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GENERALIZED LOGARITHMIC GAUSS CURVATURE FLOW OF
THE LEAVES OF A FOLIATION

HEIKO KRONER

ABSTRACT. In our paper we study a generalized logarithmic Gauss curvature
flow of the leaves of a foliation of R™*1\ {0} consisting of uniformly convex
hypersurfaces. We show that there is exactly one leaf in this foliation so that
its flow converges to a translating solution of the flow equation, the flows of
the leaves in its open convex body shrink to a point and the flows of the leaves
outside its closed convex body converge to expanding spheres.

1. INTRODUCTION AND MAIN RESULT

Let f be a positive, smooth function on S™ and let (Mg)oso be a foliation of
R™*1\ {0} by embedded, closed, uniformly convex (i.e. the Gauss curvature is
positive) hypersurfaces Mg where we assume that © can be viewed as a smooth
function with non-vanishing gradient. W.l.o.g. we assume that the monotone or-
dering of the associated open convex bodies Cg of the Mg with respect to inclusion
is increasing, cf. Remark 3.1. We study the motion of the initial hypersurface Mg
with normal speed given by log(?) where F is a curvature function with inverse F
satisfying Assumption 1.3. We show that there exists ©* > 0 such that if © < ©*
the flow hypersurfaces shrink to a point in finite time, if © > ©* they expand to
an asymptotic sphere, and if © = ©* they converge to a translating solution to the
flow equation.

The above scenario in the special case F' = K, K the Gauss curvature, and
(Mo)o>o being a family of homothetic transformations of an embedded, closed,
uniformly convex hypersurface My in R" ™!, i.e. Mg = ©My, corresponds to the
logarithmic Gauss curvature flow approach to the Minkowski problem of Chou and
Wang [5]. They even obtain for © = ©* convergence to a translating hypersurface
with Gauss curvature (when considered as a function of the normal) given by an
expression depending explicitly on f.

We introduce the setting of our paper more detailed. Let (Xg)oso be a family
of embeddings Xg : S” — R™"! of Mg. Let F be a curvature function with inverse
F satisfying Assumption 1.3. We consider the evolution of convex hypersurfaces
M (t), parametrized by X (-,t), so that

(1.1) 88_): = —log§u
with
(1.2) X(p,0) = Xe(p)-
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Here, v(p,t) denotes the unit outer normal of M(t) at X(p,t), f = f(v(p,t)) is
considered as a function of the normal, F' = F(k;) is a curvature function as above
and r; are the principal curvatures of M (t).

We obtain the following main results, compare with [5].

Theorem 1.1. Let (Mg)oso be as above. There exists ©* > 0 and £ € R™ so that
we have for the flow (1.1), (1.2) with initial hypersurface Xo- that

(1.3) X(t)— €t — X*

in C™(S™), m € N, fort — oo where X* is the embedding of a smooth, uniformly
convex hypersurface, i.e. X(-,t) converges to a translating solution of the flow
equation (1.1).

Theorem 1.2. Let ©* be as in Theorem 1.1. If © € (0,0%) then the solution of
(1.1), (1.2) shrinks to a point in finite time. If © € (©*,00) then the solution ex-
pands to infinity ast goes to infinity. In the latter case, the hypersurface X (-,t)/r(t)
where r(t) is the inner radius of X (-,t) converges to a unit sphere uniformly.

In the following we recall some facts about curvature functions from [7]. Let
I' C R" denote a symmetric cone, (2,£%) a coordinate chart in R", (g;;) a fixed
positive definite 70:2(Q)-tensor with inverse (¢*/) and S = Sym(n) the subset of
symmetric tensors in 7%%(Q2). Let Sr be the set of the tensors (h;;) in S with
eigenvalues with respect to (g;;), i.e. eigenvalues of the TH1(Q)-tensor (g% hy;),
lying in I In this setting we always consider a symmetric function F' defined
in T also as a function F(k;) = F(hij, gij) = F(5(hij + hji),g:;) where the last
expression is defined for general (h;;) € T%?(Q2). Using these interpretations we
denote partial derivatives by

oF 0%F
(14) E= 5 1= gron,
and
g ) 1 g 0? 1
1. FY = F—hz hl i F”’klziF—hi‘ hl i )-
( 5) 8hu (2( J+ J)’gJ)7 ahijahkl (2( J+ J)agJ)

For a symmetric function F in I'y = {x € R" : k; > 0} we define its inverse F by

(1.6) F(k;l) =

K2

R i)eTlL.
F(Iil) (’i ) +
_ In the following assumption we list the properties which we need for the inverse
F of our curvature function F', especially F' of class (K*), cf. [7, Definition 2.2.15],
is feasible.

