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Abstract. We study the existence of powers of Hamiltonian cycles in graphs with large
minimum degree to which some additional edges have been added in a random manner.
It follows from the theorems of Dirac and of Komlós, Sarközy, and Szemerédi that for
every k ě 1 and sufficiently large n already the minimum degree δpGq ě k

k`1n for an
n-vertex graph G alone suffices to ensure the existence of a k-th power of a Hamiltonian
cycle. Here we show that under essentially the same degree assumption the addition of
just Opnq random edges ensures the presence of the pk ` 1q-st power of a Hamiltonian
cycle with probability close to one.

§1. Introduction

All graphs we consider are finite and for simplicity we assume that the vertex set V
of any given graph is the set t1, . . . , |V |u. We recall that for k P N the k-th power Hk of
a graph H is defined to be a graph on the same vertex set, where edges in Hk signify that
its vertices have distance at most k in H. Consequently, H0 is the empty graph on the
same vertex set and H1 “ H.

For integers n ě k`2 and k ě 1 we consider the set of graphs Pk
n consisting of all n-vertex

graphs G that contain the k-th power of a Hamiltonian cycle and we set Pk “
Ť

něk`2 Pk
n .

Clearly, Pk
n is a monotone graph property for fixed n and k, as powers of a Hamiltonian

cycle cannot disappear by adding edges to a graph without adding new vertices.
We investigate the probabilities that a given n-vertex graph G with high minimum degree

augmented by a binomial random graph Gpn, pq spans a k-th power of a Hamiltonian cycle,
i.e., we are interested in PpGYGpn, pq P Pk

nq. More formally, for α P r0, 1q and p : NÑ r0, 1s
we say pα, pq ensures Pk if

lim
nÑ8

min
G
P
`

GYGpn, ppnqq P Pk
n

˘

“ 1 ,

where the minimum is taken over all n-vertex graphs G with δpGq ě αn. We are interested
in the ‘minimal’ pairs pα, pq that ensure Pk.
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For example, when p ” 0, then this reduces to the classical theorem of Dirac [7] on
Hamiltonian cycles for k “ 1 and for k ě 2 to the Pósa–Seymour conjecture [9, 20] and its
resolution (for large n) by Komlós, Sarközy, and Szemerédi [14]. These beautiful results
then assert that p k

k`1 , 0q ensures Pk for every k ě 1.
For the other extreme case, when α “ 0, we arrive at the threshold problem for the

existence of powers of Hamiltonian cycles in Gpn, pq. This was asymptotically solved by
Posá [17] for k “ 1 (see also [1,5] for sharper results). For k “ 2 the threshold is only known
up to a factor of polyplog nq due to Nenadov and Škorić [16]. For k ě 3 the threshold is
given by a result of Riordan [18], which was observed by Kühn and Osthus [15]. Writing
p̂k “ p̂kpnq for the threshold for Pk then these results can be summarised by

p̂1 „
lnn
n

,
´ e
n

¯
1
2
ď p̂2 “ O

´

plnnq4
?
n

¯

, and p̂k „
´ e
n

¯
1
k for k ě 3 ,

where ln stands for the natural logarithm loge.
We study for α ą k

k`1 the asymptotics of the smallest function p “ ppnq such that pα, pq
ensures Pk`1. Recall that for α ą k

k`1 the Komlós–Sarközy–Szemerédi theorem asserts
that pα, 0q ensures Pk already. We show that under the same minimum degree assumption
for n-vertex graphs G the addition of Opnq random edges suffices to ensure Pk`1, which is
asymptotically best possible (see discussion below).

Theorem 1.1. For every integer k P N and every α P R with k
k`1 ă α ă 1 there is some

constant C “ Cpk, αq such that for p “ ppnq ě C{n the pair pα, pq ensures Pk`1.

For k “ 0 Theorem 1.1 was already obtained by Bohman, Frieze, and Martin [4]. For
larger k only suboptimal upper bounds for ppnq were established so far. The best known
bounds of the form

O
´

plog nq1{3
n2{3

¯

for k “ 1 and p̂k`1pnq

nδ
for some δ ą 0 and k ě 2.

were given by Bennett, Dudek, and Frieze [3] for k “ 1 and by Bedenknecht, Han,
Kohayakawa, and Mota [2] for k ě 2.

The following construction shows that Theorem 1.1 is optimal in the sense that for every
α ą k

k`1 there are n-vertex graphs G with δpGq{n ě α ą k
k`1 that require at least Ωpnq

additional random edges to ensure a pk ` 1q-st power of a Hamiltonian cycle.
Let pk ` 1q | n and consider a vertex partition rns “ V1 Ÿ ¨ ¨ ¨ Ÿ Vk`1 with each part

of size n{pk ` 1q. Moreover, for every i “ 1, . . . , k ` 1 fix some subset Wi Ď Vi of
size |Wi| “ rεns for some arbitrarily small ε ą 0.

Let G be the n-vertex graph consisting of the union of the complete pk ` 1q-partite
graph with vertex partition V1 Ÿ . . . ŸVk`1 and k` 1 complete bipartite graphs with vertex
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classes Wi and VirWi for i “ 1, . . . , k` 1. Clearly, δpGq ě p k
k`1 ` εqn. However, any copy

of Ck`1
n , the pk ` 1q-st power of a Hamiltonian cycle, contains tn{pk ` 2qu vertex-disjoint

copies of Kk`2 and each of these cliques would require at least one edge contained in
some set Vi. Consequently, every such clique has at least one vertex in

Ťk`1
i“1 Wi and,

hence, G contains at most
ˇ

ˇ

Ťk`1
i“1 Wi

ˇ

ˇ “ pk ` 1qrεns vertex disjoint Kk`2’s. This implies
that for ε ! pk` 1q´2 one needs to add at least a matching of size Ωpnq to G before it may
have a chance to contain a copy of Ck`1

n .
In view of the optimality of Theorem 1.1, the next open problem might be to find the

asymptotics of the minimal p such that pα, pq ensures Pk`1 for α “ k
k`1 or even smaller

values of α.

§2. Method of Absorption

The proof of Theorem 1.1 is based on the absorption method, which has been introduced
about a decade ago in [19]. Since then, it has turned out to be an extremely versatile
technique for solving a variety of combinatorial problems concerning the existence of
spanning substructures in graphs and hypergraphs obeying minimum degree conditions.

A nice feature of this method is that it often allows to split the problem at hand into
several subproblems, which may turn out to be more manageable. In the present case, we
may reduce Theorem 1.1 to the Propositions 2.1–2.4 formulated later in this section.

Before stating the first of these propositions, we fix some terminology concerning powers
of paths. A pk ` 1q-path is defined as the pk ` 1q-st power of a path. The ordered sets of
the first and last k ` 1 vertices are called the end-sets of the pk ` 1q-path, which must
span pk ` 1q-cliques. If K and K 1 are the ordered cliques induced by the end-sets of a
pk ` 1q-path P , we say that P connects K and K 1 and the vertices of P outside K and K 1

are its internal vertices.
We may now state the so-called Connecting Lemma, which is proved in Section 4.

