H is a subdivision of G and v a vertex of G, then we denote by $H(v)$ the corresponding vertex in H. More generally, given a subgraph $G^{\prime} \subseteq G$, we denote by $H\left(G^{\prime}\right)$ the corresponding subdivision of G^{\prime} in H.

Now, suppose we have a rooted tree T and a graph Γ. Given a vertex $t \in T$, let T_{t} denote the subtree of T rooted in t. We say that a vertex $v \in \Gamma$ is t-suitable if there is some subdivision H of T_{t} in Γ with $H(t)=v$. For a subtree $S \subseteq T$ we say that a subdivision H of S in Γ is T-suitable if for each vertex $s \in V(S)$ the vertex $H(s)$ is s-suitable, i.e. for every $s \in V(S)$ there is a subdivision H^{\prime} of T_{s} such that $H^{\prime}(s)=H(s)$.

An S-horde is a sequence ($H_{i}: i \in \mathbb{N}$) of disjoint suitable subdivisions of S in Γ. If S^{\prime} is a subtree of S, then we say that an S-horde $\left(H_{i}: i \in \mathbb{N}\right)$ extends an S^{\prime}-horde $\left(H_{i}^{\prime}: i \in \mathbb{N}\right)$ if for every $i \in \mathbb{N}$ we have $H_{i}\left(S^{\prime}\right)=H_{i}^{\prime}$.

In order to show that an arbitrary tree T is \leqslant-ubiquitous, our rough strategy will be to build, by transfinite recursion, S-hordes for larger and larger subtrees S of T, each extending all the previous ones, until we have built a T-horde. However, to start the induction it will be necessary to show that we can build S-hordes for countable subtrees S of T. This will be done in the following key result of this paper:

Theorem 1.2. Let T be a tree, S a countable subtree of T and Γ a graph such that $n T \leqslant \Gamma$ for every $n \in \mathbb{N}$. Then there is an S-horde in Γ.

Note that Theorem 1.2 in particular implies \leqslant-ubiquity of countable trees.
We remark that whilst the relation \preccurlyeq is a relaxation of the relation \leqslant, which is itself a relaxation of the relation \subseteq, it is not clear whether \subseteq-ubiquity implies \leqslant-ubiquity, or whether \leqslant-ubiquity implies \preccurlyeq-ubiquity. In the case of Theorem 1.1 however, it is true that arbitrary trees are also \preccurlyeq-ubiquitous, although the proof involves some extra technical difficulties that we will deal with in a later paper [7]. We note, however, that it is surprisingly easy to show that countable trees are \preccurlyeq-ubiquitous, since it can be derived relatively straightforwardly from Halin's grid theorem, see [5, Theorem 1.7].

This paper is structured as follows: In Section 2, we provide background on rooted trees, rooted topological embeddings of rooted trees (in the sense of Kruskal and NashWilliams), and ends of graphs. In our graph theoretic notation we generally follow the textbook of Diestel [8]. Next, Sections 3 to 5 introduce the key ingredients for our main ubiquity result. Section 3, extending ideas from Andreae's [2], lists three useful corollaries of Nash-Williams' and Laver's result that (labelled) trees are well-quasi-ordered under the topological minor relation, Section 4 investigates under which conditions a given family of disjoint rays can be rerouted onto another family of disjoint rays, and Section 5 shows that
without loss of generality, we already have quite a lot of information about how exactly our copies of $n G$ are placed in the host graph Γ.

Using these ingredients, we give a proof of the countable case, i.e. of Theorem 1.2, in Section 6. Finally, Section 7 contains the induction argument establishing our main result, Theorem 1.1.

§2. Preliminaries

Definition 2.1. A rooted graph is a pair (G, v) where G is a graph and $v \in V(G)$ is a vertex of G which we call the root. Often, when it is clear from the context which vertex is the root of the graph, we will refer to a rooted graph (G, v) as simply G.

Given a rooted tree (T, v), we define a partial order \leq, which we call the tree-order, on $V(T)$ by letting $x \leq y$ if the unique path between y and v in T passes through x. See [8, Section 1.5] for more background. For any edge $e \in E(T)$ we denote by e^{-}the endpoint closer to the root and by e^{+}the endpoint further from the root. For any vertex t we denote by $N^{+}(t)$ the set of children of t in T, the neighbours s of t satisfying $t \leq s$. The subtree of T rooted at t is denoted by $\left(T_{t}, t\right)$, that is, the induced subgraph of T on the set of vertices $\{s \in V(T): t \leq s\}$.

We say that a rooted tree (S, w) is a rooted subtree of a rooted tree (T, v) if S is a subgraph of T such that the tree order on (S, w) agrees with the induced tree order from (T, v). In this case we write $(S, w) \subseteq_{r}(T, v)$.

We say that a rooted tree (S, w) is a rooted topological minor of a rooted tree (T, v) if there is a subgraph S^{\prime} of T which is a subdivision of S such that for any $x \leq y \in V(S)$, $S^{\prime}(x) \leq S^{\prime}(y)$ in the tree-order on T. We call such an S^{\prime} a rooted subdivision of S. In this case we write $(S, w) \leqslant_{r}(T, v)$, cf. [8, Section 12.2].

Definition 2.2 (Ends of a graph, cf. [8, Chapter 8]). An end in an infinite graph Γ is an equivalence class of rays, where two rays R and S are equivalent if and only if there are infinitely many vertex disjoint paths between R and S in Γ. We denote by $\Omega(\Gamma)$ the set of ends in Γ. Given any end $\epsilon \in \Omega(\Gamma)$ and a finite set $X \subseteq V(\Gamma)$ there is a unique component of $\Gamma-X$ which contains a tail of every ray in ϵ, which we denote by $C(X, \epsilon)$.

A vertex $v \in V(\Gamma)$ dominates an end ω if there is a ray $R \in \omega$ such that there are infinitely many vertex disjoint $v-R$-paths in Γ.

Definition 2.3. For a path or ray P and vertices $v, w \in V(P)$, let $v P w$ denote the subpath of P with endvertices v and w. If P is a ray, let $P v$ denote the finite subpath of P between the initial vertex of P and v, and let $v P$ denote the subray (or tail) of P with initial vertex v.

Given two paths or rays P and Q which are disjoint but for one of their endvertices, we write $P Q$ for the concatenation of P and Q, that is the path, ray or double ray $P \cup Q$. Since concatenation of paths is associative, we will not use parentheses. Moreover, if we concatenate paths of the form $v P w$ and $w Q x$, then we omit writing w twice and denote the concatenation by $v P w Q x$.

§3. WELL-QUASI-ORDERS AND κ-EMBEDDABILITY

Definition 3.1. Let X be a set and let \triangleleft be a binary relation on X. Given an infinite cardinal κ we say that an element $x \in X$ is κ-embeddable (with respect to \triangleleft) in X if there are at least κ many elements $x^{\prime} \in X$ such that $x \triangleleft x^{\prime}$.

Definition 3.2 (well-quasi-order). A binary relation \triangleleft on a set X is a well-quasi-order if it is reflexive and transitive, and for every sequence $x_{1}, x_{2}, \ldots \in X$ there is some $i<j$ such that $x_{i} \triangleleft x_{j}$.

Lemma 3.3. Let X be a set and let \triangleleft be a well-quasi-order on X. For any infinite cardinal κ the number of elements of X which are not κ-embeddable with respect to \triangleleft in X is less than κ.

Proof. For $x \in X$ let $U_{x}=\{y \in X: x \triangleleft y\}$. Now suppose for a contradiction that the set $A \subseteq X$ of elements which are not κ-embeddable with respect to \triangleleft in X has size at least κ. Then, we can recursively pick a sequence $\left(x_{n} \in A\right)_{n \in \mathbb{N}}$ such that $x_{m} \nrightarrow x_{n}$ for $m<n$. Indeed, having chosen all x_{m} with $m<n$ it suffices to choose x_{n} to be any element of the set $A \backslash \bigcup_{m<n} U_{x_{m}}$, which is nonempty since A has size κ but each $U_{x_{m}}$ has size $<\kappa$.

By construction we have $x_{m} \nexists x_{n}$ for $m<n$, contradicting the assumption that \triangleleft is a well-quasi-order on X.

We will use the following theorem of Nash-Williams on well-quasi-ordering of rooted trees, and its extension by Laver to labelled rooted trees.

Theorem 3.4 (Nash-Williams [15]). The relation \leqslant_{r} is a well-quasi order on the set of rooted trees.

Theorem 3.5 (Laver [14]). The relation \leqslant_{r} is a well-quasi order on the set of rooted trees with finitely many labels, i.e. for every finite number $k \in \mathbb{N}$, whenever $\left(T_{1}, c_{1}\right),\left(T_{2}, c_{2}\right), \ldots$ is a sequence of rooted trees with k-colourings $c_{i}: T_{i} \rightarrow[k]$, there is some $i<j$ such that there exists a subdivision H of T_{i} with $H \subseteq_{r} T_{j}$ and $c_{i}(t)=c_{j}(H(t))$ for all $t \in T_{i} .{ }^{1}$

[^1]Together with Lemma 3.3 these results give us the following three corollaries:
Definition 3.6. Let (T, v) be an infinite rooted tree. For any vertex t of T and any infinite cardinal κ, we say that a child t^{\prime} of t is κ-embeddable if there are at least κ children $t^{\prime \prime}$ of t such that $T_{t^{\prime}}$ is a rooted topological minor of $T_{t^{\prime \prime}}$.

Corollary 3.7. Let (T, v) be an infinite rooted tree, $t \in V(T)$ and $\mathcal{T}=\left\{T_{t^{\prime}}: t^{\prime} \in N^{+}(t)\right\}$. Then for any infinite cardinal κ, the number of children of t which are not κ-embeddable is less than κ.

Proof. By Theorem 3.4 the set $\mathcal{T}=\left\{T_{t^{\prime}}: t^{\prime} \in N^{+}(t)\right\}$ is well-quasi-ordered by \leqslant_{r} and so the claim follows by Lemma 3.3 applied to $\mathcal{T}, \leqslant_{r}$, and κ.

Corollary 3.8. Let (T, v) be an infinite rooted tree, $t \in V(T)$ a vertex of infinite degree and $\left(t_{i} \in N^{+}(t): i \in \mathbb{N}\right)$ a sequence of countably many of its children. Then there exists $N_{t} \in \mathbb{N}$ such that for all $n \geq N_{t}$,

$$
\{t\} \cup \bigcup_{i>N_{t}} T_{t_{i}} \leqslant r\{t\} \cup \bigcup_{i>n} T_{t_{i}}
$$

(considered as trees rooted at t) fixing the root t.
Proof. Consider a labelling $c: T_{t} \rightarrow[2]$ mapping t to 1 , and all remaining vertices of T_{t} to 2 . By Theorem 3.5, the set $\mathcal{T}=\left\{\{t\} \cup \bigcup_{i>n} T_{t_{i}}: n \in \mathbb{N}\right\}$ is well-quasi-ordered by \leqslant_{r} respecting the labelling, and so the claim follows by applying Lemma 3.3 to \mathcal{T} and \leqslant_{r} with $\kappa=\aleph_{0}$.

Definition 3.9 (Self-similarity). A ray $R=r_{1} r_{2} r_{3} \ldots$ in a rooted tree (T, v) which is upwards with respect to the tree order displays self-similarity of T if there are infinitely many n such that there exists a subdivision H of $T_{r_{0}}$ with $H \subseteq_{r} T_{r_{n}}$ and $H(R) \subseteq R$.

Corollary 3.10. Let (T, v) be an infinite rooted tree and let $R=r_{1} r_{2} r_{3} \ldots$ be a ray which is upwards with respect to the tree order. Then there is a $k \in \mathbb{N}$ such that $r_{k} R$ displays self-similarity of $T .^{2}$

Proof. Consider a labelling $c: T \rightarrow[2]$ mapping the vertices on the ray R to 1 , and labelling all remaining vertices of T with 2 . By Theorem 3.5 , the set $\mathcal{T}=\left\{\left(T_{r_{i}}, c_{i}\right): i \in \mathbb{N}\right\}$, where c_{i} is the natural restriction of c to $T_{r_{i}}$, is well-quasi-ordered by \leqslant_{r} respecting the labellings. Hence by Lemma 3.3, the number of indices i such that $T_{r_{i}}$ is not \aleph_{0}-embeddable in \mathcal{T} is finite. Let k be larger than any such i. Then, since $T_{r_{k}}$ is \aleph_{0}-embeddable in \mathcal{T}, there are

[^2]infinitely many $r_{j} \in r_{k} R$ such that $T_{r_{k}} \leqslant r T_{r_{j}}$ respecting the labelling, i.e. mapping the ray to the ray, and hence $r_{k} R$ displays the self similarity of T.

