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Abstract

We investigate an optimal control problem governed by a parametric elliptic
partial differential equation with uncertain parameters. We introduce a robust
optimization framework that accounts for uncertain model and optimization
parameters. The resulting optimization problem, then, has a bi-level structure
for the solution of this problem which leads a non-linear optimization problem
with a min-max formulation. The idea is to utilize a suitable approximation of
the robust counterpart. However, this approach turns out to be very expensive,
therefore we propose a goal-oriented model order reduction approach which
avoids long offline stages and provides a certified reduced order surrogate model
for the parametrized PDE which then is utilized in the numerical optimization.
Numerical results are presented to validate the presented approach.
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1. Introduction

Optimal control governed by partial differential equations (PDEs) is a well-
studied topic due to its relevance in industrial applications. If the model is con-
sidered to be perfect one can perform standard techniques to solve these type of
problems (see e.g. [20, 39] and the references therein). However, its numerical
approximation can be very expensive due to the dimension of the discretized
PDE. For this reason, in the last decade, model order reduction techniques were
introduced and successfully applied in the context of PDE constrained optimiza-
tion. Model order reduction works in a Galerkin projection framework, where
the basis functions are non-local and are build upon information of the underly-
ing system. Although a detailed description of these contributions goes beyond
the scope of this paper, we want to mention balance truncation which works
mainly for linear state equations (see e.g. [4]). More general techniques are the
reduced basis (RB) method and Proper Orthogonal Decomposition (POD). The
latter is manly used in the context of e.g. many-query scenarios (see e.g. [36])
for parametric steady problems where the basis functions are selected by means
of a greedy algorithm. The former works in more general situations such as
time-dependent problems, and parametric steady and unsteady equations (see
e.g. [42] for a presentation of the method within different applications). It is also
possible to combine RB and POD in the so-called Greedy-POD algorithm [18]
for parametric unsteady models. The strength of these methods is the presence
of an a-posteriori error estimator which certifies the quality of the surrogate
models. Model order reduction has been applied successfully to optimal control
problems in both open-loop (e.g. [21, 25, 37]) and closed-loop (e.g. [3, 6, 27])
frameworks.

For the purpose of this work we assume that the PDE which governs our
system is given but material imperfections are present. These are due to e.g.
manufacturing and generate introduce uncertainty to the model. This problem
arises in many real life applications. One way to include this uncertainty into
the optimization process is through robust optimization. In this case no proba-
bilistic model of the uncertainty is required. Instead, a deterministic approach is
applied by assuming that the uncertainty is restricted to a bounded uncertainty
set. Using the notion of a robust counterpart the associated original uncer-
tain optimization problem is reformulated. The solution obtained in this way
stays feasible for all realizations from the uncertainty set and at the same time
yields the best worst-case value of the objective function. An alternative, to
the presented approach are techniques which resolve the uncertainty by means
of stochastic optimization e.g. [10, 26, 32, 40]. These methods depend on sam-
pling the uncertain parameters and hence can become prohibitive expensive in
the context of PDE constrained optimization. For a general discussion of robust
optimization we refer to e.g. [7, 8, 9].

In this work the focus is on solving the robust counterpart in an efficient way
which is a challenging task due to its bi-level structure. The idea is to utilize
a suitable approximation of the robust counterpart, e.g. [12, 23, 28, 38, 44]
or exploit specific properties e.g.[23]. We investagate the approximation of the
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robust counterpart using a quadratic model. This allows us to reformulate the
robust optimization problem as a mathematical program with equilibrium con-
straints (MPEC). This approach has been investigated in [28, 38] in the context
of PDE constrained optimization problems. Our model will be a linear elliptic
parametric equation where an affine decomposition will be applied to work with
a reference parameter. The worst-case problem leads a non-linear optimization
problem with a min−max formulation. After approximating the inner maxi-
mization derivative based optimization is applied. In the setting of our work
we will utilize a sensitivity based approach since we assume to deal with few
parameters. This approach is computationally expensive because it requires the
solution of a PDE for each parameter. Therefore model order reduction is ap-
plied in order to reduce the complexity of the optimization problem [43]. In this
paper we consider the Proper Orthogonal Decomposition (POD) as a tool for
model reduction (we refer to e.g. [42] for more details on the topic). In particu-
lar, we will build a goal-oriented algorithm which avoids expensive offline stages
and updates the snapshot set in the direction of the suboptimal configuration.
In this way the reduced order model is enhanced during the optimization to fit
the requirements. The method is certified by an a-posteriori error estimator for
the state variable and the sensitivities. Therefore, error estimators for the state
and the sensitivities are required. A generalized error estimator is derived to
cover these needs. Thanks to these estimators we are able to build the algorithm
which provides efficient solutions reducing the complexity of the solution. This
approach complements the method proposed in e.g. [28] where in each iteration
of the optimization a new reduced order model is generated.

The paper is organized as follows: in Section 2 we present the mathematical
model and in Section 3 we present the nominal and the robust optimization
problem. Section 4 focuses on model order reduction for the optimization prob-
lem and in Section 5 we illustrate the effectiveness of the discussed methods by
numerical examples.

2. Elliptic Parametric PDEs

In this section we introduce our abstract model problem: we deal with a
linear elliptic equation with arbitrary boundary conditions, considering D ⊂
RM , M ≥ 1 as the parameter space and Ω(p) as a domain:{

For p ∈ D find ũ ∈ X(Ω(p)) s.t

ã(ũ, v; p) = f̃(v; p), ∀v ∈ X(Ω(p)),
(1)

where X is a suitable Hilbert Space, X ′ its dual space, p ∈ RNp a Np dimensional
parameter, Ω a regular bounded parameter dependent domain, ũ the unknown
variable, ã : X ×X ×D → R is a bilinear bounded and coercive form on X and
f ∈ X ′ are given by

a(w, v; p) =

∫
Ω(p)

∇w∇v dx and f(v; p) =

∫
Ω(p)

fv dx.
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Note that under these assumptions problem (1) admits a unique solution.
The function space X is such that H1

0 (Ω(p)) ⊂ X ⊂ H1(Ω(p)), with

H1(Ω(p)) :=
{
f ∈ L2(Ω(p)) : Dαf ∈ L2(Ω(p)), α ≤ 1

}
,

where f is a measurable function, Dαf denotes the weak αth− partial derivative
of f and the functional spaces L2(Ω(p)), H1

0 (Ω(p)) are defined as follows:

L2(Ω(p)) :=

{
f : Ω(p)→ R,

∫
Ω(p)

f(x)2 dx <∞

}
,

H1
0 (Ω(p)) :=

{
f ∈ H1(Ω(p)) : f ≡ 0 a.e. on ∂Ω(p)in the sense of traces

}
.

