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Abstract. We consider a parabolic optimal control problem governed by space-time measure
controls. Two approaches to discretize this problem will be compared. The first approach has
been considered in [4] and employs a discontinuous Galerkin method for the state discretization
where controls are discretized piecewise constant in time and by Dirac measures concentrated in
the finite element nodes in space. In the second approach we use variational discretization for the
control problem utilizing a Petrov-Galerkin approximation of the state which induces controls
that are composed of Dirac measures in space and time, i.e. Dirac measures concentrated in finite
element nodes with respect to space, and concentrated on the grid points of the time integration
scheme with respect to time. The latter approach then yields maximal sparsity in space-time on

the discrete level. Numerical experiments show the differences of the two approaches.

1 Introduction

We follow [4] and consider the continuous minimization problem

min J(ug, u) = Ly = vyl + allu + Bllu , P
N N (uo, u) = Iy = Yallq ) + @llulirmg) + Blluollmce) (P)
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where the state y € LY(Q) solves the following parabolic state equation

ay _ .
E_Aya =u m Q’

y(x,0) = U, in O, (1)
y(x, 1) =0, on2=1Ix(0,T)

in a very weak sense specified in the next definition (see [4, Definition 2.1.]).

Definition 1.
A function y € L'(Q) is a solution to (), if the following identity holds for all w € W:
ow -
Sy wimapmeuw = | —|z-+awlydedt= | wdu+ | w0)duo =: (i W) m@xm@).W-
Q Q Q

(2)
where i := (ug, u) € M(Q) x M(Q) and

W= {w € L0, T; HY(Q)) : (aa_v: + Aw) € L¥(Q) and w(x,T) =0 in .Q} :

Here, Q is an open bounded domain in R¢, d € {1, 2,3} with Lipschitz boundary I := Q. The
time interval (0, 7) is denoted by I and Q := QX[ is the space-time domain. Leta > 0,5 > 0 be
suitable penalty parameters and let ¢ € [1, min{2, (d + 2)/d}). The controls (uy, u) reside in the
control space M(Q) X M(Q), the product of the topological duals of the spaces of continuous
functions Co(22) and Co(Q) with compact support in Q and Q, respectively. Consequently, the

measure norms in the objective functional (P) are defined by:

luollmea) = supy, o<1 Jo [ duo — and  llullyg) = supyy, o<1 Jo fCx 0 du.

In this setting, (P)) has a unique solution (see [4, Theorem 2.7]). The discrete concept introduced
in [4] proposes a control space consisting of piecewise constant controls in time and Dirac mea-
sures in space. As a consequence the maximal possible sparsity in this setting yields controls
which are constant on a time interval. In source identification applications it may be desirable
that the optimal control can be represented even more sparsely e.g. by a combination of Dirac
measures in space and time. Here we propose variational discretization from [9], which allows
to control the discrete structure of the controls through the choice of Petrov-Galerkin-Ansatz and

-Test spaces in the discretization of the state equation and so to achieve the desired sparsity. For



this approach we obtain analogous convergence results as reported in [4, Theorem 4.3.]. More

precisely, we will prove Theorem 2] (see Section M for the notation):

Theorem 2. Let (iig p, ily) be the unique solution of the problem (Pyg)) belonging to U X Uyq
and I be of class C"! and 1 < g < min{2, d%f}. If {(to p, ls)) o i a sequence of such solutions

with associated states {y}, the following convergence properties hold:

lim ||y — Yo llzao) = 0, 3)
|or|—0
(i 1» i) — (g, i) as o] = 0 in M(Q) x M(Q), 4)
l(}_ilgo(HEth”M(Q)a lito- M) = litoll pmce)s il ac)) &)

where (@ly, it) is the unique solution of (P) and y associated state.

The paper is organized as follows: In Section 2] we analyze the continuous problem (P) and
its sparsity structure. Similar control problems in measure spaces are analyzed and discretized,
e.g. in [2, 16, [12] for the elliptic case and in [3, 4, |5, [11] for the parabolic case. In [J5] the
special case of initial data is covered and in [12, [11]] a priori error estimates are derived. We
will take the approach to set up the predual problem with respect to Fenchel duality as is done
in [6]. The resulting predual problem will be discretized with two different strategies. Our first
discretization strategy in Section [3is also presented in [4]], which allows us to use their results.
Here we add the derivation of a semi-smooth Newton method to solve the discrete problem
(P;) from [4]. The second strategy in Section 4 uses variational discretization from [9]] with a
time-discrete scheme similar to the one in [7]. The emerging discrete problem (Pyg)) is solved

analogously to (Pg). Computational results of both approaches are compared in Section 5l

2 Continuous optimality system

In this section we take a closer look at the structure of (P). As we want to numerically solve
our problem with derivative based methods we have to cope with the L7 norm for ¢ < 2 in our
cost functional. We take an approach which is closely related to the one proposed in [6, Chapter
2.1.], where a Fenchel duality approach is used for the solution of the optimal control problem.
We present the problem (P¥)), show that this problem has a unique solution and prove that it is
the Fenchel predual problem of (D).

To begin with, we recall the optimality conditions from [4, Theorem 3.1.] for the solution of (P)

and the resulting sparsity structure [4, Corollary 3.2.] of the optimal controls (i, it).



Lemma 3. Let (iig, it) denote a solution to (P) with associated state y. Then there exists an
element w € L*(0, T; H(l) (Q)) N C(Q) satisfying

—G-Aw =z inQ, widﬁ + allillpme) =0, fQW(O) diig + Blliol pmee) = 0,
wx,T) =0 inQQ, _ =a, ifu#0, ~ =0, if uy#0,
Wl POl
w(x, 1) =0 onZ, <a, ifu=0, <B, if uy=0,
where

=15 = yalli>G = ya), if 1 <q<min{2, &2},
€ sign(y = ya), if q=1.