§4. Linkages between rays

In this section we will establish a toolkit for constructing a disjoint system of paths from one family of disjoint rays to another.

Definition 4.1 (Tail of a ray). Given a ray R in a graph Γ and a finite set $X \subseteq V(\Gamma)$ the tail of R after X, denoted by $T(R, X)$, is the unique infinite component of R in $\Gamma-X$.

Definition 4.2 (Linkage of families of rays). Let $\mathcal{R}=\left(R_{i}: i \in I\right)$ and $\mathcal{S}=\left(S_{j}: j \in J\right)$ be families of vertex disjoint rays, where the initial vertex of each R_{i} is denoted x_{i}. A family of paths $\mathcal{P}=\left(P_{i}: i \in I\right)$, is a linkage from \mathcal{R} to \mathcal{S} if there is an injective function $\sigma: I \rightarrow J$ such that

- each P_{i} joins a vertex $x_{i}^{\prime} \in R_{i}$ to a vertex $y_{\sigma(i)} \in S_{\sigma(i)}$;
- the family $\mathcal{T}=\left(x_{i} R_{i} x_{i}^{\prime} P_{i} y_{\sigma(i)} S_{\sigma(i)}: i \in I\right)$ is a collection of disjoint rays.

We say that \mathcal{T} is obtained by transitioning from \mathcal{R} to \mathcal{S} along the linkage \mathcal{P}. Given a finite set of vertices $X \subseteq V(\Gamma)$, we say that \mathcal{P} is after X if $x_{i}^{\prime} \in T\left(R_{i}, X\right)$ and $x_{i}^{\prime} P_{i} y_{\sigma(i)} S_{\sigma(i)}$ avoids X for all $i \in I$.

Lemma 4.3 (Weak linking lemma). Let Γ be a graph and $\epsilon \in \Omega(\Gamma)$. Then for any families $\mathcal{R}=\left(R_{i}: i \in[n]\right)$ and $\mathcal{S}=\left(S_{j}: j \in[n]\right)$ of vertex disjoint rays in ϵ and any finite set X of vertices, there is a linkage from \mathcal{R} to \mathcal{S} after X.

Proof. Let us write x_{i} for the initial vertex of each R_{i} and let x_{i}^{\prime} be the initial vertex of the tail $T\left(R_{i}, X\right)$. Furthermore, let $X^{\prime}=X \cup \bigcup_{i \in[n]} R_{i} x_{i}^{\prime}$. For $i \in[n]$ we will construct inductively finite disjoint connected subgraphs $K_{i} \subseteq \Gamma$ for each $i \in[n]$ such that

- K_{i} meets $T\left(S_{j}, X^{\prime}\right)$ and $T\left(R_{j}, X^{\prime}\right)$ for every $j \in[n]$;
- K_{i} avoids X^{\prime}.

Suppose that we have constructed K_{1}, \ldots, K_{m-1} for some $m \leq n$. Let us write $X_{m}=$ $X^{\prime} \cup \bigcup_{i<m} V\left(K_{i}\right)$. Since R_{1}, \ldots, R_{n} and S_{1}, \ldots, S_{n} lie in the same end ϵ, there exist paths $Q_{i, j}$ between $T\left(R_{i}, X_{m}\right)$ and $T\left(S_{j}, X_{m}\right)$ avoiding X_{m} for all $i \neq j \in[n]$. Let $K_{m}=$ $F \cup \bigcup_{i \neq j \in[n]} Q_{i, j}$, where F consists of an initial segment of each $T\left(R_{i}, X_{m}\right)$ sufficiently large to make K_{m} connected. Then it is clear that K_{m} is disjoint from all previous K_{i} and satisfies the claimed properties.

Let $K=\bigcup_{i=1}^{n} K_{i}$ and for each $j \in[n]$, let y_{j} be the initial vertex of $T\left(S_{j}, V(K)\right)$. Note that by construction $T\left(S_{j}, V(K)\right)$ avoids X for each j, since K_{1} meets $T\left(S_{j}, X\right)$ and so $T\left(S_{j}, V(K)\right) \subseteq T\left(S_{j}, X\right)$.

We claim that there is no separator of size $<n$ between $\left\{x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right\}$ and $\left\{y_{1}, \ldots, y_{n}\right\}$ in the subgraph $\Gamma^{\prime} \subseteq \Gamma$ where $\Gamma^{\prime}=K \cup \bigcup_{j=1}^{n} T\left(R_{j}, X^{\prime}\right) \cup T\left(S_{j}, X^{\prime}\right)$. Indeed, any set of $<n$ vertices must avoid at least one ray R_{i}, at least one graph K_{m} and one ray S_{j}. However, since K_{m} is connected and meets R_{i} and S_{j}, the separator does not separate x_{i}^{\prime} from y_{j}.

Hence, by a version of Menger's theorem for infinite graphs [8, Proposition 8.4.1], there is a collection of n disjoint paths P_{i} from x_{i}^{\prime} to $y_{\sigma(i)}$ in Γ^{\prime}. Since Γ^{\prime} is disjoint from X and meets each $R_{i} x_{i}^{\prime}$ in x_{i}^{\prime} only, it is clear that $\mathcal{P}=\left(P_{i}: i \in[n]\right)$ is as desired.

In some cases we will need to find linkages between families of rays which avoid more than just a finite subset X. For this we will use the following lemma, which is stated in slightly more generality than needed in this paper. Broadly the idea is that if we have a family of disjoint rays $\left(R_{i}: i \in[n]\right)$ tending to an end ϵ and a number $a \in \mathbb{N}$, then there is some fixed number $N=N(a, n)$ such that if we have N disjoint graphs H_{i}, each with a specified ray S_{i} tending to ϵ, then we can 're-route' the rays $\left(R_{i}: i \in[n]\right)$ to some of the rays $\left(S_{j}: j \in[N]\right)$, in such a way that we totally avoid a of the graphs H_{i}.

Lemma 4.4 (Strong linking lemma). Let Γ be a graph and $\epsilon \in \Omega(\Gamma)$. Let X be a finite set of vertices, $a, n \in \mathbb{N}$, and $\mathcal{R}=\left(R_{i}: i \in[n]\right)$ a family of vertex disjoint rays in ϵ. Let x_{i} be the initial vertex of R_{i} and let x_{i}^{\prime} the initial vertex of the tail $T\left(R_{i}, X\right)$.

Then there is a finite number $N=N(\mathcal{R}, X, a)$ with the following property: For every collection $\left(H_{j}: j \in[N]\right)$ of vertex disjoint subgraphs of Γ, all disjoint from X and each including a specified ray S_{j} in ϵ, there is a set $A \subseteq[N]$ of size a and a linkage $\mathcal{P}=\left(P_{i}: i \in\right.$ $[n])$ from \mathcal{R} to $\left(S_{j}: j \in[N]\right)$ which is after X and such that the family

$$
\mathcal{T}=\left(x_{i} R_{i} x_{i}^{\prime} P_{i} y_{\sigma(i)} S_{\sigma(i)}: i \in[n]\right)
$$

avoids $\bigcup_{k \in A} H_{k}$.
Proof. Let $X^{\prime}=X \cup \bigcup_{i \in[n]} R_{i} x_{i}^{\prime}$ and let $N_{0}=\left|X^{\prime}\right|$. We claim that the lemma holds with $N=N_{0}+n^{3}+a$.

Indeed suppose that $\left(H_{j}: j \in[N]\right)$ is a collection of vertex disjoint subgraphs as in the statement of the lemma. Since the H_{j} are vertex disjoint, we may assume without loss of generality that the family $\left(H_{j}: j \in\left[n^{3}+a\right]\right)$ is disjoint from X^{\prime}.

For each $i \in\left[n^{2}\right]$ we will build inductively finite, connected, vertex disjoint subgraphs \hat{K}_{i} such that

- \hat{K}_{i} contains $x_{i(\bmod n)}^{\prime}$,
- \hat{K}_{i} meets exactly n of the H_{j}, that is $\left|\left\{j \in\left[n^{3}+a\right]: \hat{K}_{i} \cap H_{j} \neq \emptyset\right\}\right|=n$, and
- \hat{K}_{i} avoids X^{\prime}.

Suppose we have done so for all $i<m$. Let $X_{m}=X^{\prime} \cup \bigcup_{i<m} V\left(\hat{K}_{i}\right)$. We will build inductively for $t=0, \ldots, n$ increasing connected subgraphs \hat{K}_{m}^{t} that meet $R_{i(\bmod n)}$, meet exactly t of the H_{j}, and avoid X_{m}.

We start with $\hat{K}_{m}^{0}=\emptyset$. For each $t=0, \ldots n-1$, if $T\left(R_{m(\bmod n)}, X_{m}\right)$ meets some H_{j} not met by \hat{K}_{m}^{t} then there is some initial vertex $z_{t} \in T\left(R_{m}(\bmod n), X_{m}\right)$ where it does so and we set $\hat{K}_{m}^{t+1}:=\hat{K}_{m}^{t} \cup T\left(R_{m(\bmod n)}, X_{m}\right) z_{t}$. Otherwise we may assume $T\left(R_{m(\bmod n)}, X_{m}\right)$ does not meet any such H_{j}. In this case, let $j \in\left[n^{3}+a\right]$ be such that $\hat{K}_{m}^{t} \cap H_{j}=$ \emptyset. Since $R_{m}(\bmod n)$ and S_{j} belong to the same end ϵ, there is some path P between $T\left(R_{m}(\bmod n), X_{m}\right)$ and $T\left(S_{j}, X_{m}\right)$ which avoids X_{m}. Since this path meets some H_{k} with $k \in\left[n^{3}+a\right]$ which \hat{K}_{m}^{t} does not, there is some initial segment P^{\prime} which meets exactly one such H_{k}. To form \hat{K}_{m}^{t+1} we add this path to \hat{K}_{m}^{t} together with an appropriately large initial segment of $T\left(R_{m(\bmod n)}, X_{m}\right)$ such that \hat{K}_{m}^{t+1} is connected and contains $x_{m}^{\prime}(\bmod n)$. Finally we let $\hat{K}_{m}=\hat{K}_{m}^{n}$.

Let $K=\bigcup_{i \in\left[n^{2}\right]} \hat{K}_{i}$. Since each \hat{K}_{i} meets exactly n of the H_{j}, the set

$$
J=\left\{j \in\left[n^{3}+a\right]: H_{j} \cap K \neq \emptyset\right\}
$$

satisfies $|J| \leqslant n^{3}$. For each $j \in J$ let y_{j} be the initial vertex of $T\left(S_{j}, V(K)\right)$.
We claim that there is no separator of size $<n$ between $\left\{x_{1}^{\prime}, \ldots x_{n}^{\prime}\right\}$ and $\left\{y_{j}: j \in J\right\}$ in the subgraph $\Gamma^{\prime} \subseteq \Gamma$ where $\Gamma^{\prime}=K \cup \bigcup_{j \in[n]} T\left(R_{j}, X^{\prime}\right) \cup \bigcup_{j \in J} H_{j}$. Suppose for a contradiction that there is such a separator S. Then S cannot meet every R_{i}, and hence avoids some R_{q}. Furthermore, there are n distinct \hat{K}_{i} such that $i=q(\bmod n)$, all of which are disjoint. Hence there is some \hat{K}_{r} with $r=q(\bmod n)$ disjoint from S. Finally, $\left|\left\{j \in J: \hat{K}_{r} \cap H_{j} \neq \emptyset\right\}\right|=n$ and so there is some H_{s} disjoint from S such that $\hat{K}_{r} \cap H_{s} \neq \emptyset$. Since \hat{K}_{r} meets $T\left(R_{q}, X^{\prime}\right)$ and H_{s}, there is a path from x_{q}^{\prime} to y_{s} in Γ^{\prime}, contradicting our assumption.