In order to obtain a computationally fast model and to avoid remeshing when
the parameter changes we require an affine decomposition which transforms
problem (1) to a fixed reference domain Ω̄ by means of a linear transformation.
For this purpose, let us assume that there is a piecewise-affine transformation

T : Ω̄→ Ω(p),

such that Ω(p) = T (p)Ω̄. Without loss of generality, we will consider only one
reference domain. As it is shown in e.g. [36], the parametric map T (p) and its
Jacobian JT allow the definition of the bilinear and linear forms on the reference
domain Ω̄.

Then, due to the linear transformation our problem reads:{
For p ∈ D find u ∈ X(Ω̄) s.t.
a(u, v; p) = f(v; p), ∀v ∈ X(Ω̄),

(2)

where the assumptions in problem (1) hold true. Note that the relations between
a(·, ·, p) and ã(·, ·, p) and for the right hand side f and f̃ are given by

a(u, v; p) = ã(J−1
T u, J−1

T v; p)|JT | and f(v; p) = f̃ |JT |.

Hence the bilinear form a(·, ·; p) can be expressed with an affine linear decom-
position:

a(u, v; p) =

Q∑
q=1

Θq
a(p)aq(u, v), (3)

such that Θq : D → R for q = 1, . . . , Q is a function depending on p and
aq : X ×X → R is parameter independent continuous bilinear form, i,e.,

aq(u, v) := ãq(u, v; p∗),

where p∗ is the reference parameter associate to the reference geometry. To
allow such decompositions, the computational domain is decomposed into Q
non-overlapping subdomains. This hypothesis on a(·, ·; p) allows us to improve
the computational efficiency in the evaluation of a(u, v; p): the components
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aq(u, v) can be computed once and then are stored in the so called offline stage
of the method. In other words we assume that the problem is affine dependent
on the parameter p. The same affine decomposition is applied to f with

f(v; p) =

Q∑
q=1

Θq
f (p)fq(v)

with fq(v) := f̃(v; p∗). This assumption is the key for the purpose of model
reduction as we will see in Section 4. Furthermore, we define the coercivity
constant that will be a key ingredient in the certification of the model reduction
algorithm, by

α(p) := inf
w∈X(Ω̄)

a(w,w; p)

‖w‖X(Ω̄)

, (4)

and the continuity constant as

γ(p) := sup
v∈X(Ω̄)

sup
w∈X(Ω̄)

a(w, v; p)

‖w‖X(Ω̄)‖v‖X(Ω̄)

. (5)

For the purpose of the optimization problem we will compute the sensitivities

u1
i := ∂u(p)

∂pi
which are obtained by the derivative with respect to the parameters

from equation (2) leading the following linear problem:{
For p ∈ D find u1

i ∈ X(Ω̄) s.t.

a(u1
i , v; p) = ∂f

∂pi
(v; p)− ∂a

∂pi
(u, v; p), ∀vh ∈ X(Ω̄), i = 1, . . . , Np.

(6)

We note that due to the affine decomposition the i-th partial derivative of
a(·, ·; p) and f(·; p) are given by the derivatives of coefficient functions Θq

a and
Θq
f , q = 1, . . . , Q and can be computed analytically. More general, the n-th

sensitivity can be computed by the following proposition. For this purpose, to
ease notation, let us assume that p ∈ R and therefore drop the index i. For p
vector valued the notation is cumbersome and does not add any scientific value.

Proposition 2.1. Let the coefficient functions Θq
a(p) and Θq

f (p), q = 1 . . . , Q,
be n-times differentiable with respect to p. Then the solution u is differentiable
with respect to p and the sensitivities un = ∂nu

∂pn ∈ X satisfy the sensitivity
equation

a(un, v; p) =
∂nf

∂pn
(v; p)−

n∑
k=1

(
n

k

)
∂ka

∂pk
(un−k, v; p), (7)

where
(
n
k

)
= n!

k!(n−k)! denotes the binomial coefficient.

The proof of the proposition follows from the general Leibniz rule for the
n-th derivative applied to (3) and is omitted here. Let us note that

(
n
k

)
:= 0 if

0 ≤ n < k. We can easily see that for n = 0 we find the state equation (2) and
for n = 1 the first sensitivity equation (6).
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Next, we introduce an high dimensional finite element (FE) discretization of
our model problem in the space Xh ⊂ X. The discrete problem then reads{

For p ∈ D find uh ∈ Xh(Ω̄) s.t.
a(uh, vh; p) = f(vh; p), ∀vh ∈ Xh(Ω̄).

(8)

For the discrete problem we use the ansatz uh =
∑N
i=1(uh)iϕi, where ϕi are

suitable FE ansatz functions. Problem (8) then is equivalent to the linear sys-
tem: {

For p ∈ D find uh ∈ RN s.t.
K(p)uh(p) = f(p),

(9)

where K(p) ∈ RN×N is the stiffness matrix (K(p))ij = a(ϕi, ϕj ; p), 1 ≤ i, j ≤ N ,

and the right hand side f(p) ∈ RN is obtained by (f(p))i = f(ϕi; p), 1 ≤ i ≤ N .
The FE system matrix keeps the dependency on the parameter p and we apply
the affine decomposition to it in the following way

K(p) =

Q∑
q=1

Θq
a(p)Kq, (10)

where Kq
a, q = 1, . . . , Q, are the system matrices on the Q sub-domains. We

can note again that the p dependency of K is now only in the weight functions
Θq
a which are easy and inexpensive to evaluate. We note that the same decom-

position is made for the right hand side. Similarly, the discretized version of
equation (6) reads:

K(p)u1
h,i(p) = f̃1

i , for i = 1, . . . , Np, (11)

which have to be solved with

f̃1
i =

∂f

∂pi
(p)− ∂K

∂pi
(p)uh for i = 1, . . . , Np,

where Np is the number of parameters in the problem and the subindex pi
indicates the derivative with respect to the i-th parameter. Note that these
derivatives are easy to compute due to the previously introduced affine decom-
position (10). The derivative of the matrix K(p) and the vector f(p) are given
by the derivatives of the functions Θq

a(p) and Θq
f (p), q = 1, . . . , Q, respectively.

For the general sensitivity equations (7) we get

K(p)unh =
∂nf

∂pn
(p)−

n∑
k=1

(
n

k

)
∂kK

∂pk
(p)un−kh . (12)

In the rest of the work we will work with the following following compact nota-
tion when appropriate:

∂nuh
∂pni

:= unh,i

in order to define the n−th derivative of uh with respect to the i−th parameter.
Similarly, we will adopt fni and Kn

i .
From now on we will focus on the discrete version (9) of the problem (1).