Assumption 1.3. Throughout the paper we assume that Fis a symmetric and
positively homogeneous of degree dy function F' € C*°(T';) N C%(T';) with

(1.7) For, =0,

. OF ,
(1.8) = o >0 inI'y
and

(19) eoFtI‘(hij) < Fuhzkhk V(h”) € SF+
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where ¢y = €(F) > 0 and where we raise and lower indices with respect to (gij).
Furthermore, we assume that (i) or (ii) hold where
(i) means that F is concave and dy = 1 and
(ii) means that

~ .. ~ ~ .. 2 ~ o~
(1.10) Bt < B (Fny) " = F*Wgma vy € S

where (h*) is the inverse of (h;).

Assumption 1.3 is independent from the chosen tensor (g;;) but expressions like
I:"(hij) depend on (g;;) where the latter will always refer to the corresponding
induced metric and will be suppressed in the notation.

We mention some related literature. The flow (1.1) in the case F = K in [5] is a
gradient flow of a certain functional and is used in [5] for a variational proof of the
Minkowski problem in the smooth category which is the problem of finding a smooth
convex hypersurface with Gauss curvature (when considered as a function of the
normal) equal to a prescribed positive, smooth function f on S™. The Minkowski
problem in the smooth category has been solved in [9, 12, 13, 2, 14] and previously
in [10, 11] in the case where one wants to find a (not necessarily smooth) convex
hypersurface with area measure equal to a certain prescribed Borel measure on
S™. While in [5] the prescribed curvature is given as a function of the normal a
similar problem with prescribed curvature function defined in R**! and a similar
flow are considered in [4]. Concerning boundary problems in the non-parametric
case for similar flows and equations we refer to [17, 15, 16, 18] and the references
therein. In doing so we especially refer to [16] and [15] for the case of more general
curvature functions. The latter studies the second boundary value problem for a
generalized non-parametric Gauss curvature flow. The class of feasible curvature
functions therein is similar to the one we use in our paper and similar to our paper
the obtained translating speed in the limit is not given by an explicit expression of
the initial data.

In the remaining part of the paper we prove Theorem 1.1 and Theorem 1.2 fol-
lowing the argumentation in [5] and adapting it where necessary. This uses an
explicit expression (Monge-Ampere equation) for the Gauss curvature of a hyper-
surface in terms of the second derivatives of the restriction u of the homogeneous
degree one extension of the support function of the hypersurface to a tangent plane,
cf. [5, Equ. (1.2)] and the end of page 738 therein for such a representation of the
Gauss curvature. To handle the fact that an explicit expression in terms of the
second derivatives of u does not seem to be available for the curvature F' we use
instead the well-known representation (2.8) of the principal radii of a hypersurface
as zeros of a determinant of a certain matrix in Sym(n + 1) and that we can write
these zeros in special cases as eigenvalues of appropriate matrices in Sym(n), see the
proof of Lemma 2.4. In Section 2 we prove a priori estimates, especially the crucial
estimates for the principal curvatures. In Section 3 we use the a priori estimates
from Section 2 to prove our main results.

We thank Oliver Schniirer for telling us this interesting problem and the sugges-
tion to apply his method from [15] to a derivative of the support function, which
we use in (ii) of the proof of Theorem 1.1 in Section 3, to deduce convergence to a
translating solution when corresponding a priori bounds are available.
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2. A PRIORI ESTIMATES

We recall some facts about the support function of a closed and convex hyper-
surface M in R**! from [5], see also [14] and [2]. The support function H of M is
defined on S™ by

(2.1) H(x)=supz-y

yeM
where the dot denotes the inner product in R"*!. We extend H to a homogeneous
function of degree one in R**'. So H is convex and we have

(2.2) sup |[VH| < sup |H|
sn sn

since it is the supremum of linear functions. If M is strictly convex, i.e. for each
2 in S™ there is a unique point p = p(z) on M whose unit outer normal is z, H is
differentiable at  and

0H

2. o = 5
(2.3) Po=5.—

a=1,...,n+ 1.

Furthermore, given an orthonormal frame fields e, ..., e,, on S™ and denoting covari-
ant differentiation with respect to e; by V; the eigenvalues of (V;V; H+HJ;j)i j=1....n,
are the principal radii of curvature at p(x). When H is viewed as a homogeneous
function over R"*!, the principal radii of curvature of M are also equal to the
non-zero eigenvalues of the Hessian

2
(2.4) (87]{)
0x,0zg ,B=1,....n+1

on S".