Roughly speaking, it asserts that in the graphs we need to deal with, one may connect
any two disjoint pk ` 1q-cliques by means of a “short” pk ` 1q-path. Moreover, we want to
declare some small proportion of the vertex set to be “unavailable” for such a connection
(e.g. because we already have something else in mind that we want to do with those
vertices), then the desired connection does still exist.

Proposition 2.1 (Connecting Lemma). For every integer k ě 0 and every ε ą 0 there
exists some C ą 1 such that for every n-vertex graph G with δpGq ě p k

k`1 ` εqn and
p “ ppnq ě C{n a.a.s. H “ GYGpn, pq has the following property:†

†As usual a.a.s. abbreviates asymptotically almost surely and means that the statement holds with prob-
ability tending to 1 as nÑ8. Strictly speaking, we should therefore consider arbitrary sequences pGnqnPN
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For every subset Z Ď V of size at most εn{2 and every pair of disjoint, ordered pk ` 1q-
cliques K, K 1, there exists a pk ` 1q-path connecting K and K 1 with pk ` 1q2k`1 internal
vertices from V r Z.

As the proof of Theorem 1.1 progresses, the number of vertices we do not want to use
for connections anymore gets out of control. Therefore one puts a small set R of vertices
aside at the beginning, which is called the reservoir and has the property that, actually, we
can always connect any two given pk` 1q-cliques through the reservoir. Of course, in order
to use the reservoir multiple times, we shall need again a version, where a small part of
the reservoir is “unavailable” at any particular moment. A precise version of the Reservoir
Lemma, which is proved in Section 5, reads as follows.

Proposition 2.2 (Reservoir Lemma). For every integer k ě 0 and every ε ą 0, γ P p0, 1s
there exists C ą 1 such that for every n-vertex graph G with δpGq ě p k

k`1 ` εqn there exists
a set of vertices R Ď V of size γ2n such that for p “ ppnq ě C{n a.a.s. H “ GYGpn, pq

has the following property:
For every S Ď R with |S| ď ε|R|{4 and for every pair of disjoint, ordered pk ` 1q-cliques

K, K 1 in G´R, there exists a pk` 1q-path connecting K and K 1 with pk` 1q2k`1 internal
vertices from Rr S.

The next result (proved in Section 6) plays a central rôle and, in fact, this kind of
statement gave the absorption method its name. It promises the existence of a very special,
so-called absorbing pk ` 1q-path A, which can ‘absorb’ any small set of vertices. Thus
the problem of constructing the pk ` 1q-st power of a Hamiltonian cycle gets reduced
to the much easier problem of finding the pk ` 1q-st power of an almost spanning cycle
containing A. Let us remark at this point that the Absorbing Lemma gets utilised after
the Reservoir Lemma and the set R appearing below takes this fact into account.

Proposition 2.3 (Absorbing Lemma). For every integer k ě 0 and every ε ą 0 there
exist γ P p0, ε{4k`2q and C ą 1 such that for every n-vertex graph G with δpGq ě p k

k`1`εqn

and every p ě C{n a.a.s. H “ GYGpn, pq has the following property:
For every set of vertices R Ď V of size γ2n the graph H´R contains a pk`1q-path A with

at most γn{2 vertices such that for every U Ď V with |U | ď 2γ2n the graph HrV pAq Y U s
contains a spanning pk ` 1q-path having the same end-sets as A.

The last ingredient of our argument is a statement to the effect that essentially the
whole graph under consideration can be covered by “not too many” pk ` 1q-paths. Such

of n-vertex graphs with δpGnq ě p k
k`1 ` εqn. However, for a less baroque presentation we chose this

‘simplification’ here and in the propositions below.
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paths can be connected together with the absorbing path A obtained earlier by means of
“relatively few” connections to be made through the reservoir, thus producing the desired
pk ` 1q-st power of an almost spanning cycle. We shall prove this Covering Lemma in
Section 7.

Proposition 2.4 (Covering Lemma). For every integer k ě 0 and every ε ą 0, γ P p0, ε{2s
there exits C ą 1 such that for every n-vertex graph G with δpGq ě p k

k`1 ` εqn and
p “ ppnq ě C{n a.a.s. H “ GYGpn, pq has the following property:
For every subset Q Ď V of size at most γn there exists a family of γ3n vertex disjoint

pk ` 1q-path in H ´Q that cover all but at most γ2n vertices from V rQ.

We conclude the present section with a proof of our main result assuming the four
propositions stated above. In fact, we shall not make a direct reference to Proposition 2.1
in the proof below, but it will employed in the proof of Proposition 2.3 in Section 6.

Proof of Theorem 1.1. Let k P N and α P
`

k
k`1 , 1

˘

be given and set ε “ α´ k
k`1 . Plugging k

and ε into Proposition 2.3 we get γ P p0, ε{4k`2q and C3 ą 1. Next we appeal with k, ε,
and γ to Propositions 2.2 and 2.4, thus getting two further constants C2 ą 1 and C4 ą 1.
We claim that C “ maxtC2, C3, C4u is as desired.

So let an n-vertex graph G with δpGq ě p k
k`1 ` εqn as well as some p ě C{n be given.

We need to check that a.a.s. the graph H “ G Y Gpn, pq contains the pk ` 1q-st power
of a Hamiltonian cycle Ck`1

n . For this purpose it suffices to prove that every “concrete”
graph Gpn, pq exemplifying the conclusion of Proposition 2.x for each x P t2, 3, 4u has this
property.

Use Proposition 2.2 for obtaining a reservoir set R Ď V of size γ2n. By Proposition 2.3
there exists an absorbing pk` 1q-path A Ď H ´R. Since |R| ` |V pAq| ď pγ2` γ{2qn ă γn,
we can apply Proposition 2.4 to Q “ R Y V pAq and obtain a collection P of at most γ3n

vertex-disjoint pk ` 1q-path covering the whole graph H ´ Q except for a small set of
vertices U‹ Ď V r Q with |U‹| ď γ2n. Now we want to create the pk ` 1q-st power of a
cycle C Ď H

‚ containing A and each pk ` 1q-path in P as a sub-path,
‚ such that between any two “consecutive” such sub-paths of C there are always
exactly pk ` 1q2k`1 vertices from R.

For building C we intend to make |P | ` 1 successive applications of Proposition 2.2. In
each such application we let K and K 1 be the end-sets of pk ` 1q-paths we wish to connect
and we let S Ď R be the set of all vertices that we obtained as internal vertices in previous
applications of Proposition 2.2. When arriving at the last step of this process closing the
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cycle C, the set S of vertices we need to exclude has size

|S| “ pk ` 1q2k`1
¨ |P | ď 4k`1γ3n ď

ε

4 |R| ,

which justifies the applications of Proposition 2.2.
Now the complement U “ V rV pCq satisfies |U | “ |U‹| ` |RrV pCq| ď 2γ2n, whence by

Proposition 2.3 there exists a pk ` 1q-path AU with V pAUq “ V pAq Ÿ U having the same
end-sets as A. Therefore, we can replace A by AU in C and obtain the desired pk ` 1q-st
power of a Hamiltonian cycle Ck`1

n Ď H. �

§3. Preliminaries

In the proofs of the propositions stated in Section 2 we make use of the high minimum
degree condition of the given graph G and combine it with properties of Gpn, pq. We
prepare for this by collecting a few observations for such graphs G in Section 3.1 and for
the random graph in Section 3.2 below.

