Spectral disjointness of powers of diffeomorphisms with arbitrary Liouvillean rotation behavior

Philipp Kunde

August 8, 2017

Abstract

We show that on any smooth compact connected manifold of dimension $m \geq 2$ admitting a smooth non-trivial circle action preserving a smooth volume ν the set of $\left(\kappa_{1}, \ldots, \kappa_{k}\right)$-weakly mixing C^{∞}-diffeomorphisms is generic in $\mathcal{A}_{\alpha}(M)=\overline{\left\{h \circ S_{\alpha} \circ h^{-1}: h \in \operatorname{Diff}^{\infty}(M, \nu)\right\}^{C \infty}}$ for every Liouvillean number $\alpha, k \in \mathbb{N}$ and specific tuples $\left(\kappa_{1}, \ldots, \kappa_{k}\right) \in[0,1]^{k}$. In particular, these diffeomorphisms have spectrally disjoint powers. The proof is based on a quantitative version of the Approximation by Conjugation-method with explicitly defined conjugation maps and partitions.

1 Introduction

For a start, we recall that a dynamical system (X, T, ν) on a probability space (X, ν) is said to be weakly mixing if there is no nonconstant function $h \in L^{2}(X, \nu)$ such that $h(T x)=\lambda \cdot h(x)$ for some $\lambda \in \mathbb{C}$. Equivalently there is an increasing sequence $\left(m_{n}\right)_{n \in \mathbb{N}}$ of natural numbers such that $\lim _{n \rightarrow \infty}\left|\nu\left(B \cap T^{-m_{n}}(A)\right)-\nu(A) \cdot \nu(B)\right|=0$ for every pair of measurable sets $A, B \subseteq X$ (see Skl67 or AK70, Theorem 5.1]). A. Katok and A. Stepin introduced the more general notion of κ-weak mixing ([Ka03], [St87]):

Definition 1.1. An automorphism T of a Lebesgue probability space (X, μ) is said to be κ-weakly mixing, $\kappa \in[0,1]$, if there exists a strictly increasing sequence $\left(m_{n}\right)_{n \in \mathbb{N}}$ of natural numbers such that the weak convergence

$$
U_{T}^{m_{n}} \longrightarrow_{w}\left(\kappa \cdot P_{c}+(1-\kappa) \cdot I d\right)
$$

holds, where $U_{T}: L^{2}(X, \mu) \rightarrow L^{2}(X, \mu), f \mapsto f \circ T$, is the Koopman-operator induced by T and P_{c} is the projection on the subspace of constants.

By [St87, Proposition 3.1.] we can characterize this property in geometric language: A transformation T is κ-weakly mixing if and only if there is an increasing sequence $\left(m_{n}\right)_{n \in \mathbb{N}}$ of natural numbers such that for all measurable sets A and B

$$
\lim _{n \rightarrow \infty} \mu\left(A \cap T^{m_{n}} B\right)=\kappa \cdot \mu(A) \cdot \mu(B)+(1-\kappa) \cdot \mu(A \cap B)
$$

We recognize that 0-weakly mixing corresponds to rigidity and 1-weakly mixing to the usual notion of weak mixing. So κ-weakly mixing interpolates between the notions of recurrence and weak
mixing. In fact for $\kappa>0$ a κ-weakly mixing transformation has a continuous spectrum due to St87, Proposition 3.4]. Thus it is weakly mixing.
The concept of κ-weakly mixing has implications on the spectral properties of the transformation (see [St87, Theorem 1]): If $\kappa \in(0,1)$ and T is a κ-weakly mixing transformation, then a measure σ_{0} of maximal spectral type of the operator U_{T} on the orthogonal complement $H_{0} \subset L^{2}(X, \mu)$ to the subspace of constants satisfies that it and its convolutions σ_{0}^{k} are pairwise mutually singular. This property is called disjointness of convolutions. It is linked to a conjecture of Kolmogorov respectively Rokhlin and Fomin (after verifying that the property held for all dynamical systems known at that time, especially large classes of systems of probabilistic origin like Gaussian ones), namely that every ergodic transformation possesses the so-called group property, i.e. the maximal spectral type σ is symmetric and dominates its square $\sigma * \sigma$. This conjecture is an analogue of the well-known group property of the set of eigenvalues of an ergodic automorphism and was proven to be false. Indeed, in St66 Stepin gave the first example of a dynamical system without the group property. V.I. Oseledets constructed an analogous example with continuous spectrum (Os69]). Later Stepin showed that for a generic transformation all convolutions $\sigma^{k}, k \in \mathbb{N}$, of the maximal spectral type σ on $L_{0}^{2}(X, \mu)$ are mutually singular (see St87]) exploiting the concept of κ-weak mixing.
In JL92 del Junco and Lemanczyk introduced the following strengthening of the notion of κ-weak mixing:

Definition 1.2. Let T be an automorphism of a Lebesgue probability space (X, \mathcal{B}, μ) and $\kappa_{1}, \ldots, \kappa_{k} \in$ $[0,1]$. Then T is called $\left(\kappa_{1}, \ldots, \kappa_{k}\right)$-weakly mixing, if there is an increasing sequence $\left(m_{n}\right)_{n \in \mathbb{N}}$ of natural numbers such that for each $i=1, \ldots, k$ and for all $A, B \in \mathcal{B}$

$$
\lim _{n \rightarrow \infty} \mu\left(A \cap T^{i \cdot m_{n}} B\right)=\kappa_{i} \cdot \mu(A) \cdot \mu(B)+\left(1-\kappa_{i}\right) \cdot \mu(A \cap B)
$$

In other words, each T^{i} is κ_{i}-weakly mixing along the common sequence $\left(m_{n}\right)_{n \in \mathbb{N}}$. With the aid of this concept del Junco and Lemanczyk were able to prove that for a generic automorphism for each $k(1), \ldots, k(l) \in \mathbb{N}, k^{\prime}(1), \ldots, k^{\prime}\left(l^{\prime}\right) \in \mathbb{N}$ the convolutions $\sigma_{T^{k(1)}} * \cdots * \sigma_{T^{k}(l)}$ and $\sigma_{T^{k^{\prime}(1)}} * \cdots * \sigma_{T^{k^{\prime}}(l)}$ are mutually singular unless $(k(1), \ldots, k(l))$ is a permutation of $\left(k^{\prime}(1), \ldots, k^{\prime}\left(l^{\prime}\right)\right)$ (JL92, Theorem 1]). Hereby, they were also able to get a description of the centralizer of $T^{k_{1}} \times T^{k_{2}} \times \ldots$ as well as to reproduce several counterexamples (like non-disjoint transformations that have no common factor or automorphisms with no roots) of Rudolph ($[\underline{R u 79}$, section 4]) in a broader context.

An important question in Ergodic Theory (e.g. OW91, p.89]) that dates back to the foundational paper Ne32] of von Neumann asks

Question. Are there smooth versions to the objects and concepts of abstract ergodic theory?
By a smooth version we mean a smooth diffeomorphism of a compact manifold preserving a measure equivalent to the volume element. The only known restriction is due to A. G. Kushnirenko who proved that such a diffeomorphism must have finite entropy. On the other hand, there is a lack on general results on the smooth realization problem.

One of the most powerful tools of constructing smooth diffeomorphisms with prescribed ergodic or topological properties is the so-called approximation by conjugation-method (also known as the AbC-method or Anosov-Katok-method) developed by D. Anosov and A. Katok in AK70. In fact, on every smooth compact connected manifold M of dimension $m \geq 2$ admitting a non-trivial circle
action $\mathcal{S}=\left\{S_{t}\right\}_{t \in \mathbb{S} 1}$ preserving a smooth volume ν this method enables the construction of smooth diffeomorphisms with specific ergodic properties (e.g. weakly mixing ones in [AK70, section 5]) or non-standard smooth realizations of measure-preserving systems (e.g. AK70, section 6] and [FSW07]). These diffeomorphisms are constructed as limits of conjugates $f_{n}=H_{n} \circ S_{\alpha_{n+1}} \circ H_{n}^{-1}$, where $\alpha_{n+1}=\alpha_{n}+\frac{1}{k_{n} \cdot l_{n} \cdot q_{n}^{2}} \in \mathbb{Q}, H_{n}=H_{n-1} \circ h_{n}$ and h_{n} is a measure-preserving diffeomorphism satisfying $S_{\frac{1}{q_{n}}} \circ h_{n} \stackrel{h_{n}}{=} h_{n} \circ S_{\frac{1}{q_{n}}}$. In each step the conjugation map h_{n} and the parameter k_{n} are chosen such that the diffeomorphism f_{n} imitates the desired property with a certain precision. Then the parameter l_{n} is chosen large enough to guarantee closeness of f_{n} to f_{n-1} in the C^{∞}-topology and so the convergence of the sequence $\left(f_{n}\right)_{n \in \mathbb{N}}$ to a limit diffeomorphism is provided. It is even possible to keep this limit diffeomorphism within any given C^{∞}-neighbourhood of the initial element $S_{\alpha_{1}}$ or, by applying a fixed diffeomorphism g first, of $g \circ S_{\alpha_{1}} \circ g^{-1}$. So the construction can be carried out in a neighbourhood of any diffeomorphism conjugate to an element of the action. Thus, $\mathcal{A}(M)=\overline{\left\{h \circ S_{t} \circ h^{-1}: t \in \mathbb{S}^{1}, h \in \operatorname{Diff}^{\infty}(M, \nu)\right\}}{ }^{C^{\infty}}$ is a natural space for the produced diffeomorphisms. Moreover, we will consider the restricted space $\mathcal{A}_{\alpha}(M)=\overline{\left\{h \circ S_{\alpha} \circ h^{-1}: h \in \operatorname{Diff}^{\infty}(M, \nu)\right\}}{ }^{C^{\infty}}$ for $\alpha \in \mathbb{S}^{1}$. Another feature of the AbC-method is the possibility to deduce statements on the genericity of the constructed properties in $\mathcal{A}(M)$ or $\mathcal{A}_{\alpha}(M)$: As mentioned above Anosov and Katok proved that the set of weakly mixing diffeomorphisms is generic in $\mathcal{A}(M)$ in the $C^{\infty}(M)$-topology. More specifically, for every Liouville number α the set of weakly mixing diffeomorphisms is generic in $\mathcal{A}_{\alpha}(M)$ ([FS05, GKu]). See also [FK04] for more details and other results of this method.

Using a smooth variant of the method of approximation by periodic transformations Stepin constructed a smooth κ-weakly mixing diffeomorphism in [St87, section 4]. Another construction of a smooth diffeomorphisms without the group property even in the restricted space $\mathcal{A}_{\alpha}(M)$ for arbitrary Liouville number α was exhibited in Ku16.

In this paper we construct the first smooth $\left(\kappa_{1}, \ldots, \kappa_{k}\right)$-weakly mixing diffeomorphisms: For $k \in \mathbb{N}$ we define the set Π_{k} of tuples $\left(\kappa_{1}, \ldots, \kappa_{k}\right) \in[0,1]^{k}$ satisfying $\kappa_{1}<\kappa_{2}<\cdots<\kappa_{k}, \kappa_{k}>$ $k \cdot\left(\kappa_{2}-\kappa_{1}\right)$ as well as $\kappa_{k}-\kappa_{k-1}<\kappa_{k-1}-\kappa_{k-2}<\cdots<\kappa_{2}-\kappa_{1}$.

