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Abstract. We consider a parabolic optimal control problem governed by space-time measure

controls. Two approaches to discretize this problem will be compared. The first approach has

been considered in [4] and employs a discontinuous Galerkin method for the state discretization

where controls are discretized piecewise constant in time and by Dirac measures concentrated in

the finite element nodes in space. In the second approach we use variational discretization for the

control problem utilizing a Petrov-Galerkin approximation of the state which induces controls

that are composed of Dirac measures in space and time, i.e. Dirac measures concentrated in finite

element nodes with respect to space, and concentrated on the grid points of the time integration

scheme with respect to time. The latter approach then yields maximal sparsity in space-time on

the discrete level. Numerical experiments show the differences of the two approaches.

1 Introduction

We follow [4] and consider the continuous minimization problem

min
(u0 ,u)∈M(Ω)×M(Q)

J(u0, u) ≔ 1
q
‖y − yd‖

q

Lq(Q)
+ α‖u‖M(Q) + β‖u0‖M(Ω), (P)

1

http://arxiv.org/abs/1804.10549v2


where the state y ∈ Lq(Q) solves the following parabolic state equation






∂y

∂t
− ∆ y, = u in Q,

y(x, 0) = u0, in Ω,

y(x, t) = 0, on Σ = Γ × (0, T )

(1)

in a very weak sense specified in the next definition (see [4, Definition 2.1.]).

Definition 1.

A function y ∈ L1(Q) is a solution to (1), if the following identity holds for all w ∈ W:

〈S y,w〉M(Ω)×M(Q),W :=

∫

Q

−

(

∂w

∂t
+ △w

)

y dx dt =

∫

Q

w du+

∫

Ω

w(0) du0 =: 〈ũ,w〉M(Ω)×M(Q),W ,

(2)

where ũ := (u0, u) ∈ M(Ω) ×M(Q) and

W =

{

w ∈ L2(0, T ; H1
0 (Ω)) :

(

∂w

∂t
+ △w

)

∈ L∞(Q) and w(x, T ) = 0 in Ω

}

.

Here, Ω is an open bounded domain in Rd, d ∈ {1, 2, 3} with Lipschitz boundary Γ ≔ ∂Ω. The

time interval (0, T ) is denoted by I and Q := Ω× I is the space-time domain. Let α > 0, β > 0 be

suitable penalty parameters and let q ∈ [1,min{2, (d + 2)/d}). The controls (u0, u) reside in the

control space M(Ω) ×M(Q), the product of the topological duals of the spaces of continuous

functions C0(Ω̄) and C0(Q̄) with compact support in Ω and Q, respectively. Consequently, the

measure norms in the objective functional (P) are defined by:

‖u0‖M(Ω) ≔ sup‖ f ‖C0(Ω̄)≤1

∫

Ω
f (x) du0 and ‖u‖M(Q) ≔ sup‖ f ‖C0(Q̄)≤1

∫

Q
f (x, t) du.

In this setting, (P) has a unique solution (see [4, Theorem 2.7]). The discrete concept introduced

in [4] proposes a control space consisting of piecewise constant controls in time and Dirac mea-

sures in space. As a consequence the maximal possible sparsity in this setting yields controls

which are constant on a time interval. In source identification applications it may be desirable

that the optimal control can be represented even more sparsely e.g. by a combination of Dirac

measures in space and time. Here we propose variational discretization from [9], which allows

to control the discrete structure of the controls through the choice of Petrov-Galerkin-Ansatz and

-Test spaces in the discretization of the state equation and so to achieve the desired sparsity. For
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this approach we obtain analogous convergence results as reported in [4, Theorem 4.3.]. More

precisely, we will prove Theorem 2 (see Section 4 for the notation):

Theorem 2. Let (ū0,h, ūσ) be the unique solution of the problem (Pvd) belonging to Uh × Uvd

and Γ be of class C1,1 and 1 < q < min{2, d+2
d
}. If {(ū0,h, ūσ)}σ is a sequence of such solutions

with associated states {ȳσ}σ the following convergence properties hold:

lim
|σ|→0
‖ȳ − ȳσ‖Lq(Q) = 0, (3)

(ū0,h, ūσ)
∗
⇀ (ū0, ū) as |σ| → 0 inM(Ω) ×M(Q), (4)

lim
|σ|→0

(‖ū0h‖M(Ω), ‖ūσ‖M(Q)) = (‖ū0‖M(Ω), ‖ū‖M(Q)), (5)

where (ū0, ū) is the unique solution of (P) and ȳ associated state.

The paper is organized as follows: In Section 2 we analyze the continuous problem (P) and

its sparsity structure. Similar control problems in measure spaces are analyzed and discretized,

e.g. in [2, 6, 12] for the elliptic case and in [3, 4, 5, 11] for the parabolic case. In [5] the

special case of initial data is covered and in [12, 11] a priori error estimates are derived. We

will take the approach to set up the predual problem with respect to Fenchel duality as is done

in [6]. The resulting predual problem will be discretized with two different strategies. Our first

discretization strategy in Section 3 is also presented in [4], which allows us to use their results.

Here we add the derivation of a semi-smooth Newton method to solve the discrete problem

(Pσ) from [4]. The second strategy in Section 4 uses variational discretization from [9] with a

time-discrete scheme similar to the one in [7]. The emerging discrete problem (Pvd) is solved

analogously to (Pσ). Computational results of both approaches are compared in Section 5.

2 Continuous optimality system

In this section we take a closer look at the structure of (P). As we want to numerically solve

our problem with derivative based methods we have to cope with the Lq norm for q < 2 in our

cost functional. We take an approach which is closely related to the one proposed in [6, Chapter

2.1.], where a Fenchel duality approach is used for the solution of the optimal control problem.

We present the problem (P∗), show that this problem has a unique solution and prove that it is

the Fenchel predual problem of (P).

To begin with, we recall the optimality conditions from [4, Theorem 3.1.] for the solution of (P)

and the resulting sparsity structure [4, Corollary 3.2.] of the optimal controls (ū0, ū).
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Lemma 3. Let (ū0, ū) denote a solution to (P) with associated state ȳ. Then there exists an

element w̄ ∈ L2(0, T ; H1
0
(Ω)) ∩ C(Q̄) satisfying






−∂w̄
∂t
− ∆ w̄ = z̄ in Q,

w̄(x, T ) = 0 in Ω,

w̄(x, t) = 0 on Σ,






∫

Q
w̄ dū + α‖ū‖M(Q) = 0,

‖w̄‖C(Q̄)






= α, if ū , 0,

≤ α, if ū = 0,






∫

Ω
w̄(0) dū0 + β‖ū0‖M(Ω) = 0,

‖w̄(0)‖C(Ω̄)






= β, if ū0 , 0,

≤ β, if ū0 = 0,

where

z̄






= ‖ȳ − yd‖
q−2(ȳ − yd), if 1 < q < min{2, d+2

d
},

∈ sign(ȳ − yd), if q = 1.

Furthermore, w̄ is unique if q > 1.

Remark 4. Under the assumptions of the previous Theorem we have the following sparsity

structure:

supp(ū+0 ) ⊂ {x ∈ Ω̄ : w̄(x, 0) = −β} supp(ū−0 ) ⊂ {x ∈ Ω̄ : w̄(x, 0) = +β}

supp(ū+) ⊂ {(x, t) ∈ Q̄ : w̄(x, t) = −α} supp(ū−) ⊂ {(x, t) ∈ Q̄ : w̄(x, t) = +α}

where ū0 = ū+
0
− ū−

0
and ū = ū+ − ū− are the Jordan decompositions.