Furthermore, w is unique if g > 1.

Remark 4. Under the assumptions of the previous Theorem we have the following sparsity

structure:

supp(ﬁg) c{xeQ:wkx0 =-8) supp(ity) C {x € Q :w(x,0) = 4B}

supp(*) C {(x,1) € Q : W(x, 1) = —a} supp(it”) C {(x,1) € Q : w(x, 1) = +a}
where ity = ii§ — ity and it = " — i~ are the Jordan decompositions.

If one considers it as the generic case that the function w is not constant on sets of measure
greater than zero the controls have support sets of measure zero. This is our motivation to
propose a discretization strategy which reflects this behavior on the discrete level in space and
time. Before we go on to the discretization we recall the Fenchel duality theorem from [6]
Chapter 1.1.3.].

Let U and Y be Banach spaces with topological duals U* and Y* and let A : U — Y be a
continuous linear operator. Let F : U — R = RU{oo} and G : ¥ — R be convex lower
semicontinuous functionals, such that ' and G are not identically equal to co. Furthermore,
let the regular point condition be fulfilled, i.e., there exists vog € U, such that F(vy) < oo,
G(Avg) < o0 and G is continuous at Avy. Denote by

F*:U" >R, F'(w)=supw,uyy— Fu). (6)
ueU



the Fenchel conjugate of F. In order to calculate F*, we use the following equivalence

sup <W, M>U*,U = <W, u>U*,U iff we aF(u), (7)
uel

where dF (1) denotes the subdifferential of the convex functional F', which reduces to the Gateaux-

derivative if it exists. Under the given assumptions the Fenchel duality theorem states that

inlf] F(u) + G(Au) = sup —F*(A*z) — G*(-2), 3)

zeY*

holds, and that the right side of (8) has at least one solution. Furthermore, we know that the

following two statements are equivalent:

F@@) + G(AR) = —F*(A*2) - G*(-2) 9)
*2€dF@) A -7€ dG(AQ) (10)

We want to define the problem (P¥)). The argument hereof will be the adjoint variable w. From
[15) Theorem 27.7.] we know that for every y € L*(Q) C L*(Q) c L*(0,T; H'(Q)) the adjoint
problem

- (%—V; + Aw) =y in Q

w(x, T) =0 in Q (11)

w(x,t) =0 on 2

has a unique solution w € W(0, T). With W(0,T) — C([0, T]; L%(Q)) from [10}, Theorem 1.32.]
we see that w € L*(0, T;H(l)(Q)) N C(0,T]; L*(Q)). As () fulfills the requirements of [1}
Theorem 5.1.] we even get the regularity w € C(Q).

Based on the characterization of solutions in (2)) we know from [4], Theorem 2.2.] that there exists
a unique solution y € L'(Q) to (@), where additionally y € L4(0, T’; W&’p (Q)) for all p,q € [1,2)
with % + % > d + 1, and the following estimate holds:

00 7120 < Cra (Hllate) + ol (12)

To justify the choice of ¢ in the objective functional we recall [4, Remark 2.4.]: There exists a
parameter p fulfilling the assumptions formulated above and W(l’p (£2) c L1(L) compactly. Thus
y e L40,T; Wé”’(Q)) c L4(Q). The density of L*(Q) in LP(Q), where é + % = 1, now implies



that the identity (@) is valid for every w in the space
2 1 ow .
W, =3we L0, T, Hy(Q)) : o + Aw] € LP(Q) and w(x,T) =0in Q7.

Our assumptions on I ensure that Assumption (A) from [4] is fulfilled, so that given 1 < g <
min {2, ‘%2} and p with é + % = 1, problem (II) for every ¢ € L”(Q) admits a unique solution
w belonging to LP(0, T; W2P(Q) N Wé’p (€)). The requirements of [[1, Theorem 5.1.] are still
fulfilled in this case, so we get the regularity w € C(Q). Note that due to the compactness of Q
we have C(Q) = Co(0).

We write @) as Sy = it € M(Q) x M(Q), i.e. (S, W) m@xM©0).Co@) = (i W) M@)xM(0).Co(D)
for all w € W. We know that this identity is true for all w € W, — Co(Q) and then by
definition of W, we have (—%—Vt” - Aw) = S*w € LP(Q). In this sense (Sy, W) M@XM(0).Co(D)) =
(S*W, Y)1r()14(0) holds for any y € LU0, T; W,"(Q)) € LU(Q) and w € W,, ie. S*is the
adjoint operator of S in the described sense. To abbreviate notation we from here onwards write
(s IMc, Instead of (-, ) pya)xMm(0).co(0) @nd also assume g > 1 so that p < oo holds. Now we are
in the position to define problem (P7):

: — 1 % p % ) .
vl"}relhlllq K(W) = p”S WHU’(Q) + <S W’yd>L1 (0).L9(Q) t fa,ﬂ(w)- (P )

Here the indicator function £, g(w) is given by

0, if|wlle.s < a and |w(0 o <P,
o) = { Wleyo) WOl < B
oo, else.

As W, < Co(Q), all appearing norms are well defined. We have
Theorem 5. Let 1 < g < min{2, d;‘_’l}. Then problem (PY) has a unique solution w € W,,.

Proof. We proceed analogously to [6, Theorem 2.3.]. Let {w;}x C W, be a minimizing sequence,
such that

lim K = inf K =K.