Hence, by a version of Menger's theorem for infinite graphs [8, Proposition 8.4.1], there is a family of disjoint paths $\mathcal{P}=\left(P_{i}: i \in[n]\right)$ in Γ^{\prime} from x_{i}^{\prime} to $y_{\sigma(i)}$. Furthermore, since $|J| \leqslant n^{3}$ there is some subset $A \subseteq\left[n^{3}+a\right]$ of size a such that H_{k} is disjoint from K for each $k \in A$.

Therefore, since Γ^{\prime} is disjoint from X^{\prime} and meets each $R_{i} x_{i}^{\prime}$ in x_{i}^{\prime} only, the family \mathcal{P} is a linkage from \mathcal{R} to $\left(S_{j}\right)_{j \in\left[n^{3}+a\right]}$ which is after X such that

$$
\mathcal{T}=\left(x_{i} R_{i} x_{i}^{\prime} P_{i} y_{\sigma(i)} S_{\sigma(i)}: i \in[n]\right)
$$

avoids $\bigcup_{k \in A} H_{k}$.
We will also need the following result, which allows us to work with paths instead of rays if the end ϵ is dominated by infinitely many vertices.

Lemma 4.5. Let Γ be a graph and ϵ an end of Γ which is dominated by infinitely many vertices. Let $x_{1}, x_{2}, \ldots, x_{k}$ be distinct vertices. If there are disjoint rays from the x_{i} to ϵ then there are disjoint paths from the x_{i} to distinct vertices y_{i} which dominate ϵ.

Proof. We argue by induction on k. The base case $k=0$ is trivial, so let us assume $k>0$.
Consider any family of disjoint rays R_{i}, each from x_{i} to ϵ. Let y_{k} be any vertex dominating ϵ. Let P be a $y_{k}-\bigcup_{i=1}^{k} R_{i}$-path. Without loss of generality the endvertex u of P in $\bigcup_{i=1}^{k} R_{i}$ lies on R_{k}. Then by the induction hypothesis applied to the graph $\Gamma-R_{k} u P$ we can find disjoint paths in that graph from the x_{i} with $i<k$ to vertices y_{i} which dominate ϵ. These paths together with $R_{k} u P$ then form the desired collection of paths.

To go back from paths to rays we will use the following lemma.
Lemma 4.6. Let Γ be a graph and ϵ an end of Γ which is dominated by infinitely many vertices. Let $y_{1}, y_{2}, \ldots, y_{k}$ be vertices, not necessarily distinct, dominating Γ. Then there are rays R_{i} from the respective y_{i} to ϵ which are disjoint except at their initial vertices.

Proof. We recursively build for each $n \in \mathbb{N}$ paths $P_{1}^{n}, \ldots, P_{k}^{n}$, each P_{i}^{n} from y_{i} to a vertex y_{i}^{n} dominating ϵ, disjoint except at their initial vertices, such that for $m<n$ each P_{i}^{n} properly extends P_{i}^{m}. We take P_{i}^{0} to be a trivial path. For $n>0$, build the P_{i}^{n} recursively in i : To construct P_{i}^{n}, we start by taking X_{i}^{n} to be the finite set of all the vertices of the P_{j}^{n} with $j<i$ or P_{j}^{n-1} with $j \geq i$. We then choose a vertex y_{i}^{n} outside of X_{i}^{n} which dominates ϵ and a path Q_{i}^{n} from y_{i}^{n-1} to y_{i}^{n} internally disjoint from X_{i}^{n}. Finally we let $P_{i}^{n}:=P_{i}^{n-1} y_{n-1} Q_{i}^{n}$.

Finally, for each $i \leqslant k$, we let R_{i} be the ray $\bigcup_{n \in \mathbb{N}} P_{i}^{n}$. Then the R_{i} are disjoint except at their initial vertices, and they are in ϵ, since each of them contains infinitely many dominating vertices of ϵ.

§5. G-Tribes and concentration of G-Tribes towards an end

For showing that a given graph G is ubiquitous with respect to a fixed relation \triangleleft, we shall assume that $n G \triangleleft \Gamma$ for every $n \in \mathbb{N}$ and need to show that this implies that $\aleph_{0} G \triangleleft \Gamma$. Since each subgraph witnessing that $n G \triangleleft \Gamma$ will be a collection of n disjoint subgraphs each being a witness for $G \triangleleft \Gamma$, it will be useful to introduce some notation for talking about these families of collections of n disjoint witnesses for each n.

To do this formally, we need to distinguish between a relation like the topological minor relation and the subdivision relation. Recall that we write $G \leqslant^{*} H$ if H is a subdivision of G and $G \leqslant \Gamma$ if G is a topological minor of Γ. We can interpret the topological minor relation as the composition of the subdivision relation and the subgraph relation.

Given two relations R and S, let their composition $S \circ R$ be the relation defined by $x(S \circ R) z$ if and only if there is a y such that $x R y$ and $y S z$.

Hence we have that $G\left(\subseteq \circ \leqslant^{*}\right) \Gamma$ if and only if there exists H such that $G \leqslant^{*} H \subseteq \Gamma$, that is, if and only if $G \leqslant \Gamma$.

While in this paper we will only work with the topological minor relation, we will state the following definition and lemmas in greater generality, so that we may apply them in later papers in this series $[5,6,7]$.

In general, we want to consider a pair $(\triangleleft, \boldsymbol{4})$ of binary relations of graphs with the following properties.
(R1) $\triangleleft=(\subseteq \circ$ 4);
(R2) Given a set I and a family $\left(H_{i}: i \in I\right)$ of pairwise disjoint graphs with $G \longleftarrow H_{i}$ for all $i \in I$, then $|I| \cdot G \triangleleft \bigcup\left\{H_{i}: i \in I\right\}$.

We call a pair $(\triangleleft, \boldsymbol{4})$ with these properties compatible.
Other examples of compatible pairs are (\subseteq, \cong), where \cong denotes the isomorphism relation, as well as $\left(\preccurlyeq, \preccurlyeq^{*}\right)$, where $G \preccurlyeq^{*} H$ if H is an inflated copy of G.

Definition 5.1 (G-tribes). Let G and Γ be graphs, and let $(\triangleleft, \measuredangle)$ be a compatible pair of relations between graphs.

- A G-tribe in Γ (with respect to $(\triangleleft, \boldsymbol{\triangleleft})$) is a collection \mathcal{F} of finite sets F of disjoint subgraphs H of Γ such that $G \longleftarrow H$ for each member of $\mathcal{F} H \in \bigcup \mathcal{F}$.
- A G-tribe \mathcal{F} in Γ is called thick, if for each $n \in \mathbb{N}$ there is a layer $F \in \mathcal{F}$ with $|F| \geq n$; otherwise, it is called thin. ${ }^{3}$
- A G-tribe \mathcal{F}^{\prime} in Γ is a G-subtribe of a G-tribe \mathcal{F} in Γ, denoted by $\mathcal{F}^{\prime} \triangleleft \mathcal{F}$, if there is an injection $\Psi: \mathcal{F}^{\prime} \rightarrow \mathcal{F}$ such that for each $F^{\prime} \in \mathcal{F}^{\prime}$ there is an injection $\varphi_{F^{\prime}}: F^{\prime} \rightarrow \Psi\left(F^{\prime}\right)$ such that $V\left(H^{\prime}\right) \subseteq V\left(\varphi_{F^{\prime}}\left(H^{\prime}\right)\right)$ for each $H^{\prime} \in F^{\prime}$. The G-subtribe \mathcal{F}^{\prime} is called flat, denoted by $\mathcal{F}^{\prime} \subseteq \mathcal{F}$, if there is such an injection Ψ satisfying $F^{\prime} \subseteq \Psi\left(F^{\prime}\right)$.
- A thick G-tribe \mathcal{F} in Γ is concentrated at an end ϵ of Γ, if for every finite vertex set X of Γ, the G-tribe $\mathcal{F}_{X}=\left\{F_{X}: F \in \mathcal{F}\right\}$ consisting of the layers $F_{X}=\{H \in$ $F: H \nsubseteq C(X, \epsilon)\} \subseteq F$ is a thin subtribe of \mathcal{F}.

Hence, for a given compatible pair $(\triangleleft, \boldsymbol{4})$, if we wish to show that G is \triangleleft-ubiquitous, we will need to show that the existence of a thick G-tribe in Γ with respect to $(\triangleleft, \boldsymbol{4})$ implies

[^3]$\aleph_{0} G \triangleleft \Gamma$. We first observe that removing a thin G-tribe from a thick G-tribe always leaves a thick G-tribe.

Lemma 5.2 (cf. [2, Lemma 3] or [4, Lemma 2]). Let \mathcal{F} be a thick G-tribe in Γ and let \mathcal{F}^{\prime} be a thin subtribe of \mathcal{F}, witnessed by $\Psi: \mathcal{F}^{\prime} \rightarrow \mathcal{F}$ and $\left(\varphi_{F^{\prime}}: F^{\prime} \in \mathcal{F}^{\prime}\right)$. For $F \in \mathcal{F}$, if $F \in \Psi\left(\mathcal{F}^{\prime}\right)$, let $\Psi^{-1}(F)=\left\{F_{F}^{\prime}\right\}$ and set $\hat{F}=\varphi_{F_{F}^{\prime}}\left(F_{F}^{\prime}\right)$. If $F \notin \Psi\left(\mathcal{F}^{\prime}\right)$, set $\hat{F}=\emptyset$. Then

$$
\mathcal{F}^{\prime \prime}:=\{F \backslash \hat{F}: F \in \mathcal{F}\}
$$

is a thick flat G-subtribe of \mathcal{F}.
Proof. $\mathcal{F}^{\prime \prime}$ is obviously a flat subtribe of \mathcal{F}. As \mathcal{F}^{\prime} is thin, there is a $k \in \mathbb{N}$ such that $\left|F^{\prime}\right| \leq k$ for every $F^{\prime} \in \mathcal{F}^{\prime}$. Thus $|\hat{F}| \leq k$ for all $F \in \mathcal{F}$. Let $n \in \mathbb{N}$. As \mathcal{F} is thick, there is a layer $F \in \mathcal{F}$ satisfying $|F| \geq n+k$. Thus $|F \backslash \hat{F}| \geq n+k-k=n$.

Given a thick G-tribe, the members of this tribe may have different properties, for example, some of them contain a ray belonging to a specific end ϵ of Γ whereas some of them do not. The next lemma allows us to restrict onto a thick subtribe, in which all members have the same properties, as long as we consider only finitely many properties. E.g. we find a subtribe in which either all members contain an ϵ-ray, or none of them contain such a ray.

Lemma 5.3 (Pigeon hole principle for thick G-tribes). Suppose for some $k \in \mathbb{N}$, we have a k-colouring $c: \bigcup \mathcal{F} \rightarrow[k]$ of the members of some thick G-tribe \mathcal{F} in Γ. Then there is a monochromatic, thick, flat G-subtribe \mathcal{F}^{\prime} of \mathcal{F}.

Proof. Since \mathcal{F} is a thick G-tribe, there is a sequence ($n_{i}: i \in \mathbb{N}$) of natural numbers and a sequence ($F_{i} \in \mathcal{F}: i \in \mathbb{N}$) such that

$$
n_{1} \leqslant\left|F_{1}\right|<n_{2} \leqslant\left|F_{2}\right|<n_{3} \leqslant\left|F_{3}\right|<\cdots
$$

Now for each i, by pigeon hole principle, there is one colour $c_{i} \in[k]$ such that the subset $F_{i}^{\prime} \subseteq F_{i}$ of elements of colour c_{i} has size at least n_{i} / k. Moreover, since $[k]$ is finite, there is one colour $c^{*} \in[k]$ and an infinite subset $I \subseteq \mathbb{N}$ such that $c_{i}=c^{*}$ for all $i \in I$. But this means that $\mathcal{F}^{\prime}:=\left\{F_{i}^{\prime}: i \in I\right\}$ is a monochromatic, thick, flat G-subtribe.