Theorem 1. Let M be a smooth compact connected manifold of dimension $m \geq 2$ with a nontrivial circle action $\mathcal{S}=\left\{S_{t}\right\}_{t \in \mathbb{R}}, S_{t+1}=S_{t}$, preserving a smooth volume ν. Moreover, let $k \in \mathbb{N}$ and $\left(\kappa_{1}, \ldots, \kappa_{k}\right) \in \Pi_{k}$. If $\alpha \in \mathbb{R}$ is Liouville, then the set of volume-preserving $\left(\kappa_{1}, \ldots, \kappa_{k}\right)$-weakly mixing diffeomorphisms contains a dense G_{δ}-set in the C^{∞}-topology in $\mathcal{A}_{\alpha}(M)$.

In particular, we get
Corollary 1. If α is a Liouville number, then for a generic $T \in \mathcal{A}_{\alpha}(M)$ we have

$$
\sigma_{T^{k(1)}} * \cdots * \sigma_{T^{k(l)}} \perp \sigma_{T^{k^{\prime}(1)}} * \cdots * \sigma_{T^{k^{\prime}(l)}}
$$

for every $k(1), \ldots, k(l), k^{\prime}(1), \ldots, k^{\prime}\left(l^{\prime}\right) \in \mathbb{N}$ unless $(k(1), \ldots, k(l))$ is a permutation of $\left(k^{\prime}(1), \ldots, k^{\prime}\left(l^{\prime}\right)\right)$. In particular, the powers of T are spectrally disjoint.

At this point, we recall that two automorphisms T and S are spectrally disjoint if the maximal spectral types σ_{T} and σ_{T} are mutually singular. In particular, spectral disjointness implies disjointness in the sense of Furstenberg ([Fu67]). Another motivation to study spectral disjointness
of different powers deals with Sarnak's conjecture stating that for every homeomorphism T of a compact metric space X with topological entropy zero, any $\varphi \in C(X)$ and any $x \in X$ the sequence $\left(\varphi\left(T^{n} x\right)\right)_{n \in \mathbb{N}}$ is orthogonal to the Möbius function, i. e. we have

$$
\begin{equation*}
\frac{1}{N} \sum_{n=1}^{N} \varphi\left(T^{n} x\right) \boldsymbol{\mu}(n) \rightarrow 0 \text { as } N \rightarrow \infty \tag{1}
\end{equation*}
$$

where the Möbius function $\boldsymbol{\mu}: \mathbb{N} \rightarrow \mathbb{Z}$ is defined by $\boldsymbol{\mu}(1)=1, \boldsymbol{\mu}(n)=0$ for non-square-free positive integers and $\boldsymbol{\mu}(n)= \pm 1$ depending on the parity of the number of prime factors for the remaining positive integers (see [Sa, ELR14]). In fact, it is shown in BSZ12] that the spectral disjointness of different prime powers implies the validity of a generalized version of equation 1, where $\boldsymbol{\mu}$ can be replaced by any bounded multiplicative function of the positive integers.

Remark 1.3. By some modifications using the conjugation maps as in $G K u$ and $K u$ we are even able to construct the $\left(\kappa_{1}, \ldots, \kappa_{k}\right)$-weakly mixing diffeomorphisms in such a way that they preserve a measurable Riemannian metric and that their projectivized derivative extension is ergodic with respect to a measure in the projectivization of the tangent bundle which is absolutely continuous in the fibers.

Remark 1.4. Recently, great progress has been made in extending the approximation by conjugationmethod to the real-analytic category in case of the torus $\mathbb{T}^{m}, m \geq 2$, in a series of papers (Ba17), [Ku17], [BK]). All these constructions base on the concept of block-slide type maps on the torus and their sufficiently precise approximation by volume-preserving real-analytic diffeomorphisms. By this approach it is possible to adapt the constructions of this paper to show that for every $m \in \mathbb{N}, m \geq 2, k \in \mathbb{N}, \rho>0$ and $\left(\kappa_{1}, \ldots, \kappa_{k}\right) \in \Pi_{k}$ there are real-analytic $\left(\kappa_{1}, \ldots, \kappa_{k}\right)$-weakly mixing diffeomorphisms $T \in \operatorname{Diff}_{\rho}^{\omega}\left(\mathbb{T}^{m}, \mu\right)$. We are going to present the details in a forthcoming paper.

2 Preliminaries

We use the definitions and notations introduced in [Ku16, subsection 1.1].

2.1 First steps of the proof

First of all we show how constructions on $\mathbb{S}^{1} \times[0,1]^{m-1}$ can be transfered to a general compact connected smooth manifold M with a non-trivial circle action $\mathcal{S}=\left\{S_{t}\right\}_{t \in \mathbb{R}}, S_{t+1}=S_{t}$. By AK70, Proposition 2.1.] we can assume that 1 is the smallest positive number satisfying $S_{t}=\mathrm{id}$. Hence, we can assume \mathcal{S} to be effective. We denote the set of fixed points of \mathcal{S} by F and for $q \in \mathbb{N} F_{q}$ is the set of fixed points of the map $S_{\frac{1}{q}}$. On the other hand, we consider $\mathbb{S}^{1} \times[0,1]^{m-1}$ with Lebesgue measure μ. Furthermore let $\mathcal{R}=\left\{R_{\alpha}\right\}_{\alpha \in \mathbb{S}^{1}}$ be the standard action of \mathbb{S}^{1} on $\mathbb{S}^{1} \times[0,1]^{m-1}$, where the map R_{α} is given by $R_{\alpha}\left(\theta, r_{1}, \ldots, r_{m-1}\right)=\left(\theta+\alpha, r_{1}, \ldots, r_{m-1}\right)$. Hereby we can formulate the following result (see [FSW07, Proposition 1]):

Proposition 2.1. Let M be a m-dimensional smooth, compact and connected manifold admitting an effective circle action $\mathcal{S}=\left\{S_{t}\right\}_{t \in \mathbb{R}}, S_{t+1}=S_{t}$, preserving a smooth volume ν. Let $B:=$ $\partial M \cup F \cup\left(\bigcup_{q \geq 1} F_{q}\right)$. There exists a continuous surjective map $G: \mathbb{S}^{1} \times[0,1]^{m-1} \rightarrow M$ with the following properties:

1. The restriction of G to $\mathbb{S}^{1} \times(0,1)^{m-1}$ is a C^{∞}-diffeomorphic embedding.
2. $\nu\left(G\left(\partial\left(\mathbb{S}^{1} \times[0,1]^{m-1}\right)\right)\right)=0$
3. $G\left(\partial\left(\mathbb{S}^{1} \times[0,1]^{m-1}\right)\right) \supseteq B$
4. $G_{*}(\mu)=\nu$
5. $\mathcal{S} \circ G=G \circ \mathcal{R}$

By the same reasoning as in FSW07, section 2.2] this proposition allows us to carry a construction from $\left(\mathbb{S}^{1} \times[0,1]^{m-1}, \mathcal{R}, \mu\right)$ to the general case (M, \mathcal{S}, ν) :
Suppose $f: \mathbb{S}^{1} \times[0,1]^{m-1} \rightarrow \mathbb{S}^{1} \times[0,1]^{m-1}$ is a $\left(\kappa_{1}, \ldots, \kappa_{k}\right)$-weakly mixing diffeomorphism sufficiently close to R_{α} in the C^{∞}-topology obtained by $f=\lim _{n \rightarrow \infty} f_{n}$ with $f_{n}=H_{n} \circ R_{\alpha_{n+1}} \circ H_{n}^{-1}$, where $f_{n}=R_{\alpha_{n+1}}$ in a neighbourhood of the boundary (in Proposition 2.2 we will see that these conditions can be satisfied in the constructions of this article). Then we define a sequence of diffeomorphisms:

$$
\tilde{f}_{n}: M \rightarrow M \quad \tilde{f}_{n}(x)= \begin{cases}G \circ f_{n} \circ G^{-1}(x) & \text { if } x \in G\left(\mathbb{S}^{1} \times(0,1)^{m-1}\right) \\ S_{\alpha_{n+1}}(x) & \text { if } x \in G\left(\partial\left(\mathbb{S}^{1} \times(0,1)^{m-1}\right)\right)\end{cases}
$$

Constituted in [FK04, section 5.1] (which bases upon [Ka79, Proposition 1.1]), this sequence is convergent in the C^{∞}-topology to the diffeomorphism

$$
\tilde{f}: M \rightarrow M \quad \tilde{f}(x)= \begin{cases}G \circ f \circ G^{-1}(x) & \text { if } x \in G\left(\mathbb{S}^{1} \times(0,1)^{m-1}\right) \\ S_{\alpha}(x) & \text { if } x \in G\left(\partial\left(\mathbb{S}^{1} \times(0,1)^{m-1}\right)\right)\end{cases}
$$

provided the closeness from f to R_{α} in the C^{∞}-topology.
We observe that f and \tilde{f} are metrically isomorphic. Then \tilde{f} is $\left(\kappa_{1}, \ldots, \kappa_{k}\right)$-weakly mixing because the ($\kappa_{1}, \ldots, \kappa_{k}$)-weak mixing-property is invariant under isomorphisms.
Altogether the construction done in the case of $\left(\mathbb{S}^{1} \times[0,1]^{m-1}, \mathcal{R}, \mu\right)$ is transfered to (M, \mathcal{S}, ν). Hence it suffices to consider constructions on $M=\mathbb{S}^{1} \times[0,1]^{m-1}$ with circle action \mathcal{R} subsequently. In this case we will prove the following result:

Proposition 2.2. For every $k \in \mathbb{N},\left(\kappa_{1}, \ldots, \kappa_{k}\right) \in \Pi_{k}$ and every Liouvillean number α there is a sequence $\left(\alpha_{n}\right)_{n \in \mathbb{N}}$ of rational numbers $\alpha_{n}=\frac{p_{n}}{q_{n}}$ satisfying $\lim _{n \rightarrow \infty}\left|\alpha-\alpha_{n}\right|=0$ monotonically and sequences $\left(g_{n}\right)_{n \in \mathbb{N}},\left(\phi_{n}\right)_{n \in \mathbb{N}}$ of measure-preserving diffeomorphisms satisfying $g_{n} \circ R_{\frac{1}{q_{n}}}=R_{\frac{1}{q_{n}}} \circ g_{n}$ as well as $\phi_{n} \circ R_{\frac{1}{q_{n}}}=R_{\frac{1}{q_{n}}} \circ \phi_{n}$ such that the diffeomorphisms $f_{n}=H_{n} \circ R_{\alpha_{n+1}} \circ H_{n}^{-1}$ with $H_{n}=h_{1} \circ h_{2} \circ \ldots \circ h_{n}$, where $h_{n}=g_{n} \circ \phi_{n}$, coincide with $R_{\alpha_{n+1}}$ in a neighbourhood of the boundary, converge in the Diff ∞ (M)-topology and the diffeomorphism $f=\lim _{n \rightarrow \infty} f_{n}$ is $\left(\kappa_{1}, \ldots, \kappa_{k}\right)$-weakly mixing and satisfies $f \in \mathcal{A}_{\alpha}(M)$.
Furthermore for every $\varepsilon>0$ the parameters in the construction can be chosen in such a way that $d_{\infty}\left(f, R_{\alpha}\right)<\varepsilon$.