If one considers it as the generic case that the function w̄ is not constant on sets of measure

greater than zero the controls have support sets of measure zero. This is our motivation to

propose a discretization strategy which reflects this behavior on the discrete level in space and

time. Before we go on to the discretization we recall the Fenchel duality theorem from [6,

Chapter 1.1.3.].

Let U and Y be Banach spaces with topological duals U∗ and Y∗ and let Λ : U → Y be a

continuous linear operator. Let F : U → R̄ = R ∪ {∞} and G : Y → R̄ be convex lower

semicontinuous functionals, such that F and G are not identically equal to ∞. Furthermore,

let the regular point condition be fulfilled, i.e., there exists v0 ∈ U, such that F(v0) < ∞,

G(Λv0) < ∞ and G is continuous at Λv0. Denote by

F∗ : U∗ → R̄, F∗(w) = sup
u∈U

〈w, u〉U∗,U − F(u). (6)
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the Fenchel conjugate of F. In order to calculate F∗, we use the following equivalence

sup
u∈U

〈w, u〉U∗,U = 〈w̄, u〉U∗,U iff w̄ ∈ ∂F(u), (7)

where ∂F(u) denotes the subdifferential of the convex functional F, which reduces to the Gâteaux-

derivative if it exists. Under the given assumptions the Fenchel duality theorem states that

inf
u∈U

F(u) +G(Λu) = sup
z∈Y∗
−F∗(Λ∗z) −G∗(−z), (8)

holds, and that the right side of (8) has at least one solution. Furthermore, we know that the

following two statements are equivalent:

F(ū) +G(Λū) = −F∗(Λ∗z̄) −G∗(−z̄) (9)

Λ
∗z̄ ∈ ∂F(ū) ∧ −z̄ ∈ ∂G(Λū) (10)

We want to define the problem (P∗). The argument hereof will be the adjoint variable w. From

[15, Theorem 27.7.] we know that for every ψ ∈ L∞(Q) ⊂ L2(Q) ⊂ L2(0, T ; H−1(Ω)) the adjoint

problem





−
(
∂w
∂t
+ △w

)

= ψ in Q

w(x, T ) = 0 in Ω

w(x, t) = 0 on Σ

(11)

has a unique solution w ∈ W(0, T ). With W(0, T ) ֒→ C([0, T ]; L2(Ω)) from [10, Theorem 1.32.]

we see that w ∈ L2(0, T ; H1
0
(Ω)) ∩ C([0, T ]; L2(Ω)). As (11) fulfills the requirements of [1,

Theorem 5.1.] we even get the regularity w ∈ C(Q̄).

Based on the characterization of solutions in (2) we know from [4, Theorem 2.2.] that there exists

a unique solution y ∈ L1(Q) to (1), where additionally y ∈ Lq(0, T ; W
1,p

0
(Ω)) for all p, q ∈ [1, 2)

with 2
q
+

d
p
> d + 1, and the following estimate holds:

‖y‖
Lq(0,T ;W

1,p

0
(Ω))
≤ Cp,q

(

‖u‖M(Q) + ‖u0‖M(Ω)

)

. (12)

To justify the choice of q in the objective functional we recall [4, Remark 2.4.]: There exists a

parameter p fulfilling the assumptions formulated above and W
1,p

0
(Ω) ⊂ Lq(Ω) compactly. Thus

y ∈ Lq(0, T ; W
1,p

0
(Ω)) ⊂ Lq(Q). The density of L∞(Q) in Lp(Q), where 1

q
+

1
p
= 1, now implies
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that the identity (2) is valid for every w in the space

Wq =

{

w ∈ L2(0, T ; H1
0 (Ω)) :

(

∂w

∂t
+ △w

)

∈ Lp(Q) and w(x, T ) = 0 in Ω

}

.

Our assumptions on Γ ensure that Assumption (A) from [4] is fulfilled, so that given 1 ≤ q <

min
{

2, d+2
d

}

and p with 1
q
+

1
p
= 1, problem (11) for every ψ ∈ Lp(Q) admits a unique solution

w belonging to Lp(0, T ; W2,p(Ω) ∩ W
1,p

0
(Ω)). The requirements of [1, Theorem 5.1.] are still

fulfilled in this case, so we get the regularity w ∈ C(Q̄). Note that due to the compactness of Q̄

we have C(Q̄) = C0(Q̄).

We write (2) as S y = ũ ∈ M(Ω) × M(Q), i.e. 〈S y,w〉M(Ω)×M(Q),C0(Q̄) = 〈ũ,w〉M(Ω)×M(Q),C0(Q̄)

for all w ∈ W . We know that this identity is true for all w ∈ Wq ֒→ C0(Q̄) and then by

definition of Wq we have
(

−∂w
∂t
− △w

)

= S ∗w ∈ Lp(Q). In this sense 〈S y,w〉M(Ω)×M(Q),C0(Q̄)) =

〈S ∗w, y〉Lp(Q),Lq(Q) holds for any y ∈ Lq(0, T ; W
1,p

0
(Ω)) ⊂ Lq(Q) and w ∈ Wq, i.e. S ∗ is the

adjoint operator of S in the described sense. To abbreviate notation we from here onwards write

〈·, ·〉M,C0
instead of 〈·, ·〉M(Ω)×M(Q),C0(Q̄) and also assume q > 1 so that p < ∞ holds. Now we are

in the position to define problem (P∗):

min
w∈Wq

K(w) ≔ 1
p
‖S ∗w‖

p

Lp(Q)
+ 〈S ∗w, yd〉Lp(Q),Lq(Q) + ℓα,β(w). (P∗)

Here the indicator function ℓα,β(w) is given by

ℓα,β(w) =






0, if ‖w‖C0(Q̄) ≤ α and ‖w(0)‖C0(Ω̄) ≤ β,

∞, else.

As Wq ֒→ C0(Q̄), all appearing norms are well defined. We have

Theorem 5. Let 1 < q < min{2, d
d−1
}. Then problem (P∗) has a unique solution w̄ ∈ Wq.

Proof. We proceed analogously to [6, Theorem 2.3.]. Let {wk}k ⊂ Wq be a minimizing sequence,

such that

lim
k→∞

K(wk) = inf
w∈Wq

K(w) ≕ K.
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As Wq , ∅ we know that K < ∞. With Cauchy-Schwarz and Young’s inequality we see for all k

K(wk) = 1
p
‖S ∗wk‖

p

Lp(Q)
+ 〈S ∗wk, yd〉Lp(Q),Lq(Q) + ℓα,β(wk)

︸   ︷︷   ︸

≥0

≥ 1
p
‖S ∗wk‖

p

Lp(Q)
− ‖S ∗wk‖Lp(Q)‖yd‖Lq(Q)

≥ − 1
q
‖yd‖

q

Lq(Q)

> −∞

and hence K > −∞. As K ∈ R the indicator function ℓα,β(w) yields ‖wk‖C0(Q̄) ≤ α and

‖wk(0)‖C0(Ω̄) ≤ β for all k ≥ M with M ∈ N large enough. We deduce that there exist weak-*

convergent subsequences such that wk′
∗
⇀ w̄ ∈ C0(Q̄) and wk′(0)