All further steps are analogous in the continuous setting.
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3. Optimization problem

In this section we formulate an optimization problem governed by a parametrized
PDE. We will investigate the nominal optimization and its robust counterpart.
The robust optimization problem takes uncertainties in model parameters into
account by utilizing a worst-case formulation. In this context we investigate
approximation techniques of different orders.

3.1. The nominal optimization

The nominal optimization problem under investigation is of the form

min
p∈RNp ,uh∈RNx

g̃0(p,uh), subject to (s.t.)

{
g̃i(p,uh) ≤ 0, i = 1, . . . , Ng,
e(p,uh) = 0,

(13)
where g̃0 is the objective function, g̃i are the Ng ∈ R inequality constraints, and
e the equality constraint governed by the discretized parametric PDE in (9).
Further, let g̃i, i = 0, . . . , Ng and e be continuously differentiable and let the
Jacobian ∂

∂ue(p, u) be invertible. In this work we focus on the finite dimensional
formulation since the main contributions are the incorporation of uncertainties
and model order reduction.

Let e(p,uh) = 0 have a unique solution uh = uh(p) for every admissible p.
Then we can introduce the reduced objective and constraint functions

gi(p) := g̃i(p,uh) for i = 0, . . . , Ng.

Consequently, the reduced optimization problem associated with (13) reads as

min
p∈RNp

g0(p), s.t. gi(p) ≤ 0, i = 1, . . . , Ng. (14)

Since e is continuously differentiable with invertible Jacobian ∂
∂ue(p, u), the

implicit function theorem guarantees that also uh is continuously differentiable
with respect to the parameter. Hence the reduced objective and the reduced
constraints gi(p), i = 0, . . . , Ng, are continuously differentiable. The reduced
formulation is the basis for the further investigation of the robust counterpart.

3.2. The robust optimization

Now we get to the robust optimization. For this purpose we associate a pa-
rameter φ with the model that is not exactly known and is subject to uncertainty.
In our case the parameter φ describes a model parameter and hence enters the
problem formulation through the equality constraint, i.e., e(p,uh;φ) = 0. The
goal is to formulate the robust version of (14). To begin with, we assume some
prior knowledge about the uncertain parameter. We assume that the uncertain
parameter remains within a given uncertainty set

Uk =
{
φ ∈ RNφ

∣∣ ‖D−1(φ− φ̂)‖k ≤ 1
}

=
{
φ ∈ RNφ

∣∣φ = φ̂+ δ, ‖D−1δ‖k ≤ 1
}
,

(15)

where φ̂ is a nominal value and k ∈ {2,∞}.
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Remark 3.1. Choosing D = diag((φ − φ)/2), φ̂ = (φ + φ)/2 and k = ∞, we

get as uncertainty set U∞ = {φ ∈ RNφ
∣∣φ ≤ φ ≤ φ}.

In the next step we want to formulate the optimization problem in such a
way that is robust with respect to changes in the uncertain parameter φ. For
this we choose the worst-case formulation [8, 12, 44]. With this approach we
incorporate the uncertainty into the nominal optimization problem (14). We
define the worst-case function as

ϕi(p) := max
φ∈Uk

gi(p;φ), i = 0, . . . , Ng.

The function ϕi : Uk → R gives for every fixed parameter p the worst-case value
of the function gi under the condition that φ lies in the uncertainty set. Using
the definition of the uncertainty set, the worst-case function can be rewritten
as

ϕi(p) := max
φ∈RNφ

gi(p;φ) subject to ‖D−1(φ− φ̂)‖k ≤ 1, i = 0, . . . , Ng.

Using this function we can now formulate the robust version of (14) as

min
p∈RNp

ϕ0(p) s.t. ϕi(p) ≤ 0, i = 1, . . . , Ng. (16)

This problem is referred to as the robust counterpart of (14). A solution p that
satisfies (16) is referred to as robust optimal solution. This optimal solution is
robust against uncertainty since it is feasible for (14) no matter which φ ∈ Uk
is chosen, and optimal with respect to the objective function g0.

The robust optimization problem (16) is difficult to solve due to its bi-level
structure. This has been investigated in [7] for a variety of problems. In [8] for
general nonlinear problems it was proposed to replace the robust counterpart
(16) by an approximation

min
p∈RNp

ϕ̂0(p) subject to ϕ̂i(p) ≤ 0, i = 1, . . . , Ng, (17)

where the approximated worst-case function ϕ̂i can be computed more efficiently
compared to the original worst-case function ϕi. The new problem is then
referred to as the approximated robust counterpart of (14).

In the following we investigate first and second order approximations of ϕi.
While the first order approximation has already been investigated for the general
nonlinear case in [12, 44], the quadratic approximation is new. The second order
approximation utilized in this work is a modification of the approach presented
in [38].

3.2.1. Linear approximation of the robust counterpart

Let us recall the suggested approach of [12, 44] and rewrite it using the
introduced notation. The linearization is carried out around a nominal value
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φ̂ of the uncertain parameter. Hence, we get for the approximated worst-case
function

ϕ̂i(p) := max
δi∈RNφ

gi(p; φ̂) +∇φgi(p; φ̂)δi s.t. ‖D−1δi‖k ≤ 1, i = 0, . . . , Ng.

This convex optimization problem can now be solved analytically and the solu-
tion is given by

ϕ̂i(p) = gi(p; φ̂) + ‖D∇φgi(p; φ̂)‖k∗ ,

where ‖D · ‖k∗ is the dual norm of ‖D−1 · ‖k with k∗ = k/(k− 1) and we define
k∗ = 1 for k =∞. Note that this is a standard result for scaled Hölder norms.
Utilizing these results the linear approximated robust counterpart reads as

min
p∈RNp

g0(p; φ̂) + ‖D∇φg0(p; φ̂)‖k∗

s.t. gi(p; φ̂) + ‖D∇φgi(p; φ̂)‖k∗ ≤ 0, i = 1, . . . , Ng.
(18)

Problem (18) is the linear robust approximation of the nominal optimization
problem (14). Note that the objective function and the inequality constraints
are nondifferentiable if the term inside the norm becomes zero. For the case
k =∞ this can be circumvented by introducing slack variables, i.e.,

min
p∈RNp ,ζi∈R

g0(p; φ̂) + ζ0 s.t. gi(p; φ̂) + ζi ≤ 0, i = 1, . . . , Ng,

−ζi ≤ D∇φgi(p; φ̂) ≤ ζi, i = 0, . . . , Ng.

For k = 2 there is no such reformulation. Since there are only very few points,
where this occurs there is a reasonable hope that standard algorithms for smooth
nonlinear problems might work without any modification. Nevertheless one has
to verify that the robust optimal solution does not lie in a nondifferentiable
point [12, 38].