2.2 Outline of the proof

The constructions are based on the "approximation by conjugation"-method developed by D.V. Anosov and A. Katok in AK70. Here one constructs successively a sequence of volume-preserving diffeomorphisms $f_{n}=H_{n} \circ S_{\alpha_{n+1}} \circ H_{n}^{-1}$, where the conjugation maps $H_{n}=h_{1} \circ \ldots \circ h_{n}$ and the rational numbers $\alpha_{n}=\frac{p_{n}}{q_{n}}$ are chosen in such a way that the functions f_{n} converge to a diffeomorphism f with the aimed properties.
First of all, we will define the conjugation map h_{n} as a composition of two volume-preserving diffeomorphisms $h_{n}=g_{n} \circ \phi_{n}$. Here, g_{n} is the shear $g_{n}\left(\theta, r_{1}, \ldots, r_{m-1}\right)=\left(\theta+n q_{n} \cdot r_{1}, r_{1}, \ldots, r_{m-1}\right)$ and ϕ_{n} is a step-by-step defined smooth volume-preserving diffeomorphism. Its construction in section 3.1 bases on maps of the form $\phi_{\lambda}^{(j)}=C_{\lambda}^{-1} \circ \varphi_{1, j} \circ C_{\lambda}$ with C_{λ} being a stretching by $\lambda \in \mathbb{N}$ in the first coordinate and $\varphi_{1, j}$ a "quasi-rotation", i. e. a rotation by $\frac{\pi}{2}$ in the $x_{1}-x_{j}$-coordinates on large part of the domain. In fact, ϕ_{n} will be of the form $\phi_{\lambda_{m}}^{(m)} \circ \cdots \circ \phi_{\lambda_{2}}^{(2)}$ with explicitly chosen parameters $\lambda_{j} \in \mathbb{N}, \lambda_{j}<\lambda_{j+1}$, on the different sections. Moreover, we define a sequence of partial partitions η_{n} whose elements have such a small diameter that even the image under $H_{n-1} \circ g_{n}$ converges to the decomposition into points. We will prove the $\left(\kappa_{1}, \ldots, \kappa_{k}\right)$-weak mixing property on those partition elements.
Like the criteria for weak mixing in [FS05], GKu and Ku] we use the concept of "almost uniform distribution". Descriptively, a set of small diameter is "almost uniformly distributed" under a diffeomorphism Φ if it is mapped to a set of small width in the θ-coordinate and almost full length in the r_{1}, \ldots, r_{m-1}-coordinates in an uniform way (see Definition 4.1 for the precise definition). In our case $\Phi_{n}=\phi_{n} \circ R_{\alpha_{n+1}}^{m_{n}} \circ \phi_{n}^{-1}$ with a specific sequence $\left(m_{n}\right)_{n \in \mathbb{N}}$ of natural numbers such that $R_{\alpha_{n+1}}^{m_{n}}$ causes a translation by $\frac{1}{n q_{n}}$ to the adjacent domain of definition of the map ϕ_{n} (see section (4). In Lemma 4.5 we make the key observation that

$$
\phi_{\mu_{m}}^{(m)} \circ \cdots \circ \phi_{\mu_{2}}^{(2)} \circ R_{\alpha_{n+1}}^{i \cdot m_{n}} \circ\left(\phi_{\lambda_{2}}^{(2)}\right)^{-1} \circ\left(\phi_{\lambda_{m}}^{(m)}\right)^{-1}
$$

almost uniformly distributes an element of the partition η_{n} if $\mu_{j}>\lambda_{j}$ for each $j=2, \ldots, m$. On the other hand, we observe that Φ_{n}^{i} acts approximately as the translation by $R_{\frac{i}{n q_{n}}}$ if $\mu_{j}=\lambda_{j}$. On this account, the choice of parameters λ_{j} in the definition of ϕ_{n} is exactly done in such a way that after a translation by $R_{\frac{i}{n q_{n}}}$ we have an increase of the λ-values on a portion of about κ_{i} of the partition element (see Lemma 4.6). Thus, we will have "almost uniform distribution" under Φ_{n}^{i} on a portion of about κ_{i} of the partition element. The subsequent application of the shear g_{n} will cause that this is almost uniformly distributed on the whole manifold $\mathbb{S}^{1} \times[0,1]^{m-1}$. In section 5 we will establish the $\left(\kappa_{1}, \ldots, \kappa_{k}\right)$-weak mixing property in our construction.
In section 6 we will show convergence of the sequence $\left(f_{n}\right)_{n \in \mathbb{N}}$ in \mathcal{A}_{α} for a given Liouville number α by the same approach as in [FS05]. For this purpose, we have to estimate the norms $\left\|\left|H_{n}\right|\right\|_{k}$ very carefully.

3 Explicit constructions

We fix $\left(\kappa_{1}, \ldots, \kappa_{k}\right) \in \Pi_{k}$ and an arbitrary Liouvillean number $\alpha \in \mathbb{S}^{1}$. We also introduce the notation $\tilde{\beta}_{1}=\kappa_{1}, \tilde{\beta}_{i}=\kappa_{i}-\kappa_{i-1}$ for $i=2, \ldots, k$. Obviously, $\sum_{i=1}^{d} \tilde{\beta}_{i}=\kappa_{d}$. In particular, we have
$\sum_{i=1}^{k} \tilde{\beta}_{i}=\kappa_{k} \leq 1$. By the requirements on tuples in Π_{k} we also have

$$
\sum_{i=1}^{k} \tilde{\beta}_{i}>k \cdot \tilde{\beta}_{2}, \tilde{\beta}_{i}>\tilde{\beta}_{i+1} \text { for every } i=2, \ldots, k-1
$$

Moreover, let $\left(\tilde{\beta}_{i, n}\right)_{n \in \mathbb{N}}$ be a sequence of rational numbers $\tilde{\beta}_{i, n}=\frac{c_{i, n}}{d_{n}}$ satisfying $\tilde{\beta}_{i, n} \rightarrow \tilde{\beta}_{i}$ as $n \rightarrow \infty$ as well as the relations

$$
\sum_{i=1}^{k} \tilde{\beta}_{i, n}>k \cdot \tilde{\beta}_{2, n}, \tilde{\beta}_{i, n}>\tilde{\beta}_{i+1, n} \text { for every } i=2, \ldots, k-1, \sum_{i=1}^{k} \tilde{\beta}_{i, n} \leq 1
$$

With the aid of these we also introduce the numbers $u_{i, n} \in \mathbb{Z}, i=0, \ldots, k-1$ such that

$$
\begin{equation*}
u_{i, n}=d_{n} \cdot\left(\tilde{\beta}_{2, n}-\tilde{\beta}_{2+i, n}\right) \text { for } i=0, \ldots, k-2, \quad u_{k-1, n}=d_{n} \cdot \tilde{\beta}_{2, n}=c_{2, n} \tag{2}
\end{equation*}
$$

In particular, we have $u_{0, n}=0$ and $u_{i+1, n}>u_{i, n}$.
Finally, we also introduce the numbers

$$
\begin{equation*}
\kappa_{i, n}=\sum_{d=1}^{i} \tilde{\beta}_{d, n} \quad \text { for } i=1, \ldots, k \tag{3}
\end{equation*}
$$

Since $\tilde{\beta}_{d, n} \rightarrow \tilde{\beta}_{d}$ for $n \rightarrow \infty$, we also have $\kappa_{i, n} \rightarrow \kappa_{i}$.

3.1 The conjugation map ϕ_{n}

The construction of the conjugation map ϕ_{n} bases on the following "pseudo-rotations" inspired by [FS05].
Lemma 3.1. For every $\varepsilon \in\left(0, \frac{1}{4}\right)$ and every $i, j \in\{1, \ldots, m\}$ there exists a smooth measurepreserving diffeomorphism $\varphi_{\varepsilon, i, j}$ on \mathbb{R}^{m}, which is the rotation in the $x_{i}-x_{j}$-plane by $\pi / 2$ about the point $\left(\frac{1}{2}, \ldots, \frac{1}{2}\right) \in \mathbb{R}^{m}$ on $[2 \varepsilon, 1-2 \varepsilon]^{m}$ and coincides with the identity outside of $[\varepsilon, 1-\varepsilon]^{m}$.
Proof. See Ku16, Lemma 4.1].
Furthermore, for $\lambda \in \mathbb{N}$ we define the maps $C_{\lambda}\left(x_{1}, x_{2}, \ldots, x_{m}\right)=\left(\lambda \cdot x_{1}, x_{2}, \ldots, x_{m}\right)$. Using these maps we build the smooth measure-preserving diffeomorphism

$$
\phi_{\lambda, \varepsilon, j}:\left[0, \frac{1}{\lambda}\right] \times[0,1]^{m-1} \rightarrow\left[0, \frac{1}{\lambda}\right] \times[0,1]^{m-1}, \quad \phi_{\lambda, \varepsilon, j}=C_{\lambda}^{-1} \circ \varphi_{\varepsilon, 1, j} \circ C_{\lambda}
$$

Afterwards $\phi_{\lambda, \varepsilon, j}$ is extended to a diffeomorphism on $\mathbb{S}^{1} \times[0,1]^{m-1}$ by the description

$$
\phi_{\lambda, \varepsilon, j}\left(x_{1}+\frac{1}{\lambda}, x_{2}, \ldots, x_{m}\right)=\left(\frac{1}{\lambda}, 0, \ldots, 0\right)+\phi_{\lambda, \varepsilon, j}\left(x_{1}, x_{2}, \ldots, x_{m}\right)
$$

For convenience we will use the notation $\phi_{\lambda}^{(j)}=\phi_{\lambda, \frac{1}{40 n^{4}}, j}$. By construction the map $\phi_{\lambda, \varepsilon, j}$ satisfies the following properties: This map satisfies the following properties:

Proposition 3.2. Let $j \in\{2, \ldots, m\}, \varepsilon \in\left(0, \frac{1}{4}\right)$ and $\lambda \in \mathbb{N}$. Moreover, let $t_{0} \in \mathbb{Z}, \mu_{s} \in \mathbb{N}, t_{s} \in \mathbb{Z}$, $\left\lceil 2 \varepsilon \mu_{s}\right\rceil \leq t_{s}<\mu_{s}-\left\lceil 2 \varepsilon \mu_{s}\right\rceil$, for $s=1, \ldots, m$. Then we have
1.

$$
\begin{aligned}
& \phi_{\lambda, \varepsilon, j}^{-1}\left(\left[\frac{t_{0}}{\lambda}+\frac{t_{1}}{\lambda \cdot \mu_{1}}, \frac{t_{0}}{\lambda}+\frac{t_{1}+1}{\lambda \cdot \mu_{1}}\right] \times \prod_{s=2}^{m}\left[\frac{t_{s}}{\mu_{s}}, \frac{t_{s}+1}{\mu_{s}}\right]\right) \\
= & {\left[\frac{t_{0}}{\lambda}+\frac{t_{j}}{\lambda \mu_{j}}, \frac{t_{0}}{\lambda}+\frac{t_{j}+1}{\lambda \mu_{j}}\right] \times \prod_{s=2}^{j-1}\left[\frac{t_{s}}{\mu_{s}}, \frac{t_{s}+1}{\mu_{s}}\right] \times\left[1-\frac{t_{1}+1}{\mu_{1}}, 1-\frac{t_{1}}{\mu_{1}}\right] \times \prod_{s=j+1}^{m}\left[\frac{t_{s}}{\mu_{s}}, \frac{t_{s}+1}{\mu_{s}}\right] }
\end{aligned}
$$

2.