In this series of papers we will be interested in graph relations such as \subseteq, \leqslant and \preccurlyeq. Given a connected graph G and a compatible pair of relations $(\triangleleft, \boldsymbol{4})$ we say that a G tribe \mathcal{F} w.r.t $(\triangleleft, \boldsymbol{\varangle})$ is connected if every member H of \mathcal{F} is connected. Note that for relations \longleftarrow like $\cong, \leq^{*}, \preccurlyeq^{*}$, if G is connected and $G \longleftarrow H$, then H is connected. In this case, any G-tribe will be connected.

Lemma 5.4. Let G be a connected graph (of arbitrary cardinality), $(\triangleleft, \boldsymbol{\Psi})$ a compatible pair of relations of graphs and Γ a graph containing a thick connected G-tribe \mathcal{F} w.r.t. $(\triangleleft, \mathbb{4})$. Then either $\aleph_{0} G \triangleleft \Gamma$, or there is a thick flat subtribe \mathcal{F}^{\prime} of \mathcal{F} and an end ϵ of Γ such that \mathcal{F}^{\prime} is concentrated at ϵ.

Proof. For every finite vertex set $X \subseteq V(\Gamma)$, only a thin subtribe of \mathcal{F} can meet X, so by Lemma 5.2 a thick flat subtribe $\mathcal{F}^{\prime \prime}$ is contained in the graph $\Gamma-X$. Since each member of $\mathcal{F}^{\prime \prime}$ is connected, any member H of $\mathcal{F}^{\prime \prime}$ is contained in a unique component of $\Gamma-X$. If for any X, infinitely many components of $\Gamma-X$ contain a 4 -copy of G, the union of all these copies is a 4 -copy of $\aleph_{0} G$ in Γ by (R2), hence $\aleph_{0} G \triangleleft \Gamma$. Thus, we may assume that for each X, only finitely many components contain elements from $\mathcal{F}^{\prime \prime}$, and hence, by colouring each H with a colour corresponding to the component of $\Gamma-X$ containing it, we may assume by the pigeon hole principle for G-tribes, Lemma 5.3, that at least one component of $\Gamma-X$ contains a thick flat subtribe of \mathcal{F}.

Let $C_{0}=\Gamma$ and $\mathcal{F}_{0}=\mathcal{F}$ and consider the following recursive process: If possible, we choose a finite vertex set X_{n} in C_{n} such that there are two components $C_{n+1} \neq D_{n+1}$ of $C_{n}-X_{n}$ where C_{n+1} contains a thick flat subtribe $\mathcal{F}_{n+1} \subseteq \mathcal{F}_{n}$ and D_{n+1} contains at least one - copy H_{n+1} of G. Since by construction all H_{n} are pairwise disjoint, we either find infinitely many such H_{n} and thus, again by (R2), an $\aleph_{0} G \triangleleft \Gamma$, or our process terminates at step N say. That is, we have a thick flat subtribe \mathcal{F}_{N} contained in a subgraph C_{N} such that there is no finite vertex set X_{N} satisfying the above conditions.

Let $\mathcal{F}^{\prime}:=\mathcal{F}_{N}$. We claim that for every finite vertex set X of Γ, there is a unique component C_{X} of $\Gamma-X$ that contains a thick flat G-subtribe of \mathcal{F}^{\prime}. Indeed, note that if for some finite $X \subseteq \Gamma$ there are two components C and C^{\prime} of $\Gamma-X$ both containing thick flat G-subtribes of \mathcal{F}^{\prime}, then since every G-copy in \mathcal{F}^{\prime} is contained in C_{N}, it must be the case that $C \cap C_{N} \neq \emptyset \neq C^{\prime} \cap C_{N}$. But then $X_{N}=X \cap C_{N} \neq \emptyset$ is a witness that our process could not have terminated at step N.

Next, observe that whenever $X^{\prime} \supseteq X$, then $C_{X^{\prime}} \subseteq C_{X}$. By a theorem of Diestel and Kühn, [9], it follows that there is a unique end ϵ of Γ such that $C(X, \epsilon)=C_{X}$ for all finite $X \subseteq \Gamma$. It now follows easily from the uniqueness of $C_{X}=C(X, \epsilon)$ that \mathcal{F}^{\prime} is concentrated at this ϵ.

We note that concentration towards an end ϵ is a robust property in the following sense:
Lemma 5.5. Let G be a connected graph (of arbitrary cardinality), $(\triangleleft, \boldsymbol{\triangleleft})$ a compatible pair of relations of graphs and Γ a graph containing a thick connected G-tribe \mathcal{F} w.r.t. $(\triangleleft, \longleftarrow)$ concentrated at an end ϵ of Γ. Then the following assertions hold:
(1) For every finite set X, the component $C(X, \epsilon)$ contains a thick flat G-subtribe of \mathcal{F}.
(2) Every thick subtribe \mathcal{F}^{\prime} of \mathcal{F} is concentrated at ϵ, too.

Proof. Let X be a finite vertex set. By definition, if the G-tribe \mathcal{F} is concentrated at ϵ, then \mathcal{F} is thick, and the subtribe \mathcal{F}_{X} consisting of the sets $F_{X}=\{H \in F: H \nsubseteq C(X, \epsilon)\} \subseteq F$ for $F \in \mathcal{F}$ is a thin subtribe of \mathcal{F}, i.e. there exists $k \in \mathbb{N}$ such that $\left|F_{X}\right| \leqslant k$ for all $F_{X} \in \mathcal{F}_{X}$.

For (1), observe that the G-tribe $\mathcal{F}^{\prime}=\left\{F \backslash F_{X}: F \in \mathcal{F}\right\}$ is a thick flat subtribe of \mathcal{F} by Lemma 5.2, and all its members are contained in $C(X, \epsilon)$ by construction.

For (2), observe that if \mathcal{F}^{\prime} is a subtribe of \mathcal{F}, then for every $F^{\prime} \in \mathcal{F}^{\prime}$ there is an injection $\varphi_{F^{\prime}}: F^{\prime} \rightarrow F$ for some $F \in \mathcal{F}$. Therefore, $\left|\varphi_{F^{\prime}}^{-1}\left(F_{X}\right)\right| \leqslant k$ for $F_{X} \subseteq F$ as defined above, and so only a thin subtribe of \mathcal{F}^{\prime} is not contained in $C(X, \epsilon)$.

§6. Countable subtrees

In this section we prove Theorem 1.2. Let S be a countable subtree of T. Our aim is to construct an S-horde $\left(Q_{i}: i \in \mathbb{N}\right)$ of disjoint suitable S-minors in Γ inductively. By Lemma 5.4, we may assume without loss of generality that there are an end ϵ of Γ and a thick T-tribe \mathcal{F} concentrated at ϵ.

In order to ensure that we can continue the construction at each stage, we will require the existence of additional structure for each n. But the details of what additional structure we use will vary depending on how many vertices dominate ϵ. So, after a common step of preprocessing, in Section 6.1, the proof of Theorem 1.2 splits into two cases according to whether the number of ϵ-dominating vertices in Γ is finite (Section 6.2) or infinite (Section 6.3).
6.1. Preprocessing. We begin by picking a root v for S, and also consider T as a rooted tree with root v. Let $V_{\infty}(S)$ be the set of vertices of infinite degree in S.

Definition 6.1. Given S and T as above, define a spanning locally finite forest $S^{*} \subseteq S$ by

$$
S^{*}:=S \backslash \bigcup_{t \in V_{\infty}(S)}\left\{t t_{i}: t_{i} \in N^{+}(t), i>N_{t}\right\}
$$

where N_{t} is as in Corollary 3.8. We will also consider every component of S^{*} as a rooted tree given by the induced tree order from T.

Definition 6.2. An edge e of S^{*} is an extension edge if there is a ray in S^{*} starting at e^{+}which displays self-similarity of T. For each extension edge e we fix one such a ray R_{e}. Write $\operatorname{Ext}\left(S^{*}\right) \subseteq E\left(S^{*}\right)$ for the set of extension edges.

Consider the forest $S^{*}-\operatorname{Ext}\left(S^{*}\right)$ obtained from S^{*} by removing all extension edges. Since every ray in S^{*} must contain an extension edge by Corollary 3.10, each component of $S^{*}-\operatorname{Ext}\left(S^{*}\right)$ is a locally finite rayless tree and so is finite (this argument is inspired by [2, Lemma 2]). We enumerate the components of $S^{*}-\operatorname{Ext}\left(S^{*}\right)$ as $S_{0}^{*}, S_{1}^{*}, \ldots$ in such a way that for every $n \geq 0$, the set

$$
S_{n}:=S\left[\bigcup_{i \leqslant n} V\left(S_{i}^{*}\right)\right]
$$

is a finite subtree of S containing the root r. Let us write $\partial\left(S_{n}\right)=E_{S^{*}}\left(S_{n}, S^{*} \backslash S_{n}\right)$, and note that $\partial\left(S_{n}\right) \subseteq \operatorname{Ext}\left(S^{*}\right)$. We make the following definitions:

- For a given T-tribe \mathcal{F} and ray R of T, we say that R converges to ϵ according to \mathcal{F} if for all members H of \mathcal{F} the ray $H(R)$ is in ϵ. We say that R is cut from ϵ according to \mathcal{F} if for all members H of \mathcal{F} the ray $H(R)$ is not in ϵ. Finally we say that \mathcal{F} determines whether R converges to ϵ if either R converges to ϵ according to \mathcal{F} or R is cut from ϵ according to \mathcal{F}.
- Similarly, for a given T-tribe \mathcal{F} and vertex t of T, we say that t dominates ϵ according to \mathcal{F} if for all members H of \mathcal{F} the vertex $H(t)$ dominates ϵ. We say that t is cut from ϵ according to \mathcal{F} if for all members H of \mathcal{F} the vertex $H(t)$ does not dominate ϵ. Finally we say that \mathcal{F} determines whether t dominates ϵ if either t dominates ϵ according to \mathcal{F} or t is cut from ϵ according to \mathcal{F}.
- Given $n \in \mathbb{N}$, we say a thick T-tribe \mathcal{F} agrees about $\partial\left(S_{n}\right)$ if for each extension edge $e \in \partial\left(S_{n}\right)$, it determines whether R_{e} converges to ϵ. We say that it agrees about $V\left(S_{n}\right)$ if for each vertex t of S_{n}, it determines whether t dominates ϵ.
- Since $\partial\left(S_{n}\right)$ and $V\left(S_{n}\right)$ are finite for all n, it follows from Lemma 5.3 that given some $n \in \mathbb{N}$, any thick T-tribe has a flat thick T-subtribe \mathcal{F} such that \mathcal{F} agrees about $\partial\left(S_{n}\right)$ and $V\left(S_{n}\right)$. Under these circumstances we set

$$
\begin{aligned}
\partial_{\epsilon}\left(S_{n}\right) & :=\left\{e \in \partial\left(S_{n}\right): R_{e} \text { converges to } \epsilon \text { according to } \mathcal{F}\right\}, \\
\partial_{\neg \epsilon}\left(S_{n}\right) & :=\left\{e \in \partial\left(S_{n}\right): R_{e} \text { is cut from } \epsilon \text { according to } \mathcal{F}\right\}, \\
V_{\epsilon}\left(S_{n}\right) & :=\left\{t \in V\left(S_{n}\right): t \text { dominates } \epsilon \text { according to } \mathcal{F}\right\}, \text { and } \\
V_{\neg \epsilon}\left(S_{n}\right) & :=\left\{t \in V\left(S_{n}\right): t \text { is cut from } \epsilon \text { according to } \mathcal{F}\right\} .
\end{aligned}
$$

- Also, under these circumstances, let us write $S_{n}^{\neg \epsilon}$ for the component of the forest $S-\partial_{\epsilon}\left(S_{n}\right)-\left\{e \in E_{S}\left(S_{n}, S \backslash S_{n}\right): e^{-} \in V_{\epsilon}\left(S_{n}\right)\right\}$ containing the root of S. Note that $S_{n} \subseteq S_{n}^{\neg \epsilon}$.

The following lemma contains a large part of the work needed for our inductive construction.