The computation of the derivatives can be carried out using either the adjoint
approach or the sensitivity approach [20]. For a detailed discussion about the
different approaches we refer the reader to [12].

3.2.2. Quadratic approximation of the robust counterpart

The first order approach is numerically very efficient but can suffer from
an inaccurate approximation. Hence the influence of the uncertain parameter
φ might be described insufficiently. This was already observed in [13]. There-
fore, we seek for a higher order approximation. This approach was already
investigated in [38], where the objective function and inequality constraints are
approximated by quadratic Taylor expansions while the PDE constraint is lin-
earized. In the presented work the PDE constraint is eliminated in (13) by
introducing the reduced problem (14). By applying the second order approxi-
mation to (14) we implicitly apply the higher order approximation to the PDE
constraint. This strategy was recently investigated in [28]. Next we outline the
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construction of the robust counterpart. First we introduce the second order
Taylor expansion of the worst-case function:

ϕ̂i(p) := max
δi∈RNφ

gi(p; φ̂) +∇φgi(p; φ̂)δi +
1

2
δ>i Hi(p; φ̂)δi

s.t. ‖D−1δi‖k ≤ 1, i = 0, . . . , Ng,

(19)

where Hi is a symmetric approximation on ∇φφgi(p; φ̂). Compared to the first
order approximation, it is not possible to write down a closed form expression
for ϕ̂i(p). However, the quadratic approximation of the worst-case function
corresponds to a trust region problem with k = 2. For these problems, exact
solutions can be characterized by the following theorem [11, 20].

Theorem 3.1. The trust region problem (19) possesses a global solution δi if
and only if there exists a Lagrange multiplier λi satisfying

(−Hi(·, φ̂)+λiD)δi = ∇φgi(·, φ̂), λi(‖D−1δi‖2−1) = 0, λi ≥ 0, ‖D−1δi‖2 ≤ 1

and −H(·, φ̂) + λiD positive semidefinite with D = D−>D−1.

By adding a square to the norms in the constraints we relax the problem
and obtain the differentiable formulation of the quadratic approximation of the
robust counterpart

min
p∈RNp ,δ0,...,δNg∈R

Nφ ,λ0,...,λNg∈R
g0(p; φ̂) +∇φg0(p; φ̂)δ0 +

1

2
δ>0 ∇φφg0(p; φ̂)δ0

s.t. gi(p; φ̂) +∇φgi(p; φ̂)δi +
1

2
δ>i ∇φφgi(p; φ̂)δi ≤ 0, i = 1, . . . , Ng,(

−∇φgi(·, φ̂)−∇φφgi(·, φ̂)δi + λiDδi
λi(‖D−1δi‖22 − 1)

)
= 0, i = 0, . . . , Ng,

‖D−1δi‖22 − 1 ≤ 0, i = 0, . . . , Ng,

−λi ≤ 0, i = 0, . . . , Ng,

∇φφgi(·, φ̂)− λiD � 0, i = 0, . . . , Ng,
(20)

where A � 0 denotes that A is a negative definite matrix. The semidefinite
constraint can be reformulated using the smallest eigenvalues. This approach
was outlined in [38]. Note that (20) is a mathematical program with equilibrium
constraints (MPEC). This type of problem can be solved efficiently by a SQP
method under relatively mild assumptions [16, 29]. The required derivatives
for the quadratic approximation can again be derived in different ways. In this
work we assume that the number of parameters is small and we opted for a
sensitivity based approach.

4. Proper Orthogonal Decomposition for Parametrized problems

Numerical approximation for robust optimization problems can be expensive
since it involves the solution of several PDEs. Moreover, the sensitivity approach
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enlarge the number of PDEs and it increases the computational costs of its
approximation. For this reason, in this section, we introduce a model order
reduction technique in order to reduce the complexity of the problem.

Here, we focus on the Proper Orthogonal Decomposition (POD) method for
the approximate solution of the parametrized equation (9). In what follows
uh(p) ∈ RN is the model vector associated to the FE solution of (9) for a given
parameter p ∈ Mad ⊂ RNp . For this purpose let {pj}nj=1 be a grid in Mad and

let uh(pj) denote the corresponding solutions to (9) for the grid points pj . We
define the snapshots set V := span{uh(p1), . . . ,uh(pn)} and determine a POD
basis V` := span{ψ1, . . . , ψ`} of rank ` by solving the following minimization
problem:

min
ψ1,...,ψ`

n∑
j=1

βj

∥∥∥∥∥uh(pj)−
∑̀
i=1

〈uh(pj), ψi〉Wψi

∥∥∥∥∥
2

W

s.t.〈ψj , ψi〉W = δij for 1 ≤ i, j ≤ `, (21)

where βj are nonnegative weights, δij denotes the Kronecker symbol, W is a
symmetric positive definite N × N matrix and ψi ∈ Rn. The weighted inner
product used is defined as follows: 〈u,v〉W := u>Wv.

It is well-known (see [17]) that problem (21) admits a unique solution {ψ1, . . . , ψ`},
where ψi denotes the i−th eigenvector of the self-adjoint linear operator R :
Rn → Rn, i.e., Rψi = λiψi with λi ∈ RN non-negative, where R is defined as:

Rψ =

n∑
j=1

βj〈uh(pj), ψ〉Wuh(pj) for ψ ∈ Rn.

Moreover the error in (21) can be expressed as follows:

n∑
j=1

αj

∥∥∥∥∥uh(pj)−
∑̀
i=1

〈uh(pj), ψi〉Wψi

∥∥∥∥∥
2

W

=

d∑
i=`+1

λi. (22)

4.1. POD approximation for state and sensitivities

We briefly recall how to generate the reduced order modeling by means of
POD. Suppose we have computed the POD basis {ψi, . . . , ψ`} of rank ` according
to the minimization problem (21). For the weight matrix we choose

W := K(p̄) + M(p̄),

where p̄ is a fixed reference parameter and M denotes the mass matrix. Then,
W is the matrix associated to the discrete H1−norm. We define the POD
ansatz for the state as u`h(p) :=

∑`
i=1(ū`)iψi. This ansatz in (9) leads to an

`−dimensional linear system for the unknown {ūi}`i=1, namely

K`(p)ū(p) = f `(p). (23)
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Here the entries of the stiffness matrix are given by (K`)ij = ψ>i K(p)ψj for
1 ≤ i, j ≤ `. The right hand side is given by (f `)i = ψ>i f(p), 1 ≤ i ≤ `. We
recall that due to the previously introduced affine decomposition this projection
has to be computed only once and the system matrix can be written as

K`(p) =

Q∑
q=1

Θq
a(p)Kq,`,

where (Kq,`)ij = ψ>i Kqψj for 1 ≤ i, j ≤ ` and q = 1, . . . , Q. The same structure
can be used for the right hand side. Note that this is very important in order
to obtain an efficient reduced order model since the system can be set up for
different values of p without the need of the original high dimensional matrices
and right hand sides. The reduced order state equation reads:{

For p ∈ D find u`h ∈ V` s.t.
K`(p)u`h(p) = f `(p).