$$
\begin{aligned}
& \phi_{\lambda, \varepsilon, j}\left(\left[\frac{t_{0}}{\lambda}+\frac{t_{1}}{\lambda \cdot \mu_{1}}, \frac{t_{0}}{\lambda}+\frac{t_{1}+1}{\lambda \cdot \mu_{1}}\right] \times \prod_{s=2}^{m}\left[\frac{t_{s}}{\mu_{s}}, \frac{t_{s}+1}{\mu_{s}}\right]\right) \\
= & {\left[\frac{t_{0}+1}{\lambda}-\frac{t_{j}+1}{\lambda \mu_{j}}, \frac{t_{0}+1}{\lambda}-\frac{t_{j}}{\lambda \mu_{j}}\right] \times \prod_{s=2}^{j-1}\left[\frac{t_{s}}{\mu_{s}}, \frac{t_{s}+1}{\mu_{s}}\right] \times\left[\frac{t_{1}}{\mu_{1}}, \frac{t_{1}+1}{\mu_{1}}\right] \times \prod_{s=j+1}^{m}\left[\frac{t_{s}}{\mu_{s}}, \frac{t_{s}+1}{\mu_{s}}\right] }
\end{aligned}
$$

In particular, we get

$$
\begin{aligned}
& \phi_{\lambda, \varepsilon, j}\left(\left[\frac{t_{0}+2 \varepsilon}{\lambda}, \frac{t_{0}+1-2 \varepsilon}{\lambda}\right] \times \prod_{s=2}^{m}\left[\frac{t_{s}}{\mu_{s}}, \frac{t_{s}+1}{\mu_{s}}\right]\right) \\
= & {\left[\frac{t_{0}+1}{\lambda}-\frac{t_{j}+1}{\lambda \mu_{j}}, \frac{t_{0}+1}{\lambda}-\frac{t_{j}}{\lambda \mu_{j}}\right] \times \prod_{s=2}^{j-1}\left[\frac{t_{s}}{\mu_{s}}, \frac{t_{s}+1}{\mu_{s}}\right] \times[2 \varepsilon, 1-2 \varepsilon] \times \prod_{s=j+1}^{m}\left[\frac{t_{s}}{\mu_{s}}, \frac{t_{s}+1}{\mu_{s}}\right] }
\end{aligned}
$$

We start to define the diffeomorphism ϕ_{n} on the sector $\left[\frac{l}{n \cdot q_{n}}+\frac{v}{n^{2} \cdot q_{n}^{2}}, \frac{l}{n \cdot q_{n}}+\frac{v}{n^{2} \cdot q_{n}^{2}}\right] \times[0,1]^{m-1}$ for each $l, v \in \mathbb{Z}, 0 \leq l<n, 0 \leq v<n q_{n}$.
In a first step, we consider domains of the form

$$
\begin{aligned}
& \Delta_{l, v, s, u}= \\
& {\left[\frac{l}{n q_{n}}+\frac{v}{n^{2} \cdot q_{n}^{2}}+\frac{s \cdot c_{2, n}}{d_{n} \cdot n^{2} \cdot q_{n}^{2}}+\frac{u}{d_{n} \cdot n^{2} \cdot q_{n}^{2}}, \frac{l}{n q_{n}}+\frac{v}{n^{2} \cdot q_{n}^{2}}+\frac{s \cdot c_{2, n}}{d_{n} \cdot n^{2} \cdot q_{n}^{2}}+\frac{u+1}{d_{n} \cdot n^{2} \cdot q_{n}^{2}}\right] \times[0,1]^{m-1}}
\end{aligned}
$$

where $s, u \in \mathbb{Z}, 0 \leq s<k$ and $0 \leq u<c_{2, n}$.
We define $\tilde{s} \equiv-l \bmod k$. Then for every $s \in \mathbb{Z}, 0 \leq s<k$, there is a unique $t \in\{0,1, \ldots, k-1\}$ such that $s \equiv \tilde{s}+t \bmod k$. Recall the numbers $u_{i, n}, 0 \leq i<k-1$, from equation 2 .

- If the number $u \in \mathbb{Z}, 0 \leq u<c_{2, n}$, satisfies $u_{i, n} \leq u<u_{i+1, n}$ with $i \geq t-1$, then we put

$$
\phi_{n}=\phi_{d_{n} \cdot\left(n q_{n}\right)^{2 \cdot(m-1) \cdot(l+k-t)}}^{(m)} \circ \cdots \circ \phi_{d_{n} \cdot\left(n q_{n}\right)^{2 \cdot 2 \cdot(l+k-t)}}^{(3)} \circ \phi_{d_{n} \cdot\left(n q_{n}\right)^{2 \cdot(l+k-t)}}^{(2)}
$$

on the domain $\Delta_{l, v, s, u}$.

- If the number $u \in \mathbb{Z}, 0 \leq u<c_{2, n}$, satisfies $u_{i, n} \leq u<u_{i+1, n}$ with $i<t-1$, then we put

$$
\phi_{n}=\phi_{d_{n} \cdot\left(n q_{n}\right)^{2 \cdot(m-1) \cdot(l+k)}}^{(m)} \circ \cdots \circ \phi_{d_{n} \cdot\left(n q_{n}\right)^{2 \cdot 2 \cdot(l+k)}}^{(3)} \circ \phi_{d_{n} \cdot\left(n q_{n}\right)^{2 \cdot(l+k)}}^{(2)}
$$

on the domain $\Delta_{l, v, s, u}$.

In the next step we recall the requirements $\sum_{i=1}^{k} \tilde{\beta}_{i, n}>k \cdot \tilde{\beta}_{2, n}$ and $\sum_{i=1}^{k} \tilde{\beta}_{i, n} \leq 1$. Then we put

$$
\phi_{n}=\phi_{d_{n} \cdot\left(n q_{n}\right)^{2 \cdot(m-1) \cdot(l+k)}}^{(m)} \circ \cdots \circ \phi_{d_{n} \cdot\left(n q_{n}\right)^{2 \cdot 2 \cdot(l+k)}}^{(3)} \circ \phi_{d_{n} \cdot\left(n q_{n}\right)^{2 \cdot(l+k)}}^{(2)}
$$

on the domain

$$
\left[\frac{l}{n \cdot q_{n}}+\frac{v}{n^{2} \cdot q_{n}^{2}}+\frac{k \cdot c_{2, n}}{d_{n} \cdot n^{2} \cdot q_{n}^{2}}, \frac{l}{n \cdot q_{n}}+\frac{v}{n^{2} \cdot q_{n}^{2}}+\frac{\sum_{i=1}^{k} c_{i, n}}{d_{n} \cdot n^{2} \cdot q_{n}^{2}}\right] \times[0,1]^{m-1}
$$

Finally, we put

$$
\phi_{n}=\mathrm{id}
$$

on the domain $\left[\frac{l}{n \cdot q_{n}}+\frac{v}{n^{2} \cdot q_{n}^{2}}+\frac{\sum_{i=1}^{k} c_{i, n}}{d_{n} \cdot n^{2} \cdot q_{n}^{2}}, \frac{l}{n \cdot q_{n}}+\frac{v+1}{n^{2} \cdot q_{n}^{2}}\right] \times[0,1]^{m-1}$.
This is a smooth map because ϕ_{n} coincides with the identity in a neighbourhood of the different sections.
Hereby, we have defined the diffeomorphism ϕ_{n} on the fundamental sector $\left[0, \frac{1}{q_{n}}\right] \times[0,1]^{m-1}$. Now we extend ϕ_{n} to a diffeomorphism on $\mathbb{S}^{1} \times[0,1]^{m-1}$ using the description $\phi_{n} \circ R_{\frac{1}{q_{n}}}=R_{\frac{1}{q_{n}}} \circ \phi_{n}$.
Example 3.3. Let $\kappa_{1}=\frac{1}{2}, \kappa_{2}=\frac{3}{4}$ and $\kappa_{3}=\frac{7}{8}$. Since $\kappa_{3}-\kappa_{2}=\frac{1}{8}<\frac{1}{4}=\kappa_{2}-\kappa_{1}$ and $3 \cdot\left(\kappa_{2}-\kappa_{1}\right)=\frac{3}{4}<\frac{7}{8}=\kappa_{3}$ we have $\left(\kappa_{1}, \kappa_{2}, \kappa_{3}\right) \in \Pi_{3}$. In Figure 1 we list the powers γ of $\phi_{d_{n} \cdot\left(n q_{n}\right)^{\gamma}}^{(2)}$ on a domain $\left[\frac{l}{n \cdot q_{n}}+\frac{v}{n^{2} \cdot q_{n}^{2}}, \frac{l}{n \cdot q_{n}}+\frac{v+1}{n^{2} \cdot q_{n}^{2}}\right] \times[0,1]$ for different values of $l \in \mathbb{Z}$.

	4	$\frac{1}{4}$		$\frac{1}{2}$	$\frac{3}{4}$			
$l=0.3$	2.3	$2 \cdot 2$	2.2	$2 \cdot 3$	2		2.3	id
$l=12 \cdot 3$	2.3	$2 \cdot 4$	2.2	$2 \cdot 4$	$2 \cdot$		$2 \cdot 4$	id
$l=22 \cdot 5$	$2 \cdot 3$	$2 \cdot 5$	2.5	$2 \cdot 4$	$2 \cdot$		2.5	id
$l=32 \cdot 6$	$2 \cdot 6$	$2 \cdot 5$	$2 \cdot 5$		$2 \cdot$		$2 \cdot 6$	id
$l=42 \cdot 6$	$2 \cdot 62$	2.7	2.5	2.7	$2 \cdot 7$		2.7	id

Figure 1: List of powers γ of $\phi_{d_{n} \cdot\left(n q_{n}\right)^{\gamma}}^{(2)}$ on a domain $\left[\frac{l}{n \cdot q_{n}}+\frac{v}{n^{2} \cdot q_{n}^{2}}, \frac{l}{n \cdot q_{n}}+\frac{v+1}{n^{2} \cdot q_{n}^{2}}\right] \times[0,1]$ for different values of $l \in \mathbb{Z}$. In the horizontal direction we have the portions of the length $\frac{1}{n^{2} \cdot q_{n}^{2}}$ of the domain.