We begin with a reformulation of Equation (1.1) locally in Euclidean space, cf.
Equation (2.14). Let H(-,t) : S™ — R be the support function of M (t) where
we denote its homogeneous degree one extension to R"*! again by H(-,t) and let
p(+) = p(-, t) denote the inverse of the Gauss map M (t) — S™.

Using
H X
(2.5) D=2 Lo, ces
we rewrite problem (1.1) as the following initial value problem for H
0H f ~
— =log = =logF
(2.6) or loe =l lf

H(x,0) =Hg(x)

where Hg is the support function for Mg and F a function of the principal radii
r; = ;" defined by

(2.7) F=F(k;) = F(e; )t =F(ry) L.

K2

We set u(y,t) = H(y, —1,t), y € R™. Then u(-,t) is convex and the principal radii
r; of X(-,t) in p(x,t), € S™, are given as nonzero zeros of the equation

(2.8) det B =0
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where B = (Baﬁ)a,ﬁzo,...,n with
2
_AT U1 Yn
(2.9) (Bag)= | ¥ Auir — 7 .. Mg
Yn )\unl )\unn —7r

A= (14424 ..+2)2 and z and y are related by

(2.10) = (y,=1)/vV1+y?
cf. [14, page 16], and note that we have rewritten the equation therein slightly.
Furthermore, we have

ou 0OH

t

Extending f to be a homogeneous function of degree 0 in R"*! we obtain the local
representation of (1.1) in terms of u

o -
(2.12) 6_1; =1+ y]PlogF+1(y), yeR",
where
(2.13) l(y) =1+ yl*log f(y,—1)

and F is evaluated at the zeros r; of Equation (2.8). For technical reasons we
rewrite this equation slightly by using the homogeneity of F’

0 -
(2.14) o= VTP log FO o) +g(y), v ER,
where
(2.15) 9(y) = U(y) + 3dpAlog A.

From the maximum principle one gets an analogous comparison principle as [5,
Lemma 2.1] which implies uniqueness of a solution of (2.6).

Lemma 2.1. Fori = 1,2 let f; be two positive C%-functions on S™ and H; C%*'-
solutions of

0H; ~
(2.16) pTal log F'f;.

If Hi(x,0) < Ha(x,0) and fi(x) < fa(x) on S™ then Hy < Hy for all t > 0 and
Hy, < Hy unless Hy = Ho.

In the following we will always assume that H € C°°(S™ x [0,T1]) is a solution of
(2.6). We denote the outer and inner radii of the hypersurface X(-,t) determined
by H(-,t) by R(t) and r(t), respectively, and set

(2.17) Ry =sup{R(t) : t € [0,T]}
and
(2.18) ro = inf{r(t) : t € [0, T]}.

The goal of the present section is to estimate the principal radii of curvatures of
X (+,t) from below and above in terms of rg, Ry and initial data.
We state two lemmas needed in the following.
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Lemma 2.2. Let r and R be the inner and outer radii of a uniformly conver
hypersurface X respectively. Then there exists a dimensional constant C' such that

R2
(2.19) - < Csup{R(z,§) : x,& € S™},

where R(x,§) is the principal radius of curvature of X at the point with normal x
and along the direction &.

Proof. See [5, Lemma 2.2]. O

Lemma 2.3. Let a(t),b(t) € C1([0,T]) and a(t) < b(t) for all t. Then there exists
h(t) € C%1([0,T]) such that

i) alt) — 2M < h(t) < b(t) + 2M,

ii) sup{ MU=l 24y 1y € [0, T} < 2max{sup, b'(¢), sup, (—a'(1))},
where M = sup,(b(t) — a(t)).

Proof. See [5, Lemma 2.3| O

In the following lemma we prove an upper bound for the principal radii of cur-
vature.

Lemma 2.4. For any v € (1,2] there exists a constant ¢, which may depend on
initial data such that

(2.20) sup{Hee(z,t) : (x,t) € S" x [0,T],£ € T,S™, [§] =1} < ¢y (14 D7),
where D = sup{d(t) : t € [0, T} and d(t) is the diameter of X (-,t).