∗
⇀ w̄(0) ∈ C0(Ω̄). Due to p > 2

the term 1
p
‖S ∗wk‖

p

Lp(Q)
is coercive and we deduce the boundedness of ‖S ∗wk‖Lp(Q) for all k. To-

gether with the previous finding this yields the existence of a weakly converging subsequence

such that S ∗wk′ ⇀ z ∈ Lp(Q), i.e. 〈S ∗wk′ , y〉Lp(Q),Lq(Q) → 〈z, y〉Lp(Q),Lq(Q) for all y ∈ Lq(Q). We

also have

〈S ∗wk′ , y〉Lp(Q),Lq(Q) = 〈S y,wk′〉M,C0
→ 〈S y, w̄〉M,C0

= 〈S ∗w̄, y〉Lp(Q),Lq(Q) ∀ y ∈ Lq(Q)

This gives z = S ∗w̄ ∈ Lp(Q). From
(

−∂w
∂t
− △w

)

= S ∗w̄ ∈ Lp(Q) and p > 2 we can deduce

w̄ ∈ L2(0, T ; H1
0
(Ω)). Furthermore from 〈u,wk′〉M,C0

→ 〈ũ, w̄〉M,C0
for all ũ ∈ M(Ω)×M(Q) we

get w̄(x, T ) = 0 if we consider the dirac measure located in T . Altogether this yields w̄ ∈ Wq.

We know that all continuous norms are weakly lower semicontinuous and because of the weak-*

convergence of wk′ and wk′(0) we get ℓα,β(w̄) = 0. Furthermore from S ∗wk′ ⇀ S ∗w̄ ∈ Lp(Q)

follows directly 〈S ∗wk′ , yd〉Lp(Q),Lq(Q) → 〈S
∗w̄, yd〉Lp(Q),Lq(Q). Altogether we get

K ≤ K(w̄) = 1
p
‖S ∗w̄‖

p

Lp(Q)
+ 〈S ∗w̄, yd〉Lp(Q),Lq(Q) + ℓα,β(w̄)

≤ lim inf
k′→∞

1
p
‖S ∗wk′‖

p

Lp(Q)
+ lim

k′′→∞
〈S ∗wk′ , yd〉Lp(Q),Lq(Q)

= lim
k→∞

(
1
p
‖S ∗wk‖

p

Lp(Q)
+ 〈S ∗wk, yd〉Lp(Q),Lq(Q)

)

≤ lim
k→∞

(
1
p
‖S ∗wk‖

p

Lp(Q)
+ 〈S ∗wk, yd〉Lp(Q),Lq(Q) + ℓα,β(wk)

)

= K.

thus w̄ is a solution of (P∗). The uniqueness follows from q > 1 and thus p < ∞.
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Theorem 6. The Fenchel dual of (P∗) is (P).

Proof. To apply Fenchel duality we split the objective functional of (P∗) into two parts:

F : Wq → R̄, F (w) =
1

p
‖S ∗w‖

p

Lp(Q)
+ 〈S ∗w, yd〉Lp(Q),Lq(Q) (13)

G : C0(Q̄)→ R̄, G(w) = ℓα,β(w) (14)

and as Λ : Wq → C0(Q̄) we choose the injection given by the continuous embedding. The

functional F is convex and lower semicontinuous as a sum of functionals with these properties.

Moreover, G is an indicator function of a closed and convex set in C0(Q̄) and thus fulfills the

requirements as well. For ṽ = 0 it holds that S ∗ṽ = (0, 0) and ℓα,β(ṽ) = 0. This directly shows

that F (ṽ) < ∞ and G(Λṽ) < ∞. We also know that G(Λṽ) = ℓα,β(Λ(0)) is continuous due to

α, β > 0, consequently the regular point condition holds. Thus we can apply the Fenchel duality

theorem. Now the Fenchel conjugates have to be derived. From Fenchel Duality we know that

F ∗ has the following form, if ũ ∈ ∂F (w):

F ∗ : W∗q → R̄, F ∗(ũ) = 〈ũ,w〉M,C0
− F (w) (15)

We can derive a representation of ũ ∈ ∂F (w) and reformulate:

ũ = S
(

|S ∗w|p−2 S ∗w + yd

)

⇔ S ∗w = sign(S −1ũ − yd) |S −1ũ − yd |
1

p−1 , (16)

where Λ∗ : (M(Ω) ×M(Q)) → W∗q is the injection from the dual of C0(Q̄) in W∗q . Inserting this

into (15) we derive F ∗(ũ) = 1/q |S −1ũ − yd |
q

Lq(Q)
. To derive G∗(ũ) we can deconstruct G(w), such

that it consists of two summands, which represent an indicator function with only one constraint

respectively, such that (w(0),w) ∈ C0(Ω̄) × C0(Q̄) and
(
C0(Ω̄) × C0(Q̄)

)∗
= C0(Ω̄)∗ × C0(Q̄)∗ =

M(Ω)×M(Q). From [13, Theorem 2.2.8] we know that for ũ = (0, u)+ (u0, 0) ∈ M(Ω)×M(Q)

it holds that :

G∗(ũ) =
(
ℓα + ℓβ

)∗
(u0, u) = ℓ∗α(0, u) + ℓ∗β(u0, 0).

Looking at both conjugates separately, we derive:

ℓ∗α(0, u) = sup
w∈Wq

〈u,w〉M,C0
− ℓα(0,w) = sup

w∈Wq, ‖w‖C0(Q̄)≤α

〈u,w〉M,C0
= α‖u‖M(Q)

8



Analogous we can see that ℓ∗
β
(u0, 0) = β‖u0‖M(Ω) holds. Assembling the information we obtain

G∗(ũ) = α‖u‖M(Q) + β‖u0‖M(Ω). Finally we can use the Fenchel duality theorem and deduce:

min
w∈Wq

1

p
‖S ∗w‖

p

Lp(Q)
+ 〈S ∗w, yd〉Lp(Q),Lq(Q) + ℓα,β(w)

= min
ũ∈M(Ω)×M(Q)

1

q
‖S −1ũ − yd‖

q

Lq(Q)
+ α‖−u‖M(Q) + β‖−u0‖M(Ω).

As S −1ũ = ỹ and ũ = (u0, u) we recover the problem (P). �

This means that we can solve (P∗) and use (16) and the determined unique optimal solution

w̄ ∈ Wq to calculate the optimal control û ≔ (ū0, ū) for (P).

3 Discontinuous Galerkin Discretization

This section deals with the discontinuous Galerkin discretization of (P), which was introduced in

[4]. The mentioned paper provides a convergence result for the discrete problem (Pσ) analogous

to Theorem 2. After recapitulating the discrete setting from [4, Section 4] we will addition-

ally discretize (P∗), reformulate the problem equivalently and derive an optimality system by a

Lagrange approach. If the necessary conditions are fulfilled we can then apply a semismooth

Newton method to solve the optimality system.

In [3] we can find the numerical solution of a problem with a similar parabolic state equation.

More details on how to deal with the norm ‖·‖M(Ω) can be found, e.g. in [2] and [6]. Here, we

merely treat ‖·‖M(Q) as the dual norm of ‖·‖C0(Q̄). The remaining difficulties are to transfer the

results from a space norm to a space-time norm for the control and to deal with the occurring

Lq(Q) norm of the state. Additionally the appearance of the initial control u0 in the objective

functional will be discussed.

As a first step to characterizing the discrete spaces, we have to set up the space-time grid. Define

the partition 0 = t0 < t1 < . . . < tNτ
= T . For the temporal grid the interval I is split in

subintervals Ik = (tk−1, tk] for k = 1, . . . ,Nτ−1 and INτ
=

(
tNτ−1, tNτ

)
. The temporal gridsize is

denoted by τ = max0≤k≤Nτ
τk, where τk ≔ tk − tk−1. Let Kh be a triangulation of Ω for a fixed

h > 0. Then we define ρ(K) to be the diameter of K and the gridsize ofKh as h = maxK∈Kh
ρ(K).