3.2 The conjugation map h_{n}

We define the conjugation map as the composition

$$
h_{n}=g_{n} \circ \phi_{n}
$$

where

$$
g_{n}\left(\theta, r_{1}, \ldots, r_{m-1}\right)=\left(\theta+n q_{n} \cdot r_{1}, r_{1}, \ldots, r_{m-1}\right) .
$$

3.3 Partial partition η_{n}

In this subsection we define the announced sequence of partial partitions $\left(\eta_{n}\right)_{n \in \mathbb{N}}$ of $M=\mathbb{S}^{1} \times$ $[0,1]^{m-1}$.
Remark 3.4. For convenience we will use the notation $\prod_{i=2}^{m}\left[a_{i}, b_{i}\right]$ for $\left[a_{2}, b_{2}\right] \times \ldots \times\left[a_{m}, b_{m}\right]$
Initially η_{n} will be constructed on the fundamental sector $\left[0, \frac{1}{q_{n}}\right] \times[0,1]^{m-1}$. We start by considering the following sets: In the θ-coordinate we define
$\tilde{I}_{l, v, u, t_{1}^{(2)}, \ldots, t_{1}^{(m \cdot(n-1+k))}}:=$ $\left[\frac{l}{n q_{n}}+\frac{v}{\left(n q_{n}\right)^{2}}+\frac{u}{d_{n} \cdot\left(n q_{n}\right)^{2}}+\frac{t_{1}^{(2)}}{d_{n} \cdot\left(n q_{n}\right)^{2 \cdot 2}}+\ldots+\frac{t_{1}^{(m \cdot(n-1+k))}}{d_{n} \cdot\left(n q_{n}\right)^{2 m \cdot(n-1+k)}}+\frac{1}{10 n^{4} \cdot d_{n} \cdot\left(n q_{n}\right)^{2 m \cdot(n-1+k)}}\right.$,

$$
\left.\frac{l}{n q_{n}}+\frac{v}{\left(n q_{n}\right)^{2}}+\frac{u}{d_{n} \cdot\left(n q_{n}\right)^{2}}+\frac{t_{1}^{(2)}}{d_{n} \cdot\left(n q_{n}\right)^{2 \cdot 2}}+\ldots+\frac{t_{1}^{(m \cdot(n-1+k))}+1}{d_{n} \cdot\left(n q_{n}\right)^{2 m \cdot(n-1+k)}}-\frac{1}{10 n^{4} \cdot d_{n} \cdot\left(n q_{n}\right)^{2 m \cdot(n-1+k)}}\right]
$$

and

$$
\begin{gathered}
\tilde{I}_{l, v}^{1}:= \\
{\left[\frac{l}{n \cdot q_{n}}+\frac{v+\sum_{d=1}^{k} \tilde{\beta}_{d, n}}{n^{2} \cdot q_{n}^{2}}+\frac{1-\sum_{d=1}^{k} \tilde{\beta}_{d, n}}{2 \cdot n^{2} \cdot q_{n}^{2}} \cdot\left(1-\left(1-\frac{1}{5 n^{4}}\right)^{m \cdot(n-1+k)-1}\right),\right.} \\
\\
\left.\frac{l}{n \cdot q_{n}}+\frac{v+1}{n^{2} \cdot q_{n}^{2}}-\frac{1-\sum_{d=1}^{k} \tilde{\beta}_{d, n}}{2 \cdot n^{2} \cdot q_{n}^{2}} \cdot\left(1-\left(1-\frac{1}{5 n^{4}}\right)^{m \cdot(n-1+k)-1}\right)\right] .
\end{gathered}
$$

In the \vec{r}-coordinates we define

$$
\begin{aligned}
& W_{j_{2}^{(1)}, j_{2}^{(2)}, t_{2}^{(2)}, \ldots, t_{2}^{(n-1+k)}, j_{3}, t_{3}^{(2)}, \ldots, t_{3}^{(n-1+k)}, \ldots, j_{m}, t_{m}^{(2)}, \ldots, t_{m}^{(n-1+k)}:=}^{\left[\frac{j_{2}^{(1)}}{n \cdot q_{n}^{2}}+\frac{j_{2}^{(2)}}{n^{2} \cdot q_{n}^{2}}+\frac{t_{2}^{(2)}}{\left(n q_{n}\right)^{2 \cdot 2}}+\ldots+\frac{t_{2}^{(n-1+k)}}{\left(n q_{n}\right)^{2 \cdot(n-1+k)}}+\frac{1}{10 n^{4} \cdot\left(n q_{n}\right)^{2 \cdot(n-1+k)}},\right.} \\
& \left.\frac{j_{2}^{(1)}}{n \cdot q_{n}^{2}}+\frac{j_{2}^{(2)}}{n^{2} \cdot q_{n}^{2}}+\frac{t_{2}^{(2)}}{\left(n q_{n}\right)^{2 \cdot 2}}+\ldots+\frac{t_{2}^{(n-1+k)}+1}{\left(n q_{n}\right)^{2 \cdot(n-1+k)}}-\frac{1}{10 n^{4} \cdot\left(n q_{n}\right)^{2 \cdot(n-1+k)}}\right] \\
& \times \prod_{i=3}^{m}\left[\frac{j_{i}}{n^{2} \cdot q_{n}^{2}}+\frac{t_{i}^{(2)}}{\left(n q_{n}\right)^{2 \cdot 2}}+\ldots+\frac{t_{i}^{(n-1+k)}}{\left(n q_{n}\right)^{2 \cdot(n-1+k)}}+\frac{1}{10 n^{4} \cdot\left(n q_{n}\right)^{2 \cdot(n-1+k)}},\right. \\
& \left.\quad \frac{j_{i}+1}{n^{2} \cdot q_{n}^{2}}+\frac{t_{i}^{(2)}}{\left(n q_{n}\right)^{2 \cdot 2}}+\ldots+\frac{t_{i}^{(n-1+k)}+1}{\left(n q_{n}\right)^{2 \cdot(n-1+k)}}-\frac{1}{10 n^{4} \cdot\left(n q_{n}\right)^{2 \cdot(n-1+k)}}\right]
\end{aligned}
$$

In case of $l, v \in \mathbb{Z}, 0 \leq l<n$ and $0 \leq v<n q_{n}$, we define

where the union is taken over

- $u \in \mathbb{Z}, 0 \leq u<\sum_{d=1}^{k} c_{d, n}$
- $t_{1}^{(s)} \in \mathbb{Z},\left\lceil\frac{q_{n}^{2}}{10 n^{2}}\right\rceil \leq t_{1}^{(s)} \leq n^{2} q_{n}^{2}-\left\lceil\frac{q_{n}^{2}}{10 n^{2}}\right\rceil-1$, for $s=2, \ldots, m \cdot(n-1+k)$
- $t_{i}^{(s)} \in \mathbb{Z},\left\lceil\frac{q_{n}^{2}}{10 n^{2}}\right\rceil \leq t_{i}^{(s)} \leq n^{2} q_{n}^{2}-\left\lceil\frac{q_{n}^{2}}{10 n^{2}}\right\rceil-1$, for $s=2, \ldots, n-1+k$ and $i=2, \ldots, m$.

In Lemma 6.9 we will choose q_{n} as a multiple of $10 n^{2}$. In particular, $\left\lceil\frac{q_{n}^{2}}{10 n^{2}}\right\rceil=\frac{q_{n}^{2}}{10 n^{2}}$.
Remark 3.5. Descriptively $I_{l, v, j_{2}^{(1)}, j_{2}^{(2)}, j_{3}, \ldots, j_{m}}$ is the cube

$$
\left[\frac{l}{n q_{n}}+\frac{v}{n^{2} \cdot q_{n}^{2}}, \frac{l}{n q_{n}}+\frac{v+1}{n^{2} \cdot q_{n}^{2}}\right] \times\left[\frac{j_{2}^{(1)}}{n \cdot q_{n}^{2}}+\frac{j_{2}^{(2)}}{n^{2} \cdot q_{n}^{2}}, \frac{j_{2}^{(1)}}{n \cdot q_{n}^{2}}+\frac{j_{2}^{(2)}+1}{n^{2} \cdot q_{n}^{2}}\right] \times \prod_{i=3}^{m}\left[\frac{j_{i}}{n^{2} \cdot q_{n}^{2}}, \frac{j_{i}+1}{n^{2} \cdot q_{n}^{2}}\right]
$$

with some holes. These holds are inserted in order to guarantee that $I_{l, v, j_{2}^{(1)}, j_{2}^{(2)}, j_{3}, \ldots, j_{m}}$ belongs to the "good domain" of ϕ_{n}^{-1} and also of ϕ_{n} after a translation by $\frac{i}{n q_{n}}$ on the θ-axis. This property will be exploited in the proof of Lemma 4.5

With the aid of these sets we define our partial partition η_{n} :

- On $\left[\frac{l}{n \cdot q_{n}}, \frac{l+1}{n \cdot q_{n}}\right] \times[0,1]^{m-1}, 0 \leq l<n-k$, the partial partition η_{n} consists of all such sets $I_{l, v, j_{2}^{(1)}, j_{2}^{(2)}, j_{3}, \ldots, j_{m}}$, at which $j_{i} \in \mathbb{Z}$ and $\left\lceil\frac{q_{n}^{2}}{10 n^{2}}\right\rceil \leq j_{i} \leq n^{2} q_{n}^{2}-\left\lceil\frac{q_{n}^{2}}{10 n^{2}}\right\rceil-1$ for $i=3, \ldots, m$ and $v \in \mathbb{Z}, 0 \leq v \leq n \cdot q_{n}-1$, as well as $j_{2}^{(1)} \in \mathbb{Z},\left\lceil\frac{q_{n}^{2}}{10 n^{3}}\right\rceil \leq j_{2}^{(1)} \leq n q_{n}^{2}-\left\lceil\frac{q_{n}^{2}}{10 n^{3}}\right\rceil-1$ as well as $j_{2}^{(2)} \in \mathbb{Z}, 0 \leq j_{2}^{(2)} \leq n-1$ apart from those $j_{2}^{(2)}$ satisfying

$$
l+j_{2}^{(2)} \equiv n-s \quad \bmod n \quad \text { for } \quad s=1,2, \ldots, k+1
$$

- On $\left[\frac{n-k}{n \cdot q_{n}}, \frac{1}{q_{n}}\right] \times[0,1]^{m-1}$ there are no elements of the partial partition η_{n}.

As the image under $R_{a / q_{n}}$ with $a \in \mathbb{Z}$ this partial partition of $\left[0, \frac{1}{q_{n}}\right] \times[0,1]^{m-1}$ is extended to a partial partition of $\mathbb{S}^{1} \times[0,1]^{m-1}$.

Remark 3.6. By construction this sequence of partial partitions converges to the decomposition into points.

Remark 3.7. In the following we will often write a partition element in the comprehensive form $\hat{I}_{n}=\bigcup_{j=0}^{N} I_{j} \times W$, at which $W=\pi_{\vec{r}}\left(\hat{I}_{n}\right)$ is the m-1-dimensional projection of \hat{I}_{n} in the r_{1}, \ldots, r_{m-1}-coordinates and we have the following sections I_{j} on the θ-axis: If $\phi_{n}=$ $\phi_{d_{n} \cdot\left(n q_{n}\right)^{2 \cdot(m-1) \cdot T}}^{(m)} \circ \cdots \circ \phi_{d_{n} \cdot\left(n q_{n}\right)^{2 \cdot 2 \cdot T}}^{(3)} \circ \phi_{d_{n} \cdot\left(n q_{n}\right)^{2 \cdot T}}^{(2)}$ on $\left[\frac{l}{n q_{n}}+\frac{v}{n^{2} \cdot q_{n}^{2}}+\frac{u}{d_{n} \cdot n^{2} \cdot q_{n}^{2}}, \frac{l}{n q_{n}}+\frac{v}{n^{2} \cdot q_{n}^{2}}+\frac{u+1}{d_{n} \cdot n^{2} \cdot q_{n}^{2}}\right] \times$
$[0,1]^{m-1}$, then sections on this domain are given by $I_{j}=\bigcup \tilde{I}_{l, v, u, t_{1}^{(2)}, \ldots, t_{1}^{(m \cdot(n-1+k)}}$, where the union is taken over the allowed values of $t_{1}^{(T+1)}, \ldots, t_{1}^{(m \cdot(n-1+k))}$.
Finally, I_{N} corresponds to the section $\tilde{I}_{l, v}^{1}$, i. e.

$$
\begin{aligned}
& {\left[\frac{l}{n \cdot q_{n}}+\frac{v+\sum_{d=1}^{k} \tilde{\beta}_{d, n}}{n^{2} \cdot q_{n}^{2}}+\frac{1-\sum_{d=1}^{k} \tilde{\beta}_{d, n}}{2 \cdot n^{2} \cdot q_{n}^{2}} \cdot\left(1-\left(1-\frac{1}{5 n^{4}}\right)^{m \cdot(n-1+k)-1}\right)\right.} \\
& \left.\quad \frac{l}{n \cdot q_{n}}+\frac{v+1}{n^{2} \cdot q_{n}^{2}}-\frac{1-\sum_{d=1}^{k} \tilde{\beta}_{d, n}}{2 \cdot n^{2} \cdot q_{n}^{2}} \cdot\left(1-\left(1-\frac{1}{5 n^{4}}\right)^{m \cdot(n-1+k)-1}\right)\right]
\end{aligned}
$$

Note that the partition elements are constructed in such a way that

$$
\mu\left(I_{N} \times W\right)=\left(1-\sum_{d=1}^{k} \tilde{\beta}_{d, n}\right) \cdot \mu\left(\hat{I}_{n}\right) .
$$

Remark 3.8. For an element $\hat{I}_{n}=\bigcup_{j=0}^{N} I_{j} \times W$ of the partition η_{n} we observe:

$$
\left.\phi_{n}\right|_{I_{N} \times W}=\mathrm{id}
$$

Remark 3.9. The additional restrictions on $j_{2}^{(2)}$ will be helpful in Remark 5.5.