Jim Klwe) = Inf K0 = K



As W, # 0 we know that K < co. With Cauchy-Schwarz and Young’s inequality we see for all k

K(wy) = %llS*WkH[L)p(Q) +(S"Wk Y 1), 190) + Cap(Wi)
~———
>0

1 * *
> SIS Will7p ) = IS “Wille(ollyallzsco)

_1 q
> q”deL‘I(Q)

> —00

and hence K > —oo. As K € R the indicator function £y p(w) yields [willg,p) < @ and
||wk(0)||co(Q) < Bfor all k > M with M € N large enough. We deduce that there exist weak-*

convergent subsequences such that wi — W € Co(Q) and wy(0) — Ww(0) € Co(Q). Due to p > 2

P
Lr(Q)
gether with the previous finding this yields the existence of a weakly converging subsequence

the term %llS well is coercive and we deduce the boundedness of ||S *wi|z»(g) for all k. To-
such that S*wp — z € LP(Q), i.e. (S *Wk/,y>Lp(Q),Lq(Q) — (z, y>Lp(Q),Lq(Q) for all y € LI(Q). We
also have

(S Wi, Wr),L90) = SV Wk dImcy = Sy WImc, = S W, Y 1r(0).19(0) Vye LY(Q)

This gives z = S*w € LP(Q). From (—%—V: - Aw) = S*w € LP(Q) and p > 2 we can deduce
W € L*(0,T; H} (). Furthermore from (u, wi ) pmc, — (i, Wypc, for all & € M(Q) x M(Q) we
get w(x, T') = 0 if we consider the dirac measure located in 7. Altogether this yields w € W,.
We know that all continuous norms are weakly lower semicontinuous and because of the weak-*
convergence of wy and wy(0) we get £,5(w) = 0. Furthermore from S*wy — S*Ww € LP(Q)
follows directly (S *wi, ya)1r(0),La(0) = (S W, Ya)1r(0).19(0)- Altogether we get
K<KWw)= %llS*Wllip(Q) +(S™W, Y 1r(0),L9(0) + Lap(W)
< 11kr,r1_>101c1>f %”S Wi ||12p(Q) + k,l,ian@ Wi, Yd)Lr(0),19(0)

. 1 * P *
= klgg(;lls WillZp(g) + (S Wkayd>L1’(Q),L‘i(Q))

. 1 * )4 *
< kll_)f{.lo (;llS WillLo0) + {8 Wi Yad 1(Q).L9(Q) + fa,ﬂ(wk))

=K.

thus w is a solution of (P*). The uniqueness follows from g > 1 and thus p < co.



Theorem 6. The Fenchel dual of (P) is (P).

Proof. To apply Fenchel duality we split the objective functional of (P7) into two parts:

F W, >R, F(w) = %IIS WlLnig) + (S WY r(@).L2(0) (13)

G:Co(Q) —~ R, Gw) = Lo p(w) (14)
and as A : W, — Cy(Q) we choose the injection given by the continuous embedding. The
functional ¥ is convex and lower semicontinuous as a sum of functionals with these properties.
Moreover, G is an indicator function of a closed and convex set in Co(Q) and thus fulfills the
requirements as well. For ¥ = 0 it holds that $*7 = (0,0) and £, g(¥) = 0. This directly shows
that #(¥) < oo and G(AV) < co. We also know that G(AV) = £, 5(A(0)) is continuous due to
a,f > 0, consequently the regular point condition holds. Thus we can apply the Fenchel duality
theorem. Now the Fenchel conjugates have to be derived. From Fenchel Duality we know that
¥ has the following form, if & € OF (w):

Frow, - R, F* (@) = (I, wipmc, — F w) (15)
We can derive a representation of it € 3F (w) and reformulate:
i= SIS WP2S wayy) o  S*w=sign(S - yg) IS i = yal 7T, (16)

where A* 1 (M(2) X M(Q)) — W, is the injection from the dual of Co(Q) in W;. Inserting this
into (I3) we derive F*(it) = 1/¢|S ~'it — ydlzq( 0 To derive G*(i1) we can deconstruct G(w), such
that it consists of two summands, which represent an indicator function with only one constraint
respectively, such that (w(0), w) € Co(2) X Co(Q) and (Co(Q) x Co(D))" = Co(2)* x Co(Q)* =
M(Q) x M(Q). From [13| Theorem 2.2.8] we know that for it = (0, u) + (ug, 0) € M(2) x M(Q)
it holds that :

G (@) = (Lo + €p) (o, u) = £3(0,u) + C5(uo, 0).

Looking at both conjugates separately, we derive:

£:(0,u) = sup (u, Wypc, — Cal0,w) = sup (u, w)mc, = allullpm)
weW, weW,, IIWIICO(Q)SQ



Analogous we can see that f;(uo, 0) = Blluollpme) holds. Assembling the information we obtain
G* (i) = allull mcg) + Blluollpme)- Finally we can use the Fenchel duality theorem and deduce:
12

vlgelg/: ;llS WilLog) + S W, Yad1r(0).1a(Q) + Lap(W)

1 1
= min —IS i — yyl? + a||—u + B||—u .

As S7'ii = § and @t = (ug, u) we recover the problem (). m]

This means that we can solve (P7) and use (I6) and the determined unique optimal solution

w € W, to calculate the optimal control & := (i, &) for (P).

3 Discontinuous Galerkin Discretization

This section deals with the discontinuous Galerkin discretization of (P)), which was introduced in
[4]. The mentioned paper provides a convergence result for the discrete problem analogous
to Theorem 2l After recapitulating the discrete setting from [4, Section 4] we will addition-
ally discretize (P7), reformulate the problem equivalently and derive an optimality system by a
Lagrange approach. If the necessary conditions are fulfilled we can then apply a semismooth
Newton method to solve the optimality system.

In [3] we can find the numerical solution of a problem with a similar parabolic state equation.
More details on how to deal with the norm |[|-/|sp@) can be found, e.g. in [2] and [6]. Here, we
merely treat ||-||r() as the dual norm of ”'”Co(Q)' The remaining difficulties are to transfer the
results from a space norm to a space-time norm for the control and to deal with the occurring
L9(Q) norm of the state. Additionally the appearance of the initial control uy in the objective
functional will be discussed.