Proof. We adapt the proof of [5, Lemma 2.4]. Applying Lemma 2.3 to the functions
—H(—e;,t) and H (e;,t) where +e; are the intersection points of S™ with the x;-axis,
i=1,..,n+ 1, we obtain p;(t) so that

(2.21) — H(—e;,t) — 2D < pi(t) < H(e;,t) + 2D
and
pi(t1) — pi(ta)| }
supq PRl e [0, T
(2.22) p{ |t — ta] vtz € 0.7]
< 2sup{H(x,t) : (z,t) € S™ x [0,T]}.
Henceforth
n+1
(2.23) ’H(:v,t) - Zpi(t):vi <ecD for (z,t) € S" x[0,T],
i=1
and by (1.1)
n+1
(2.24) > [Hi(z,t) — pil* < eD?.
i=1
Let
n+1 2
(2.25) O(x,t) = Hee(a,t) + |1+ Y [Hi(x,t) — pi(t)]
i=1

where v € (1,2]. Suppose that the supremum
(2.26) sup{®(x,t) : (z,t) € S™ x [0,T1], tangential to S™, |¢| = 1}
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is attained at the south pole x = (0,..0,—1) at ¢t = ¢ > 0 and in the direction
& = e;. For any = on the south hemisphere, let

- .2 Tz _ T1Tp41
(2.27) {(z)-(ﬂl x7, N 1_:62).

1

Let u be the restriction of H on x,41 = —1. Using the homogeneity of H we
obtain, after a direct computation,

n+1

Z(Hi —pi)?(z,t)
(2.28) =t )

=Y (wily,t) = pi(0)” + [u(y, 1) + Pat1 — Y viti(y, )
i=1 i=1
and
(14 y24 ... +y2)2

2.29 Hee(z,t) =u ,t ,
(2:29) ee(w,t) = ui(y,t) T Sr——
where y = — (21, ..., 2pn)/Tp+1 in R™. Thus the function

- 2 2
(2.30) 1+ys+...+y3
+ {1 + Z(Uz —pi)* + [u+ prs1 — Zyiui|2]

2

attains its maximum at (y,¢) = (0,%). Without loss of generality we may further
assume that the Hessian of u at (0,?) is diagonal. Hence at (0,%) we have for each
k

3

—2

0 < ¢ =ur1r + y[(wi — pi) (Wit — Pize) + (W + Prsr) (we +pn+1;t)]QwTa

(2.31) .
0 =pr = ur1k + v(ui — pi)uiQ@ 2
and
—2
(2.32) 0 >0re = Ukk11 + Tetiar + Y[uiy + (s — Pi)tike — (U + Ppg1)ure] Q7

y—4
+ (v = 2)(wi — pi) A QT

where Q =1+ > (u; —pi)? + (u+pnt1)?, e =1if k> 1, 71 =3 and p;;y = d;;”.
On the other hand, we are going to differentiate equation (2.14). In (0,%) we
have y = 0 and the Hessian (u;;) is diagonal, hence B is diagonal.
Let us fix y; = 0,41 = 2,...,n, and vary y; for a moment. In this case we rewrite
Equation (28) by using the matrices B1 = (Bij)i,jzl n and B2 = (Bij)iﬁj:Q

.....
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as follows. We have for r £ 0 that

det B=0
-2y 0 0
Y1 Auip —r Auqa AU1p
& det 0 g1 Ao — T ... Auay, =0
0 A1 A2 cei AUpp — T

/\2
& ——det B' —yidet B> =0
T

yir
(2.33) & det B + % det B2 =0
)\ull - T (1 - K—z) AU12 /\uln
< det )\u21 )\'LLQQ —-Tr .. /\UQn =0
Ay g Ay R
)\311,11 - T /\211,12 )\2’U,1n
<:>det )\2u21 AUQQ - T /\UQn _ O
A up A2 T N
Setting
)\ull )\Ul /\3U11 /\2U12 )\Quln
(2 34) (a- ) o " (al) o A2u21 )\'LLQQ /\UQn
’ X ’ ’ e
)\unl o )\unn A2un1 )\’U,ng oes /\unn

the zeros of Equation (2.8) can be written as eigenvalues of the matrix (a}j). Anal-
ogously, defining for r = 1, ..., n the matrix (a};) as the matrix which is obtained by
multiplying row r and column r in (a;;) with A we can write the zeros of Equation
(2.8) as eigenvalues of the matrix (aj;) in the case where we vary y,, r fixed, and
fix y;, =0 for i # r.