We set Ω̄h =
⋃

K∈Kh
K and denote by Ωh the interior and by Γh the boundary of Ω̄h. We assume

that vertices on Γh are points on Γ. We can set up the space-time grid as Qh ≔ Ωh × (0, T ) and

define Qk ≔ Ωh × Ik. To avoid having to use two indices, we define the discretization parameter

9



σ = (τ, h). The space discrete spaces Uh, Yh and the space-time discrete spaces Uσ,Yσ can

be found in [4, Chapter 4.1.]. We will only recall the representation of contained elements.

Here (δx j
)
Nh

j=1
denote the Dirac-measures and (ex j

)
Nh

j=1
is the nodal basis formed by continuous

piecewise linear functions. Thus ex j
(xi) = δi j holds. Let uk,h ∈ Uh and yk,h ∈ Yh. The elements

uσ and yσ can be represented using an indicator function χk of Ik:

uσ =
∑Nτ

k=1
uk,h ⊗ χk and yσ =

∑Nτ

k=1
yk,h ⊗ χk. (17)

Now inserting the definition of space-discrete elements uk,h and yk,h we obtain:

uσ =

Nτ,Nh∑

k, j=1

uk, j χk δx j
and yσ =

Nτ,Nh∑

k, j=1

yk, j χk ex j
. (18)

Consequently Uσ and Yσ are spaces of finite dimension Nσ = Nτ × Nh with bases given by

{χk δx j
}k, j and {χk ex j

}k, j. In [4] an implicit Euler time stepping scheme is used to write down

the discrete state equation. We know that yk,h = yσ|Ik
for every k ∈ {1, . . . ,Nτ}. Let (u0,h, uσ) ∈

Uh × Uσ be given and zh ∈ Yh arbitrary. Then for k ∈ {1, . . . ,Nτ} the following equations form

the discrete state equation:






τk(
yk,h−yk−1,h

τk
, zh) + τk

∫

Ω
∇yk,h∇zh dx =

∫

Qk
zh duσ,

y0,h = y0h,
(19)

where y0h ∈ Yh is the unique element satisfying:

(y0h, zh) =

∫

Ω

zh du0,h ∀ zh ∈ Yh (20)

Here (·, ·) denotes the scalar product in L2(Ω). Now we can formulate (Pσ) as follows:

min
(u0h,uσ)∈Uσ×Uh

Jσ(u0h, uσ) = 1
q
‖yσ(u0h, uσ) − yd‖

q

Lq(Qh)
+ α‖uσ‖M(Q) + β‖u0h‖M(Ω) (Pσ)

where yσ(u0h, uσ) solves the discrete state equation (19). A central result we have for the discrete

setting explained above is [4, Theorem 4.3.], which is the analogon to Theorem 2.

10



We move on to discretizing (P∗), which we can equivalently reformulate in the following way:

min
w∈Wq

K̂(w) ≔ 1
p
‖S ∗w‖

p

Lp(Q)
+ 〈S ∗w, yd〉Lp(Q),Lq(Q)

s.t. ‖w‖C0(Q̄) − α ≤ 0 and ‖w(0)‖C0(Ω̄) − β ≤ 0.

The discrete representatives of ‖·‖C0(Ω̄) and ‖·‖C0(Q̄) are the ‖·‖∞ norms in the respective domains.

We set Ỹ = Yh × Yσ and Ũ = Uh × Uσ. For (y0,h, yσ) and yd to be from the same discrete

space, we define yd,σ ≔

(

(yd(x, 0))h (yd)σ
)⊤

. Here (yd(x, 0))h and (yd)σ denote the evaluations

of yd(x, 0) and yd on the inner nodes of Ωh and Qh respectively. We know the discrete problem

(P∗) for w = (w0,h,wσ):

min
w∈U∗

h
×U∗σ

Kσ(w) ≔ 1
p
‖S ∗σw‖

p

Lp(Qh)
+ 〈S ∗σw, yd,σ〉Lp(Qh),Lq(Qh) (P∗σ)

s.t. ‖wσ‖∞ − α ≤ 0 and ‖w0,h‖∞ − β ≤ 0.

In order to specify S σ, we transform the discrete state equation from (19) into a matrix-vector-

multiplication. For this purpose we will from now on identify elements from Uσ and Yσ with

vectors in RNσ . From (18) we know that our discrete elements uσ and yσ can be expressed via

their expansion coefficients uk, j and yk, j respectively. To simplify the notation we will define

uk ≔ (uk,1, . . . , uk,Nh
)⊤ ∈ RNh and can then write uσ = (u1, . . . , uNτ

)⊤ ∈ RNσ . Analogous we get

the vectors yk and yσ. The elements from Uh and Yh are identified in the same way. To avoid

complicating the notation, we will not add arrows above the vectors. Similar to [3] we can set up

a solution matrix for the discrete state equation. One difference we need to consider is u0,h , 0.

This leads to an additional column and an additional row. We calculate the right hand side by

inserting the discrete representations uσ =
∑Nh

i=1

∑Nτ

j=1
u j,i δxi

⊗ χ j and zh =
∑Nh

l=1
zl exl

:

∫

Qk
zh duσ = τk

∑Nh

j=1

∑Nh

l=1

∫

Ωh
〈uk, j δx j

, zl exl
〉 dx = τk

∑Nh

j=1
uk, j z j = τk u⊤

k,h
zh.

We define Mh ≔ (〈ex j
, exk
〉)

Nh

j,k=1
as the mass matrix and Ah ≔ (

∫

Ω
∇ex j
∇exk

dx)
Nh

j,k=1
as the

stiffness matrix corresponding to Yh. Also we notice that the "mass matrix" (〈δx j
, exl
〉)

Nh

j,l=1
is

the identity in RNh×Nh . This delivers S σ except for the first row, where we insert the relation

Mh y0,h = u0,h. The discrete solution operator of the state equation S σ : RNσ+Nh → RNσ+Nh is

11



represented by:





Mh 0 . . . . . . 0

−Mh Mh + τ1Ah

...

0 −Mh Mh + τ2Ah

...
...

. . .
. . . 0

0 . . . 0 −Mh Mh + τNτ
Ah









y0,h

y1

y2

...

yNτ





=





u0,h

τ1u1

τ2u2

...

τNτ
uNτ





. (21)

A representation of the adjoint is S ∗σ = S ⊤σ . We reformulate the ‖·‖∞ norms in (P∗) by:

‖wσ‖∞ − α ≤ 0 ⇔ max
k=1,...,Nτ, j=1,...,Nh

{wk, j,−wk, j} − α ≤ 0,

and can now state 2 ·Nσ linear inequality constraints that are equal to the first inequality in (P∗).

Analogously we can equivalently reformulate the second part by 2 · Nh linear constraints.

Setting wk, j = 0 for k = 0, . . . ,Nτ and j = 1, . . . ,Nh all inequalities are strictly fulfilled and the

Slater condition is satisfied, as may be confirmed in [8, Definition 2.44]. We can proceed by

setting up the corresponding Lagrangian L with multipliers λ1, λ2 ∈ RNσ and λ3, λ4 ∈ RNh :

L(w, λ1, λ2, λ3, λ4) = 1
p
‖S T

σw‖
p

Lp(Qh)
+ 〈S ⊤σw, yd,σ〉Lp(Qh),Lq(Qh) +

∑Nτ

k

∑Nh

j=1
λ1

k, j
(wk, j − α)

+
∑Nτ

k

∑Nh

j=1
λ2

k, j
(−wk, j − α) +

∑Nh

j=1
λ3

j
(w0, j − β) +

∑Nh

j=1
λ4

j
(−w0, j − β).