3.1. Neighbourhoods in graphs of large minimum degree. We recall the following
standard notation. For a set V and an integer j P N we write V pjq for the set of all
j-element subsets of V . Given a graph G “ pV,Eq we write NGpuq for the neighbourhood
of a vertex u P V . More generally, for a subset U Ď V we set

NGpUq “
č

uPU

Npuq

for the joint neighbourhood of U . For simplicity we may suppress G in the subscript and
for sets tu1, . . . , uru we may write Npu1, . . . , urq instead of Nptu1, . . . , uruq.

Lemma 3.1. For every integer k ě 0 and ε ą 0 the following holds for every n-vertex
graph G “ pV,Eq with δpGq ě p k

k`1 ` εqn. For every j P rk ` 1s and every J P V pjq we
have

|NpJq| ě

ˆ

k ` 1´ j
k ` 1 ` jε

˙

n . (3.1)

Furthermore, for j P rks the induced subgraph GrNpJqs satisfies

δpGrNpJqsq ě

ˆ

k ´ j

k ´ j ` 1 ` ε
˙

|NpJq| (3.2)

for every J P V pjq.

Proof. First observe that De Morgan’s law and Boole’s inequality imply

n´
ˇ

ˇNpJq
ˇ

ˇ “
ˇ

ˇV rNpJq
ˇ

ˇ “

ˇ

ˇ

ˇ

ˇ

ď

uPJ

`

V rNpuq
˘

ˇ

ˇ

ˇ

ˇ

ď jn´
ÿ

uPJ

ˇ

ˇNpuq
ˇ

ˇ .
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Therefore,

|NpJq| ě
ÿ

uPJ

ˇ

ˇNpuq
ˇ

ˇ´ pj ´ 1qn ě jδpGq ´ pj ´ 1qn ě
´ jk

k ` 1 ` jε
¯

n´ pj ´ 1qn ,

which yields (3.1).
Proceeding with (3.2) we note that every v P NpJq satisfies

ˇ

ˇNpvq XNpJq
ˇ

ˇ ě δpGq ´
`

n´ |NpJq|
˘

ě

ˆ

1´ n´ δpGq

|NpJq|

˙

|NpJq| .

Taking into account the lower bound on δpGq and that (3.1) implies |NpJq| ě k`1´j
k`1 n we

deduce

δpGrNpJqsq

|NpJq|
ě 1´ n´ δpGq

|NpJq|
ě 1´

1´ k
k`1 ´ ε
k`1´j
k`1

ě 1´ 1
k ` 1´ j ` ε “

k ´ j

k ` 1´ j ` ε ,

as desired. �

3.2. Janson’s inequalities. We shall use the following variant of Janson’s inequality [11]
(see also [12]).

Theorem 3.2 (Janson’s inequality). Let % ą 0 and C ą 1 be constants. Let F “ pVF , EF q
be a forest and let F be a family of copies of F in Kn with |F | ě %n|VF |.

There exists some constant cF only depending on F such that for p ě C{n the probability
that Gpn, pq contains no copy of F from F is at most 2´cF %

2pn2. �

The following further customised version of Janson’s inequality will be utilised in our
proof in Sections 4 and 5. Roughly speaking this version will guarantee that Gpn, pq
provides the missing edges of a pk ` 1q-path connecting two pk ` 1q-cliques K and K 1

provided the deterministic graph G guarantees many short k-paths between K and K 1.

Corollary 3.3. For all integers k, ` ě 0 with pk ` 1q | ` and % ą 0 there exists C ą 0
such that for every n-vertex graph G and p ě C{n the graph H “ G Y Gpn, pq satisfies
with probability at least 1´ 4´n the following property:

If for a pair of ordered, disjoint pk ` 1q-cliques K, K 1 in G there is a family P of at
least %n``2k`2 k-paths P “ x1 . . . xk`1y1 . . . y`x

1
1 . . . x

1
k`1 in G such that Kx1 . . . xk`1 and

x11 . . . x
1
k`1K

1 form pk ` 1q-paths, then there is at least one k-path P P P such that KPK 1

forms a pk ` 1q-path in H.

Proof. Let F denote the linear forest on ` ` 2k ` 2 vertices consisting of k ` 1 disjoint
paths on 2` `{pk ` 1q vertices each. For each P P P there is a copy FP of F such that the
union P Y FP forms a pk ` 1q-path connecting K with K 1 (see Figure 3.1).
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x1 x2 y1 y2 y3 y4 x11 x12

2-clique K 2-clique K 11-path P

forest FP

Figure 3.1. For k “ 1 and ` “ 4 completing a 1-path P to a 2-path with a
linear forest FP consisting of two 3-edge paths.

We estimate the probability that at least one of them is a subgraph of Gpn, pq. Setting
F “ tFP : P P Pu we have |F | “ |P | ě %n``2k`2, Theorem 3.2 shows that for C ě 2c´1

F %´2

this leads to

P
`

FP Ę Gpn, pq for all FP P F
˘

ď 4´n ,

and the corollary is proved. �

§4. Proof of the Connecting Lemma

In this section we establish Proposition 2.1. For that we first prove a deterministic lemma
(see Lemma 4.1), which guarantees many short k-paths between every pair of disjoint
k-cliques in large graphs G with sufficiently high minimum degree. We shall employ this
result in the proof of Proposition 2.1, where at least one of these k-paths will be ‘thickened’
to a pk ` 1q-path by an application of Janson’s inequality in the form of Corollary 3.3.

In Lemma 4.1 below it will be convenient to consider k-walks, which are defined like
k-path, without the restriction that all vertices must be distinct. However, since we consider
only graphs without loops, any k consecutive vertices in a k-walk must be distinct. As in
the case of k-paths we say a walk connects the ordered k-cliques forming the ends of the
walk and internal vertices are counted with their multiplicities (outside the ends).

Lemma 4.1. For every integer k ě 1 and ε ą 0 there exists some %k ą 0 such that every
n-vertex graph G with δpGq ě p k

k`1 ` εqn satisfies the following for `k “ pk ` 1qp2k`1 ´ 2q.
For all pairs of disjoint, ordered k-cliques K, K 1 in G the number of k-walks connecting K

and K 1 with `k internal vertices is at least %kn`k .

Proof. We argue by induction on k. For k “ 1 we have `1 “ 4 and the statement reduces
to showing that any two distinct vertices x and y of an n-vertex graph G with minimum
degree δpGq ě

`1
2 ` ε

˘

n are connected by %1n
4 walks with four internal vertices for some

%1 “ %1pεq ą 0. The minimum degree condition implies that there are at least p1{2` εq3n3

walks with three edges that start in x. Moreover, the end-vertex of each such walk has
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at least 2εn joint neighbours with y, which gives rise to at least 2εp1{2` εq3n4 different
x-y-walks in G with four internal vertices. This establishes the induction start for %1 “ ε{4.