Hence we may write F in (2.14) as

(2.35) F=F0\ ) = F(a})
where
(2.36) (aj;) = A(aj;)

if (y,t) = (0,...,0,¥:,0,...,0,t). And we have in (0,%) that

OF - PF
(237) 8—yk = F”afi;k A\ @ == F”a’i?i;kk + F”’Tsafj;kafs;k
where we do not sum over k and where we used [7, Lemma 2.1.9] to deduce that
FJ is diagonal. Here and in the following we sometimes denote partial derivatives
by indices separated by a semicolon for greater clarity of the presentation
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Differentiating (2.14) gives in (0,%) that
upe = (1+ |y|2)_% yrlog F ++/1+ |y|2i~ﬁijdfj.k + g
(2.38) gk =log F — —F” ak Frak g+ = F” A
+ FF”dij;kk + Gkks

here, we do not sum over k. Hence at (0,%) we have

1 -
OZZFFMSDM—%
k

1 -
:Z FFkk@kk —

1 1 -
—Z ki1 + = F*Fuim
B F

’11

(v — 2)(ur, — pr)?
14> (u; — pi)? 4 (u+ ppi1)?
1

+ (uz - )( F Uips — uzt) F Uk (u + pn-i—l)

+7{Tl3“’“’“uik[1 +

—2
—(u+ pn+1)(ut + Pntiyt) + (Uz' - pz‘)pi;t}QwT — Uiy

1 - o

ZTFkkull - 10gF+ ~_2FU 1FTS rs 1 FZ]7TS 113 1d71“s 1
(2.39) . L
FF akk 11— 911+ FF Ukk11

+1{(y - 1)513%“%1@ = (ui = pi)gi
1 - i 1 -
+ FFTS(UTSZ' - ars;i)(ui _pi) - kakukk (u +pn+1)

y—2
— (u+ ppt1)(ue + Poyie) + (Wi — pi)pin}Q 2
1 ~ -
ZFFkkull — 10gF
1~ _
+ = F¥ (w1 = @hgn) — 911
F
] 1 [rs ~q
+{ (v = DeoH — (u; — pi)gi + FF (Ursi — @y.s.;) (i — pi)
v—2
—do(u+ pnt1) — (W prg1) (e + Prg1e) + (W —pi)pit JQ ™%

where we used for the last inequality (1.9) and (1.10) or the concavity of F, cf.
Assumption 1.3, and denoted the trace of (u;;) by H. From

_~r =7 ~r T
(2.40) Uij = Qi5 N Uijik = Qg N Qe = Uppqy

and

(2.41) A1 = Wil — 2Usi
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for i # 1 in (0,7) we conclude that

1 - .
0 ZFFkkull —log F' — g11

(2.42) +v{(v — Deourr — (w; — pi)gi — do(u + pny1)

y—2
= (U A+ prg1)(ue + prgre) + (u — pi)pid}Q 77
From (2.23) and (2.24) we deduce that |u+ pp+1]| < eD and |u; — p;| < ¢D so that

(2.43) (v = 1)eoeDY 2uyy <log F + ¢+ cQ™ = D(1 + |uy| + | Hy|)

and hence

(2.44) u1 < eD?* 7V loguyy +eD*77 4 ¢D(1 + logui)

which implies the claim. O

Corollary 2.5. For any v € (1,2] there exists § = 6(y) > 0 such that

SR(t)?
(2.45) r(t) = 1 +sup, <, Ry(1)

Proof. Use Lemma 2.2 and Lemma 2.4. 0

In the following lemma we estimate H; from below. In view of Lemma 2.4 and
Equation (2.6) this immediately implies a lower bound for the principal radii of
curvature.

Lemma 2.6. There exists a constant ¢ depending only on n, ro, Ry, [ and initial
data such that

(2.46) inf{H;(z,t) : (z,t) € S" x [0, T]} > —ec.
Proof. We adapt the proof of [5, Lemma 2.6]. Let
(2.47) 0t) = — [ wH(z,t)do(x)

5™ Jgn

be the Steiner point of X (-, ). Then there exists a positive ¢ which depends only
on n, rg and Ry so that

(2.48) H(z,t) —q(t) -z > 24.
We assume that the function

Hi(x,t
(2.49) bx,t) = t(@,1)

H(z,t)—xz-q(t)—9
attains its negative infimum on S™ x [0,T] at z = (0,...,0,—1) and ¢ € (0,7] and
that (u;;) is diagonal. Let u be the restriction of H to x,4+1 = —1 as before. Then

(2.50) by, 1) = uely. )

u(y, ) = q(t) - (y, =1) = 53/ 1 + [y[?

attains its negative minimum at (0,¢). Hence in this point we have

dqn+1
Uty ug(ug + =)
2.51 0> = _ 7
(2.51) >y Ut g (t) =0 (Ut gua(t) — 0)2
(2.52) 0=y = Utk __w(uk — gr (1))

Ut gni1(t) =6 (u+gnia(t) —6)?
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and

Utkk B Utk n duy '
Ut gni1(t) =6 (Ut gu1(t) —6)*  (u+ guia(t) — 9)?
Using the notation from the proof of Lemma 2.4 we get on the other hand by
differentiating (2.14) that in (0,7)

(2.53)  0< =

1 ~..
(254) Ut = FF”uijt.