We can now form the optimality system using the Karush-Kuhn-Tucker conditions. These state

that the partial differential of L by the main variable w has to be zero:

∂L

∂w
=
∂Kσ(w)

∂w
+





λ3

λ1



 −





λ4

λ2



 = 0 (22)

and for the inequality constraints we have the following complementary conditions:

λi
k, j

(
(−1)(i−1)wk, j − α

)
= 0 ∧ λi

k, j ≥ 0 ∧
(
(−1)(i−1)wk, j − α

)
≤ 0 ∀k,∀ j, i ∈ {1, 2}, (23)

λi
j

(
(−1)(i−1)w0, j − β

)
= 0 ∧ λi

j ≥ 0 ∧
(
(−1)(i−1)w0, j − β

)
≤ 0 ∀ j, i ∈ {3, 4}. (24)

From Fenchel duality we know that ũ ∈
∂Kσ(w)
∂w
= ∂Fσ(w), because this is the discrete represen-

tative of F . In [3] this property is used to recover a problem with the variable ũ. Consequently

the constraint ũ = ∂Fσ(w) is added. Theoretically we could do the same, but as we want to use
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derivative based methods, we will have to differentiate all constraints again. As p > 2 we can

see that in (16) the exponent 1
p−1

is strictly smaller than 1, which is problematic. Instead we will

solve for w and recover the optimal control ũ afterwards.

We would like to apply a semismooth Newton method ([10, Algorithm 2.11]), which is a way

to find x∗ solving F(x∗) = 0, to the optimality system (22)-(24), thus we reformulate (23) - (24)

equivalently for all k = 1, . . . ,Nτ and all j = 1, . . . ,Nh:

N1
k, j ≔ max

{

0, λ1
k, j + κ(wk, j − α)

}

− λ1
k, j = 0, N2

k, j ≔ max
{

0, λ2
k, j + κ(−wk, j − α)

}

− λ2
k, j = 0,

N3
j ≔ max

{

0, λ3
j + κ(w0, j − β)

}

− λ3
j = 0, N4

j ≔ max
{

0, λ4
j + κ(−w0, j − β)

}

− λ4
j = 0.

This allows us to define F(w, λ1, λ2, λ3, λ4) =
(

∂L/∂w N1 N2 N3 N4
)⊤
∈ R3·(Nσ+Nh) contain-

ing the left sides of our optimality system and solve the equation F(w, λ1, λ2, λ3, λ4) = 0, which

will deliver the optimal solution of the problem (P∗σ). Hereafter we denote Clarke’s generalized

Jacobian as in [10, Example 2.4] by ∂F:

∂F(x) ≔ conv

{

M : xk

k→∞
−→ x, F′(xk) −→ M, F differentiable at xk

}

The next step is to write down DF(w, λ1, λ2, λ3, λ4), which has the following structure:

DF(w, λ1, λ2, λ3, λ4) =





∂2L
∂2w2

∂2L
∂w∂λ1

∂2L
∂w∂λ2

∂2L
∂w∂λ3

∂2L
∂w∂λ4

N1

∂w
N1

∂λ1 0 0 0
N2

∂w
0 N2

∂λ2 0 0
N3

∂w
0 0 N3

∂λ3 0
N4

∂w
0 0 0 N4

∂λ4 .





(25)

The first row of the matrix can be calculated by derivation rules. Due to the max-norms the

differentials of Ni for i ∈ {1, 2, 3, 4} are not distinct. For an arbitrary max-norm the generalized

Jacobian is:

∂

∂x

(

max{0, g(x)}
)

=






0, if g(x) < 0,
[
0,

∂g(x)

∂x

]
, if g(x) = 0,

∂g(x)

∂x
, if g(x) > 0.

We decide to always choose
∂g(x)

∂x
, if g(x) = 0. Using this the remaining blocks can be calculated.

An interesting observation is that for κ = 1 we have a symmetric matrix DF on the active sets.

As we will solve for the optimal adjoint w̄ we need to recover the optimal control ¯̃u through the
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discrete version of (16):

¯̃u = |S ⊤σw̄|p−2(S ⊤σw̄) + yd,σ (26)

4 Variational Discretization

Here we want to achieve the desired maximal discrete sparsity, i.e. dirac-measures in space-time,

by choosing the Petrov-Galerkin-Ansatz and -Test space that will induce this structure. The

variational discretization concept was introduced in [9] and its key feature is to not discretize the

control space. Instead, via the discretization of the test space and the optimality conditions, an

implicit discretization of the control is achieved. This is how we control the discrete structure of

the controls, as mentioned in the introduction. Looking at the relation (16) between the adjoint

state and the control it becomes even more obvious, that the discrete structure of the test space

affects the structure of the control. We set up the discrete spaces, but differently to [4] we will

define a test space Vσ consisting of continuous and piecewise linear functions in space and

time. This is motivated by the fact that the controls (u0, u) ∈ M(Ω) ×M(Q) will be affected by

the structure of these test functions. Whether the choice of continuous and piecewise quadratic

functions leads to even better results will be part of further research. Afterwards we will set up

the discrete state equation and the discrete problem. The main result will be a convergence result

similar to the main result of [4].

The spaces Yh and Yσ remain the same. We define the test space:

Vσ := {vσ ∈ C(I; Yh) : vσ|Ik
∈ P1(Ik, Yh), 1 ≤ k ≤ Nτ and vσ(T ) = 0} ⊂ Wq. (27)

Any element from Vσ can be written as vσ =
∑Nτ

k=1

∑Nh

j=1
vk, j etk ⊗ ex j

with (etk ⊗ ex j
)(x, t) ≔

ex j
(x) etk (t), where (etk )

Nτ

k=1
is the nodal basis formed by continuous piecewise linear functions

on the time grid. To analyze how the controls (u0, u) are implicitly discretized, we look at the

optimality conditions (Lemma 3) and the sparsity structure (Remark 4) in the continuous setting.

We can now variationally discretize these conditions with y ∈ Yσ and w = (w0,h,wσ) ∈ Yh×Vσ.

We know:

‖w̄σ‖∞ ≤ α and ‖w̄0,h‖∞ ≤ β.
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Additionally in the discrete setting we deduce:

supp(ū+0 ) ⊂ {x ∈ Ω̄ : w̄0,h(x) = −β}, supp(ū−0 ) ⊂ {x ∈ Ω̄ : w̄0,h(x) = +β},

supp(ū+) ⊂ {(x, t) ∈ Q̄ : w̄σ(x, t) = −α}, supp(ū−) ⊂ {(x, t) ∈ Q̄ : w̄σ(x, t) = +α}.

Here we see that the variational discretization concept delivers that the structure of the test space

Vσ has an affect on the structure of the controls (u0, u). In the chosen case for the discrete

adjoint state w the maximal values ±α and ±β, in the generic case, can only be attained at grid

points. Consequently we know:

supp(ū) ⊂ {(x j, tk)}
Nh,Nτ

j=1,k=1
and supp(ū0) ⊂ {(x j)}

Nh

j=1
.