As a first step to characterizing the discrete spaces, we have to set up the space-time grid. Define
the partition 0 = fyp < t; < ... < ty, = T. For the temporal grid the interval / is split in
subintervals I = (t—1,%] for k = 1,...,N._; and Iy, = (ty,—1,2y,). The temporal gridsize is
denoted by 7 = maxo<k<n, Tk, Where 1 := #; — fx_1. Let K, be a triangulation of Q for a fixed
h > 0. Then we define p(K) to be the diameter of K and the gridsize of K, as & = max ke, p(K).
We set Q;, = | kex, K and denote by &), the interior and by I, the boundary of Q. We assume
that vertices on I, are points on I". We can set up the space-time grid as Qj, := Q;, X (0,T) and
define Qy = Q) X I;. To avoid having to use two indices, we define the discretization parameter



o = (t1,h). The space discrete spaces Uy, Y;, and the space-time discrete spaces U, Y, can
be found in [4] Chapter 4.1.]. We will only recall the representation of contained elements.
Here ((5)61.)3\7:”1 denote the Dirac-measures and (ex,-)?ih1 is the nodal basis formed by continuous
piecewise linear functions. Thus ex;(x;) = d;; holds. Let ux, € Uy and yi, € Yj,. The elements

u, and y, can be represented using an indicator function y; of Ij:

Ur = 0 wen ®xk and Yo = X0 yin ® xi. (17)

Now inserting the definition of space-discrete elements u ; and y; , we obtain:

NT9N/1 NTsNh
Uy = ugjxk60x;, and y, = Vi,j Xk €x;- (18)
J J
k,j=1 k,j=1

Consequently U, and Y, are spaces of finite dimension N, = N; X N;, with bases given by
{Xx 0x;}k.j and {xx ex;}x.j- In [4] an implicit Euler time stepping scheme is used to write down
the discrete state equation. We know that y; ;, = y.|j, for every k € {1,...,N;}. Let (uon, uos) €
U, X U, be given and z;, € Y}, arbitrary. Then for k € {1,..., N;} the following equations form
the discrete state equation:

Yi,h —Yk=1, _
Tk("T—k"”', zZn) + Tk J;Q Vyk,thh dx = ka zp dity,

(19)
Yo,n = Yoh»
where yoy, € Y, is the unique element satisfying:
Von, zn) = L zp dug Yz, €Yy (20)
Here (-, -) denotes the scalar product in L%(Q). Now we can formulate (P, as follows:
min  Jo(uon tr) = Ve ons tg) = Vallfy g, + @litclipee +Bluorlme) — (Po)

(uon,us)EUsXUj

where v, (uop, uy) solves the discrete state equation (I9). A central result we have for the discrete

setting explained above is [4, Theorem 4.3.], which is the analogon to Theorem 2l

10



We move on to discretizing (P7)), which we can equivalently reformulate in the following way:

: 7% — 1 * P * ,
varelg}q Kw) = SIS Wl o) + (S Ws Yad 1r(0).L4(0)

s.t. Wlgyg) —@ <0 and  [w(O)llg,@ ~ B < O.

The discrete representatives of |||l @) and ||-llc,(g) are the |||l norms in the respective domains.
Weset Y = ¥, xY,and U = U, x U,. For (Yo, Yo) and y4 to be from the same discrete
space, we define y; , == ((yd(x, 0)y (yd)U)T. Here (y4(x,0)), and (y;), denote the evaluations
of y4s(x,0) and y; on the inner nodes of €, and Qy, respectively. We know the discrete problem
(P for w = (wo p, wo):

: 1 * p % .
ety Ko ) = 5l oWl + (S oW Yaeirn o (P)
s.t. [Wollow—a@ <0 and ”W(),hHoo -B<0.

In order to specify S, we transform the discrete state equation from (I9)) into a matrix-vector-
multiplication. For this purpose we will from now on identify elements from U, and Y, with
vectors in RVe. From (I8) we know that our discrete elements u, and y, can be expressed via
their expansion coefficients uy ; and yy ; respectively. To simplify the notation we will define
we = (U, .. uky,) € RV and can then write uy = (u1,...,uy,)" € R¥. Analogous we get
the vectors yx and y,. The elements from Uy and Y}, are identified in the same way. To avoid
complicating the notation, we will not add arrows above the vectors. Similar to [3] we can set up
a solution matrix for the discrete state equation. One difference we need to consider is ug;, # 0.
This leads to an additional column and an additional row. We calculate the right hand side by

inserting the discrete representations u, = Zﬁ”l Z?’:’ | Uji Oy, ®xjand z; = ZZ”I Z ey
_ Nj, Nj ) _ Ny, CH T
ka zpduy = 7 Zj:l pI fgh<uk,j Ox;»z1€x)dx = Ty Zj:l Uk,j2j = Tk Uy p, Th-
Nh

k=1
stiffness matrix corresponding to Y;. Also we notice that the "mass matrix" ((ij, €x,))

as the
Np

jl=1
the identity in RV*>Ni This delivers S except for the first row, where we insert the relation

We define M, = ((exj,ex,())i.vl’z:1 as the mass matrix and A, = ( fQ Ve, Vey, dx)

is

My yon = upp. The discrete solution operator of the state equation S, : RNo+Nw —y, RNo+Ni g

11



represented by:

My, 0 ... ... 0 Yo o.n
-My  Mjy + 114, : Vi TiU
0 -My My + 1Ay Y2 | =| T2u2 |. 21
0
0 0 _Mh M’1+TNTA/1 YN, TN UN,

A representation of the adjoint is S = S . We reformulate the ||||c, norms in (P%) by:

and can now state 2 - N, linear inequality constraints that are equal to the first inequality in (P7).
Analogously we can equivalently reformulate the second part by 2 - Nj, linear constraints.
Setting wy; = 0 fork = 0,...,N; and j = 1,..., N, all inequalities are strictly fulfilled and the
Slater condition is satisfied, as may be confirmed in [8, Definition 2.44]. We can proceed by
setting up the corresponding Lagrangian L with multipliers A, 22 € RNe and A3, A* € RV

Low, ', 2,080,205 = LIS Twll), o) + (S aws Yard o ion + Zp* 23 4wk j = @)

+ 0B A i — @)+ 2 Ao = B) + Z Ak (=wo ;- B).