(24)

In an analogous way we obtain the general reduced sensitivity equation from
(12). We need to make an ansatz for the sensitivities un,`h,i and project the system
onto the subspace spanned by the POD basis. Note that in the present work
we use the same basis functions for the state and the sensitivities variables. A
better approximation property might be achieved by adding the solution of the
sensitivity equation to the snapshots set. Note that in the reduced sensitivity
equation the stiffness matrix is the same as in the reduced state equation, so
that only the right-hand side needs to be projected.

4.2. A-posteriori error estimations

A-posteriori error estimators have a crucial role in model order reduction.
They provide a certification of the surrogate model without the need of the
computation of the truth solution. In the present work, we consider as truth
solution the finite element approximation. A lower bound for the coercivity
constant α(p) in (4) is computed following the min−Θ theorem introduced in
[34]. It turns out that

αLB(p) := min
q

Θq
a(p)

Θq
a(p̄)

< α(p),

where p̄ is the fixed reference parameter. An upper bound for the continuity
constant γ(p) in (5) is given by

γ(p) < γUB(p) := max
q

Θq
a(p)

Θq
a(p̄)

.

For more details we refer the reader to [34]. Then, we can derive an error bound
for the reduced state and sensitivity equations (see [36] for more details) in
terms of the reduced residual of the aforementioned equations. For this purpose
let us define the residuals for equation (8) and (6) as

ru(v; p) := f(v; p)− a(u`h, v; p) ∀v ∈ Xh, p ∈ D, (25)
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ru1,i(v; p) := f1
i (v; p)− a1

i (u
`
h, v : p)− a(u`,1h,i, v; p) ∀v ∈ Xh, p ∈ D, (26)

where u`h =
∑N
i=1(u`h)iϕi. Then, we have

Theorem 4.1. Let uh ∈ Xh be the solution to (9) and u`h ∈ Xh be the corre-
sponding reduced solution of (23). Then, the error satisfies

‖uh − u`h‖Xh ≤ ∆`
u :=

‖ru(·, p)‖(Xh)′

α(p)
(27)

where the dual norm is defined as ‖ru(·; p)‖(Xh)′ ≡ supv∈Y \0
|ru(v; p)|
‖v‖Xh

.

Proof. It follows from (9) and the definition of the residual ru(v; p) that the
POD error, uh − u`h satisfies

a(uh − u`h, v; p) = f(v; p)− a(u`h, v; p) = ru(v; p) ∀v ∈ Xh(Ω̄). (28)

Choosing v = uh − u`h in (28), invoking (4), and the dual norm of the residual
we obtain

α(p)‖uh − u`h‖2Xh ≤ a(uh − u`h, uh − u`h; p) ≤ ‖ru(·, p)‖(Xh)′‖uh − u`h‖Xh ,

from which the result directly follows.�
Next theorem addresses the a-posteriori error for the first sensitivity equation

(11). For time dependent problems this has been shown in [14]. We recall the
result for our particular setting and provide a short proof.

Theorem 4.2. Let uh ∈ Xh be the solution to (9) and u`h ∈ Xh be the corre-
sponding reduced solution of (23). Further, let u1

h ∈ Xh be the solution to (11)

and u1,`
h ∈ Xh be the solution of the reduced sensitivity equations. Then, the

inequality

‖u1
h,i − u

1,`
h,i‖Xh ≤ ∆`

u1,i(p) :=
1

α(p)

(
‖ru1,i‖(Xh)′ + γpi(p)∆

`
u(p)

)
(29)

with γpi(p) = ∂γ
∂pi

(p) holds.

Proof. We denote the error of the state equation by eu := uh−u`h. It follows

from the linearity of the sensitivity equations (6) that the error eu1,i := u1
h,i−u

1,`
h,i

satisfies:

a(eu1,i, v; p) = a(u1
h,i, v; p)− a(u1,`

h,i, v; p)

= f1
i (v; p)− a1

i (uh, v; p)− a(u1,`
h,i, v; p) + a1

i (u
`
h, v; p)− a1

i (u
`
h, v; p)

= ru1,i(v; p) + a1
i (u

`
h − uh, v; p)

Let us now test choosing v = eu1
h
(p). Then,

α(p)‖eu1,i‖2Xh ≤ a(eu1,i, eu1
h
; p) = ru1,i(eu1 ; p) + a1

i (u
`
h − uh, eu1,i; p)

≤ ‖ru1,i(·; p)‖(Xh)′‖eu1‖Xh + γp(p)‖u`h − uh‖Xh‖eu1,i‖Xh
holds. By using (27) for the term ‖u`h − uh‖Xh the result follows directly. �
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General error estimate. The a-posteriori error estimates discussed in the
previous subsection can be generalized to the n − th sensitivity equation (12).
To provide the associated result we for the ease of notation again assume p ∈ R
and omit the index i.

Definition 4.3. Let uk,`h ∈ Xh, k = 0, . . . , n be the reduced order solution of
(12). We define the residual:

run(v; p) := fn(v; p)−
n∑
k=1

(
n

k

)
ak(un−k,`h , v; p)− a(un,`h , v; p) (30)

We note that for n = 0 and n = 1 we find the state and sensitivity residual (25)
and (26) Then, we have

Theorem 4.4. Let unh ∈ Xh be the solution to (12) and un,`h ∈ Xh be the
corresponding reduced solution of (12). Then, the following inequality holds:

‖unh − u
n,`
h ‖Xh ≤ ∆`

un(p) :=
1

α(p)

(
‖run‖(Xh)′ |+

n∑
k=1

(
n

k

)
γk∆`

un−k

)
, (31)

where γk is the continuity constant of the k-th derivative of the coercive bilinear
form.