Lemma 6.3 (T-tribe refinement lemma). Suppose we have a thick T-tribe \mathcal{F}_{n} concentrated at ϵ which agrees about $\partial\left(S_{n}\right)$ and $V\left(S_{n}\right)$ for some $n \in \mathbb{N}$. Let f denote the unique edge from S_{n} to $S_{n+1} \backslash S_{n}$. Then there is a thick T-tribe \mathcal{F}_{n+1} concentrated at ϵ with the following properties:
(i) \mathcal{F}_{n+1} agrees about $\partial\left(S_{n+1}\right)$ and $V\left(S_{n+1}\right)$.
(ii) $\mathcal{F}_{n+1} \cup \mathcal{F}_{n}$ agree about $\partial\left(S_{n}\right) \backslash\{f\}$ and $V\left(S_{n}\right)$.
(iii) $S_{n+1}^{\neg \epsilon} \supseteq S_{n}^{\neg \epsilon}$.
(iv) For all $H \in \mathcal{F}_{n+1}$ there is a finite $X \subseteq \Gamma$ such that $H\left(S_{n+1}^{\neg \epsilon}\right) \cap\left(X \cup C_{\Gamma}(X, \epsilon)\right)=$ $H\left(V_{\epsilon}\left(S_{n+1}\right)\right)$.
Moreover, if $f \in \partial_{\epsilon}\left(S_{n}\right)$, and $R_{f}=v_{0} v_{1} v_{2} \ldots \subseteq S^{*}$ (with $v_{0}=f^{+}$) denotes the ray displaying self-similarity of T at f, then we may additionally assume:
(v) For every $H \in \mathcal{F}_{n+1}$ and every $k \in \mathbb{N}$, there is $H^{\prime} \in \mathcal{F}_{n+1}$ with

- $H^{\prime} \subseteq_{r} H$
- $H^{\prime}\left(S_{n}\right)=H\left(S_{n}\right)$,
- $H^{\prime}\left(T_{v_{0}}\right) \subseteq_{r} H\left(T_{v_{k}}\right)$, and
- $H^{\prime}\left(R_{f}\right) \subseteq H\left(R_{f}\right)$.

Proof. Concerning (v), if $f \in \partial_{\epsilon}\left(S_{n}\right)$ recall that according to Definition 6.2, the ray R_{f} satisfies that for all $k \in \mathbb{N}$ we have $T_{v_{0}} \leqslant r T_{v_{k}}$ such that R_{f} gets embedded into itself. In particular, there is a subtree \hat{T}_{1} of $T_{v_{1}}$ which is a rooted subdivision of $T_{v_{0}}$ with $\hat{T}_{1}\left(R_{f}\right) \subseteq$ R_{f}, considering \hat{T}_{1} as a rooted tree given by the tree order in $T_{v_{1}}$. If we define recursively for each $k \in \mathbb{N} \hat{T}_{k}=\hat{T}_{k-1}\left(\hat{T}_{1}\right)$ then it is clear that $\left(\hat{T}_{k}: k \in \mathbb{N}\right)$ is a family of rooted subdivisions of $T_{v_{0}}$ such that for each $k \in \mathbb{N}$

- $\hat{T}_{k} \subseteq T_{v_{k}}$;
- $\hat{T}_{k} \supseteq \hat{T}_{k+1}$;
- $\hat{T}_{k}\left(R_{f}\right) \subseteq R_{f}$

Hence, for every subdivision H of T with $H \in \bigcup \mathcal{F}_{n}$ and every $k \in \mathbb{N}$, the subgraph $H\left(\hat{T}_{k}\right)$ is also a rooted subdivision of $T_{v_{0}}$. Let us construct a subdivision $H^{(k)}$ of T by letting $H^{(k)}$ be the minimal subtree of H containing $H\left(T \backslash T_{v_{0}}\right) \cup H\left(\hat{T}_{k}\right)$, where $H^{(k)}\left(T \backslash T_{v_{0}}\right)=$ $H\left(T \backslash T_{v_{0}}\right)$ and $H^{(k)}\left(T_{v_{0}}\right)=H\left(\hat{T}_{k}\right)$. Note that

$$
H^{(k)}\left(T_{v_{0}}\right)=H\left(\hat{T}_{k}\right) \subseteq_{r} H^{(k-1)}\left(T_{v_{0}}\right)=H\left(\hat{T}_{k-1}\right) \subseteq_{r} \ldots \subseteq_{r} H\left(T_{v_{k}}\right) .
$$

In particular, for every subdivision $H \in \bigcup \mathcal{F}_{n}$ of T and every $k \in \mathbb{N}$, there is a subdivision $H^{(k)} \subseteq H$ of T such that $H^{(k)}\left(S_{n}^{\neg \epsilon}\right)=H\left(S_{n}^{\neg \epsilon}\right), H^{(k)}\left(T_{v_{0}}\right) \subseteq_{r} H\left(T_{v_{k}}\right)$, and $H^{(k)}\left(R_{f}\right) \subseteq H\left(R_{f}\right)$. By the pigeon hole principle, there is an infinite index set $K_{H}=$ $\left\{k_{1}^{H}, k_{2}^{H}, \ldots\right\} \subseteq \mathbb{N}$ such that $\left\{\left\{H^{(k)}\right\}: k \in K_{H}\right\}$ agrees about $\partial\left(S_{n+1}\right)$. Consider the thick
subtribe $\mathcal{F}_{n}^{\prime}=\left\{F_{i}^{\prime}: F \in \mathcal{F}_{n}, i \in \mathbb{N}\right\}$ of \mathcal{F}_{n} with
($\dagger) \quad F_{i}^{\prime}:=\left\{H^{\left(k_{i}^{H}\right)}: H \in F\right\}$.
Observe that $\mathcal{F}_{n}^{\prime} \cup \mathcal{F}_{n}$ still agrees about $\partial\left(S_{n}\right)$ and $V\left(S_{n}\right)$. (If $f \in \partial_{\neg \epsilon}\left(S_{n}\right)$, then skip this part and simply let $\mathcal{F}_{n}^{\prime}:=\mathcal{F}_{n}$.)

Concerning (iii), observe that for every $H \in \bigcup \mathcal{F}_{n}^{\prime}$, since the rays $H\left(R_{e}\right)$ for $e \in \partial_{\neg \epsilon}\left(S_{n}\right)$ do not tend to ϵ, there is a finite vertex set X_{H} such that $H\left(R_{e}\right) \cap C\left(X_{H}, \epsilon\right)=\emptyset$ for all $e \in \partial_{\neg \epsilon}\left(S_{n}\right)$. Furthermore, since X_{H} is finite, for each such extension edge e there exists $x_{e} \in R_{e}$ such that

$$
H\left(T_{x_{e}}\right) \cap C\left(X_{H}, \epsilon\right)=\emptyset
$$

By definition of extension edges, cf. Definition 6.2, for each $e \in \partial_{\neg \epsilon}\left(S_{n}\right)$ there is a rooted embedding of $T_{e^{+}}$into $H\left(T_{x_{e}}\right)$. Hence, there is a subdivision \tilde{H} of T with $\tilde{H} \leqslant H$ and $\tilde{H}\left(S_{n}\right)=H\left(S_{n}\right)$ such that $\tilde{H}\left(T_{e^{+}}\right) \subseteq H\left(T_{x_{e}}\right)$ for each $e \in \partial_{\neg \epsilon}\left(S_{n}\right)$.

Note that if $e \in \partial_{\neg \epsilon}\left(S_{n}\right)$ and g is an extension edge with $e \leqslant g \in \partial\left(S_{n+1}\right) \backslash \partial\left(S_{n}\right)$, then $\tilde{H}\left(R_{g}\right) \subseteq \tilde{H}\left(S_{e^{+}}\right) \subseteq H\left(S_{x_{e}}\right)$, and so
($\ddagger) \quad \tilde{H}\left(R_{g}\right)$ doesn't tend to ϵ.
Define $\tilde{\mathcal{F}}_{n}$ to be the thick T-subtribe of \mathcal{F}_{n}^{\prime} consisting of the \tilde{H} for every H in $\bigcup \mathcal{F}_{n}^{\prime}$.
Now use Lemma 5.3 to chose a maximal thick flat subtribe \mathcal{F}_{n}^{*} of $\tilde{\mathcal{F}}_{n}$ which agrees about $\partial\left(S_{n+1}\right)$ and $V\left(S_{n+1}\right)$, so it satisfies (i) and (ii). By (\ddagger), the tribe \mathcal{F}_{n}^{*} satisfies (iii), and by maximality and (\dagger), it satisfies (v).

In our last step, we now arrange for (iv) while preserving all other properties. For each $H \in \bigcup \mathcal{F}_{n}^{*}$. Since $H\left(S_{n+1}\right)$ is finite, we may find a finite separator Y_{H} such that

$$
H\left(S_{n+1}\right) \cap\left(Y_{H} \cup C\left(Y_{H}, \epsilon\right)\right)=H\left(V_{\epsilon}\left(S_{n+1}\right)\right)
$$

Since Y_{H} is finite, for every vertex $t \in V_{\neg \epsilon}\left(S_{n+1}\right)$, say with $N^{+}(t)=\left(t_{i}\right)_{i \in \mathbb{N}}$, there exists $n_{t} \in \mathbb{N}$ such that $C\left(Y_{H}, \epsilon\right) \cap H\left(T_{t_{j}}\right)=\emptyset$ for all $j \geq n_{t}$. Using Corollary 3.8, for every such t there is a rooted embedding

$$
\{t\} \cup \bigcup_{j>N_{t}} T_{t_{j}} \leqslant r\{t\} \cup \bigcup_{j>n_{t}} T_{t_{j}}
$$

fixing the root t. Hence there is a subdivision H^{\prime} of T with $H^{\prime} \leqslant H$ such that $H^{\prime}(T \backslash S)=$ $H(T \backslash S)$ and for every $t \in V_{\neg \epsilon}\left(S_{n+1}\right)$

$$
H^{\prime}\left[\{t\} \cup \bigcup_{j>N_{t}} T_{t_{j}}\right] \cap C\left(Y_{H}, \epsilon\right)=\emptyset
$$

Moreover, note that by construction of \tilde{F}_{n}, every such H^{\prime} automatically satisfies that

$$
H\left(S_{e^{+}}\right) \cap C\left(X_{H} \cup Y_{H}, \epsilon\right)=\emptyset
$$

for all $e \in \partial_{\neg \epsilon}\left(S_{n+1}\right)$. Let \mathcal{F}_{n+1} consist of the set of H^{\prime} as defined above for all $H \in \mathcal{F}_{n}^{*}$. Then $X_{H} \cup Y_{H}$ is a finite separator witnessing that \mathcal{F}_{n+1} satisfies (iv).
6.2. Only finitely many vertices dominate ϵ. We first note as in Lemma 5.4, that for every finite vertex set $X \subseteq V(\Gamma)$ only a thin subtribe of \mathcal{F} can meet X, so a thick subtribe is contained in the graph $\Gamma-X$. By removing the set of vertices dominating ϵ, we may therefore assume without loss of generality that no vertex of Γ dominates ϵ.

Definition 6.4 (Bounder, extender). Suppose that some thick T-tribe \mathcal{F} which is concentrated at ϵ agrees about S_{n} for some given $n \in \mathbb{N}$, and $Q_{1}^{n}, Q_{2}^{n}, \ldots, Q_{n}^{n}$ are disjoint subdivisions of $S_{n}^{\neg \epsilon}$ (note, $S_{n}^{\neg \epsilon}$ depends on $\left.\mathcal{F}\right)$.

- A bounder for the $\left(Q_{i}^{n}: i \in[n]\right)$ is a finite set X of vertices in Γ separating all the Q_{i} from ϵ, i.e. such that

$$
C(X, \epsilon) \cap \bigcup_{i=1}^{n} Q_{i}^{n}=\emptyset
$$

- An extender for the ($\left.Q_{i}^{n}: i \in[n]\right)$ is a family $\mathcal{E}_{n}=\left(E_{e, i}^{n}: e \in \partial_{\epsilon}\left(S_{n}\right), i \in[n]\right)$ of rays in Γ tending to ϵ which are disjoint from each other and also from each Q_{i}^{n} except at their initial vertices, and where the start vertex of $E_{e, i}^{n}$ is $Q_{i}^{n}\left(e^{-}\right)$.