Hence we define sets, whose elements are sums of dirac measures on the grid points:

Uh =

{

uh ∈ M(Ω) : uh =
∑Nh

j=1
u j δx j

, with u j ∈ R
}

,

Uvd =

{

uσ ∈ M(Q) : uσ =
∑Nτ,Nh

k, j=1
uk, j δx j

⊗ δtk , with uk, j ∈ R
}

.

The space Uh is the same as before, but Uvd is not the same as Uσ. We will now cite [4,

Proposition 4.1.], which only depends on the space Uh, without proof.

Lemma 7. Let the linear operators Λh and Πh be defined as below:

Λh :M(Ω)→ Uh ⊂ M(Ω), Λh u0 =
∑

j〈u0, ex j
〉 δx j

Πh : C(Ω̄) → Yh ⊂ C(Ω̄), Πh y =
∑

j y(x j) ex j

Then for every u0 ∈ M(Ω) and every y ∈ C(Ω̄) and yh ∈ Yh the following properties hold.

〈u0, yh〉 = 〈Λh u0, yh〉, (28)

〈u0, Πh y〉 = 〈Λh u0, y〉, (29)

‖Λh u0‖M(Ω) ≤ ‖u0‖M(Ω), (30)

Λh u0
∗
⇀ u0 ∈ M(Ω) and ‖Λh u0‖M(Ω)

h→0
−→ ‖u0‖M(Ω). (31)

We derive an analogous result for the space-time discrete spaces Uvd and Yσ. Due to the dif-

ferent test space, we can not simply copy [4, Proposition 4.2.]. Hence we will state a theorem

adjusted to the changes. The structure of the proof remains the same, only the technical calcula-
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tions are different.

Lemma 8. Let the linear operators Υvd and Ψvd be defined as below:

Υvd :M(Q)→Uvd ⊂ M(Q), Υvd u =
∑

k, j δx j
⊗ δtk

∫

Qk
et j

du

Ψvd : C(Q̄) → Yσ, Ψvd y =
∑

k, j y(x j, tk) ex j
⊗ χk

Then for every u ∈ M(Q), y ∈ C(Q̄) and arbitrary yσ ∈ Yσ the following properties hold.

〈u, yσ〉 = 〈Υvd u, yσ〉, (32)

〈u, Ψvd y〉 = 〈Υvd u, y〉, (33)

‖Υvd u‖M(Q) ≤ ‖u‖M(Q), (34)

Υvd u
∗
⇀ u ∈ M(Q) and ‖Υvd u‖M(Q)

|σ|→0
−→ ‖u‖M(Q) (35)

The next step is to set up the new discrete state equation. To this end we start by deriving a very

weak formulation of (1) which will be discretized afterwards. By multiplication with z ∈ Wq,

integration over the domain Q, and utilizing z(x, T ) = 0 and y(x, 0) = 0, we arrive at

A(y, z) ≔
∫

Q

(
− y ∂z

∂t
+ ∇y∇z

)
dx dt =

∫

Ω
z(·, 0) du0 +

∫

Q
z du. (36)

We can now discretize by inserting yσ ∈ Yσ and testing for zσ ∈ Vσ. This delivers the following

discrete representation of the state equation: Find yσ ∈ Yσ, such that

A(yσ, zσ) =
∫

Ω
zσ(·, 0) du0 +

∫

Q
zσ du ∀zσ ∈ Vσ. (37)

We can formulate the discrete problem (Pvd):

min
(u0,u)∈M(Ω)×M(Q)

Jvd(u0, u) = 1
q
‖yσ(u0, u) − yd‖

q

Lq(Qh)
+ α‖u‖M(Q) + β‖u0‖M(Ω) (Pvd)

where yσ(u0, u) solves the discrete state equation (37).

We observe, that Jvd is convex, but not strictly convex like J. In the continuous setting the strict

convexity came from the norm ‖·‖Lq(Qh), but the mapping from the control to the discrete state is

not injective. Consequently the uniqueness of the solution cannot be concluded. In the following

Theorem 9 we prove the existence of solutions and discuss uniqueness in the discrete setting as

done in [3, Section 4.3.].
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Theorem 9. The problem (Pvd) has at least one solution in M(Ω) × M(Q) and there exists

a unique solution (ū0,h, ūσ) ∈ Uh × Uvd. Furthermore we know for any solution (û0, û) ∈

M(Ω) ×M(Q) to (Pvd) it holds (Λh û0, Υvd û) = (ū0,h, ūσ).

Proof. The existence of a solution can be derived as in the proof of [4, Theorem 2.7.], because

the control domain is still continuous. Let (û0, û) ∈ M(Ω) ×M(Q) be such a solution to (Pvd)

and define (ū0,h, ūσ) ≔ (Λh û0, Υvd û) ∈ Uh ×Uvd. We can deduce from (28) and (32) that

yσ(u0, u) = yσ(Λhu0, Υvdu) ∀ (u0, u) ∈ M(Ω) ×M(Q). (38)

Additionally (30) and (34) deliver ‖ū0,h‖M(Ω) ≤ ‖û0‖M(Ω) and ‖ūσ‖M(Q) ≤ ‖û‖M(Q). Combining

these properties we can deduce Jvd(ū0,h, ūσ) ≤ Jvd(û0, û). Therefore (ū0,h, ūσ) ∈ Uh × Uvd is

a solution of (Pvd) and we proved the existence of solutions in the discrete space Uh × Uvd.

The mapping (ū0,h, ūσ) 7→ yσ(ū0,h, ūσ), where yσ(ū0,h, ūσ) solves (37) for (u0, u) = (ū0,h, ūσ) ∈

Uh × Uvd, is linear, injective and we know that dim Uh = dim Yh and dimUvd = dimYσ.

Hence this mapping is bijective. Therefore the functional Jvd is strictly convex on Uh ×Uvd and

consequently (Pvd) has a unique solution (ū0,h, ūσ) ∈ Uh ×Uvd.

From the uniqueness in the discrete space and the fact that any projection of a continuous solu-

tion (Λh û0, Υvd û) ∈ Uh ×Uvd is a solution in the discrete space, we deduce that all projections

must be equal, i.e. (Λh û0, Υvd û) = (ū0,h, ūσ) for any solution (û0, û) ∈ M(Ω) ×M(Q). �

Since all projections of solutions yield the unique discrete solution (ū0,h, ūσ) ∈ Uh × Uvd it suf-

fices to analyze the convergence properties for this discrete solution. Furthermore for the compu-

tational results we can use the representations ū0,h =
∑Nh

j=1
ū0, j δx j

and ūσ =
∑Nτ,Nh

k, j=1
ūk, j δx j

⊗ δtk

and uniquely determine the discrete optimal control by calculating the coefficients ūk, j for k =

0, . . . ,Nτ and j = 1, . . . ,Nh.

We can now prove the convergence result formulated in Theorem 2 along the lines of the proof

of [4, Theorem 4.3.].