Proof. We denote the error by eun := unh − u
n,`
h . With (7) we find that

a(eunh , v; p) = a(unh, v; p)− a(un,`h , v; p)

= fn(v; p)−
n∑
k=1

(
n

k

)
ak(un−kh , v; p)− a(un,`h , v; p)

+

n∑
k=1

(
n

k

)
ak(un−k,`h , v; p)−

n∑
k=1

(
n

k

)
ak(un−k,`h , v; p)

= run(v; p) +

n∑
k=1

(
n

k

)
ak(un−k,`h − un−kh , v; p)

Now we set v = eun and obtain

a(eunh , eunh ; p) = run(eunh ; p) +

n∑
k=1

(
n

k

)
ak(un−k,`h − un−kh , eunh ; p)

By applying Cauchy-Schwarz and using the coercivity of a as well as the conti-
nuity of ak we find

α(p)‖eunh‖
2
Xh
≤ ‖run(·; p)‖(Xh)′‖eunh‖Xh +

n∑
k=1

(
n

k

)
γk‖un−k,`h −un−kh ‖Xh‖eunh‖Xh

Bounding ‖un−k,`h − un−kh ‖Xh ≤ ∆`
un−k and dividing by α(p)‖eunh‖Xh leads to

(31). �
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Remark 4.1. We note that (31) is a generalization of the error bounds for
state and first order sensitivity equations. In fact for n = 0 we obtain (27), and
for n = 1 (29).

Remark 4.2. The presented generalized error estimator (31) is not limited to
the introduced setting arising from a parametrized shape optimization. In fact,
if only the linear form f depends on the parameter p, i.e., a(u, v) = f(v; p), the
error estimator reads

‖unh − u
n,`
h ‖Xh ≤

‖run‖(Xh)′

α
.

4.3. The POD method for optimization problem

In this section we explain how to solve the reduced optimal control problem.
To build the reduced order model we have to select some relevant parameters
related to the optimal control problem. The snapshot set is important for POD
model reduction, since the basis functions are built upon this set. Therefore, the
choice of the parameters should be done according to our optimal control prob-
lem. For this reason we propose a goal-oriented algorithm for the computation
of the POD basis functions. The goal is given by the error bound ∆`

un for state
and sensitivity introduced in Section 4.2. This error indicator helps also in the
selection of the snapshots set. The algorithm works as follows: we start with a
very coarse parameter sample choosing only one parameter p0 and solve the full
problem together with the sensitivity equations associated to this parameter.
Then we compute the POD basis functions and perform the reduced optimiza-
tion procedure. At the end of the process we find a new parameter p1 which is
an approximation of the optimal desired design, we update the parameter set
D = {p0, p1} ⊂ Mad, solve the full problem and the sensitivity equations re-
lated to the new parameter p1. Then, we enlarge the snapshots set and compute
new POD basis functions. We iterate this process until the stopping criteria is
reached.

The procedure is summarized in Algorithm 1.

Algorithm 1 (Goal-Oriented POD optimization)

Require: p0,u0(p0),V = [], k = 0, tol > 0
1: while ∆`

ui ≤ tol do
2: Compute sensitivities ui(pk), for i = 1, 2, 3, . . . Np
3: Set Snapshot set

V = [V,u0(pk),u1(pk),u2(pk),u3(pk), . . .uNp(pk)]

4: Compute POD basis functions {ψi}`i=1 with ` = rank(V)
5: Find pk+1 solving the OCP with the reduced order modeling (24)
6: Compute ui,`(pk+1) and ui(pk+1),
7: Set k=k+1
8: end while
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In our simulations this approach turned out to be very efficient since it avoids
long pre-computations. In this way we are able to update the snapshot set and
the POD basis functions. Our update contains information on the optimal
control problem and it improves the quality of our surrogate model. Note that
every reduced optimization problem contains the a-posteriori error for the state
and sensitivity equations introduced in Section 4.2. In this way we update the
snapshot set, and therefore the POD basis, not only when we are close to the
minimum of the problem, but even if the reduced model is not accurate enough.
However, our update contains information on the optimal control problem and
it improves the quality of our surrogate model.

5. Numerical tests

In our numerical example we consider an optimal design problem for a per-
manent magnet synchronous machine. We start by introducing the model and
geometry under consideration. We consider a three-phase six-pole permanent
magnet synchronous machine (PMSM) with one buried permanent magnet per
pole. The geometry is shown in Figure 1. The goal of the design optimization
is to change the size and location of the permanent magnet such that the mate-
rial of the magnet is minimized while maintaining the electromotive force. We
consider a description using three parameters: p1 the width, p2 the height and
p3 the central perpendicular distance between the rotor and the surface of the
magnet. The region around the permanent magnet (Figure 1 red box) is decom-
posed into twelve triangles (Figure 1 blue lines). The introduced triangulation
of the parametrized domain allows to perform the affine linear decomposition
as introduced in (10) with Q = 12.

PMSMs can be described sufficiently accurate by the magnetostatic approx-
imation of Maxwell’s equation. In the governing parametrized equation is given
by

∇× (ν(p)∇× u(p)) = Jsrc(p)−∇×Hpm(p), (32)

with boundary conditions

u|BC = u|DA = 0 and u|AB = −u|CD

where ν is the reluctivity, Jsrc is the source current density and Hpm the field
of the permanent magnets (PM). In the 2D planar setting and using the finite
element method for the magnetic vector potential, this leads to the discrete
form given by the linear model presented in (9). To extract performance values
the loading method is used which exploits the frequency domain [35]. To obtain
quantities like the electromotive force (EMF) a Fourier analysis of the magnetic
vector potential around the inner surface of the stator is carried out. This can
be written as a linear function E0 = l(uh; p) = E>uh. More details on the
configuration we adopt in the present work can be found in [2, 22, 33].

Let us next formulate the optimization problem. We start by introducing
the nominal optimization problem. The goal of the optimization is to minimize
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D A

BC

φ

Figure 1: Geometry configuration with region for the affine decomposition (red box) and
triangulation for the decomposition (blue lines) (left plot). Magnetic vector potential for the
geometry configuration and magnetic field angle φ (right plot).

the required material for the permanent magnet while maintaining the EMF
E0. In the mathematical model this leads to a cost function of the form

min
p∈R3

g0(p) := p1p2 + ρmax(0, Ed0 − E0(p,u(p))),

where Ed0 is the desired EMF and ρ ∈ R+ a weight parameter. Additionally, we
have the constraints

(1, 1, 5) ≤ (p1, p2, p3) ≤ (∞,∞, 14), p2 + p3 ≤ 15 and 3p1 − 2p3 ≤ 50.