To prove Theorem 1.2, we now assume inductively that for some $n \in \mathbb{N}$, with $r:=\lfloor n / 2\rfloor$ and $s:=\lfloor(n+1) / 2\rfloor$ we have:
(1) A thick T-tribe \mathcal{F}_{r} in Γ concentrated at ϵ which agrees about $\partial\left(S_{r}\right)$, with a boundary $\partial_{\epsilon}\left(S_{r}\right)$ such that $S_{r-1}^{\neg \epsilon} \subseteq S_{r}^{\neg \epsilon .4}$
(2) a family $\left(Q_{i}^{n}: i \in[s]\right)$ of s pairwise disjoint T-suitable subdivisions of $S_{r}^{\neg \epsilon}$ in Γ with $Q_{i}^{n}\left(S_{r-1}^{\neg}\right)=Q_{i}^{n-1}$ for all $i \leqslant s-1$,
(3) a bounder X_{n} for the $\left(Q_{i}^{n}: i \in[s]\right)$, and
(4) an extender $\mathcal{E}_{n}=\left(E_{e, i}^{n}: e \in \partial_{\epsilon}\left(S_{r}^{\neg \epsilon}\right), i \in[s]\right)$ for the ($Q_{i}^{n}: i \in[s]$).

The base case $n=0$ it easy, as we simply may choose $\mathcal{F}_{0} \leqslant r \mathcal{F}$ to be any thick T-subtribe in Γ which agrees about $\partial\left(S_{0}\right)$, and let all other objects be empty.

So, let us assume that our construction has proceeded to step $n \geq 0$. Our next task splits into two parts: First, if $n=2 k-1$ is odd, we extend the already existing k subdivisions

[^4]$\left(Q_{i}^{n}: i \in[k]\right)$ of $S_{k-1}^{\neg \epsilon}$ to subdivisions $\left(Q_{i}^{n+1}: i \in[k]\right)$ of $S_{k}^{\neg \epsilon}$. And secondly, if $n=2 k$ is even, we construct a further disjoint copy Q_{k+1}^{n+1} of $S_{k}^{\neg \epsilon}$.

Construction part 1: $n=2 k-1$ is odd. By assumption, \mathcal{F}_{k-1} agrees about $\partial\left(S_{k-1}\right)$. Let f denote the unique edge from S_{k-1} to $S_{k} \backslash S_{k-1}$. We first apply Lemma 6.3 to \mathcal{F}_{k-1} in order to find a thick T-tribe \mathcal{F}_{k} concentrated at ϵ satisfying properties (i)-(v). In particular, \mathcal{F}_{k} agrees about $\partial\left(S_{k}\right)$ and $S_{k-1}^{\neg \epsilon} \subseteq S_{k}^{\neg \epsilon}$

We first note that if $f \notin \partial_{\epsilon}\left(S_{k-1}\right)$, then $S_{k-1}^{\neg \epsilon}=S_{k}^{\neg \epsilon}$, and we can simply take $Q_{i}^{n+1}:=Q_{i}^{n}$ for all $i \in[k], \mathcal{E}_{n+1}:=\mathcal{E}_{n}$ and $X_{n+1}:=X_{n}$.

Otherwise, we have $f \in \partial_{\epsilon}\left(S_{k-1}\right)$. By Lemma 5.5(2) \mathcal{F}_{k} is concentrated at ϵ, and so we may pick a collection $\left\{H_{1}, \ldots, H_{N}\right\}$ of disjoint subdivisions of T from some $F \in \mathcal{F}_{k}$, all of which are contained in $C\left(X_{n}, \epsilon\right)$, where $N=\left|\mathcal{E}_{n}\right|$. By Lemma 4.3 there is some linkage $\mathcal{P} \subseteq C\left(X_{n}, \epsilon\right)$ from

$$
\mathcal{E}_{n} \text { to }\left(H_{j}\left(R_{f}\right): j \in[N]\right)
$$

which is after X_{n}. Let us suppose that the linkage \mathcal{P} joins a vertex $x_{e, i} \in E_{e, i}^{n}$ to $y_{\sigma(e, i)} \in$ $H_{\sigma(e, i)}\left(R_{f}\right)$ via a path $P_{e, i} \in \mathcal{P}$. Let $z_{\sigma(e, i)}$ be a vertex in R_{f} such that $y_{\sigma(e, i)} \leqslant H_{\sigma(e, i)}\left(z_{\sigma(e, i)}\right)$ in the tree order on $H_{\sigma(e, i)}(T)$.

By property (v) of \mathcal{F}_{k} in Lemma 6.3, we may assume without loss of generality that for each H_{j} there is a another member $H_{j}^{\prime} \subseteq H_{j}$ of \mathcal{F}_{k} such that $H_{j}^{\prime}\left(T_{f^{+}}\right) \subseteq_{r} H_{j}\left(T_{z_{j}}\right)$. Let $\hat{P}_{j} \subseteq H_{j}^{\prime}$ denote the path from $H_{j}\left(y_{j}\right)$ to $H_{j}^{\prime}\left(f^{+}\right)$.

Now for each $i \in[k]$, define

$$
Q_{i}^{n+1}=Q_{i}^{n} \cup E_{f, i}^{n} x_{f, i} P_{f, i} y_{\sigma(f, i)} \hat{P}_{\sigma(f, i)} \cup H_{\sigma(f, i)}^{\prime}\left(S_{k}^{\neg \epsilon} \backslash S_{k-1}^{\neg \epsilon}\right)
$$

By construction, each Q_{i}^{n+1} is a T-suitable subdivision of $S_{k}^{\neg \epsilon}$.
By Lemma 6.3(iv) we may find a finite set $X_{n+1} \subseteq \Gamma$ with $X_{n} \subseteq X_{n+1}$ such that

$$
C\left(X_{n+1}, \epsilon\right) \cap\left(\bigcup_{i \in[k]} Q_{i}^{n+1}\right)=\emptyset
$$

This set X_{n+1} will be our bounder.
Define an extender $\mathcal{E}_{n+1}=\left(E_{e, i}^{n+1}: e \in \partial_{\epsilon}\left(S_{k}\right), i \in[k]\right)$ for the Q_{i}^{n+1} as follows:

- For $e \in \partial_{\epsilon}\left(S_{k-1}\right) \backslash\{f\}$, let $E_{e, i}^{n+1}:=E_{e, i}^{n} x_{e, i} P_{e, i} y_{\sigma(e, i)} H_{\sigma(e, i)}\left(R_{f}\right)$.
- For $e \in \partial_{\epsilon}\left(S_{k}\right) \backslash \partial\left(S_{k-1}\right)$, let $E_{e, i}^{n+1}:=H_{\sigma(e, i)}^{\prime}\left(R_{e}\right)$.

Since each $H_{\sigma(e, i)}, H_{\sigma(e, i)}^{\prime} \in \bigcup \mathcal{F}_{k}$, and \mathcal{F}_{k} determines that R_{f} converges to ϵ, these are indeed ϵ rays. Furthermore, since $H_{\sigma(e, i)}^{\prime} \subseteq H_{\sigma(e, i)}$ and $\left\{H_{1}, \ldots, H_{N}\right\}$ are disjoint, it follows that the rays are disjoint.

Construction part 2: $n=2 k$ is even. If $\partial_{\epsilon}\left(S_{k}\right)=\emptyset$, then $S_{k}^{\neg \epsilon}=S$, and so picking any element Q_{k+1}^{n+1} from \mathcal{F}_{k} with $Q_{k+1}^{n+1} \subseteq C\left(X_{n}, \epsilon\right)$ gives us a further copy of S disjoint from all the previous ones. Using Lemma 6.3((iv)), there is a suitable bounder $X_{n+1} \supseteq X_{n}$ for Q_{k+1}^{n+1}, and we are done. Otherwise, pick $e_{0} \in \partial_{\epsilon}\left(S_{n}\right)$ arbitrary.

Since \mathcal{F}_{k} is concentrated at ϵ, we may pick a collection $\left\{H_{1}, \ldots, H_{N}\right\}$ of disjoint subdivisions of T from \mathcal{F}_{k} all contained in $C\left(X_{n}, \epsilon\right)$, where N is large enough so that we may apply Lemma 4.4 to find a linkage $\mathcal{P} \subseteq C\left(X_{n}, \epsilon\right)$ from

$$
\mathcal{E}_{n} \text { to }\left(H_{i}\left(R_{e_{0}}\right): i \in[N]\right),
$$

after X_{n}, avoiding say H_{1}. Let us suppose the linkage \mathcal{P} joins a vertex $x_{e, i} \in E_{e, i}^{n}$ to $y_{\sigma(e, i)} \in H_{\sigma(e, i)}\left(R_{e_{0}}\right)$ via a path $P_{e, i} \in \mathcal{P}$. Define

$$
Q_{k+1}^{n+1}=H_{1}\left(S_{k}^{\neg \epsilon}\right) .
$$

Note that Q_{k+1}^{n+1} is a T-suitable subdivision of $S_{k}^{\neg \epsilon}$.
By Lemma 6.3((iv)) there is a finite set $X_{n+1} \subseteq \Gamma$ with $X_{n} \subseteq X_{n+1}$ such that $C\left(X_{n+1}, \epsilon\right) \cap$ $Q_{k+1}^{n+1}=\emptyset$. This set X_{n+1} will be our new bounder.

Define the extender $\mathcal{E}_{n+1}=\left(E_{e, i}^{n+1}: e \in \partial_{\epsilon}\left(S_{k+1}\right), i \in[k+1]\right)$ of ϵ-rays as follows:

- For $i \in[k]$, let $E_{e, i}^{n+1}:=E_{e, i}^{n} x_{e, i} P_{e, i} y_{\sigma(e, i)} H_{\sigma(e, i)}\left(R_{e_{0}}\right)$.
- For $i=k+1$, let $E_{e, k+1}^{n+1}:=H_{1}\left(R_{e}\right)$ for all $e \in \partial_{\epsilon}\left(S_{k+1}\right)$.

Once the construction is complete, let us define $H_{i}:=\bigcup_{n \geq 2 i-1} Q_{i}^{n}$.
Since $\bigcup_{n \in \mathbb{N}} S_{n}^{\neg \epsilon}=S$, and due to the extension property (2), the collection $\left(H_{i}\right)_{i \in \mathbb{N}}$ is an S-horde.

We remark that our construction so far suffices to give a complete proof that countable trees are \leqslant-ubiquitous. Indeed, it is well-known that an end of Γ is dominated by infinitely many distinct vertices if and only if Γ contains a subdivision of $K_{\aleph_{0}}$ [8, Exercise 19, Chapter 8], in which case proving ubiquity becomes trivial:

Lemma 6.5. For any countable graph G, we have $\aleph_{0} \cdot G \subseteq K_{\aleph_{0}}$.
Proof. By partitioning the vertex set of $K_{\aleph_{0}}$ into countably many infinite parts, we see that $\aleph_{0} \cdot K_{\aleph_{0}} \subseteq K_{\aleph_{0}}$. Also, clearly $G \subseteq K_{\aleph_{0}}$. Hence, we have $\aleph_{0} \cdot G \subseteq \aleph_{0} \cdot K_{\aleph_{0}} \subseteq K_{\aleph_{0}}$.
6.3. Infinitely many vertices dominate ϵ. The argument in this case is very similar to that in the previous subsection. We define bounders and extenders just as before. We once more assume inductively that for some $n \in \mathbb{N}$, with $r:=\lfloor n / 2\rfloor$, we have objects given by (1)-(4) as in the last section, and which in addition satisfy
(5) \mathcal{F}_{r} agrees about $V\left(S_{r}\right)$.
(6) For any $t \in V_{\epsilon}\left(S_{r}\right)$ the vertex $Q_{i}^{n}(t)$ dominates ϵ.

The base case is again trivial, so suppose that our construction has proceeded to step $n \geq 0$. The construction is split into two parts just as before, where the case $n=2 k$, in which we need to refine our T-tribe and find a new copy Q_{k+1}^{n+1} of $S_{k}^{\neg \epsilon}$, proceeds just as in the last section.

If $n=2 k-1$ is odd, and if $f \in \partial_{\neg \epsilon}\left(S_{k-1}\right)$ or $\partial_{\epsilon}\left(S_{k-1}\right)$, then we proceed as in the last subsection. But these are no longer the only possibilities. It follows from the definition of $S_{k}^{\neg \epsilon}$ that there is one more option, namely that $f^{-} \in V_{\epsilon}\left(S_{k}\right)$. In this case we modify the steps of the construction as follows:

We first apply Lemma 6.3 to \mathcal{F}_{k-1} in order to find a thick T-tribe \mathcal{F}_{k-1} which agrees about $\partial\left(S_{k}\right)$ and $V\left(S_{k}\right)$.