We have in (0,7) using that (F/) is diagonal
1 -~
0 SZ kakﬂfkk — Y
5ut—1}; Zlﬁkk _ ;ﬁpkkukkut + g (uy + %)

(U + gny1 —0)?

Since uy is negative at (0,7), it follows that
Ly o
F3

<

(2.55)

(1 + Jue])
(2.56)
(14log F~1)

S >0

where we used the homogeneity of I and where ¢ = ¢(f, Rp).
Now we distinguish cases. In case (i) of Assumption 1.3 we have

(2.57) S FM = F(1L1,0)
k

in view of [7, Lemma 2.2.19]. Tt follows that F' > ¢ > 0 and

Up > —c—i—clogF
> —c

(2.58)

where ¢ depends on n, rg, Ry, f and initial data as claimed.
In case (ii) of Assumption 1.3 we choose iy € {1, ...,n} such that

(2.59) Uigig = 1IST111£” WU
and hence

N -
(2.60) F= d—OF”Un < cF"" w44,

in view of the homogeneity of F' and [7, Lemma 2.2.4]. Hence we estimate

Z ﬁvkk > Fioio

(2.61) g

F
>
cuim-o
and deduce from (2.56) that
(262) (uioio)il < C(l + log((uioio)il)
so that F' > ¢ > 0 and the claim follows as in case (i). O



12 HEIKO KRONER

Using a comparison principle and comparing the flow (2.6) with the ODE

9p _ po _
(2.63) % log (m) M, p(0) = po,

where M = max{f(z) : x € S"} and py sufficiently large, we obtain that H(x,t)
is bounded in any finite time interval. Furthermore, its gradient is also bounded
by (2.2). From Krylov-Safonov estimates and parabolic regularity theory, cf. [§],
one gets that problem (2.6) has for He € C*t%(S™) a unique C*+*2*+% solution in
a maximal interval [0, 7*), T* < oo and since Hg is even of class C° in our case
that this solution is also of class C°°. For the outer radius R(t) of X (-,¢) we have

(2.64) tllerQF R()=0

if T* is finite.

3. PROOF OF THE THEOREMS

We state some elementary properties of the foliation (Mg)eso in the following
two remarks.

Remark 3.1. For each Mg we denote the to Mg associated open convex body by
Co and have w.l.o.g (otherwise consider 1/0)

(31) 0, <6y = Ct—(—)1 C C(—)2.
Furthermore, all Cg contain 0, otherwise
(3.2) 0<d:=inf{®>0:Y5,6 0€ Cs} <00

where the last inequality is due to the fact that for p € R"*1\ {0} there is O(p) >
0 so that p,—p € Cg() and hence also 0 € Cg(,). We conclude 0 € My, a
contradiction.

Remark 3.2. For all » > 0 exist ©1,05 > 0 so that

(3.3) Mo, C B,(0) C Ceo,.
Proof. Let r > 0. Existence of O4 as claimed is clear in view of
(3.4) B,(0) ¢ | Ce.

©>0

Assume there are sequences 0 < O — 0, 2, € Co,, 2 ¢ B.(0). W.lLo.g. assume
vy — x € B.(0)°. Let p = 5. There is © = ©(p) > 0 so that p € Mg,. If [0, ]
meets Mg, tangentially in p then 0 ¢ Cg(,y in view of the uniform convexity of
Meg () which is a contradiction. Hence there is a neighborhood U of z so that for
every ¢ € U the segment [0, ] meets Mg(;,) non-tangentially. This implies

(3.5) U C (Cow)” C (Co,)*
for large k. On the other hand
(3.6) zpeUN C@k

for large k, a contradiction. O
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Proof of Theorem 1.1. (i) We follow the proof of [5, Theorem A]. Let m = infgn f
and M = supg. f. If the initial hypersurface Xg is a sphere of radius pg >

1
(%) ‘o , the solution X (-,¢) to the equation

0X F
(37) E:_loggyv X(',O):X@,

remains to be spheres and the flow expands to infinity as ¢ — oo. On the other

0X 1 F
— = — |og —
ot S
is a family of spheres which shrinks to a point in finite time. Henceforth by the
comparison principle and Remark 3.2 the solution X (z,¢) of (1.1) will shrink to a
point if © is small enough, and will expand to infinity if © > 0 is large.