The upper and lower bounds for the parameters and the first inequality are due
to the parametrization of the geometry and the restriction that the permanent
magnet has to stay within the red box in Figure 1 (left). The last inequality
is a design restriction that avoids that the corner of the permanent magnet
comes too close to the rotor surface. Note that we right away use the reduced
formulation as introduced in (14). To obtain a smooth formulation we introduce
a slack variable. We reformulate the nominal optimization problem by using the
variable x = (p, ξ) as

min
x∈R4

g0(x) := p1p2 +ρξ s.t. g1,...,8(x) =



p2 + p3 − 15
3p1 − 2p3 − 50

Ed0 − E0(uh, p)− ξ
1− p1

1− p2

5− p3

−ξ
p3 − 14


≤ 0. (33)

In this form the optimization problem fits exactly into the framework of (14).
Next let us introduce the uncertainty. For our numerical example we assume

that the magnetic field angle in the permanent magnet is uncertain [31]. This
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can be due to manufacturing imprecision. In the nominal optimization the
magnetic field is aligned perfectly, i.e. the field angle is 90◦, see Figure 1 (right
plot). In practice this can not be met and a deviation is to be expected. The
field angle enters the model problem (32) nonlinearly through the right hand
side, in particular in the term Hpm. In our numerical example we allow a field
angle φ in the range [80◦, 90◦]. Following the definition of the uncertainty set
in Section 3.2 we get

Uk =
{
φ ∈ R

∣∣φ = 85 + δ, ‖0.2δ‖k ≤ 1
}

with k ∈ {2,∞}, i.e. φ̂ = 85 and D = 5 in (15). Using this settings we can
now solve the linear and quadratic approximation of the robust counterpart (18)
and (20). In the case of the linear approximation we choose k =∞ and for the
quadratic approximation we set k = 2.

Before presenting the numerical results let us give a short overview of the
numerical strategy utilized to solve the optimization problems. The computa-
tions are carried out in MATLAB. To solve the nominal and robust optimization
problems an SQP method with Armijo-backtracking strategy using a `1-penalty
function is used [30]. The Hessian is computed via BFGS updates. Alterna-
tively also routines like fmincon in MATLAB can be used obtaining similar
results. The derivative of gi, i = 0, . . . , 8 are computed using the sensitivity
approach [20]. Also the derivatives with respect to the uncertain parameter φ
are computed using this approach. The structure of the sensitivity equations
are as outlined in (11).

5.1. Results obtained by the finite element approximation

We start by presenting the numerical results utilizing the finite element
approximation. Piecewise linear and continuous finite elements are used to
discretize equation (32) leading to a system with 61013 degrees of freedom.

The initial geometry configuration corresponding to p = (19, 7, 7) is shown
in Figure 1 (left) together with the corresponding magnetic vector potential
(right). From the magnetic vector potential we extract the EMF which we will
use as the desired value Ed0 = 30.72 in our optimization problem.

In Table 1 we show the results obtained in the optimization. In column
Vpm the volume of the permanent magnets is given. Note that through the
optimization a significant reduction in size is achieved. The ratio is given in
percent in the second column. For the nominal optimization a reduction by
53% is obtained and in the robust case reductions of 50% (linear case) and
49% (quadratic case). The respective parameters are given in the third column.
Lastly, in column four and five the EMF E0 for the field angle φ = 90◦ and the
worst-case EMF Eworst0 are given. It can be seen that the uncertainty in the
magnetic field of the permanent magnet has an impact on the performance. In
the robust optimization this influence is incorporated. Hence it can be seen that
in the case of the quadratic approximation very good results can be achieved.
The worst-case EMF stays above the target value of 30.3702. In the case of the
nominal optimization a significant decay can be observed. In the case of the
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Vpm % p E0 (90◦) Eworst
0

Init 133.00 100 (19.00, 7.00, 7.00) 30.3483 29.8873
Nom. Opt 62.36 47 (21.08, 2.96, 6.62) 30.3483 29.8873
Rob. Lin 66.46 50 (21.10, 3.15, 6.64) 30.5817 30.2322
Rob. Quad 67.95 51 (21.10, 3.22, 6.65) 30.6995 30.3487

Table 1: Comparison of the results obtained by the optimization and robust optimization
using different approximation orders.

linear approximation the target can not be met since the approximation is not
accurate enough. It can also be observed that by performing only a nominal
optimization the worst-case can decrease compared to the initial configuration.
In the presented case the difference is small but can become more significant in
different settings.

The approximation quality and the behaviour of the EMF is shown in Fig-
ure 2 for the different optimal designs. In the left plot the behaviour of the EMF
for different permanent magnet field angles φ is shown for the initial and the
nominal optimal configuration. It can be seen that the target Ed0 is only reached
in φ = 90◦. In the middle plot the linear approximation and the actual EMF
are compared. It can be seen that the approximation is not accurate enough
to determine the worst-case. The right plot corresponds to the quadratic ap-
proximation. It can be seen that the EMF is approximated very well by the
quadratic model. Hence also good results in the robust optimization using this
approximation can be expected.

80 85 90
29.8

29.9

30

30.1

30.2

30.3

30.4

30.5

30.6

30.7

30.8

 

 

target

ref

nominal

80 85 90
29.8

29.9

30

30.1

30.2

30.3

30.4

30.5

30.6

30.7

30.8

 

 

target

robust (linear)

linear approx

80 85 90
29.8

29.9

30

30.1

30.2

30.3

30.4

30.5

30.6

30.7

30.8

 

 

target

robust (quadratic)

quadratic approx

Figure 2: Influence of the permanent magnet field angle on the electromotive force for different
geometry configuration.

Remark 5.1. Note that our choice of the field angle φ in the range [80◦, 90◦]
has technical reasons. The EMF has an almost symmetric behaviour around the
field angle of 90◦. Hence the linear approximation of the robust counterpart at
around φ = 90◦ will fail since the derivative of gi, i = 0, . . . , 8, with respect to φ
are almost zero. The quadratic approximation on the other hand has no problem
in achieving a good approximation.

In Figure 3 the magnetic vector potentials are shown for the three optimal
designs. To conclude we have a look at the computational expenses for the
optimization. These are summarized in Table 2, where the computational time
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Figure 3: Magnetic vector potential for the geometry configuration obtained by the opti-
mization. Nominal optimal design (left), robust optimal design with linear approximation
(middle), and with quadratic approximation (right).

CPU (s) Iter PDE solves
Nom. Opt 52.29 9 42
Rob. Lin 98.09 8 86
Rob. Quad 135.57 6 78

Table 2: Performance of the SQP method and computational cost.

in seconds, the number of iterations and the number of required PDE solves are
compared. While the computational time in this example is still very low it can
be seen that the robust optimization is more expensive. Especially the number
of PDE solves increases significantly compared to the nominal optimization.
Hence we will utilize model order reduction to reduce the computational costs.
This will be outlined in the next section.

5.2. Results obtained by the reduced order model

Let us start our analysis of the reduced order model by dealing with the
approximation of the state and the sensitiviy variables. To this aim we select
27 parameters chosen as follows:

Dtrain = {1, 10.5, 20} × {1, 3, 5} × {5, 7, 10}

and we compute an enlarged snapshot set with state and sensitivities for each
parameter in Dtrain. Altogether, we collect 108 snapshots.