For the inductive step we assume that the lemma holds for k ´ 1 in place of k ě 2 and
we consider a given n-vertex graph G “ pV,Eq with δpGq ě p k

k`1 ` εqn. Given ε ą 0 we
will use some auxiliary constants ξ, ξ1, ξ2, and ξ3 before we define %k. Moreover, given %k´1

by the inductive assumption applied with ε, we shall work under the following hierarchy of
constants

k´1, ε " %k´1, ξ " ξ1 " ξ2 " ξ3 " %k .

First we observe that for any u, w P V pGq the case j “ 2 of (3.1) and (3.2) yields

|Npu,wq| ě
k ´ 1
k ` 1n and epNpu,wqq ě

ˆ

k ´ 2
k ´ 1 ` ε

˙

|Npu,wq|2

2 .

Hence, it follows from Turán’s theorem that GrNpu,wqs induces a copy of Kk and owing to
the so-called supersaturation phenomenon (see, e.g., [10]) the induced subgraph GrNpu,wqs
contains Ωp|Npu,wq|kq “ Ωpnkq copies of Kk. Consequently, there exists ξ “ ξpk, εq ą 0
such that

ˇ

ˇ

 

Kk Ď GrNpu,wqs
(ˇ

ˇ ě ξnk , (4.1)

i.e., there are at least ξnk copies of Kk contained in GrNpu,wqs for any vertices u, w P V .
We consider two disjoint, ordered k-cliques K and K 1. As a preliminary step we first

extend K 1 in a greedy manner by k vertices. (This seems like an unnecessary step but it is
needed to fulfil a certain divisibility condition at the end of this proof.) The total number
of these extensions is, by k applications of (3.1) with j “ k, at least

ˆ

´ 1
k ` 1 ` kε

¯

n

˙k

ě

´ n

k ` 1

¯k

, (4.2)

as we do not require that all these vertices are distinct from those in K or K 1. Let L1 be
the set of all ordered k-tuples obtained this way. By construction for every L1 P L1 we have
that L1K 1 induces a k-walk connecting L1 and K 1 without internal vertices.

Next we connect K with every L1 P L1 by a k-walk. Again we infer from (3.1) that we
have |NpV pKqq| ě n

k`1 and |NpV pL1qq| ě n
k`1 . It, therefore, follows from (4.1) that

ÿ

uPNpV pKqq

ÿ

wPNpV pL1qq

ˇ

ˇ

 

Kk Ď GrNpu,wqs
(
ˇ

ˇ ě
ξnk`2

pk ` 1q2 .

This implies that there are at least ξ1nk different k-cliques M in G, that are contained
in Npuq XNpwq for at least ξ1n2 pairs pu,wq P NpV pKqq ˆNpV pL1qq. For fixed such M
we let UL1 denote the set of those vertices u P NpV pKqq that belong to at least one such
pair and let WL1 Ď NpV pL1qq be defined in the same way. Clearly, |UL1 |, |WL1 | ě ξ1n.
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We connect K and L1 by k-walks through M . For the k-walk connecting K and M we
shall use the properties of u P UL1 and, analogously, we rely on the properties of w P WL1

for the k-walk connecting M and L1. Recall that for every u P UL1 we have K Ď GrNpuqs,
M Ď GrNpuqs and an application of (3.2) with j “ 1 gives

δpGrNpuqsq ě
´k ´ 1

k
` ε

¯

|Npuq| .

Thus, by the inductive assumption, there are at least %k´1n
`k´1 pk ´ 1q-walks connecting

the last k ´ 1 vertices of K and the first k ´ 1 vertices of M and each such walk has `k´1

internal vertices. Let K` Ď K be the ordered pk ´ 1q-clique spanned by the last k ´ 1
vertices of K and let M´ Ď M be the ordered pk ´ 1q-clique spanned by the first k ´ 1
vertices of M . Repeating this argument for every vertex u P UL1 we obtain at least

|UL1 | ¨ %k´1n
`k´1 ě ξ1%k´1n

1``k´1 “ ξ2n1``k´1

pairs pu, P q where u P UL1 and P is a pk ´ 1q-walk connecting K` and M´ in GrNpuqs.
As there are no more than n`k´1 such paths in G, at least 1

2ξ
2n`k´1 of them must be each

contained in subgraphs GrNpuqs for at least 1
2ξ
2n vertices u P UL1 . Let us fix one such

pk ´ 1q-walk P and denote by UP
L1 the subset of UL1 consisting of the vertices u such

that P Ď GrNpuqs. Next we construct a k-walk Q from K to M by inserting

`k´1

k
` 1 “ 2k ´ 1

vertices from UP into P in such a way that there are exactly k internal vertices of the
pk ´ 1q-walk P between each consecutive pair of the vertices of UP

L1 (see Figure 4.1).

2-clique K 2-clique M1-path P
K` M´

UP
L1

Figure 4.1. Building a 2-path Q for k “ 1 that connects K and M by
adding vertices from UP

L1 to a 1-path P connecting K` and M´ at the
indicated places.

Note that any such k-walk Q created this way is indeed a k-walk connecting K and M
including the first vertex of K and the last vertex of M , as every vertex u P UP

L1 Ď UL1
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contains K and M in its neighbourhood. Note that this way we ensure the existence of at
least

1
2ξ
2n`k´1 ¨

´1
2ξ
2n
¯2k´1

“ ξ3n`k´1`2k´1

k-walks connecting K and M .
The same argument applied for M and L1 (instead of K and M) using the set WL1 yields

ξ3n`k´1`2k´1 k-walks connecting M and L1. Consequently, for fixed M and L1 we obtain
`

ξ3n`k´1`2k´1˘2

k-walks connecting K and K 1 that pass through M and L1. We recall that there are at
least ξ1nk choices for the clique M for fixed L1 P L1 and that |L1| ě

`

n
k`1

˘k (see (4.2)).
Therefore, the number of k-walks connecting K and K 1 is at least

`

ξ3
˘2
n2`k´1`2k`1´2

¨ ξ1nk ¨
´ n

k ` 1

¯k

ě %kn
2`k´1`2k`1´2`2k

“ %kn
`k ,

where the last identity follows from `k´1 “ kp2k ´ 2q, which gives indeed

2`k´1 ` 2k`1
´ 2` 2k “ 2kp2k ´ 2` 1q ` 2k`1

´ 2 “ pk ` 1qp2k`1
´ 2q “ `k .

This concludes the inductive step and the proof of Lemma 4.1. �

It is left to deduce Proposition 2.1 from Lemma 4.1. Roughly speaking, Lemma 4.1
verifies the assumptions of Corollary 3.3, which then guarantees that at least one given
k-path will be enriched to a pk ` 1q-path by the random graph Gpn, pq.

Proof of Proposition 2.1. Let k ě 0 and ε ą 0 be given. If k “ 0, then we set %0 “ 1, and
for k ě 1, we appeal to Lemma 4.1 applied with k and ε{2 and obtain a constant %k ą 0.
We then let C ą 1 be given by Corollary 3.3 applied with

k , ` “ pk ` 1qp2k`1
´ 2q , and % “

1
2``1%k ¨

´ε

2

¯2k`2
.