Hence using Corollary 2.5 we obtain that the sets
A={0©>0:X(-t) shrinks to a point in finite time}
B ={0>0: X(-t) expands to infinity as t — oo}

(3.8) X(-,0) = Xo,

(3.9)

are non-empty and open since the solution X (z,t) of (1.1) on a fixed finite time
interval [0,T") depends continuously on ©. We define

(3.10) O, =sup A
and
(3.11) O = inf B.

and deduce ©, < ©* from the comparison principle.

Using Corollary 2.5 we deduce that for any © € [©., ©*] the inner radii of X (-, )
have a uniform positive lower bound and the outer radii are uniformly bounded from
above, furthermore, T* = oo in view of (2.64). Hence (2.6) is uniformly parabolic
and we have uniform bounds for DFD! X (-,-)if k+1 > 1, k > 0and ! > 0 on
S™ % [0, 00).

(ii) Let © € [©.,0*]. We shall use a method from [15] to show that our solution
that exists for all positive times converges to a translating solution. The main
difference from our case to [15] is that we argue on the level of a derivative of the
support function while [15] uses a graphical representation of the flow hypersurfaces.

One easily checks that a family of smoothly evolving uniformly convex hypersur-
faces represented by its family of support functions H (-, 1) is translating iff there is
¢ € R 5o that

(3.12) H(x,t) = H(z,0) + téx, xR

Let us fix 1 <+ <n+1 and let e, denote the corresponding standard basis vector.
Differentiating the homogeneous degree one extension (not relabelled) of (3.12) with
respect to x in direction e, we get

0 - 0 -
Hence %EI (+,t) is a scalar translating function. Conversely, if (3.13) holds then

H satisfies (3.12). Note, that H(0,t) = 0 and that 32—71}(',15) is homogeneous of
degree zero.
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Let H be a solution of (2.6). We denote the homogeneous degree one extension of
H to R™*! again by H and the homogeneous degree 0 extension of f to R"*1\ {0}
also by f. We recall the flow equation for H

0H -
(3.14) i logFf in S™x]0,00),
where F' = F(r;) and r;, i = 1, ..., n, are the principal radii of M () given as non-zero
eigenvalues of the Hessian matrix ( aazé{ ) . Using the homogeneity of
Ta0T8 ) o B=1,...,n+1

H this can be rewritten as a flow equation for H on (R™F1\ {0}) x [0, 00)

3H( - |8H < T t)
. T, =|\T|—77 T
(3.15) ot ot \Jz]

=|z|log F'f

where F' = F(r;) and r;, i = 1, ..., n, are the principal radii of M () given as non-zero

at (x,t) and f = f(z). We will re-
+1

. ] —2
eigenvalues of the matrix (|x| — gw)
« a,B=1

place (formally) the curvature function F' in Equation (3.15) by a curvature function
9°H )

B R Ozodzg a,f=1,...,n+1
at (x,t) and satisfies F(r;) = F(r,) in order to be notational in the framework of
the introduction. B - B

a) In the case that ' € C>°(I'y) and Fjsr, = 0 we define

. n+1 ~
(3.16) F(ry,ornn) = Y F(7*)

0([):1

F which depends on all eigenvalues 7o, a = 1,...,n+ 1, of (|x|

where 790 = (71, ..., Tag—1, Tag+1s s Tnt1)-
b) Let us consider the general case (which includes case a) ). In view of our a
priori estimates there are constants b1,bs > 0 so that the non-zero eigenvalues of

(8;9:52;3)%5:1““7”“ on S™ x [0,00) are in the interval [by, b2]. Having the later

application of the argumentation in [15, Subsection 6.2] in mind we remark that
this property carries over to the Hessians of convex combinations of H(-,¢;) and
H(-,t2) with arbitrary t1,t2 > 0. Note that the vector x is a zero eigenvector of
the Hessian of H at every (z,t) € S™ x [0,00). We define

(317) F(’f‘l,...,T‘n+1) :F(f)—f—f
on the set
(3.18) o= |J IL
1<a<n+1

where

b b b1 b b b
(3.19) I, = —l,oo X oo X —1,00 X ——1,—1 X —1,00 X oo X —l,oo

2 2 272 2 2
with factor (—%1, %1) at position a and where 7 = r,, = ming—1,.. nt17a, @ €

{1,...,n + 1} suitable, and # = (r1,..7ag_1,Tag41, - Ani1). We have F(r;) =
F(ry). From standard arguments we deduce that F defines in the way explained
in the introduction a differentiable function on the set of symmetric matrices with
eigenvalues in €.
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Differentiating (3.15) we get the following equation for H,

0 PN : f
(3.20) Hy(x,t) = |x|2EF ’ (Hv)aﬁ + [z]y log F'f + |515|7AY + dolx|y

ot
where F'*? is uniformly elliptic and the coefficients of the elliptic operator on the
right-hand side depend on the derivative of H, and x and not explicitly on ¢ or H,.