We can now form the optimality system using the Karush-Kuhn-Tucker conditions. These state

that the partial differential of L by the main variable w has to be zero:

L 0K, (w) () (2% _
- (1)) -

and for the inequality constraints we have the following complementary conditions:

LD i—a)=0 A 420 A (DT Pwj—a) <0 VA Vjie(1,2), (23)
AAEDTDwe =) =0 A A5 20 A (D wo,;-B) <0 Vijie(3,4). (24)

From Fenchel duality we know that ii € W = 0F +(w), because this is the discrete represen-

tative of . In [3]] this property is used to recover a problem with the variable &i. Consequently

the constraint i = dF,(w) is added. Theoretically we could do the same, but as we want to use

12



derivative based methods, we will have to differentiate all constraints again. As p > 2 we can
see that in (I6) the exponent p—ll is strictly smaller than 1, which is problematic. Instead we will
solve for w and recover the optimal control & afterwards.

We would like to apply a semismooth Newton method ([10, Algorithm 2.11]), which is a way
to find x* solving F(x*) = 0, to the optimality system [@22)-(24), thus we reformulate 23] - @4)
equivalently forall k =1,...,N;and all j=1,...,Ny:

N,l’j = max {O, /lllw. + k(wy j — a/)} - /l}w. =0, N,ij = max {O, /1,%’]. + Kk(=wyj — a/)} - ’1%,]' =0,
N;. ‘= max {O, /l; + k(wo,j —,8)} - A; =0, N;.‘ ‘= max {O, /1‘} + k(=wo_j —,8)} - /l‘} =0.
This allows us to define F(w, AL 208, /14) = (5L/aw N' N?2 N3 N“)T € R¥We+N) contain-
ing the left sides of our optimality system and solve the equation F(w, 1!, 22, 2*, 2*) = 0, which

will deliver the optimal solution of the problem (P},). Hereafter we denote Clarke’s generalized
Jacobian as in [10, Example 2.4] by 0F:

OF(x) := conv {M DXy k_)—of x, F'(x;) — M, F differentiable at xk}

The next step is to write down DF(w, AL, 22,23, 2%, which has the following structure:

8L L L 8L 8L
w2 owodl 0wz awddd  awdat
NN 0 0

v ar
DFw, A", 2.8 ah= £ o X o 0 (25)

Mo 0 N 0

N4 N*
w 0 0 0 e

The first row of the matrix can be calculated by derivation rules. Due to the max-norms the
differentials of N’ for i € {1,2, 3,4} are not distinct. For an arbitrary max-norm the generalized

Jacobian is:

0, if g(x) <0,
9
2-(max{0, g0} = 1[0, %2, if g(v) = 0,
%) if g(x) > 0.

We decide to always choose af’;%, if g(x) = 0. Using this the remaining blocks can be calculated.
An interesting observation is that for k = 1 we have a symmetric matrix DF on the active sets.

As we will solve for the optimal adjoint w we need to recover the optimal control & through the
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discrete version of (L6):
i = 1S ;w2 ) + Yaor (26)

4 Variational Discretization

Here we want to achieve the desired maximal discrete sparsity, i.e. dirac-measures in space-time,
by choosing the Petrov-Galerkin-Ansatz and -Test space that will induce this structure. The
variational discretization concept was introduced in [9] and its key feature is to not discretize the
control space. Instead, via the discretization of the test space and the optimality conditions, an
implicit discretization of the control is achieved. This is how we control the discrete structure of
the controls, as mentioned in the introduction. Looking at the relation (I6]) between the adjoint
state and the control it becomes even more obvious, that the discrete structure of the test space
affects the structure of the control. We set up the discrete spaces, but differently to [4] we will
define a test space V. consisting of continuous and piecewise linear functions in space and
time. This is motivated by the fact that the controls (ug, u) € M(2) X M(Q) will be affected by
the structure of these test functions. Whether the choice of continuous and piecewise quadratic
functions leads to even better results will be part of further research. Afterwards we will set up
the discrete state equation and the discrete problem. The main result will be a convergence result
similar to the main result of [4].

The spaces Y;, and Y, remain the same. We define the test space:
Vo :={ve € CU; Yy) 1 voly, € P1li, Yi), 1 <k < Nrand vo(T) = 0} C W,,. 227)

Any element from V. can be written as v, = ZkN:TI Z?’z”l Vij €y ® ex; With (e, ® ey,)(x,1) =
ex;(x) e, (1), where (e,,()k]\’;1 is the nodal basis formed by continuous piecewise linear functions
on the time grid. To analyze how the controls (ug, «) are implicitly discretized, we look at the
optimality conditions (Lemma[3)) and the sparsity structure (Remark H]) in the continuous setting.
We can now variationally discretize these conditions with y € Y, and w = (wo, we) € Y X V.
We know:

Welleo < @ and [Wo.nlleo < B-
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Additionally in the discrete setting we deduce:

supp(ity) C {x € Q : wou(x) = -B}, supp(iiy) C {x € Q : Wwou(x) = +8},

supp(tt) C {(x,1) € Q : W (x, 1) = —a, supp(it”) C {(x,1) € Q : Wy (x, 1) = +a).

Here we see that the variational discretization concept delivers that the structure of the test space
YV, has an affect on the structure of the controls (uy,u). In the chosen case for the discrete
adjoint state w the maximal values +a and +8, in the generic case, can only be attained at grid

points. Consequently we know:

supp(@) C {(xj, )2, and  supp(@o) € {(x))Y.