Finally, let G “ pV,Eq be an n-vertex graph with δpGq ě
`

k
k`1 ` ε

˘

n and p ě C{n.
Consider a set Z Ď V of size at most εn{2 and let K and K 1 be two disjoint, ordered

pk ` 1q-cliques in G ´ Z. Since K and K 1 are fixed cliques we cannot directly apply
Corollary 3.3 to the forests FP that would complete the k-paths P connecting the last k
vertices of K with first k vertices of K 1 (which are guaranteed by Lemma 4.1), since we
can have at most nV pFP q´2k such k-paths P in G.

We remedy this by first selecting pk ` 1q-cliques L and L1 in G ´ Z such that KL
and L1K form pk ` 1q-walks. In fact, since δpG ´ Zq ě

`

k
k`1 `

ε
2

˘

n we infer that k ` 1
applications of (3.1) for j “ k ` 1 in G ´ Z give rise to at least pεn{2qk`1 such ordered
pk ` 1q-cliques L. Similarly, there are at least pεn{2qk`1 such ordered pk ` 1q-cliques L1.
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For two such ordered cliques L and L1 let L` be the last k vertices in L and let L1´ be the
first k vertices in L1.

For k ě 1 the graph G´ Z satisfies the assumption of Lemma 4.1 with ε{2 instead of ε
and, hence, the lemma yields %k|V r Z|` k-walks connecting L` and L1´ in G ´ Z with
` “ pk ` 1qp2k`1 ´ 2q internal vertices. For k “ 0 we have ` “ 0 and note that for the
0-cliques L` and L1´ and the empty path might be considered as a 0-path connecting those.

Consequently, for any value of k there are %k|V r Z|` k-walks connecting L` and L1´ for
all considered pk ` 1q-cliques L and L1. Going over all such pk ` 1q-cliques L and L1 this
gives rise to

´ε

2n
¯2k`2

¨ %k

´1
2n

¯`

such k-walks x1 . . . xk`1y1 . . . y`x
1
1 . . . x

1
k`1. Since n is sufficiently large, we may assume that

at least half of these k-walks are indeed k-paths disjoint from K and K 1. This verifies
the assumptions of Corollary 3.3, which with probability at least 1´ 4´n yields a desired
pk ` 1q-path connecting K and K 1 in H “ GYGpn, pq

Finally, the union bound over up to at most n2k`2 choices for K and K 1 and at most 2n

choices for Z shows that a.a.s. H “ GYGpn, pq enjoys the conclusion of Proposition 2.1. �

§5. Proof of the Reservoir Lemma

Proof of Proposition 2.2. Consider a random subset R Ď V with |R| “ γ2n chosen uni-
formly at random. Since δpGq ě p k

k`1`εqn, it follows from a version of Chernoff’s inequality
appropriate for hypergeometric distributions that for each vertex v P V the bad event that
|Npvq X R| ă p k

k`1 `
ε
2q|R| holds has probability e´Ωpnq. Thus, by the union bound, the

probability that there exists some v P V for which this bad event occurs is op1q.
This proves, in particular, that there exists some set R Ď V with |R| “ γ2n and

|Npvq XR| ě

ˆ

k

k ` 1 `
ε

2

˙

|R| for every v P V . (5.1)

For the rest of the proof we fix some such set R Ď V having these properties. Notice
that (5.1) immediately entails that

|NpJq XR| ě 1
2ε|R| holds for all J P V pk`1q. (5.2)

Let us now fix two ordered pk` 1q-cliques K and K 1 in G´R as well as a subset S Ď R

with |S| ď 1
4ε|R|. Consider the bad event E that there is no pk`1q-path in H connecting K

with K 1 having

` “ pk ` 1q2k`1
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internal vertices all of which belong to Rr S. It suffices to prove to that

PpEq ď 4´n . (5.3)

This is because there are at most nk`1 possibilities for each of K and K 1 and at most 2n

possibilities for S, meaning that once (5.3) is established it will follow that the probability
that H fails to have the desired property is at most n2k`22n ¨ op4´nq “ op1q, as desired.

For the proof of (5.3) we note that due to (5.2) we can greedily extend K to a pk ` 1q-
path KL, where L denotes some ordered pk ` 1q-clique in GrRr Ss. More precisely, since
|S| ď 1

4ε|R| each vertex of such a clique L can be chosen in at least 1
4ε|R| many ways and

thus the set L containing all such cliques L satisfies |L| ě p1
4ε|R|q

k`1.
Applying the same reasoning to backwards extensions of K 1 we infer that the set L1

consisting of all ordered pk ` 1q-cliques L1 in GrR r Ss for which L1K 1 is a pk ` 1q-path
in G has at least the size |L1| ě p1

4ε|R|q
k`1.

Now let P be the collection of all k-path in GrRr Ss having ` vertices that start with a
member of L and end with a member of L1. To derive a lower bound on |P | we note that as
a consequence of (5.1) the graph GrRrSs satisfies the assumptions of Lemma 4.1 with ε{4
here in place of ε there. Thus for some sufficiently small choice of %k ą 0, Lemma 4.1
guarantees that for every L P L and L1 P L1 there at least %k|R r S|`´2k´2 k-walks with
`´ 2k´ 2 internal vertices connecting the last k vertices of L with the first k vertices of L1.
Without loss of generality we may assume that %k ! ε2k`2{2` and since most of these walks
are indeed paths for sufficiently large n, this shows that

|P | ě %k
2 |L||L

1
||Rr S|`´2k´2

ě
%k
2

´ε

4

¯2k`2 ´
1´ ε

4

¯`

|R|` ě %2
k|R|

` . (5.4)

Consequently, we can invoke Corollary 3.3 for `, k, and % “ %2
k, which yields (5.3) and

thereby Proposition 2.2 is proved. �

§6. Proof of the Absorbing Lemma

The present section is dedicated to the proof of Proposition 2.3. As in many earlier
applications of the absorbing method the core idea is to take a random collection of Ωpnq
small configurations called absorbers, which are then connected by means of the Connecting
Lemma to form the desired path A.

The absorbers we shall use later will simply be pk ` 1q-path on 2k ` 2 vertices. When
such a path P appears in the neighbourhood of some vertex x, we have the liberty to
insert x in the middle of P , thus creating a longer pk` 1q-path. In other words, the path P
can absorb x. Now the plan is to construct A so as to contain many disjoint absorbers and
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to make sure that for every x P V there will be at least 2γ2n absorbers in A capable of
absorbing x.

For standard reasons in the area detailed more fully below, the task of proving Proposi-
tion 2.3 gets thus reduced to estimating the number of such absorbers in H. This requires
to deal with the interplay of the deterministic part G and the random part Gpn, pq of H.
It turns out to be convenient to insist that our absorbers are entirely contained in G,
except for their “middle edges”, which will have to be taken from Gpn, pq. It thus becomes
necessary to argue that Gpn, pq is likely to “complete” many x-absorbers for every x P V
and for doing so we exhibit auxiliary graphs Bx with Ωpn2q edges and tell that a.a.s. Gpn, pq
intersects each of them in Ωpnq edges.

Accordingly, the proof of Proposition 2.3 consists of four steps.