Applying the argumentation from [15, Subsection 6.2] more or less word by word
to the function H, on (B,,(0) \ B,, (0)) x [0,00), 0 < p1 < 1 < pa both close to 1,
where we use that ., is homogeneous of degree zero (instead of the compactness of
the spatial domain and the boundary condition when we apply maximum principles)
we obtain that H, converges smoothly to a translating solution of (3.20) with a
translating speed £ = £(0,7v) € R.

(iii) We show ©, = ©*. From (ii) we know that for every © € [O,,©0*] the
solution X (z,t) of (1.1) with initial value Xg converges to a translating solution
with a certain translating speed £g € R™H1.

a) We show that there is & € R"*! so that g = £ for all © € [O,,0*]. For this
let ©, < 07 < Oy < O* differentiating (2.6) in © gives

OH' y

- =AU (VY H + H'sy)
(3.21) t p

H'(0) =—=H
(0) =-gHe
where (A%Y) is the inverse of (V;V;H + §;; H). By the maximum principle
d
: ! > min —— :

(3.22) H'(z,t) > min d@H@(:v)
Thus

C(Ia t) + t(§@2 - g@l)x :H@z (Ia t) - H@1 (xv t)
(3.23) ©:

. d
o, ng}ln 70 Ho >0
where ¢(z,t) is a uniformly bounded function and where we used Lemma 3.3. This
implies {o, = o,-

b) Using a) we deduce from the comparison principle that H, = H* where H,
and H* is the solution of F' = e%* f starting from He, and He-, respectively. We
deduce from (3.23) with ©; = O, and O3 = ©* by using that He,(-,t) — He, (-, 1)
converges uniformly to zero as t — oo that ©, < ©* leads to a contradiction, hence
0, =0".

The proof of Theorem 1.1 is finished. O
Lemma 3.3.
d
3.24 —H, 0.
( ) 101e >

Proof. Let 0 < ©1 < O3 < 00, € S™. In view of DO # 0 there is ¢y = ¢o(©1) > 0
so that

(325) diSt(M@l,M(_)2) > Co(@g - @1)
For x € 5" let y, € Mg, be so that
(3.26) Ho, (x) = 2y, > 0
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and hence also

. Y
3.27 cp = inf z—— > 0.
( ) ! zesn |ym|

Let y be the intersection of the ray starting in 0 through y, with Me, then
(328) -y Z T Yy + 6001(62 — @1)
hence
(3.20) Ho,(z) >x -y, + coc1(02 — O1)
:I’I@1 (ac) + cocq (@2 — @1)
which implies

d
(3.30) (—H@(x)) > 0.

do |©=61

O

Proof of Theorem 1.2. We show that the normalized hypersurface X (-, t)/r(t) con-
verges to a unit sphere in case ©® > ©* and follow for it the lines of [5, Theorem
BJ. Since X is expanding, we may w.l.o.g. assume at ¢ = 0 that it contains the

1
ball B, (0) where Ry > 1+ (Z220) % iy — infgo £, and that it is contained
in the ball Bg,(0) where R > 0 is sufficiently large. For i = 1,2 let X;(-,t) be
the solution of (1.1) where f is replaced by m and M = supgn f respectively and
Xi(+,0) = 0Bpg,. The X,(-,t) are spheres and their radii R;(t) satisfy

(3.31) M1+t log(1+1) < Ri(t) < Ra(t) < (1 + (141t)log*(1 +1))
for some ¢ > 0. We deduce from the ODEs for the R; , i = 1,2, that
d Ro(t)

(3.32) - (Ba(t) = Ra(t)) <dolog

Ratt) €

<cloglog(1+1t)+¢c
where the last inequality uses (3.31) and hence
(3.33) Ro(t) — R1(t) < (1 +tloglog(l+1t))
so that
(3.34) tli)ngo %@]jl(ﬂ
By the comparison principle X (-,t) is pinched between Xs(-,t) and X;(-,¢) and,
furthermore, we deduce that X (-, t)/r(t) converges to the unit sphere uniformly. O

=0.

Combining the proofs of [5, Theorem A] and Theorem 1.1 we get the following
Corollary.

Corollary 3.4. In the situation of Theorem 1.1 with F = K the translating speed
& is uniquely determined by

(3.35) /Sn eg,fifi(@da(x):o, i=1,.,n+1.

And the Gauss curvature of X*, when regarded as a function of the normal, is equal

to e f(x).
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