Proof. By the coercivity of Jvd we know that {(ū0,h, ūσ)}σ is bounded in M(Ω) × M(Q) and

consequently [4, Theorem 2.2.] delivers the boundedness of {ȳσ}σ in Lq(Q). Therefore, there

exist subsequences, such that for |σ| → 0 the following holds true

(ū0,h, ūσ)
∗
⇀ (ũ0, ũ) ∈ M(Ω) ×M(Q) and ȳσ ⇀ ỹ ∈ Lq(Q). (39)

As in [4, Theorem 4.3.] we will split the proof into several steps.
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I - ỹ is the solution of (37) corresponding to (ũ0, ũ)

By the denseness of {ξ ∈ C1(0, T ) : ξ(T ) = 0} ⊗ (W2,p(Ω) ∩W
1,p

0
(Ω)) inV, it is sufficient to test

(36) against z = ϕ ⊗ ξ with ξ ∈ C1(0, T ) satisfying ξ(T ) = 0 and ϕ ∈ W2,p(Ω) ∩W
1,p

0
(Ω). Let ϕ

be approximated by ϕh ∈ Yh, such that

∫

Ω
〈∇ϕh,∇zh〉Rd dx =

∫

Ω
〈∇ϕ,∇zh〉Rd dx for all zh ∈ Yh and ‖ϕ − ϕh‖C(Ω̄)

h→0
−→ 0. (40)

Moreover, let ξτ =
∑

k ξ(tk) etk be the piecewise linear interpolation of ξ so that ξτ → ξ in C(Q̄)

and ξ′τ → ξ′ in L∞. Testing (37) against zσ = ϕh ⊗ ξτ, we obtain

A(ȳσ, zσ) =
∫

Ω
zσ(·, 0) dū0,h +

∫

Q
zσ dūσ. (41)

On the right hand side, we can perform the limit directly:

∫

Ω
zσ dū0,h +

∫

Q
zσ dūσ

|σ|→0
−→

∫

Ω
z dũ0 +

∫

Q
z dũ.

The left hand side of (41) can be expanded to

A(ȳσ, zσ) = −
∫

Q
ȳσ (ϕh ⊗ ξ

′
τ) dx dt +

∫

Q
∇ȳσ(x, t)∇ϕh(x) ξτ(t) dx dt. (42)

Applying the very definition of ϕh and integration by parts, we observe that

∫

Q
∇ȳσ(x, t)∇ϕh(x) ξτ(t) dx dt = −

∫

Q
ȳσ (∆ ϕ ⊗ ξτ) dx dt

|σ|→0
−→ −

∫

Q
ỹ ∆ z dx dt.

Along with −
∫

Q
ȳσ (ϕh ⊗ ξ

′) dx dt
|σ|→0
−→ −

∫

Q
ỹ (ϕ ⊗ ξ′) dx dt = −

∫

Q
ỹ ∂z
∂t

dx dt, this implies that

A(ȳσ, zσ)
|σ|→0
−→ A(ỹ, z) and thus A(ỹ, z) =

∫

Ω
z dũ0 +

∫

Q
z dũ for all tensor products z = ϕ ⊗ ξ.

II - J(ũ0, ũ) ≤ J(u0, u) ∀ (u0, u) ∈ C(Ω̄) × C(Q̄)

From [4] we know that an associated solution y to (1) for regular controls (u0, u) belongs to

L2(0, T ; H2(Ω) ∩ H1
0
(Ω)) ∩ H1(Q). Additionally from [4, page 10] we know in the case of

regular controls

yσ → y ∈ L2(0, T ; H1
0(Ω))

q<2
⊂ Lq(Q). (43)

Now we set (u0,h, uσ) = (Λhu0, Υvdu) for this step. Using (38) and the convergence properties,
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we can also see for |σ| → 0

Jvd(u0,h, uσ) = 1
q
‖yσ(u0,h, uσ) − yd‖

q

Lq(Q)
︸                         ︷︷                         ︸

(43)
→

1
q
‖y−yd‖

q

Lq(Q)

+α‖uσ‖M(Q)
︸       ︷︷       ︸

(35)
→α‖u‖M(Q)

+ β‖u0,h‖M(Ω)
︸        ︷︷        ︸

(31)
→β‖u0‖M(Ω)

→ J(u0, u) (44)

For the final estimation we will use that (ū0,h, ūσ) solves (Pvd).

J(ũ0, ũ)
(39)
≤ lim inf

|σ|→0
Jvd(ū0,h, ūσ) ≤ lim inf

|σ|→0
Jvd(u0,h, uσ)

(44)
= J(u0, u) (45)

III - (ũ0, ũ) = (ū0, ū)

We know that the solution to (P) is unique for q > 1. Thus, it suffices to show that (ũ0, ũ) solves

the problem. Choose a sequence {(u0k, uk)}k ∈ C(Ω̄) × C(Q̄), such that

(u0k, uk)
∗
⇀ (ū0, ū) ∈ M(Ω) ×M(Q), (46)

‖u0k‖L1(Ω) = ‖u0k‖M(Ω) ≤ ‖ū0‖M(Ω) ∀k, (47)

‖uk‖L1(Q) = ‖uk‖M(Ω) ≤ ‖ū‖M(Q) ∀k. (48)

From [4, Lemma 2.6.] we know that in this setting the sequence {yk}k converges strongly to

ȳ(ū0, ū). The weak∗ convergence property (46) delivers the following estimates:

‖ū0‖M(Ω) ≤ lim inf
k→∞

‖u0k‖M(Ω)

(47)
≤ ‖ū0‖M(Ω) and ‖ū‖M(Q) ≤ lim inf

k→∞
‖uk‖M(Q)

(48)
≤ ‖ū‖M(Q).

Hence, ‖u0k‖M(Ω) → ‖ū0‖M(Ω) and ‖uk‖M(Q) → ‖ū‖M(Q). Analogously as in step II, we can now

deduce that

J(u0k, uk)
k→∞
−→ J(ū0, ū). (49)

As this sequence consists of regular controls we know from (45) that J(ũ0, ũ) ≤ J(ū0, ū). Due to

the uniqueness of the solution it is evident that (ũ0, ũ) = (ū0, ū) and we can deduce:

J(ũ0, ũ) = J(ū0, ū)
(39)
≤ lim inf

|σ|→0
Jvd(ū0,h, ūσ)

(45)
≤ lim inf

k→∞
J(u0k, uk)

(49)
= J(ū0, ū).

This shows lim|σ|→0 Jvd(ū0,h, ūσ) = J(ū0, ū) and from (39) we also know ȳσ ⇀ ȳ ∈ Lq(Q).

IV - proof of (3), (4) and (5)
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The convergence lim|σ|→0 Jvd(ū0,h, ūσ) = J(ū0, ū) gives (4). We can calculate

1
q
‖ȳ − yd‖

q

Lq(Q)
≤ lim inf
|σ|→0

1
q
‖ȳσ − yd‖

q

Lq(Q)
≤ lim sup
|σ|→0

(
Jvd(ū0,h, ūσ) − α‖ūσ‖M(Q) − β‖ū0,h‖M(Ω)

)

≤ lim sup
|σ|→0

Jvd(ū0,h, ūσ) − lim inf
|σ|→0

(

α‖ūσ‖M(Q) + β‖ū0,h‖M(Ω)

)

= J(ū0, ū) − lim inf
|σ|→0

(
α‖ūσ‖M(Q) + β‖ū0,h‖M(Ω)

)

(39)
≤ J(ū0, ū) −

(

α‖ū‖M(Q) + β‖ū‖M(Ω)

)

=
1
q
‖ȳ − yd‖

q

Lq(Q)
.

Combined with the weak convergence in Lq(Q) this shows the strong convergence (3). In a

similar way we can prove the first part of (5).