4 ($\gamma, \delta, s, \epsilon$)-distribution

We introduce the central notion in the proof of the criterion for $\left(\kappa_{1}, \ldots, \kappa_{k}\right)$-weak mixing deduced in the next section:

Definition 4.1. Let $\Phi: M \rightarrow M$ be a diffeomorphism. We say $\Phi\left(\gamma, \delta, s_{1}, s, \epsilon\right)$-distributes a set \hat{I}, if the following properties are satisfied:

- $\Phi(\hat{I})$ is contained in a set of the form $[c, c+\gamma] \times[\delta, 1-\delta]^{m-1}$ for some $c \in \mathbb{S}^{1}$.
- For every $(m-1)$-dimensional cuboid $\tilde{J} \subseteq J$ of r_{1}-length at least s_{1} and of side length s in the r_{2}, \ldots, r_{m-1}-coordinates it holds:

$$
\left|\mu\left(\hat{I} \cap \Phi^{-1}\left(\mathbb{S}^{1} \times \tilde{J}\right)\right)-\mu(\hat{I}) \cdot \mu^{(m-1)}(\tilde{J})\right| \leq \epsilon \cdot \mu(\hat{I}) \cdot \mu^{(m-1)}(\tilde{J})
$$

where $\mu^{(m-1)}$ is the Lebesgue measure on $[0,1]^{m-1}$.
Remark 4.2. Inspired by [FS05] we will call the second property "almost uniform distribution" of \hat{I} in the $r_{1}, . ., r_{m-1}$-coordinates.

In the next step we define the sequence of natural numbers $\left(m_{n}\right)_{n \in \mathbb{N}}$:

$$
m_{n}=\min \left\{m \leq q_{n+1} \quad: \quad m \in \mathbb{N}, \quad \inf _{k \in \mathbb{Z}}\left|m \cdot \frac{p_{n+1}}{q_{n+1}}-\frac{1}{n \cdot q_{n}}+k\right| \leq \frac{10 n^{2}}{q_{n+1}}\right\}
$$

Lemma 4.3. The set $M_{n}:=\left\{m \leq q_{n+1} \quad: \quad m \in \mathbb{N}, \inf _{k \in \mathbb{Z}}\left|m \cdot \frac{p_{n+1}}{q_{n+1}}-\frac{1}{n \cdot q_{n}}+k\right| \leq \frac{10 n^{2}}{q_{n+1}}\right\}$ is nonempty for every $n \in \mathbb{N}$, i.e. m_{n} exists.

Proof. In Lemma 6.9 we will construct the sequence $\alpha_{n}=\frac{p_{n}}{q_{n}}$ in such a way, that $q_{n}=10 n^{2} \cdot \tilde{q}_{n}$ and $p_{n}=10 n^{2} \cdot \tilde{p}_{n}$ with $\tilde{p}_{n}, \tilde{q}_{n}$ relatively prime. Therefore the set $\left\{j \cdot \frac{p_{n+1}}{q_{n+1}}: j=1,2, \ldots, q_{n+1}\right\}$ contains $\frac{q_{n+1}}{10 n^{2}}$ different equally distributed points on \mathbb{S}^{1}. Hence for every $x \in \mathbb{S}^{1}$ there is a $j \in\left\{1, \ldots, q_{n+1}\right\}$, such that $\inf _{k \in \mathbb{Z}}\left|x-j \cdot \frac{p_{n+1}}{q_{n+1}}+k\right| \leq \frac{10 n^{2}}{q_{n+1}}$. In particular this is true for $x=\frac{1}{n \cdot q_{n}}$.

Remark 4.4. We define

$$
a_{n}=\left(m_{n} \cdot \frac{p_{n+1}}{q_{n+1}}-\frac{1}{n \cdot q_{n}}\right) \bmod 1
$$

By the above construction of m_{n} it holds: $\left|a_{n}\right| \leq \frac{10 n^{2}}{q_{n+1}}$. In Lemma 6.9 we will see that it is possible to choose $q_{n+1} \geq 200 \cdot n^{2} \cdot k \cdot d_{n}^{2} \cdot n^{4 \cdot(n+k)} \cdot q_{n}^{4 \cdot(n-1+k)}$. Thus we get:

$$
\left|a_{n}\right| \leq \frac{1}{20 n^{4} \cdot k \cdot d_{n}^{2} \cdot\left(n \cdot q_{n}\right)^{4 \cdot(n-1+k)}}
$$

By this choice of the number $m_{n}, R_{\alpha_{n+1}}^{m_{n}}$ causes a translation to the adjacent $\frac{1}{n q_{n}}$-domain of definition of the map ϕ_{n}. On such a domain the elements \hat{I}_{n} of the partial partition η_{n} are positioned in such a way that all $\varphi_{\varepsilon, 1, j}^{-1}$ act as the particular rotations. On the adjacent section, the stretching parameters λ_{j} in $\phi_{\lambda_{j}}^{(j)}$ are chosen so that either ϕ_{n} is of the same form as before or ϕ_{n} maps $R_{\alpha_{n+1}}^{m_{n}} \circ \phi_{n}^{-1}\left(\hat{I}_{n}\right)$ to a set of almost full length in the r_{1}, \ldots, r_{m-1}-coordinates. We make this precise in the subsequent lemma.

Lemma 4.5. We consider a set I_{n} belonging to a partition element of η_{n} of the form

$$
\begin{gathered}
\bigcup\left[\frac{t_{1}^{(T+1)}}{d_{n} \cdot\left(n \cdot q_{n}\right)^{2 \cdot(T+1)}}+\ldots+\frac{t_{1}^{(m \cdot(n-1+k))}}{d_{n} \cdot\left(n \cdot q_{n}\right)^{2 \cdot m \cdot(n-1+k)}}+\frac{1}{10 n^{4} \cdot d_{n} \cdot\left(n \cdot q_{n}\right)^{2 \cdot m \cdot(n-1+k)}},\right. \\
\\
\left.\quad \frac{t_{1}^{(T+1)}}{d_{n} \cdot\left(n \cdot q_{n}\right)^{2 \cdot(T+1)}}+\ldots+\frac{t_{1}^{(m \cdot(n-1+k))}+1}{d_{n} \cdot\left(n \cdot q_{n}\right)^{2 \cdot m \cdot(n-1+k)}}-\frac{1}{10 n^{4} \cdot d_{n} \cdot\left(n \cdot q_{n}\right)^{2 \cdot m \cdot(n-1+k)}}\right] \\
\times \prod_{i=2}^{m}\left[\frac{j_{i}}{\left(n q_{n}\right)^{2}}+\frac{t_{i}^{(2)}}{\left(n q_{n}\right)^{2 \cdot 2}}+\ldots+\frac{t_{i}^{(n-1+k)}}{\left(n q_{n}\right)^{2 \cdot(n-1+k)}}+\frac{1}{10 n^{4} \cdot\left(n q_{n}\right)^{2 \cdot(n-1+k)}},\right. \\
\left.\frac{j_{i}}{\left(n q_{n}\right)^{2}}+\frac{t_{i}^{(2)}}{\left(n q_{n}\right)^{2 \cdot 2}}+\ldots+\frac{t_{i}^{(n-1+k)}+1}{\left(n q_{n}\right)^{2 \cdot(n-1+k)}}-\frac{1}{10 n^{4} \cdot\left(n q_{n}\right)^{2 \cdot(n-1+k)}}\right],
\end{gathered}
$$

where the union is taken over all occurring $t_{i}^{(j)}$, and assume that

$$
\phi_{n}=\phi_{d_{n} \cdot\left(n q_{n}\right)^{2 \cdot(m-1) \cdot T}}^{(m)} \circ \cdots \circ \phi_{d_{n} \cdot\left(n q_{n}\right)^{2 \cdot 2 \cdot T}}^{(3)} \circ \phi_{d_{n} \cdot\left(n q_{n}\right)^{2 \cdot T}}^{(2)}
$$

on it. After an application of $R_{\alpha_{n+1}}^{l \cdot m_{n}}$ with some $l \in\{1, \ldots, k\}$ the image $R_{\alpha_{n+1}}^{l \cdot m_{n}} \circ \phi_{n}^{-1}\left(I_{n}\right)$ lies in a domain where

$$
\phi_{n}=\phi_{d_{n} \cdot\left(n q_{n}\right)^{2 \cdot(m-1) \cdot U}}^{(m)} \circ \cdots \circ \phi_{d_{n} \cdot\left(n q_{n}\right)^{2 \cdot 2 \cdot U}}^{(3)} \circ \phi_{d_{n} \cdot\left(n q_{n}\right)^{2 \cdot U}}^{(2)}
$$

1. If $U=T$, then $\phi_{n} \circ R_{\alpha_{n+1}}^{l \cdot m_{n}} \circ \phi_{n}^{-1}\left(I_{n}\right)$ is contained in the cube

$$
\left[\frac{l}{n q_{n}}, \frac{l}{n q_{n}}+\frac{1}{\left(n q_{n}\right)^{2}}\right] \times \prod_{i=2}^{m}\left[\frac{j_{i}}{n^{2} \cdot q_{n}^{2}}, \frac{j_{i}+1}{n^{2} \cdot q_{n}^{2}}\right] .
$$

In particular, $\pi_{\vec{r}}\left(\phi_{n} \circ R_{\alpha_{n+1}}^{l \cdot m_{n}} \circ \phi_{n}^{-1}\left(I_{n}\right)\right)$ is contained in the same $\frac{1}{\left(n q_{n}\right)^{2}}$-cube as $\pi_{\vec{r}}\left(I_{n}\right)$.
2. If $U>T$, then $\phi_{n} \circ R_{\alpha_{n+1}}^{l \cdot m_{n}} \circ \phi_{n}^{-1}$ is $\left(\frac{1}{d_{n} \cdot\left(n q_{n}\right)^{2}}, \frac{1}{10 n^{4}}, \frac{1}{n q_{n}^{2}}, \frac{1}{q_{n}}, \frac{3}{n}\right)$-distributing the set I_{n}.