Hence we define sets, whose elements are sums of dirac measures on the grid points:

Un = {un € MQ) : uy = S Uy, with u; € R},

U = {1y € M(Q) < ttr = X7 118, ® 8y, with ug j € R}

The space Uy, is the same as before, but U,q is not the same as U,. We will now cite [4]

Proposition 4.1.], which only depends on the space U}, without proof.

Lemma 7. Let the linear operators Ay, and I1;, be defined as below:

Ap i M(Q) > Up ¢ MQ),  Apug = 2. (up, ex;) Ox,
I, : C(Q) — Y, cC), Iy = 2;y(xj) ey,

Then for every uy € M(Q) and every y € C(Q) and yj, € Y}, the following properties hold.

(uo, yn) = (Ap U, Yn)s (28)
(uo, Ilpy) = (Apuo,y), (29)
1AR uollpce) < lluollmce)s (30)
Awug — ug € M) and ||A, uollm@) i lleeoll mce2)- (3D

We derive an analogous result for the space-time discrete spaces Uyq and Y. Due to the dif-
ferent test space, we can not simply copy [4} Proposition 4.2.]. Hence we will state a theorem

adjusted to the changes. The structure of the proof remains the same, only the technical calcula-
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tions are different.

Lemma 8. Let the linear operators Tyq and ¥yq be defined as below:

TVd : M(Q) - vd C M(Q)a Tvd u= Zk,j 6)6]' ® Btk ka etj du

P CQ) — Yo, Peay = 2k, Y(x), ) €x; ® Xk

Then for every u € M(Q),y € C(Q) and arbitrary y, € Y, the following properties hold.

Wye) = (Twit,yo), (32)
W Pay) = (Twuy), (33)
17 va ullpmco) < llullpmcg)s (34)
Tau>u € MQ) and |Twullvo — Il (35)

The next step is to set up the new discrete state equation. To this end we start by deriving a very
weak formulation of (I) which will be discretized afterwards. By multiplication with z € W,,
integration over the domain Q, and utilizing z(x, T) = 0 and y(x, 0) = 0, we arrive at

Ay, 2) = fQ (-y % + VyVz)dxdr = fgz(-,O) dug + szdu. (36)

We can now discretize by inserting y, € Y, and testing for z, € V... This delivers the following

discrete representation of the state equation: Find y,- € Y., such that

AVe20) = [ozo( 0 dug + [y z0du Vzg € Vo, (37)

We can formulate the discrete problem (Pyg)):

min Joa(ug, 1) = L|yo-(uo, ) — vl + allu + B|u P
e MO vd(uo, u) = llyo-(uo, ) = yall 4 g,) + @llllatg) + Blluolme) (Pva)

where y-(ug, 1) solves the discrete state equation (37).

We observe, that Jq4 is convex, but not strictly convex like J. In the continuous setting the strict
convexity came from the norm ||-|[z4(g,), but the mapping from the control to the discrete state is
not injective. Consequently the uniqueness of the solution cannot be concluded. In the following
Theorem [9 we prove the existence of solutions and discuss uniqueness in the discrete setting as
done in [3] Section 4.3.].
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Theorem 9. The problem (Py) has at least one solution in M(Q) X M(Q) and there exists
a unique solution (o, iy) € Uy X Uyg. Furthermore we know for any solution (i, t) €

M(Q) x M(Q) to (Py)) it holds (A, Gy, Tva t) = (ilo,p, o).

Proof. The existence of a solution can be derived as in the proof of [4, Theorem 2.7.], because
the control domain is still continuous. Let (i, it) € M(£2) x M(Q) be such a solution to (Pyg)
and define (&g 4, ity) == (A llg, V'va 1) € Uy X Uyq. We can deduce from (28) and (32)) that

Yo (ug, ) = Yo (Apug, Tvqu) ¥ (ug, u) € M(Q2) X M(Q). (33)

Additionally (30) and (34) deliver ||i nlIpm) < lliolipme) and llaslipmeo) < llilipmg). Combining
these properties we can deduce Jyq(ilg s, ily) < Jya(flg, it). Therefore (itgp,iiy) € Up X Uyq is
a solution of (Pyg) and we proved the existence of solutions in the discrete space Uj; X Uyq.
The mapping (iig s, i) > Yo (lo pn, iy ), Where yq(iig p, ity) solves 1) for (ug, u) = (igp, ) €
U, X Uyg, is linear, injective and we know that dim U, = dim Y, and dim Uyq = dim Y,.
Hence this mapping is bijective. Therefore the functional Jq is strictly convex on Uj X Uyq and
consequently (P.g)) has a unique solution (iig j,, ity) € Uj X Uyg.

From the uniqueness in the discrete space and the fact that any projection of a continuous solu-
tion (Ay g, Vva it) € U, X U,q is a solution in the discrete space, we deduce that all projections
must be equal, i.e. (A, fig, T'va &) = (fio 1, i) for any solution (iig, it) € M(Q) X M(Q). O

Since all projections of solutions yield the unique discrete solution (iig , i) € Up X Uyq it suf-
fices to analyze the convergence properties for this discrete solution. Furthermore for the compu-
tational results we can use the representations g = Z;V:” | o, O x; and iy = Z;{V;Zh iy, ; O X ® oy
and uniquely determine the discrete optimal control by calculating the coeflicients iy ; for k =
0,...,N;and j=1,...,Np.

We can now prove the convergence result formulated in Theorem [2] along the lines of the proof
of [4, Theorem 4.3.].