‚ Define for each x P V a graph Bx on V of size Ωpn2q depending only on G.
‚ State properties Gpn, pq is likely to have that will imply the existence of A in a
deterministic sense.

‚ Perform a random selection of Ωpnq absorbers.
‚ Connect these absorbers, thus obtaining A.

Proof of Proposition 2.3. We work with a hierarchy

k´1, ε " β " γ " C´1

and we consider an n-vertex graph G “ pV,Eq with δpGq ě p k
k`1 ` εqn.

The graphs Bx. Let P denote the pk ` 1q-path on 2k ` 2 vertices 1, . . . , 2k ` 2 and
let P´ be the graph obtained from P by deleting the middle edge between k ` 1 and k ` 2.
Notice that the chromatic number of P´ is (at most) k ` 1, an admissible colouring being
the map ϕ : V pP´q ÝÑ rk ` 1s assigning the colours 1, . . . , k ` 1, k ` 1, 1, . . . , k in this
order to the vertices of P´, i.e., explicitly

ϕpiq “

$

’

’

’

&

’

’

’

%

i if 1 ď i ď k ` 1,

k ` 1 if i “ k ` 2,

i´ k ´ 2 if k ` 3 ď i ď 2k ` 2.

We claim that for every vertex x P V there are at least

βn2k`2 ordered copies of P´ in GrNpxqs . (6.1)

This is clear for k “ 0, as in this case the graph P´ has two vertices and no edges. If k ą 0
we apply Lemma 3.1 to J “ txu and learn that the graph GrNpxqs has order at least k

k`1n

and minimum degree at least pk´1
k
` εq|Npxq|. So by the Erdős–Stone theorem there is at
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least one copy of P´ in GrNpxqs and by supersaturation (see, e.g., [10]) there are indeed
at least βn2k`2 ordered copies of P´ in GrNpxqs, which completes the proof of (6.1).

As a consequence of this fact we obtain that the graph Bx on V whose edges are the
pairs vv1 with the property that at least βn2k ordered copies of P´ in GrNpxqs have vv1 as
their “missing” middle edge satisfies

epBxq ě βn2
{2 . (6.2)

Properties of Gpn, pq. We will now check that the following statements hold a.a.s.

(i ) Gpn, pq has at most Cn edges.
(ii ) There are at most 2C2n ordered pairs pe, e1q of intersecting edges in Gpn, pq.
(iii ) For every R Ď V with |R| ď γ2n and every v P V at least βCn{4 edges of Bx ´R

appear in Gpn, pq.

Notice that (i ) is straightforward by Chernoff’s inequality. For (ii ) we remark that
the random variable counting such pairs has expected value and variance OCpnq and,
therefore, Chebyshev’s inequality applies. Finally, for every R and x as in (iii ) we have
epBx ´ Rq ě βn2 ´ |R|n ě βn2{3 by (6.2) and γ ! β. Thus the expected value of the
number XR,x of edges that Gpn, pq and Bx´R have in common is at least βCn{3. In view
of Chernoff’s inequality (see [13, Section 2.1]) and C " β´1 it follows that

PpXR,x ă βCn{4q ă e´βCn{96
ă 4´n .

Taking the union bound over all choices for the pair pR, xq we infer that (iii ) fails with a
probability of at most n2n ¨ 4´n “ op1q.

Having thus proved (i ), (ii ), and (iii ) to hold a.a.s. we shall henceforth regard Gpn, pq as
a fixed graph having these properties, for which, moreover, the conclusion of Proposition 2.1
is valid.

As we shall see, these assumptions imply the existence of the desired absorbing path.
Let us fix a set R Ď V with |R| ď γ2n from now on.
Selection of absorbers. An ordered copy á

v “ pv1, . . . , v2k`2q P pV r Rq2k`2 of P´ in
G´R with vk`1vk`2 P EpGpn, pqq is called an absorber. Notice that by (i ) there exist at
most Cn2k`1 absorbers.

In case all vertices of an absorber áv are in NGpxq for some vertex x P V we say that áv is
an x-absorber. As explained earlier, the rationale behind this terminology is that if the
path A we are about to construct happens to contain an x-absorber á

v “ pv1, . . . , v2k`2q,
then we may replace this part of A by the pk ` 1q-path pv1, . . . , vk`1, x, vk`2, . . . , v2k`2q

whenever we wish to “absorb” x into A. Later we shall refer to this option as the absorbing
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property of áv. We contend that

for every x P V there are at least β2Cn2k`1
{4 many x-absorbers. (6.3)

Notice that by (iii ) this would follow from the fact that for every edge vv1 that Bx ´R

and Gpn, pq have in common there are at least βn2k{2 many x-absorbers having v and v1

in their pk ` 1q-st and pk ` 2q-nd position, respectively. Now by vv1 P epBxq there are
actually at least βn2k such configurations in V and at most 2k|R|n2k´1 of them can fail to
be x-absorbers for the reason of containing a vertex from R. Due to |R| ď γ2n and γ ! β

at most βn2k{2 candidates get discarded in this way, and thereby (6.3) is proved.
Now let F be a random set of absorbers containing each absorber independently and

uniformly at random with probability q “ γ3{2C´1n´2k. Since

Er|F |s ď Cn2k`1
¨ q “ γ3{2n ,

Markov’s inequality entails

Pp|F | ď 3γ3{2nq ą 2{3 . (6.4)

An ordered pair páv, áwq of absorbers is said to be overlapping if they have a vertex in
common. When two absorbers overlap, then either their middle edges are disjoint or
they are not. The first case appears at most pCnq2 ¨ 4k2n4k´1 many times by (i ), while
the second case appears at most 8C2n ¨ n4k times by (ii ). So altogether there are at
most p4k2 ` 8qC2n4k`1 pairs of overlapping absorbers. Hence, the expected number of
overlapping pairs páv, áwq P F2 is at most p4k2`8qγ3n, and a further application of Markov’s
inequality yields

Ppthere are at most γ5{2n overlapping pairs in F2
q ą 2{3 . (6.5)

Since for each x P V the expected number of x-absorbers in F is by (6.3) at least
β2γ3{2n{4, Chernoff’s inequality implies

Ppthere are at least 3γ2n many x-absorbers in F for every x P V q ą 2{3 . (6.6)

In view of of (6.4), (6.5), and (6.6) there is an instance F‹ of F having the three
properties whose probabilities were just shown to be larger than 2{3. Delete from F‹ all
absorbers belonging to an overlapping pair and denote the resulting set of absorbers by F‹‹.
Notice that enjoys the following properties

‚ |F‹‹| ď 3γ3{2n,
‚ no two absorbers in F‹‹ overlap, and
‚ and for each x P V there are at least 2γ2n many x-absorbers in F‹‹.
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Building the absorbing path. An iterative application of Proposition 2.1 allows us to
connect the members of F‹‹ into a single path A Ď G´R with

|V pAq| ď p2k ` 2q|F‹‹| ` pk ` 1q2k`1
p|F‹‹| ´ 1q ď γn{2 .