Proof. When applying the map ϕ_{n}^{-1} we observe that the set is positioned in such a way that all the occurring maps $\varphi_{\varepsilon, 1, j}^{-1}$ act as the respective rotations. Then we compute $\phi_{n}^{-1}\left(I_{n}\right)$ with the aid of Proposition 3.2 .

$$
\begin{aligned}
& \bigcup {\left[\frac{j_{2}}{d_{n} \cdot\left(n q_{n}\right)^{2(T+1)}}+\frac{t_{2}^{(2)}}{d_{n} \cdot\left(n q_{n}\right)^{2(T+2)}}+\ldots+\frac{t_{2}^{(n-1+k)}}{d_{n} \cdot\left(n q_{n}\right)^{2(n-1+k+T)}}+\frac{1}{10 n^{4} \cdot d_{n} \cdot\left(n q_{n}\right)^{2(n-1+k+T)}},\right.} \\
&\left.\frac{j_{2}}{d_{n} \cdot\left(n q_{n}\right)^{2(T+1)}}+\frac{t_{2}^{(2)}}{d_{n} \cdot\left(n q_{n}\right)^{2(T+2)}}+\ldots+\frac{t_{2}^{(n-1+k)}+1}{d_{n} \cdot\left(n q_{n}\right)^{2(n-1+k+T)}}-\frac{1}{10 n^{4} \cdot d_{n} \cdot\left(n q_{n}\right)^{2(n-1+k+T)}}\right] \\
& \times \prod_{i=2}^{m-1}\left[1-\frac{t_{1}^{((i-1) T+1)}}{\left(n q_{n}\right)^{2}}-\ldots-\frac{t_{1}^{(i T)}}{\left(n q_{n}\right)^{2 T}}-\frac{j_{i+1}}{\left(n q_{n}\right)^{2 \cdot(T+1)}}-\frac{t_{i+1}^{(2)}}{\left(n q_{n}\right)^{2 \cdot(T+2)}}-\ldots-\frac{t_{i+1}^{(n-1+k)}+1}{\left(n q_{n}\right)^{2(n-1+k+T)}}\right. \\
&+\frac{1}{10 n^{4} \cdot\left(n q_{n}\right)^{2 \cdot(n-1+k+T)}}, \\
&\left.1-\frac{t_{1}^{((i-1) T+1)}}{\left(n q_{n}\right)^{2}}-\ldots-\frac{t_{i+1}^{(n-1+k)}}{\left(n q_{n}\right)^{2 \cdot(n-1+k+T)}}-\frac{1}{10 n^{4} \cdot\left(n q_{n}\right)^{2 \cdot(n-1+k+T)}}\right] \\
& \times {\left[1-\frac{t_{1}^{((m-1) \cdot T+1)}}{\left(n q_{n}\right)^{2}}-\ldots-\frac{t_{1}^{(m \cdot(n-1+k))}+1}{\left(n q_{n}\right)^{2 \cdot m \cdot(n-1+k)-2 \cdot(m-1) \cdot T}}+\frac{1}{10 n^{4} \cdot\left(n q_{n}\right)^{2 \cdot m \cdot(n-1+k)-2 \cdot(m-1) \cdot T}},\right.} \\
&\left.1-\frac{t_{1}^{((m-1) \cdot T+1)}}{\left(n q_{n}\right)^{2}}-\ldots-\frac{t_{1}^{(m \cdot(n-1+k))}}{\left(n q_{n}\right)^{2 \cdot m \cdot(n-1+k)-2 \cdot(m-1) \cdot T}}-\frac{1}{10 n^{4} \cdot\left(n q_{n}\right)^{2 \cdot m \cdot(n-1+k)-2 \cdot(m-1) \cdot T}}\right] .
\end{aligned}
$$

By our choice of the number m_{n} the subsequent application of $R_{\alpha_{n+1}}^{l \cdot m_{n}}$ yields a shift by $\frac{l}{n q_{n}}+l a_{n}$ on the θ-axis, at which a_{n} is the "error term" introduced in Remark 4.4. With the aid of the bound on $l a_{n}$ from Remark 4.4 we can compute the image of I_{n} under $\Phi_{n}:=\phi_{n} \circ R_{\alpha_{n+1}}^{l \cdot m_{n}} \circ \phi_{n}^{-1}$. In the first case (i.e. $U=T$) we get

$$
\begin{aligned}
& \bigcup\left[\frac{l}{n q_{n}}+\frac{t_{1}^{(T+1)}}{d_{n} \cdot\left(n \cdot q_{n}\right)^{2 \cdot(T+1)}}+\ldots+\frac{t_{1}^{(m \cdot(n-1+k))}}{d_{n} \cdot\left(n \cdot q_{n}\right)^{2 \cdot m \cdot(n-1+k)}}+\frac{1}{10 n^{4} \cdot d_{n} \cdot\left(n \cdot q_{n}\right)^{2 \cdot m \cdot(n-1+k)}},\right. \\
& \left.\frac{l}{n q_{n}}+\frac{t_{1}^{(T+1)}}{d_{n} \cdot\left(n \cdot q_{n}\right)^{2 \cdot(T+1)}}+\ldots+\frac{t_{1}^{(m \cdot(n-1+k))}+1}{d_{n} \cdot\left(n \cdot q_{n}\right)^{2 \cdot m \cdot(n-1+k)}}-\frac{1}{10 n^{4} \cdot d_{n} \cdot\left(n \cdot q_{n}\right)^{2 \cdot m \cdot(n-1+k)}}\right] \\
& \times\left[\frac{j_{2}}{\left(n q_{n}\right)^{2}}+\frac{t_{2}^{(2)}}{\left(n q_{n}\right)^{2 \cdot 2}}+\ldots+\frac{t_{2}^{(n-1+k)}}{\left(n q_{n}\right)^{2 \cdot(n-1+k)}}+\frac{1}{10 n^{4} \cdot\left(n q_{n}\right)^{2 \cdot(n-1+k)}}+d_{n} \cdot\left(n q_{n}\right)^{2 T} \cdot l a_{n},\right. \\
& \left.\frac{j_{2}}{\left(n q_{n}\right)^{2}}+\frac{t_{2}^{(2)}}{\left(n q_{n}\right)^{2 \cdot 2}}+\ldots+\frac{t_{2}^{(n-1+k)}+1}{\left(n q_{n}\right)^{2 \cdot(n-1+k)}}-\frac{1}{10 n^{4} \cdot\left(n q_{n}\right)^{2 \cdot(n-1+k)}}+d_{n} \cdot\left(n q_{n}\right)^{2 T} \cdot l a_{n}\right] \\
& \times \prod_{i=3}^{m}\left[\frac{j_{i}}{\left(n q_{n}\right)^{2}}+\frac{t_{i}^{(2)}}{\left(n q_{n}\right)^{2 \cdot 2}}+\ldots+\frac{t_{i}^{(n-1+k)}}{\left(n q_{n}\right)^{2 \cdot(n-1+k)}}+\frac{1}{10 n^{4} \cdot\left(n q_{n}\right)^{2 \cdot(n-1+k)}},\right. \\
& \left.\frac{j_{i}}{\left(n q_{n}\right)^{2}}+\frac{t_{i}^{(2)}}{\left(n q_{n}\right)^{2 \cdot 2}}+\ldots+\frac{t_{i}^{(n-1+k)}+1}{\left(n q_{n}\right)^{2 \cdot(n-1+k)}}-\frac{1}{10 n^{4} \cdot\left(n q_{n}\right)^{2 \cdot(n-1+k)}}\right],
\end{aligned}
$$

In the second case $U=T+S>T$ we calculate $\phi_{n} \circ R_{\alpha_{n+1}}^{l \cdot m_{n}} \circ \phi_{n}^{-1}\left(I_{n}\right)$ to

$$
\begin{aligned}
& U\left[\frac{l}{n q_{n}}+\frac{j_{2}}{d_{n} \cdot\left(n q_{n}\right)^{2 \cdot(T+1)}}+\frac{t_{2}^{(2)}}{d_{n} \cdot\left(n q_{n}\right)^{2 \cdot(T+2)}}+\ldots+\frac{t_{2}^{(S)}}{d_{n} \cdot\left(n q_{n}\right)^{2 U}}+\frac{t_{1}^{(T+1)}}{d_{n} \cdot\left(n q_{n}\right)^{2 \cdot(U+1)}}+\ldots\right. \\
&+\frac{t_{1}^{(2 T)}}{d_{n} \cdot\left(n q_{n}\right)^{2 \cdot(U+T)}}+\frac{j_{3}}{d_{n} \cdot\left(n q_{n}\right)^{2 \cdot(U+T+1)}}+\frac{t_{3}^{(2)}}{d_{n} \cdot\left(n q_{n}\right)^{2 \cdot(U+T+2)}}+\ldots+\frac{t_{3}^{(S)}}{d_{n} \cdot\left(n q_{n}\right)^{2 \cdot 2 U}} \\
&+\frac{t_{1}^{(2 T+1)}}{d_{n} \cdot\left(n q_{n}\right)^{2 \cdot(2 U+1)}}+\ldots+\frac{t_{1}^{(3 T)}}{d_{n} \cdot\left(n q_{n}\right)^{2 \cdot(2 U+T)}}+\frac{j_{4}}{d_{n} \cdot\left(n q_{n}\right)^{2 \cdot(2 U+T+1)}}+\ldots+\frac{t_{1}^{((m-1) \cdot T+1)}}{d_{n} \cdot\left(n q_{n}\right)^{2((m-1) \cdot U+1)}} \\
&+\ldots+\frac{t_{1}^{(m \cdot(n-1+k))}}{d_{n} \cdot\left(n q_{n}\right)^{2 \cdot m \cdot(n-1+k)+2 \cdot(m-1) \cdot(U-T)}}+\frac{1}{10 n^{4} \cdot d_{n} \cdot\left(n q_{n}\right)^{2 m \cdot(n-1+k)+2 \cdot(m-1) \cdot(U-T)}}, \\
&\left.\frac{l}{n q_{n}}+\frac{j_{2}}{d_{n} \cdot\left(n q_{n}\right)^{2 \cdot(T+1)}}+\ldots+\frac{t_{1}^{(m \cdot(n-1+k))}+1-\frac{1}{10 n^{4}}}{d_{n} \cdot\left(n q_{n}\right)^{2 \cdot m \cdot(n-1+k)+2 \cdot(m-1) \cdot(U-T)}}\right] \\
& \times {\left[\frac{t_{2}^{(S+1)}}{\left(n q_{n}\right)^{2}}+\ldots+\frac{t_{2}^{((n-1+k)}}{\left(n q_{n}\right)^{2 \cdot(n-1+k-S)}}+\frac{1}{10 n^{4} \cdot\left(n q_{n}\right)^{2 \cdot(n-1+k-S)}}+d_{n} \cdot\left(n q_{n}\right)^{2 U} \cdot l a_{n},\right.} \\
&\left.\frac{t_{2}^{(S+1)}}{\left(n q_{n}\right)^{2}}+\ldots+\frac{t_{2}^{((n-1+k)}+1}{\left(n q_{n}\right)^{2 \cdot(n-1+k-S)}}-\frac{1}{10 n^{4} \cdot\left(n q_{n}\right)^{2 \cdot(n-1+k-S)}}+d_{n} \cdot\left(n q_{n}\right)^{2 U} \cdot l a_{n}\right] \\
& \times \prod_{i=3}^{m}\left[\frac{t_{i}^{(S+1)}}{\left(n q_{n}\right)^{2}}+\ldots+\frac{t_{i}^{(n-1+k)}}{\left(n q_{n}\right)^{2 \cdot(n-1+k-S)}}+\frac{1}{10 n^{4} \cdot\left(n q_{n}\right)^{2 \cdot(n-1+k-S)}},\right. \\
&\left.\frac{t_{i}^{(S+1)}}{\left(n q_{n}\right)^{2}}+\ldots+\frac{t_{i}^{(n-1+k)}+1}{\left(n q_{n}\right)^{2 \cdot(n-1+k-S)}}-\frac{1}{10 n^{4} \cdot\left(n q_{n}\right)^{2 \cdot(n-1+k-S)}}\right] .
\end{aligned}
$$