Proof. By the coercivity of Jy,q we know that {(iig , i)} is bounded in M(L2) x M(Q) and
consequently [4, Theorem 2.2.] delivers the boundedness of {y,}, in LY(Q). Therefore, there

exist subsequences, such that for [o| — 0 the following holds true
(ito,ps fig) — (7, ) € M(Q) X M(Q) and 5, — § € LY(Q). (39)

As in [4, Theorem 4.3.] we will split the proof into several steps.
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I - ¥ is the solution of (B1) corresponding to (iiy, it)

By the denseness of (£ € C1(0,T) : &T) = 0} ® (W2P(Q) N Wé’p(!))) in V, it is sufficient to test
[B6) against z = ¢ ® £ with & € C1(0, T) satisfying £&(T) = 0 and ¢ € W>P(Q) N W(}”(g). Let ¢
be approximated by ¢y, € Yy, such that

h—0
fQ<V(,0h, VZh)Rd dx = fQ<Vg0, VZh>Rd dx forallz, €Y, and llp — 90/1”(3(5_2) — 0. (40)

Moreover, let & = >, £(1x) e;, be the piecewise linear interpolation of € so that & — & in C(Q)
and & — & in L™. Testing (37) against z, = ¢ ® &;, we obtain

AGe.20) = Jo20(.0)ditg + [, 2z dit (41)

On the right hand side, we can perform the limit directly:

|or]—0

fQZcrdfto,h+sz(rdﬁ(r — fgzdﬁ0+szda.

The left hand side of (1)) can be expanded to

AGo.20) = = o T (pn ® €D dxdr + [, V3o (x,1) Vou(x) &-(0) dxdr. (42)

Applying the very definition of ¢, and integration by parts, we observe that
- - lo|—0 -
Jo V3o (2, 0) Vo) éx(0dxdr = - [, 5o (Ap®Edxdr — ~ [, Azdxdr.

Along with ~ [} 5 (g1, ® &) dxdr =y _ Jy7 @ ®&)dxdi = — [ % dxdr, this implies that
AGo20) 75 A, 2) and thus AG,2) = [, zdiig + f, it for all tensor products < = ¢ ® .

II - J(iig, it) < J(ug,u) V (ug, u) € C(Q) x C(Q)

From [4] we know that an associated solution y to () for regular controls (ug, u) belongs to
L*(0,T; HX(Q) N H)(£)) N H'(Q). Additionally from [4, page 10] we know in the case of
regular controls

Yo =y € L*0,T; Hy(Q)) C 110, (43)

Now we set (U s, Uy) = (Aptto, Tyqu) for this step. Using (38) and the convergence properties,
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we can also see for [o| —» 0

Jva(uop, ug) = é”)’a'(uo,ha Ur) = ydllzq(@ + allueImo) +Blluopllmey — J(uo,u) — (44)

@D
@éuy_yduzq(g) Solulwe = Bluolme
For the final estimation we will use that (it j,, it,-) solves (Pyg).
. 6 _ . @@
J(ip, ) < 11|H|1 I%f Jva(ito p, liy) < 11|H|1 ll(l)f Jvd(uop, ug) =" J(uo, u) (45)
o|— o|—
III - (i, it) = (ito, it)

We know that the solution to (P) is unique for ¢ > 1. Thus, it suffices to show that (i, i) solves
the problem. Choose a sequence {(uoy, ux)}x € C(2) x C(Q), such that

o) — (g, 1) € M(Q) x M(Q), (46)
lletorll 1) = lluorlim) < llidolipme) Yk, “47)
el o) = llmeey < lillameg) Yk (48)

From [4, Lemma 2.6.] we know that in this setting the sequence {y;}; converges strongly to

¥(ung, ). The weak™ convergence property delivers the following estimates:

_ . @& ) . @
lletol| M) SllgglfHuOk”M(Q) < lliolimee) and ||u||M(Q)Slllgr_l)glfnuk”M(Q) < llallmcg)-

Hence, |luokllpme) — llitolme) and lluklipmco) — llillprcp)- Analogously as in step II, we can now
deduce that
k—o0 o
J (o, wp) — J(io, t). (49)

As this sequence consists of regular controls we know from @3) that J(iig, it) < J(itg, ir). Due to

the uniqueness of the solution it is evident that (i, it) = (iig, it) and we can deduce:

N _ 6 . & @
J(ig, 1) = J(ig, 1) < hlrrlnréfjvd(uo,h,u(r) < hlznlan(uo;(,uk) = J(ng, in).
o|— —00

This shows im0 Jyva(ito 4, i) = J(itg, i) and from (39) we also know y, — y € LY(Q).

IV - proof of @), @) and @)
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The convergence im0 Jya(ito 4, it) = J(itg, ) gives (@). We can calculate

éll? - yd||Zq(Q) < hl(rrrll i%f é”)_’(r - ydllzq(@ < lim sup (Jya(ito . ) = il pmco) — Bllio pll mce))
- o =0

< limsup Jyq(ito 4, i) — 11|'ITI|1 igf (@liellpmco) + Bllito pll me))
|o|—0 -

= J(io, t) — 1i|£_r|1i%f (@l pmco) + Bllito pll pmce))
TR
< J(ag, i) — (all@l m) + Bllitllmee) = 5119 = vallza )

Combined with the weak convergence in LI(Q) this shows the strong convergence (3). In a

similar way we can prove the first part of (3.

. _ ) o _ _
allillpg) < lll(frrlllréf alligl pmeg) < limsup (Jyq(itop, o) — é”ya' - yd”Zq(Q) — Bllito pll mc2))
— lo|—
@ ,,_ _ 1= .. _
= S, ) = |y - )’dHZq(Q) - 11|(YTY|1_1)15f (Bllito ll mc2))
G _ _ B
< J(ig, it) — élly _deZq(Q) = Bllitol mc) = allitl pmcg)-

Finally, the remaining part of (3)) follows directly from limy—0 Jva(ito 4, it-) = J(itp, it) and the

fact that we already showed the convergence of the other two terms. |

In order to solve (P, ;) numerically we want to represent (37) by a matrix vector multiplication.
From [7, Section 4] we know that this will deliver a Crank-Nicholson scheme with a smoothing

step. Setting zi, = z5(-, #x) € Y and zx == zx, ® ¢, € V-, we obtain the left hand side of (37)):

Ao zk) = Okt = Vi) Muzin + (5 Yin + 52 Viern) " Anzin - Yke{l,...,Ny—1}.