In Figure 4, we present an error analysis to check the quality of our a-
posteriori error discussed in Section 4. We compare the error between the POD
solution and the high dimensional approximation for state and sensitivities with
the error bound presented in Section 4.2. With the W-norm introduced in
Section 4, we set

En(p) := max
p∈Dtest

‖unh(p)− un,`h (p)‖W, n = 0, 1, 2, 3.

where Dtest is chosen in the centers of the boxes of Dtrain as follows:

Dtest = {5.75, 15.25} × {2, 4} × {6, 8.5}.
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As one can see model order reduction is able to reach only an error of size 10−3.
We also want to emphasize that a standard POD approach, with only 27 state
snapshots in Dtrain, is able to reach an accuracy of order 10−2 with 27 basis
functions.

0 5 10 15 20 25 30 35 40
10

−4

10
−3

10
−2

10
−1

10
0

NUMBER OF POD BASIS FUNCTIONS

 

 

ERROR−BOUND STATE

ERROR STATE

0 5 10 15 20 25 30 35 40
10

−4

10
−3

10
−2

10
−1

NUMBER OF POD BASIS FUNCTIONS

 

 

ERROR BOUND SENSITIVITY

ERROR SENSITIVITY

0 5 10 15 20 25 30 35 40
10

−4

10
−3

10
−2

10
−1

10
0

NUMBER OF POD BASIS FUNCTIONS

 

 

ERROR BOUND SENSITIVITY

ERROR SENSITIVITY

0 5 10 15 20 25 30 35 40
10

−4

10
−3

10
−2

10
−1

10
0

NUMBER OF POD BASIS FUNCTIONS

 

 

ERROR BOUND SENSITIVITY

ERROR SENSITIVITY

Figure 4: Maximum error over all parameter configurations related to Dtest. Error behavior
E0 and error bound for state equation (top-left), Error behavior En for n = 1, 2, 3 and error
bound for the sensitivity equations (top-right and bottom).

In Figure 5, we show it is possible to reach an accuracy of order 10−6 or higher
with only 4 POD basis functions if we compute the snapshots with respect to one
parameter in Dtrain and then compute the error in a neighborhood of the chosen
parameter. This is our motivation to introduce Algorithms 1 for the successive
enrichment of the POD model. In fact, we start our algorithm with only one
parameter and we require the combined snapshots since in any other case we
will not have enough data to generate a surrogate model from the simulation
and the sensitivities. We note that if we add the sensitivities, the POD basis
functions are improved and the parameter domain can better be explored. We
refer the interested reader to [19] for more details.

Let us now draw our attention to the optimization problem and its perfor-
mances when combined with model order reduction. Table 3 shows the con-
vergence of Algorithm 1 for the nominal optimization. The number of updates
of the snapshot set is given in the first column. Since our goal is to reach a
desired electromotive force, we set as a stopping criteria the difference between
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Figure 5: Maximum error of the surrogate model computed with respect to a parameter in the
neighborhood of Dtrain. Error behavior for state equation (top-left), and for the sensitivity
equations for each parameter (top-right and bottom).
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E0(p,u`h(p), 90◦) obtained from the POD, and E0(p,uh(p), 90◦) obtained from
the full simulaiton. Furthermore, we note that the electromotive force is a linear
function which allows us to use the a-posteriori estimator for the state variable.
As one can see we wIth the surrogate-based optimization obtain the same re-
sults as with the full model. The fifth column presents the number of iterations
needed in each sub-optimization problem and the sixth column presents the
error estimation of the state equation. In the stopping criterium of Algorithm
1 we choose tol = 1e − 4. In the last column we show the number of basis
functions which also represents the dimension of the reduced problem. We note
that the results of the algorithm are close to what we have shown in Table 2.
The CPU time will be discussed at the end of the section.

iter E0(p,uh(p), 90◦) E0(p,u`h(p), 90◦) V #it ∆u `
0 30.232855 30.232855 133.000000
1 30.389505 30.348290 62.823870 8 5.24e-02 4
2 30.348284 30.348290 62.358918 4 1.49e-07 8

Table 3: Performance of POD with nominal optimization

Next we analyze the performance of POD for the robust optimization prob-
lem. In Table 4 we present the results of POD with a linear approximation of
the robust counterpart. As one can see we obtain an impressive reduction of
the amount of PDEs solved, keeping the same accuracy attained in the high
dimensional problem (compare Table 6).

iter E0(p,uh(p), 90◦) E0(p,u`h(p), 90◦) V #it ∆u `
0 30.232855 30.232855 133.000000
1 30.512071 30.465362 67.364979 8 7.12e-02 8
2 30.465418 30.465425 65.045857 4 9.83e-06 16

Table 4: Performance of POD with linear robust optimization

In Table 5 we present the result within the surrogate model for the solution
of the robust optimization problem with quadratic approximation. The same
considerations discussed in the linear example hold true. We note that the
number of POD basis functions used in each optimization in this case is larger
due to a richer snapshot set.

iter E0(p,uh(p), 90◦) E0(p,u`h(p), 90◦) V #it ∆u `
0 30.232855 30.232855 133.000000
1 30.631991 30.582897 67.090115 6 6.73e-02 12
2 30.582764 30.582771 66.473438 5 5.14e-06 24

Table 5: Performance of POD with quadratic robust optimization

Also in the quadratic case we obtain the same approximation quality as in
the full model at lower computational costs (give numbers here!). Moreover, the
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presented numbers for both the linear and the quadratic case are in very good
agreement of those presented in Table 1.

The computational costs of the POD approach are summarized in Table 6.
Although we solve more (reduced) PDEs the CPU time is reduced significantly
due to the number of full dimensional PDEs to be solved in the full setting,
compare Tables 2 and 6). Finally, we note that the CPU time involves both
offline and online stage, so that the speed up is effective.

CPU (s) Iter PDE solves Reduced PDE solves
Nom. Opt 22.5 12 8 48
Rob. Lin 29.3 11 24 110
Rob. Quad 39.9 11 36 132

Table 6: Performance of the POD method and computational cost.

6. Conclusion

In this paper we present a new approach which combines model order re-
duction to robust optimal control. We investigate an optimal control problem
governed by a parametric elliptic partial differential equation with uncertain
parameters. We introduce a robust optimization framework that accounts for
uncertain model and optimization parameters. The resulting optimization prob-
lem, then, has a bi-level structure for the solution of this problem which leads
to a non-linear optimization problem with a min-max formulation. We propose
a goal-oriented model order reduction approach which avoids long offline stages
and provides a certified reduced order surrogate model for the parametrized
PDE which then is utilized in the numerical optimization. The presented nu-
merical results clearly illustrate the validity and performance of the presented
approach.
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