In each of those applications of the Connecting Lemma, we take K and K 1 to be end-sets
of the two pk` 1q-paths we wish to connect, and we let Z be the union of the other vertices
in the path system we currently have with R. Since at every moment the pk ` 1q-paths we
are currently dealing with will have at most γn{2 vertices in total and |R| ď γ2n, we will
have |Z| ď γn in each of our |F‹‹| ´ 1 applications of Proposition 2.1, as required.

Using the absorbing property of x-absorbers in a greedy manner one sees immediately
that the pk ` 1q-path A just constructed has the required property. �

§7. Proof of the Covering Lemma

This section deals with the proof of Proposition 2.4. Roughly speaking, our strategy
is as follows. By known results [6, 8] the minimum degree condition imposed on G is
more than enough to guarantee that we can cover essentially all vertices of G1 “ G´Q

with vertex-disjoint copies of the graph K´
k`2 which arises from a clique of order k ` 2

by the deletion of a single edge. A standard application of the regularity method for
graphs would allow to strengthen this result so as to obtain, for any bounded number m, a
covering of an overwhelming proportion of the vertices of G1 by vertex-disjoint copies of
the m-blow-up K´

k`2pmq of a K´
k`2. Explicitly, this is the graph arising from a K´

k`2 upon
replacing each of its vertices x by an independent set Vx of size m and each of its edges xy
by a complete bipartite graph Km,m joining Vx and Vy. An important point here is that
there is a tremendous amount of flexibility in the construction of such an almost-covering
of G1 by copies of K´

k`2pmq.
Now for any K´

k`2pmq in G it may happen that an appropriate path on 2m vertices
in Gpn, pq augments it to a graph containing a spanning pk ` 1q-path in H. Of course,
for any particular K´

k`2pmq in G this is an extremely unlikely event having a probability
of only op1q. However, owing to the aforementioned flexibility in the construction of an
almost K´

k`2pmq-covering of G1, it becomes asymptotically almost surely possible to ensure
that we only take copies K´

k`2pmq for which such a path in Gpn, pq is available.
In the two subsequent subsections we provide some of the background alluded to in the

two foregoing paragraphs, while the proof of Proposition 2.4 will be given in Section 7.3.

7.1. K´
r -factors. For r ě 3 let K´

r denote the graph obtained from the clique Kr by
deleting one edge. A K´

r -factor of a graph G is a spanning subgraph of G each of whose
connected components is isomorphic to K´

r . It was proved by Enomoto, Kaneko, and
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Tuza [8] that every sufficiently large connected graph G with δpGq ě 1
3 |V pGq| whose number

of vertices is divisible by 3 contains a K´
3 -factor. For larger values of r the tight minimum

degree condition ensuring the existence of a K´
r -factor was determined by Cooley, Kühn,

and Osthus [6]. By combining the results in those two references one obtains the following.

Theorem 7.1. For every integer r ě 3 there exists an integer n0 such that every connected
graph G with n ě n0 vertices, r | n, and

δpGq ě

ˆ

1´ r ´ 1
rpr ´ 2q

˙

n

contains a K´
r -factor. �

For the application we have in mind the following ‘imperfect’ consequence of this result,
where we omit the divisibility assumption on n and allow a bounded number of left-over
vertices, will be more convenient.

Corollary 7.2. For every integer k ě 1 there exists n0 P N such that every graph G

with n ě n0 vertices and
δpGq ě

ˆ

1´ k ` 1
kpk ` 2q

˙

n

contains a collection of vertex disjoint copies of K´
k`2 which together cover all but at

most pk ` 2q2 vertices of G.

Proof. We check that the number n0 provided by Theorem 7.1 suffices. Let r be the integer
satisfying 0 ď r ď k ` 1 and n ” r pmod k ` 2q. Add k ` 2´ r ą 0 new vertices to G and
connect them to all other vertices (and to each other). The graph thus obtained satisfies
the assumptions of Theorem 7.1, and hence it contains a K´

k`2-factor. When returning
to G we can ‘lose’ at most k ` 2´ r copies of K´

k`2, wherefore at most pk ` 2q2 vertices
remain uncovered by the ‘surviving’ copies of K´

k`2. �

7.2. The graph regularity method. Mainly in order to fix some notation we shall now
state a version of Szemerédi’s Regularity Lemma from [21]. For two real numbers δ ą 0
and d P r0, 1s, a graph G and two nonempty disjoint sets A,B Ď V pGq, we say that the
pair pA,Bq is pδ, dq-quasirandom if for all X Ď A and Y Ď B the inequality

ˇ

ˇepX, Y q ´ d|X||Y |
ˇ

ˇ ď δ|A||B|

holds. The pair pA,Bq is δ-quasirandom if it is pδ, dq-quasirandom for d “ epA,Bq{|A||B|.

Theorem 7.3 (Szemerédi’s Regularity Lemma). Given δ ą 0 and t0 P N there exists an
integer T0 such that every graph G “ pV,Eq on n ě t0 vertices admits a partition

V “ V0 Ÿ V1 Ÿ . . . Ÿ Vt
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of its vertex set such that

(i ) t P rt0, T0s, |V0| ď δ|V |, and |V1| “ . . . “ |Vt|, and
(ii ) for every i P rts the set

 

j P rts r tiu : pVi, Vjq is not δ-quasirandom
(

has size at
most δt. �

Any partition as in Theorem 7.3 is called δ-quasirandom or just quasirandom. In the
literature one often finds other versions of the Regularity Lemma, where instead of the
second condition above one requires that at most δt2 pairs pVi, Vjq with distinct i, j P rts
fail to be δ-quasirandom. Applying such a regularity lemma to appropriate constants δ1 ! δ

and t10 " maxpt0, δ´1q, and relocating partition classes involved in many irregular pairs
to V0, one can obtain the version stated here.

Next we state the Counting Lemma accompanying Szemerédi’s Regularity Lemma.

Lemma 7.4 (Counting Lemma). Let F be a graph with vertex set rf s and let G be another
graph with a partition V pGq “ V1 Ÿ . . . Ÿ Vf such that pVi, Vjq is δ-quasirandom whenever
ij P F . Then the number of ordered copies of F in G, that is, the number of f-tuples
pv1, . . . , vf q P V1 ˆ ¨ ¨ ¨ ˆ Vf such that vivj P G whenever ij P F , equals

˜

ź

ijPF

dij ˘ epF qδ

¸

f
ź

i“1
|Vi|,

where dij is the density of pVi, Vjq. �

7.3. The covering lemma. We are now ready for the proof of the covering lemma.

Proof of Proposition 2.4. We begin by choosing serval constants fitting into the hierarchy

k´1, ε " γ " m´1, δ, t´1
0 " T´1

0 " τ " C´1

and we consider an n-vertex graph G “ pV,Eq with δpGq ě p k
k`1 ` εqn.

Next we describe a deterministic property the random graph Gpn, pq for p “ C{n is
likely to have and the remainder will then be dedicated to showing that this property
implies the conclusion of our Covering Lemma in a deterministic way.