The next step is to calculate r(z,) = fg Zo(x, 0) dug + f 0o du for the basis functions z;. Keeping
the implicit discrete structure of the controls (up,#) in mind, we identify uy with ug, € Uy,
and u with 3 ), ® 8, € Uya. Additionally we know that (8., ® 8, ¢; ® e,)p i\ .| = I,
Thus we obtain r(z;) = Ml-lc—,hzk»h for k € {1,...,N; — 1}. For the initial control we have the

relation M}, Yy, = up . Transferring the equations into a matrix vector multiplication with S yq :
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Y, x Y, — U, X Uyq, we obtain

M, 0 ... ... 0 Yo Uon
(=M + FAp) (M + FAp) : Yk i
0 Yo | =] U2h
: . . 0
0 e 0 (—-My+252A)  (My+ B2Ay)) ONek)  \UN—L

(50)
As before it holds S7, = S . Analogous to the previous chapter we want to look at the discrete
version of the dual problem (P¥). In this case li can be formulated as:

: — 1 * V4 * "
welr/r;%g}ujd Ko(w) = p”SVdW”LP(Qh) + (S aWs Yd.o ) Lr(Q1).L9(Q1) (Pl
s.t. Wello —@ <0 and [woullo —8 < 0.

Obviously the above problem is similar to (P}, except for S,q # S. Consequently the deriva-
tion of the optimality system is almost coincident with the procedure in Section[3l Substituting

Svq for S the setup is elementary and will not be explained here.

S Computational Results

We will numerically solve and by a semismooth Newton’s method, using the respec-
tive optimality systems. To simplify, we fix uy = 0. This leads to simplifications in the previous
results from Section[Bland Sectiondl The first row and column of S and S 4 can be eliminated.
Consequently the constraint ||wollc — 8 < 0 in the problems and disappears. Fur-
thermore the dimension shrinks from N, + Nj, to N, and the variables 2> and A* do not appear in
the Lagrangians. The dimensions in the optimality system are reduced accordingly, as we only
look at k = 1,..., N, and (24) does not have to be considered. In this section all variables are
specified as their discrete representatives, hence we omit the indices. As our domain we choose
Q=1[0,1]cRand ! =[O0, %]. We assume that our mesh is equidistant, consequently every cell
isof sizet-h. Wesetk = 1and g = % and can directly calculate p = 4. Using quadrature
formulas, we can calculate the representation of (22)) and the first block of 23)) .

We generate a target by calculating the associated state yyy for a known uy,.. Our example
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true (P) witha =0 (Py) witha =0
u u

Figure 1: Numerical setup on 10 X 15 space-time grid with g = %. Top row: True source uye
and calculated controls u, 4 and uygq for @ = 0. Bottom row: The true state yy,e (sampled
from the analytic solution with spacial Fourier modes) and the corresponding calculated states
Yo.a and yyaq for @ = 0.

problem is a source identification that inherits an obvious sparsity. If the penalty parameter
a equals zero, the only admissible point for the problems and isw = 0 and 26)
shows that this leads to uyq = SoYora and uygg = Svayvda respectively. The corresponding
visualizations are displayed in Figure [T}

Due to discretization errors the controls for @ = 0 are not very sparse. We will raise the penalty
parameter «, because this will lead to a decrease in the norm of the control and we expect
a smaller support. The influence of @ can be observed by plotting the norm of u, and uyg
respectively for a range of a. There exists a value @;, such that for all @; > @; the optimal control
corresponding to yq is u#; = 0 with i € {0, vd}. Additionally it is interesting to look at the values
of |[yi = Yuuell, 43, i € {0, vd} for changing . We plotted the dependences in Figure 2

True to our expectations, the control norms are monotonically decreasing in @ and eventually

go to zero, while the errors ||y, — Yiruell 43, i € {0, vd} and [lyya — Yuwuell 43, i € {0, vd} grow.
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Figure 2: The dependence on the penalty parameter « of the measure norm of u, and uyq (left)
and the errors Y, — Yirue and Yvq — Yirue in the L norm (right).

The graphs for both strategies look very similar, which makes sense, as we discretized the same
problem and both discretization strategies converge towards the true solution.

To compare the two discretization strategies, we choose a value of « that leads to a norm of the
controls, which is not zero nor maximal. The reconstructed controls and states are displayed
in Figure Bl If the control uyye is not located on our space-time grid, it will be not possible
to reproduce its support exactly. In the variational discretization approach a remedy might be
choosing a test space “V,, consisting of piecewise quadratic — or even higher order — functions
in time. Thereby the maximal values of the test functions +a could be attained not only at grid
points, but also inside the time intervals. Determining the location of these maximal values
would mean to determine the exact position in time of the potential support of the control. This
will be part of further research.

While deriving the algorithms to solve the discrete problems, we observe many similarities. The
implementation and the level of difficulty in programming is comparable for both approaches
and using a homotopy we also observe similar iteration counts.

The main advantage of the variational discretization compared to the discontinuous Galerkin
discretization is the maximal discrete sparsity of the control achieved by choosing a suitable

Petrov-Galerkin-Ansatz and -Test space.
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true (Pg) with o = 0.5826 | (Pyg) with o = 0.5826

u u u

Figure 3: Top row: The true control and the optimal controls u, and uyq for @ = 0.5826. Bottom
row: The true state yu,e (sampled from the analytic solution with spacial Fourier modes) and
the corresponding calculated states y, and yyq for @ = 0.5826.
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