Then, by applying Lemma 4.5 to tails of the rays $E_{e, i}^{n}$ in $C_{\Gamma}\left(X_{n}, \epsilon\right)$, we obtain a family \mathcal{P}_{n+1} of paths $P_{e, i}^{n+1}$ which are disjoint from each other and from the Q_{i}^{n} except at their initial vertices, where the initial vertex of $P_{e, i}^{n+1}$ is $Q_{i}^{n}\left(e^{-}\right)$and the final vertex $y_{e, i}^{n+1}$ of $P_{e, i}^{n+1}$ dominates ϵ.

Since \mathcal{F}_{k} is concentrated at ϵ, we may pick a collection $\left\{H_{1}, \ldots, H_{k}\right\}$ of disjoint T-minors from \mathcal{F}_{k} all contained in $C\left(X_{n} \cup \bigcup \mathcal{P}_{n+1}, \epsilon\right)$.

Now for each $i \in[k]$, define

$$
\hat{Q}_{i}^{n+1}=Q_{i}^{n} \cup H_{i}\left(f^{-}\right) \cup H_{i}\left(S_{k}^{\neg \epsilon} \backslash S_{k-1}^{\neg \epsilon}\right)
$$

These are almost T-suitable subdivisions of $S_{k}^{\top \epsilon}$, except we need to add a path between $Q_{i}^{n}\left(f^{-}\right)$and $H_{i}\left(f^{-}\right)$.

By applying Lemma 4.5 to tails of the rays $H_{i}\left(R_{e}\right)$ inside $C\left(X_{n} \cup \bigcup \mathcal{P}_{n+1}, \epsilon\right)$ with $e \in$ $\partial_{\epsilon}\left(S_{k+1}\right) \backslash \partial\left(S_{k}\right)$ we can construct a family $\mathcal{P}_{n+1}^{\prime}:=\left\{P_{e, i}^{n+1}: e \in \partial_{\epsilon}\left(S_{k+1}\right) \backslash \partial_{\epsilon}\left(S_{k}\right), i \leqslant k\right\}$ of paths which are disjoint from each other and from the \hat{Q}_{i}^{n+1} except at their initial vertices, where the initial vertex of $P_{e, i}^{n+1}$ is $H_{i}\left(e^{-}\right)$and the final vertex $y_{e, i}^{n+1}$ of $P_{e, i}^{n+1}$ dominates ϵ. Therefore the family

$$
\mathcal{P}_{n+1} \cup \mathcal{P}_{n+1}^{\prime}=\left(P_{e, i}^{n+1}: e \in \partial_{\epsilon}\left(S_{k+1}\right), i \in[k]\right)
$$

is a family of disjoint paths, which are also disjoint from the \hat{Q}_{i}^{n+1} except at their initial vertices, where the initial vertex of $P_{e, i}^{n+1}$ is $H_{i}\left(e^{-}\right)$or $Q_{i}^{n}\left(e^{-}\right)$and the final vertex $y_{e, i}^{n+1}$ of $P_{e, i}^{n+1}$ dominates ϵ.

Since $Q_{i}^{n}\left(f^{-}\right)$and $H_{i}\left(f^{-}\right)$both dominate ϵ for all i, we may recursively build a sequence $\hat{\mathcal{P}}_{n+1}=\left\{\hat{P}_{i}: 1 \leqslant i \leqslant k\right\}$ of disjoint paths \hat{P}_{i} from $Q_{i}^{n}\left(f^{-}\right)$to $H_{i}\left(f^{-}\right)$with all internal vertices in $C\left(X_{n+1} \cup\left(\bigcup \mathcal{P}_{n+1}^{\prime} \cup \bigcup \mathcal{P}_{n+1}\right), \epsilon\right)$. Letting $Q_{i}^{n+1}=\hat{Q}_{i}^{n+1} \cup \hat{P}_{i}$, we see that each Q_{i}^{n+1} is a T-suitable subdivision of $S_{k}^{\neg \epsilon}$ in Γ.

Our new bounder will be $X_{n+1}:=X_{n} \cup \bigcup \hat{\mathcal{P}}_{n+1} \cup \bigcup \mathcal{P}_{n+1}^{\prime} \cup \bigcup \mathcal{P}_{n+1}$.

Finally, let us apply Lemma 4.6 to $Y:=\left\{y_{e, i}^{n+1}: e \in \partial_{\epsilon}\left(S_{n+1}\right), i \leqslant k\right\}$ in $\Gamma\left[Y \cup C\left(X_{n+1}, \epsilon\right)\right]$. This gives us a family of disjoint rays

$$
\hat{\mathcal{E}}_{n+1}=\left(\hat{E}_{e, i}^{n+1}: e \in \partial_{\epsilon}\left(S_{k+1}\right), i \in[k]\right)
$$

such that $\hat{E}_{e, i}^{n+1}$ has initial vertex $y_{e, i}^{n+1}$. Let us define our new extender \mathcal{E}_{n+1} given by

- $E_{e, i}^{n+1}=Q_{i}^{n}\left(e^{-}\right) P_{e, i}^{n+1} y_{e, i}^{n+1} \hat{E}_{e, i}^{n+1}$ if $e \in \partial_{\epsilon}\left(S_{k}\right), i \in[k]$;
- $E_{e, i}^{n+1}=H_{i}\left(e^{-}\right) P_{e, i}^{n+1} y_{e, i}^{n+1} \hat{E}_{e, i}^{n+1}$ if $e \in \partial_{\epsilon}\left(S_{k+1}\right) \backslash \partial\left(S_{k}\right), i \in[k]$.

This concludes the proof of Theorem 1.2.

§7. The induction Argument

We consider T as a rooted tree with root r. In Section 6 we constructed an S-horde for any countable subtree S of T. In this section we will extend an S-horde for some specific countable subtree S to a T-horde, completing the proof of Theorem 1.1.

Recall that for a vertex t of T and an infinite cardinal κ we say that a child t^{\prime} of t is κ-embeddable if there are at least κ children $t^{\prime \prime}$ of t such that $T_{t^{\prime}}$ is a (rooted) topological minor of $T_{t^{\prime \prime}}$ (Definition 3.6). By Corollary 3.7, the number of children of t which are not κ-embeddable is less than κ.

Definition 7.1 (κ-closure). Let T be an infinite tree with root r.

- If S is a subtree of T and S^{\prime} is a subtree of S, then we say that S^{\prime} is κ-closed in S if for any vertex t of S^{\prime} all children of t in S are either in S^{\prime} or else are κ-embeddable.
- The κ-closure of S^{\prime} in S is the smallest κ-closed subtree of S including S^{\prime}.

Lemma 7.2. Let S^{\prime} be a subtree of S. If κ is a uncountable regular cardinal and S^{\prime} has size less than κ, then the κ-closure of S^{\prime} in S also has size less than κ.

Proof. Let $S^{\prime}(0):=S^{\prime}$ and define inductively $S^{\prime}(n+1)$ to consist of $S^{\prime}(n)$ together with all non- κ-embeddable children contained in S for all vertices of $S^{\prime}(n)$. It is clear that $\bigcup_{n \in \mathbb{N}} S^{\prime}(n)$ is the κ-closure of S^{\prime}. If κ_{n} denotes the size of $S^{\prime}(n)$, then $\kappa_{n}<\kappa$ by induction with Corollary 3.7. Therefore, the size of the κ-closure is bounded by $\sum_{n \in \mathbb{N}} \kappa_{n}<\kappa$, since κ has uncountable cofinality.

We will construct the desired T-horde via transfinite induction on the cardinals $\mu \leqslant|T|$. Our first lemma illustrates the induction step for regular cardinals.

Lemma 7.3. Let κ be an uncountable regular cardinal. Let S be a rooted subtree of T of size at most κ and let S^{\prime} be a κ-closed rooted subtree of S of size less than κ. Then any S^{\prime}-horde $\left(H_{i}: i \in \mathbb{N}\right)$ can be extended to an S-horde.

Proof. Let $\left(s_{\alpha}: \alpha<\kappa\right)$ be an enumeration of the vertices of S such that the parent of any vertex appears before that vertex in the enumeration, and for any α let S_{α} be the subtree of T with vertex set $V\left(S^{\prime}\right) \cup\left\{s_{\beta}: \beta<\alpha\right\}$. Let \bar{S}_{α} denote the κ-closure of S_{α} in S, and observe that $\left|\bar{S}_{\alpha}\right|<\kappa$ by Lemma 7.2.

We will recursively construct for each α an \bar{S}_{α}-horde ($H_{i}^{\alpha}: i \in \mathbb{N}$) in Γ, where each of these hordes extends all the previous ones. For $\alpha=0$ we let $H_{i}^{0}=H_{i}$ for each $i \in \mathbb{N}$. For any limit ordinal λ we have $\bar{S}_{\lambda}=\bigcup_{\beta<\lambda} \bar{S}_{\beta}$, and so we can take $H_{i}^{\lambda}=\bigcup_{\beta<\lambda} H_{i}^{\beta}$ for each $i \in \mathbb{N}$.

For any successor ordinal $\alpha=\beta+1$, if $s_{\beta} \in \bar{S}_{\beta}$, then $\bar{S}_{\alpha}=\bar{S}_{\beta}$, and so we can take $H_{i}^{\alpha}=H_{i}^{\beta}$ for each $i \in \mathbb{N}$. Otherwise, \bar{S}_{α} is the κ-closure of $\bar{S}_{\beta}+s_{\beta}$, and so $\bar{S}_{\alpha}-\bar{S}_{\beta}$ is a subtree of $T_{s_{\beta}}$. Furthermore, since s_{β} is not contained in \bar{S}_{β}, it must be κ-embeddable.

Let s be the parent of s_{β}. By suitability of the H_{i}^{β}, we can find for each $i \in \mathbb{N}$ some subdivision \hat{H}_{i} of T_{s} with $\hat{H}_{i}(s)=H_{i}^{\beta}(s)$. We now build the H_{i}^{α} recursively in i as follows:

Let t_{i} be a child of s such that $T_{t_{i}}$ has a rooted subdivision K of $T_{s_{\beta}}$, and such that $\hat{H}_{i}\left(T_{t_{i}}+s\right)-\hat{H}_{i}(s)$ is disjoint from all H_{j}^{α} with $j<i$ and from all H_{j}^{β}. Since there are κ disjoint possibilities for K, and all H_{j}^{α} with $j<i$ and all H_{j}^{β} cover less than κ vertices in Γ, such a choice of K is always possible. Then let H_{i}^{α} be the union of H_{i}^{β} with $\hat{H}_{i}\left(K\left(\bar{S}_{\alpha}-\bar{S}_{\beta}\right)+s t_{i}\right)$.

This completes the construction of the $\left(H_{i}^{\alpha}: i \in \mathbb{N}\right)$. Obviously, each H_{i}^{α} for $i \in \mathbb{N}$ is a subdivision of \bar{S}_{α} with $H_{i}^{\alpha}\left(\bar{S}_{\gamma}\right)=H_{i}^{\gamma}$ for all $\gamma<\alpha$, and all of them are pairwise disjoint for $i \neq j \in \mathbb{N}$. Moreover, H_{i}^{α} is T-suitable since for all vertices $H_{i}^{\alpha}(t)$ whose t-suitability is not witnessed in previous construction steps, their suitability is witnessed now by the corresponding subtree of \hat{H}_{i}. Hence $\left(\bigcup_{\alpha<\kappa} H_{i}^{\alpha}: i \in \mathbb{N}\right)$ is the desired S-horde extending $\left(H_{i}: i \in \mathbb{N}\right)$.

Our final lemma will deal with the induction step for singular cardinals. The crucial ingredient will be to represent a tree S of singular cardinality μ as a continuous increasing union of $<\mu$-sized subtrees $\left(S_{\varrho}: \varrho<\operatorname{cf}(\mu)\right)$ where each S_{ϱ} is $\left|S_{\varrho}\right|^{+}$-closed in S. This type of argument is based on Shelah's singular compactness theorem, see e.g. [16], but can be read without knowledge of the paper.