α‖ū‖M(Q)

(39)
≤ lim inf

|σ|→0
α‖ūσ‖M(Q) ≤ lim sup

|σ|→0

(
Jvd(ū0,h, ūσ) − 1

q
‖ȳσ − yd‖

q

Lq(Q)
− β‖ū0,h‖M(Ω)

)

(3)
= J(ū0, ū) − 1

q
‖ȳ − yd‖

q

Lq(Q)
− lim inf
|σ|→0

(

β‖ū0,h‖M(Ω)

)

(39)
≤ J(ū0, ū) − 1

q
‖ȳ − yd‖

q

Lq(Q)
− β‖ū0‖M(Ω) = α‖ū‖M(Q).

Finally, the remaining part of (5) follows directly from lim|σ|→0 Jvd(ū0,h, ūσ) = J(ū0, ū) and the

fact that we already showed the convergence of the other two terms. �

In order to solve (P∗
vd

) numerically we want to represent (37) by a matrix vector multiplication.

From [7, Section 4] we know that this will deliver a Crank-Nicholson scheme with a smoothing

step. Setting zk,h ≔ zσ(·, tk) ∈ Yh and zk ≔ zk,h ⊗ etk ∈ Vσ, we obtain the left hand side of (37):

A(yσ, zk) = (yk+1,h − yk,h)⊤Mh zk,h + ( τk

2
yk,h +

τk+1

2
yk+1,h)⊤Ah zk,h ∀ k ∈ {1, . . . ,Nτ − 1}.

The next step is to calculate r(zσ) ≔
∫

Ω
zσ(x, 0) du0+

∫

Q
zσ du for the basis functions zk. Keeping

the implicit discrete structure of the controls (u0, u) in mind, we identify u0 with u0,h ∈ Uh

and u with
∑

k uk,h ⊗ δtk ∈ Uvd. Additionally we know that 〈δx j
⊗ δtk , ei ⊗ etl〉

Nτ,Nh

k,l=1, j,i=1
= INσ

.

Thus we obtain r(zk) = u⊤
k,h

zk,h for k ∈ {1, . . . ,Nτ − 1}. For the initial control we have the

relation MhY0,h = u0,h. Transferring the equations into a matrix vector multiplication with S vd :
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Yh × Yσ → Uh ×Uvd, we obtain





Mh 0 . . . . . . 0

(−Mh +
τ1

2
Ah) (Mh +

τ2

2
Ah)

...

0
. . .

. . .

...
. . .

. . . 0

0 . . . 0 (−Mh +
τNτ−1

2
Ah) (Mh +

τNτ

2
Ah)









y0,h

y1,h

y2,h

...

yNτ,h





=





u0,h

u1,h

u2,h

...

uNτ−1,h





.

(50)

As before it holds S ∗
vd
= S ⊤

vd
. Analogous to the previous chapter we want to look at the discrete

version of the dual problem (P∗). In this case (P∗
vd

) can be formulated as:

min
w∈U∗

h
×U∗

vd

Kσ(w) ≔ 1
p
‖S ∗vdw‖

p

Lp(Qh)
+ 〈S ∗vdw, yd,σ〉Lp(Qh),Lq(Qh) (P∗

vd
)

s.t. ‖wσ‖∞ − α ≤ 0 and ‖w0,h‖∞ − β ≤ 0.

Obviously the above problem is similar to (P∗σ), except for S vd , S σ. Consequently the deriva-

tion of the optimality system is almost coincident with the procedure in Section 3. Substituting

S vd for S σ the setup is elementary and will not be explained here.

5 Computational Results

We will numerically solve (P∗σ) and (P∗
vd

) by a semismooth Newton’s method, using the respec-

tive optimality systems. To simplify, we fix u0 = 0. This leads to simplifications in the previous

results from Section 3 and Section 4. The first row and column of S σ and S vd can be eliminated.

Consequently the constraint ‖w0,h‖∞ − β ≤ 0 in the problems (P∗σ) and (P∗
vd

) disappears. Fur-

thermore the dimension shrinks from Nσ+Nh to Nσ and the variables λ3 and λ4 do not appear in

the Lagrangians. The dimensions in the optimality system are reduced accordingly, as we only

look at k = 1, . . . ,Nτ and (24) does not have to be considered. In this section all variables are

specified as their discrete representatives, hence we omit the indices. As our domain we choose

Ω = [0, 1] ⊂ R and I = [0, 3
2
]. We assume that our mesh is equidistant, consequently every cell

is of size τ · h. We set κ = 1 and q = 4
3

and can directly calculate p = 4. Using quadrature

formulas, we can calculate the representation of (22) and the first block of (25) .

We generate a target by calculating the associated state ytrue for a known utrue. Our example
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true (Pσ) with α = 0 (Pvd) with α = 0

Figure 1: Numerical setup on 10 × 15 space-time grid with q = 4
3
. Top row: True source utrue

and calculated controls uσ,d and uvd,d for α = 0. Bottom row: The true state ytrue (sampled

from the analytic solution with spacial Fourier modes) and the corresponding calculated states

yσ,d and yvd,d for α = 0.

problem is a source identification that inherits an obvious sparsity. If the penalty parameter

α equals zero, the only admissible point for the problems (P∗σ) and (P∗
vd

) is w ≡ 0 and (26)

shows that this leads to uσ,d = S σyσ,d and uvd,d = S vdyvd,d respectively. The corresponding

visualizations are displayed in Figure 1.

Due to discretization errors the controls for α = 0 are not very sparse. We will raise the penalty

parameter α, because this will lead to a decrease in the norm of the control and we expect

a smaller support. The influence of α can be observed by plotting the norm of uσ and uvd

respectively for a range of α. There exists a value ᾱi, such that for all αi ≥ ᾱi the optimal control

corresponding to yd is ui ≡ 0 with i ∈ {σ, vd}. Additionally it is interesting to look at the values

of ‖yi − ytrue‖L4/3 , i ∈ {σ, vd} for changing α. We plotted the dependences in Figure 2.

True to our expectations, the control norms are monotonically decreasing in α and eventually

go to zero, while the errors ‖yσ − ytrue‖L4/3 , i ∈ {σ, vd} and ‖yvd − ytrue‖L4/3 , i ∈ {σ, vd} grow.
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Figure 2: The dependence on the penalty parameter α of the measure norm of uσ and uvd (left)

and the errors yσ − ytrue and yvd − ytrue in the L
4/3 norm (right).

The graphs for both strategies look very similar, which makes sense, as we discretized the same

problem and both discretization strategies converge towards the true solution.

To compare the two discretization strategies, we choose a value of α that leads to a norm of the

controls, which is not zero nor maximal. The reconstructed controls and states are displayed

in Figure 3. If the control utrue is not located on our space-time grid, it will be not possible

to reproduce its support exactly. In the variational discretization approach a remedy might be

choosing a test space Vσ consisting of piecewise quadratic – or even higher order – functions

in time. Thereby the maximal values of the test functions ±α could be attained not only at grid

points, but also inside the time intervals. Determining the location of these maximal values

would mean to determine the exact position in time of the potential support of the control. This

will be part of further research.

While deriving the algorithms to solve the discrete problems, we observe many similarities. The

implementation and the level of difficulty in programming is comparable for both approaches

and using a homotopy we also observe similar iteration counts.

The main advantage of the variational discretization compared to the discontinuous Galerkin

discretization is the maximal discrete sparsity of the control achieved by choosing a suitable

Petrov-Galerkin-Ansatz and -Test space.
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true (Pσ) with α = 0.5826 (Pvd) with α = 0.5826

Figure 3: Top row: The true control and the optimal controls uσ and uvd for α = 0.5826. Bottom

row: The true state ytrue (sampled from the analytic solution with spacial Fourier modes) and

the corresponding calculated states yσ and yvd for α = 0.5826.
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