For every sequence
á

X “ pX1, . . . , Xk`2q of disjoint subsets of V we define a family Fp
á

Xq

of 2m-vertex paths in the complete graph KV with vertex set V as follows.
Consider the set of all pairs pY1, Y2q of m-sets with Y1 Ď X1 and Y2 Ď X2 such that

there are further m-sets Yi Ď Xi for i P r3, k ` 2s such that Y1 Ÿ . . . Ÿ Yk`2 spans a copy
of K´

k`2pmq having all Yi-Yi1 edges for all 1 ď i ă i1 ď k ` 2 with pi, i1q ‰ p1, 2q. For each
such pair pY1, Y2q choose an spanning path P pY1, Y2q on Y1 ŸY2 that alternates between the
two classes. The family Fp

á

Xq consists of all these paths taken over all choices of pY1, Y2q
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as above. Finally, let

J “
 á

X “ pX1, . . . , Xk`2q : |Fp
á

Xq| ě τn2m( .

By Janson’s inequality (see Theorem 3.2), a sufficiently large choice of C guarantees

P
`

P Ę Gpn, pq for all P P Fp
á

Xq
˘

ď op2´pk`2qn
q

for each
á

X P J . Since |J | ď 2pk`2qn holds trivially, the union bound informs us that
the event E that for every

á

X P J there is a path P P Fp
á

Xq with P Ď Gpn, pq has
probability 1´ op1q. Henceforth we assume that E occurs.

Applying Theorem 7.3 to G1 “ G´Q we obtain for some t P rt0, T0s a δ-quasirandom
partition

V rQ “ V0 Ÿ V1 Ÿ . . . Ÿ Vt

of G1. Let Γ be the reduced graph with vertex set rts defined in such a way that a pair
ij P rtsp2q forms an edge of Γ if and only if the pair pVi, Vjq is δ-quasirandom with density
dij “ epVi, Vjq{|Vi||Vj| ě

1
pk`1q2 . We contend that

if k ą 0, then δpΓq ě
ˆ

1´ k ` 1
kpk ` 2q

˙

t . (7.1)

For the proof of this estimate we consider an arbitrary i P rts and note that the minimum
degree condition imposed on G yields

epVi, V q ě

ˆ

k

k ` 1 ` ε
˙

|Vi|n .

On the other hand, it readily follows from the definitions of a δ-quasirandom partition
and Γ that

epVi, V q ď epVi, QY V0q ` δt|Vi|
2
` dΓpiq|Vi|

2
` pt´ dΓpiqq

|Vi|
2

pk ` 1q2

ď pγ ` δq|Vi|n` δ|Vi|n`
1

pk ` 1q2 |Vi|n`
kpk ` 2q
pk ` 1q2 ¨

dΓpiq

t
¨ |Vi|n

Provided that γ ` 2δ ď ε the combination of both estimates yields
dΓpiq

t
ě
pk ` 1q2
kpk ` 2q

ˆ

k

k ` 1 ´
1

pk ` 1q2

˙

“ 1´ k ` 1
kpk ` 2q

and thereby (7.1) is proved.
Now the main work that remains to be done is to show the following statement.

Claim 7.5. If K Ď V pΓq induces a K´
k`2 and VK “

Ť

iPK Vi, then all but at most
p1´ 1

2γ
2q|VK | vertices of HrVKs can be covered by vertex disjoint pk ` 1q-path on pk ` 2qm

vertices.



POWERS OF HAMILTONIAN CYCLES IN RANDOMLY AUGMENTED GRAPHS 21

Assuming for the moment that we already know this, the proof of Proposition 2.4 can
be completed as follows. If k ě 1, then by Corollary 7.2 and (7.1) we know that Γ contains
an almost perfect K´

k`2-factor K covering all but at most pk ` 2q2 vertices of Γ. As a K´
2

is the empty graph on two vertices, such a factor K exists for k “ 0 as well. Applying
Claim 7.5 to each K´

k`2 in K we obtain plenty of vertex disjoint pk ` 1q-path in H ´ Q

covering all but at most
`

δ ` pk`2q2
t0

` 1
2γ

2˘n vertices, and by δ, t´1
0 ! γ this is at most γ2n.

Moreover, the number of these pk ` 1q-path can be at most n
pk`2qm , which by m " γ´1 is

indeed at most γ3n.
So it remains to prove Claim 7.5. To this end we may suppose that V pKq “ rk ` 2s and

that the (perhaps) missing edge of the K´
k`2 is t1, 2u. Let P be a maximum collection of

vertex-disjoint pk`1q-path with pk`2qm vertices in the pk`2q-partite graphHrV1, . . . , Vk`2s.
For each i P rk ` 2s let Xi Ď Vi be the set of vertices in Vi which are not used by these
paths. Since each path in P needs to consist of m vertices from each Vi, it follows that
|X1| “ . . . “ |Xk`2| “ x holds for some integer x. Now it suffices to prove x ď 1

2γ
2|V1|, so

assume for the sake of contradiction that this fails.
We intend to derive |Fp

á

Xq| ě τn2m from the alleged largeness of x, which will tell us
that

á

X P J . To this end we shall first obtain a lower bound on the number Ω of copies of
K´
k`2pmq in GrX1, . . . , Xk`2s having

‚ m vertices in each Xi and
‚ all edges between their vertices inXi andXi1 for 1 ď i ă i1 ď k`2 with pi, i1q ‰ p1, 2q
.

For each i P rk` 2s let Xi “ Xi,1 Ÿ . . . ŸXi,k`2 be a partition of Xi into m sets of size x{m.
Now for 1 ď i ă i1 ď k ` 2 with pi, i1q ‰ p1, 2q we have ii1 P EpΓq, which indicates that the
pair pVi, Vi1q is pδ, dii1q-quasirandom in G for some dii1 P r 1

pk`2q2 , 1s. For j, j
1 P rms we have

|Xij| ě
γ2

2m |Vi| and |Xi1j1 | ě
γ2

2m |Vj| by our indirect assumption on x “ |Xi| “ |Xj| and thus
the pair pXij, Xi1j1q is pδ‹, dii1q-quasirandom in G, where δ˚ “ 4m2δ

γ4 . By Lemma 7.4 applied
to F “ Kk`2pmq and the vertex classes Xij with i P rk ` 2s and j P rms it follows that

Ω ě
˜

1
pk ` 1q2epK

´
k`2pmqq

´ e
`

K´
k`2pmq

˘

δ‹

¸

´ x

m

¯mpk`2q
,

which by τ ! δ,m´1, T´1
0 ! γ gives Ω ě τnmpk`2q. In particular, there are at least τn2m

pairs of m-sets pY1, Y2q with Y1 Ď X1 and Y2 Ď X2 which can be completed to a copy
of K´

k`2pmq in GrX1, . . . , Xk`2s by appropriate further m-sets Yi Ď Xi for i P r3, k ` 2s.
For these reasons, we have indeed |Fp

á

Xq| ě τn2m and
á

X P J .
Thus the occurrence of E supplies a path P P Fp

á

Xq with P Ď Gpn, pq. For i P r3, k`2s let
Yi Ď Xi bem-sets witnessing P P Fp

á

Xq. Since V pP q Y Y3 Y . . .Y Yk`2 spans a pk`1q-path
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in HrX1, . . . , Xk`2s, we get a contradiction to the maximality of the collection P chosen
earlier. This concludes the proof of Claim 7.5 and, hence, the proof of Proposition 2.4. �
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