Definition 7.4 (S-representation). For a tree S with $|S|=\mu$, we call a sequence $\mathcal{S}=$ $\left(S_{\varrho}: \varrho<\operatorname{cf}(\mu)\right)$ of subtrees of S with $\left|S_{\varrho}\right|=\mu_{\varrho}$ an S-representation if

- $\left(\mu_{\varrho}: \varrho<\operatorname{cf}(\mu)\right)$ is a strictly increasing continuous sequence of cardinals less than μ which is cofinal for μ,
- $S_{\varrho} \subseteq S_{\varrho^{\prime}}$ for all $\varrho<\varrho^{\prime}$, i.e. \mathcal{S} is increasing,
- for every limit $\lambda<\operatorname{cf}(\mu)$ we have $\bigcup_{\varrho<\lambda} S_{\varrho}=S_{\lambda}$, i.e. \mathcal{S} is continuous,
- $\bigcup_{\varrho<\operatorname{cf}(\mu)} S_{\varrho}=S$, i.e. \mathcal{S} is exhausting,
- S_{ϱ} is μ_{ϱ}^{+}-closed in S for all $\varrho<\operatorname{cf}(\mu)$, where μ_{ϱ}^{+}is the successor cardinal of μ_{ϱ}.

Moreover, for a tree $S^{\prime} \subseteq S$ we say that \mathcal{S} is an S-representation extending S^{\prime} if additionally

- $S^{\prime} \subseteq S_{\varrho}$ for all $\varrho<\operatorname{cf}(\mu)$.

Lemma 7.5. For every tree S of singular cardinality and every subtree S^{\prime} of S with $\left|S^{\prime}\right|<|S|$ there is an S-representation extending S^{\prime}.

Proof. Let $|S|=\mu$ be singular, and let $\left|S^{\prime}\right|=\kappa$. Let $\left(s_{\alpha}: \alpha<\mu\right)$ be an enumeration of the vertices of S. Let γ be the cofinality of μ and let $\left(\mu_{\varrho}: \varrho<\gamma\right)$ be a strictly increasing continuous cofinal sequence of cardinals less than μ with $\mu_{0}>\gamma$ and $\mu_{0}>\kappa$. By recursion on i we choose for each $i \in \mathbb{N}$ a sequence $\left(S_{\varrho}^{i}: \varrho<\gamma\right)$ of subtrees of S of cardinality μ_{ϱ}, where the vertices of each S_{ϱ}^{i} are enumerated as $\left(s_{\varrho, \alpha}^{i}: \alpha<\mu_{\varrho}\right)$, such that:
(1) S_{ϱ}^{i} is μ_{ϱ}^{+}-closed.
(2) S^{\prime} is a subtree of S_{ϱ}^{i}.
(3) $S_{\varrho^{\prime}}^{i}$ is a subtree of S_{ϱ}^{i} for $\varrho^{\prime}<\varrho$.
(4) $s_{\alpha} \in S_{\varrho}^{i}$ for $\alpha<\mu_{\varrho}$.
(5) $s_{\varrho^{\prime}, \alpha}^{j} \in S_{\varrho}^{i}$ for any $j<i, \varrho \leqslant \varrho^{\prime}<\gamma$ and $\alpha<\mu_{\varrho}$

This is achieved by recursion on ϱ as follows: For any given $\varrho<\gamma$, let X_{ϱ}^{i} be the set of all vertices which are forced to lie in S_{ϱ}^{i} by conditions (2)-(5), that is, all vertices of S^{\prime} or of $S_{\varrho^{\prime}}^{i}$ with $\varrho^{\prime}<\varrho$, all s_{β} with $\beta<\mu_{\varrho}$ and all $s_{\varrho^{\prime}, \alpha}^{j}$ with $j<i, \varrho \leqslant \varrho^{\prime}<\gamma$ and $\alpha<\mu_{\varrho}$. Then X_{ϱ}^{i} has cardinality μ_{ϱ} and so it is included in a subtree of S of cardinality μ_{ϱ}. We take S_{ϱ}^{i} to be the μ_{ϱ}^{+}-closure of this subtree in S. Note that, since μ_{ϱ}^{+}is regular, it follows from Lemma 7.2 that S_{ϱ}^{i} has cardinality μ_{ϱ}.

For each $\varrho<\gamma$, let $S_{\varrho}:=\bigcup_{i \in \mathbb{N}} S_{\varrho}^{i}$. Then each S_{ϱ} is a union of μ_{ϱ}^{+}-closed trees and so is μ_{ϱ}^{+}-closed itself. Furthermore, each S_{ϱ} clearly has cardinality μ_{ϱ}.

It follows from (4) that $S=\bigcup_{\varrho<\gamma} S_{\varrho}$. Thus, it remains to argue that our sequence is indeed continuous, i.e. that for any limit ordinal $\lambda<\gamma$ we have $S_{\lambda}=\bigcup_{\varrho<\lambda} S_{\varrho}$. The inclusion $\bigcup_{\varrho<\lambda} S_{\varrho} \subseteq S_{\lambda}$ is clear from (3). For the other inclusion, let s be any element of S_{λ}. Then there is some $i \in \mathbb{N}$ with $s \in S_{\lambda}^{i}$ and so there is some $\alpha<\mu_{\alpha}$ with $s=s_{\lambda, \alpha}^{i}$. Then by continuity there is some $\sigma<\lambda$ with $\alpha<\mu_{\sigma}$ and so $s \in S_{\sigma}^{i+1} \subseteq S_{\sigma} \subseteq \bigcup_{\varrho<\lambda} S_{\varrho}$.

Lemma 7.6. Let μ be a cardinal. Then for any rooted subtree S of T of size μ and any uncountable regular cardinal $\kappa \leqslant \mu$, any S^{\prime}-horde $\left(H_{i}: i \in \mathbb{N}\right)$ of a κ-closed rooted subtree S^{\prime} of S of size less than κ can be extended to an S-horde.

Proof. The proof is by transfinite induction on μ. If μ is regular, we let $S^{\prime \prime}$ be the μ-closure of S^{\prime} in S. Thus $S^{\prime \prime}$ has size less than μ. So by the induction hypothesis $\left(H_{i}: i \in \mathbb{N}\right)$ can be extended to an $S^{\prime \prime}$-horde, which by Lemma 7.3 can be further extended to an S-horde.

So let us assume that μ is singular, and write $\gamma=\operatorname{cf}(\mu)$. By Lemma 7.5, fix an S representation $\mathcal{S}=\left(S_{\varrho}: \varrho<\operatorname{cf}(\mu)\right)$ extending S^{\prime} with $\left|S^{\prime}\right|<\left|S_{0}\right|$.

We now recursively construct for each $\varrho<\gamma$ an $S_{\varrho^{-}}$-horde ($H_{i}^{\varrho}: i \in \mathbb{N}$), where each of these hordes extends all the previous ones and $\left(H_{i}: i \in \mathbb{N}\right)$. Using that each S_{ϱ} is μ_{ϱ}^{+}-closed in S, we can find $\left(H_{i}^{0}: i \in \mathbb{N}\right)$ by the induction hypothesis, and if ϱ is a successor ordinal we can find $\left(H_{i}^{\varrho}: i \in \mathbb{N}\right)$ by again using the induction hypothesis. For any limit ordinal λ we set $H_{i}^{\lambda}=\bigcup_{\varrho<\lambda} H_{i}^{\varrho}$ for each $i \in \mathbb{N}$, which yields an S_{λ}-horde by the continuity of \mathcal{S}.

This completes the construction of the H_{i}^{ϱ}. Then $\left(\bigcup_{\varrho<\gamma} H_{i}^{\varrho}: i \in \mathbb{N}\right)$ is an S-horde extending $\left(H_{i}: i \in \mathbb{N}\right)$.

Finally, with the right induction start we obtain the following theorem and hence a proof of Theorem 1.1.

Theorem 7.7. Let T be a tree and Γ a graph such that $n T \leqslant \Gamma$ for every $n \in \mathbb{N}$. Then there is a T-horde, and hence $\aleph_{0} T \leqslant \Gamma$.

Proof. By Theorem 1.2, we may assume that T is uncountable. Let S^{\prime} be the \aleph_{1}-closure of the root $\{r\}$ in T. Then S^{\prime} is countable by Lemma 7.2 and so there is an S^{\prime}-horde in Γ by Theorem 1.2. This can be extended to a T-horde in Γ by Lemma 7.6 with $\mu=|T|$.

References

[1] T. Andreae. Bemerkung zu einem Problem aus der Theorie der unendlichen Graphen. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 46(1):91, 1977.
[2] T. Andreae. Über eine Eigenschaft lokalfiniter, unendlicher Bäume. Journal of Combinatorial Theory, Series B, 27(2):202-215, 1979.
[3] T. Andreae. On disjoint configurations in infinite graphs. Journal of Graph Theory, 39(4):222-229, 2002.
[4] T. Andreae. Classes of locally finite ubiquitous graphs. Journal of Combinatorial Theory, Series B, 103(2):274-290, 2013.
[5] N. Bowler, C. Elbracht, J. Erde, P. Gollin, K. Heuer, M. Pitz, and M. Teegen. Ubiquity in graphs II: Ubiquity of graphs with non-linear end structure. in preparation.
[6] N. Bowler, C. Elbracht, J. Erde, P. Gollin, K. Heuer, M. Pitz, and M. Teegen. Ubiquity in graphs III: Ubiquity of a class of locally finite graphs. in preparation.
[7] N. Bowler, C. Elbracht, J. Erde, P. Gollin, K. Heuer, M. Pitz, and M. Teegen. Ubiquity in graphs IV: Ubiquity of graphs of bounded tree-width. in preparation.
[8] R. Diestel. Graph Theory. Springer, 5th edition, 2016.
[9] R. Diestel and D. Kühn. Graph-theoretical versus topological ends of graphs. Journal of Combinatorial Theory, Series B, 87:197-206, 2003.
[10] R. Halin. Über die Maximalzahl fremder unendlicher Wege in Graphen. Mathematische Nachrichten, 30(1-2):63-85, 1965.
[11] R. Halin. Die Maximalzahl fremder zweiseitig unendlicher Wege in Graphen. Mathematische Nachrichten, 44(1-6):119-127, 1970.
[12] R Halin. A problem in infinite graph-theory. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 43(1):79-84, 1975.
[13] J. Lake. A problem concerning infinite graphs. Discrete Mathematics, 14(4):343-345, 1976.
[14] R. Laver. Better-quasi-orderings and a class of trees. Studies in foundations and combinatorics, 1:3148, 1978.
[15] C. St. J. A. Nash-Williams. On well-quasi-ordering infinite trees. Mathematical proceedings of the Cambridge philosophical society, 61(3):697-720, 1965.
[16] S. Shelah. A compactness theorem for singular cardinals, free algebras, whitehead problem and tranversals. Israel Journal of Mathematics, 21(4):319-349, 1975.
[17] R. Thomas. A counter-example to 'Wagner's conjecture' for infinite graphs. Mathematical Proceedings of the Cambridge Philosophical Society, 103(1):55-57, 1988.
[18] D. R. Woodall. A note on a problem of Halin's. Journal of Combinatorial Theory, Series B, 21(2):132134, 1976.

[^0]: 2010 Mathematics Subject Classification. 05C63, 05C83, 03 E 05.
 Key words and phrases. Ubiquity conjecture; well-quasi-order; self-minors; Shelah singular compactness; ends of infinite graphs; linkages of rays; G-tribes.

[^1]: ${ }^{1}$ In fact, Laver showed that rooted trees labelled by a better-quasi-order are again better-quasi-ordered under \leqslant_{r} respecting the labelling, but we shall not need this stronger result.

[^2]: ${ }^{2}$ A slightly weaker statement, without the additional condition that $H(R) \subseteq R$ appeared in [2, Lemma 1].

[^3]: ${ }^{3}$ A similar notion of thick and thin families was also introduced by Andreae in [2] (in German) and in [4]. The remaining notions, and in particular the concept of a concentrated G-tribe, which will be the backbone of essentially all our results in this series of papers, is new.

[^4]: ${ }^{4}$ Note that since ϵ is undominated, every thick T-tribe agrees about the fact that $V_{\epsilon}\left(S_{i}\right)=\emptyset$ for all $i \in \mathbb{N}$.