Thus such a set $\Phi_{n}\left(I_{n}\right)$ has a θ-width of at most $\frac{1}{d_{n} \cdot\left(n \cdot q_{n}\right)^{2 \cdot(T+1)}}$.
Let $J=\prod_{i=2}^{m}\left[\frac{1}{10 n^{4}}, 1-\frac{1}{10 n^{4}}\right]$ and $\tilde{J} \subset J$ be any $(m-1)$-dimensional cuboid of r_{1}-length $l_{1} \geq \frac{1}{n q_{n}^{2}}$ and of side length q_{n}^{-1} in the r_{2}, \ldots, r_{m-1}-coordinates. In each of the coordinates $r_{2}, \ldots, r_{m-1}, \tilde{J}$ contains at least $\frac{\left(\left(n q_{n}\right)^{2} \cdot\left(1-\frac{1}{10 n^{4}}\right)\right)^{n-1+k-S}}{q_{n}}$ and at most $\frac{\left(n q_{n}\right)^{2 \cdot(n-1+k-S)}}{q_{n}}$ intervals of the form

$$
\begin{aligned}
& {\left[\frac{t_{i}^{(S+1)}}{\left(n q_{n}\right)^{2}}+\ldots+\frac{t_{i}^{(n-1+k)}}{\left(n q_{n}\right)^{2 \cdot(n-1+k-S)}}+\frac{1}{10 n^{4} \cdot\left(n q_{n}\right)^{2 \cdot(n-1+k-S)}}\right.} \\
& \left.\frac{t_{i}^{(S+1)}}{\left(n q_{n}\right)^{2}}+\ldots+\frac{t_{i}^{(n-1+k)}+1}{\left(n q_{n}\right)^{2 \cdot(n-1+k-S)}}-\frac{1}{10 n^{4} \cdot\left(n q_{n}\right)^{2 \cdot(n-1+k-S)}}\right]
\end{aligned}
$$

while in the r_{1}-coordinate \tilde{J} contains at least $\left(\left\lfloor l_{1}\left(n q_{n}\right)^{2}\right\rfloor-2\right) \cdot\left(\left(n q_{n}\right)^{2} \cdot\left(1-\frac{1}{10 n^{4}}\right)\right)^{n-2+k-S}$ and at most $l_{1} \cdot\left(n q_{n}\right)^{2 \cdot(n-1+k-S)}$ such intervals. Hereby, we estimate

$$
\begin{aligned}
& \mu\left(\Phi_{n}\left(I_{n}\right) \cap \mathbb{S}^{1} \times \tilde{J}\right) \\
\geq & \frac{l_{1}}{d_{n} \cdot\left(n q_{n}\right)^{2 \cdot(T+m-1)+m-2}} \cdot\left(1-\frac{3}{l_{1}\left(n q_{n}\right)^{2}}\right) \cdot\left(1-\frac{1}{10 n^{4}}\right)^{(m-1) \cdot(n-1+k-S)-1} \cdot\left(1-\frac{1}{5 n^{4}}\right)^{(m-1) \cdot(S-1)+m \cdot(n+k)-T} \\
\geq & \left(1-\frac{3}{n}\right) \cdot \mu\left(I_{n}\right) \cdot \mu^{(m-1)}(\tilde{J})
\end{aligned}
$$

exploiting $l_{n} \geq \frac{1}{n q_{n}^{2}}$ and

$$
\mu\left(I_{n}\right)=\frac{1}{d_{n} \cdot\left(n q_{n}\right)^{2 \cdot(T+m-1)}} \cdot\left(1-\frac{1}{5 n^{4}}\right)^{m \cdot(n+k)-T+(m-1) \cdot(n+k-2)}
$$

On the other hand, we have

$$
\begin{aligned}
\mu\left(\Phi_{n}\left(I_{n}\right) \cap \mathbb{S}^{1} \times \tilde{J}\right) & \leq \frac{1}{d_{n} \cdot\left(n q_{n}\right)^{2 \cdot(T+m-1)+m-2}} \cdot l_{1} \cdot\left(1-\frac{1}{5 n^{4}}\right)^{m \cdot(n+k)-T+(m-1) \cdot(S-1)} \\
& \leq\left(1+\frac{1}{n}\right) \cdot \mu\left(I_{n}\right) \cdot \mu^{(m-1)}(\tilde{J})
\end{aligned}
$$

for n sufficiently large. Hence, the properties of a $\left(\frac{1}{d_{n} \cdot\left(n q_{n}\right)^{2}}, \frac{1}{10 n^{4}}, \frac{1}{n q_{n}^{2}}, q_{n}^{-1}, \frac{3}{n}\right)$-distribution are fulfilled.

The previous lemma shows the significance of an understanding of how the ($n q_{n}$)-powers in the definition of ϕ_{n} evolve while passing from $\left[\frac{l}{n q_{n}}, \frac{l+1}{n q_{n}}\right] \times[0,1]^{m-1}$ to $\left[\frac{l+i}{n q_{n}}, \frac{l+i+1}{n q_{n}}\right] \times[0,1]^{m-1}$:
Lemma 4.6. Let $l, v, i \in \mathbb{Z}, 0 \leq l<n-k, 0 \leq v<n q_{n}$ and $0<i \leq k$. On every section $\left[\frac{l+i}{n \cdot q_{n}}+\frac{v}{n^{2} \cdot q_{n}^{2}}, \frac{l+i}{n \cdot q_{n}}+\frac{v+1}{n^{2} \cdot q_{n}^{2}}\right] \times[0,1]^{m-1}$ the ratio of domains, where the $\left(n q_{n}\right)$-power in the definition of ϕ_{n} is greater than the $\left(n q_{n}\right)$-power of ϕ_{n} in the corresponding domain in $\left[\frac{l}{n \cdot q_{n}}+\frac{v}{n^{2} \cdot q_{n}^{2}}, \frac{l}{n \cdot q_{n}}+\frac{v+1}{n^{2} \cdot q_{n}^{2}}\right] \times$ $[0,1]^{m-1}$, is equal to $\sum_{d=1}^{i} \tilde{\beta}_{d, n}=\kappa_{i, n}$.

Proof. First of all, we notice that there is no decline of $\left(n q_{n}\right)$-powers when passing from $\left[\frac{l}{n q_{n}}, \frac{l+1}{n q_{n}}\right] \times$ $[0,1]^{m-1}$ to $\left[\frac{l+i}{n q_{n}}, \frac{l+i+1}{n q_{n}}\right] \times[0,1]^{m-1}$. Obviously, on the domains of the form

$$
\left[\frac{l}{n \cdot q_{n}}+\frac{v}{n^{2} \cdot q_{n}^{2}}+\frac{k \cdot c_{2, n}}{d_{n} \cdot n^{2} \cdot q_{n}^{2}}, \frac{l}{n \cdot q_{n}}+\frac{v}{n^{2} \cdot q_{n}^{2}}+\frac{\sum_{d=1}^{k} c_{d, n}}{d_{n} \cdot n^{2} \cdot q_{n}^{2}}\right] \times[0,1]^{m-1}
$$

i. e. on a corresponding θ-length of $\frac{\sum_{d=1}^{k} \tilde{\beta}_{d, n}-k \cdot \tilde{\beta}_{2, n}}{n^{2} q_{n}^{2}}$, we always have an increasing $\left(n q_{n}\right)$-power while passing from l to $l+i$ for any $i \geq 1$.

A more careful analysis has to be executed on the domains of the form

$$
\left[\frac{l}{n \cdot q_{n}}+\frac{v}{n^{2} \cdot q_{n}^{2}}, \frac{l}{n \cdot q_{n}}+\frac{v}{n^{2} \cdot q_{n}^{2}}+\frac{k \cdot c_{2, n}}{d_{n} \cdot n^{2} \cdot q_{n}^{2}}\right] \times[0,1]^{m-1}
$$

in the definition of ϕ_{n} : When passing from l to $l+i$ the number \tilde{s} changes to $\tilde{s}-i \bmod k$. Accordingly for each $s \in\{0,1, \ldots, k-1\}$ the corresponding number t_{s} is changed to $t_{s}+i \bmod k$. On the one hand, we observe that on the domains $\Delta_{l+i, v, s, u}$ with $u<u_{t_{s}+i-1, n}$ the $\left(n q_{n}\right)$-power is larger than on $\Delta_{l, v, s, u}$. On the other hand, the $\left(n q_{n}\right)$-power remains the same on domains of the form $\Delta_{l+i, v, s, u}$ for $u \geq u_{t_{s}+i-1, n}$ due to $l+i+k-\left(t_{s}+i\right)=l+k-t_{s}$. Hence, this yields an increased $\left(n q_{n}\right)$-power on a corresponding θ-length of $\sum_{t_{s}=0}^{k-1} \frac{u_{t_{s}+i-1, n}}{d_{n} \cdot n^{2} \cdot q_{n}^{2}}$, where we use the convention $u_{j, n}=c_{2, n}$ for $j \geq k$. By definition of the numbers $u_{i, n}$ in equation 2 we get

$$
\sum_{t_{s}=0}^{k-1} \frac{u_{t_{s}+i-1, n}}{d_{n} \cdot n^{2} \cdot q_{n}^{2}}=\frac{k \cdot \tilde{\beta}_{2, n}-\sum_{d=i+1}^{k} \tilde{\beta}_{d, n}}{n^{2} \cdot q_{n}^{2}}
$$

in case of $i<k$. In case of $i=k$ the fraction is equal to $\frac{k \cdot \tilde{\beta}_{2, n}}{n^{2} \cdot q_{n}^{2}}$.
Altogether the $\left(n q_{n}\right)$-power in the definition of ϕ_{n} has increased on a corresponding θ-length of $\frac{1}{n^{2} q_{n}^{2}} \sum_{d=1}^{i} \tilde{\beta}_{d, n}=\frac{1}{n^{2} q_{n}^{2}} \kappa_{i, n}$ using equation 3
Remark 4.7. For a partition element $\hat{I}_{n}=\bigcup_{j=0}^{N} I_{j} \times W$ we introduce subsets $N_{i}, i=1, \ldots, k$ of the set of indices $\{0,1, \ldots, N-1\}$ in the following way: $j \in N_{i}$ if the $\left(n q_{n}\right)$-power of ϕ_{n} on $R_{\frac{i}{n q_{n}}}\left(I_{j} \times W\right)$ is larger than the $\left(n q_{n}\right)$-power of ϕ_{n} on $I_{j} \times W$.
By the previous Lemma and the shape of partition elements in η_{n} we have

$$
\mu\left(\bigcup_{j \in N_{i}} I_{j} \times W\right)=\kappa_{i, n} \cdot \mu\left(\hat{I}_{n}\right)
$$

5 Criterion for $\left(\kappa_{1}, \ldots, \kappa_{k}\right)$-weak mixing

In this section we will prove a criterion for $\left(\kappa_{1}, \ldots, \kappa_{k}\right)$-weak mixing on $M=\mathbb{S}^{1} \times[0,1]^{m-1}$ in the setting of the beforehand constructions. For the derivation we need a couple of lemmas. At first we examine a sequence of partial partitions that will be used in the criterion:

Lemma 5.1. Consider the sequence of partial partitions $\left(\eta_{n}\right)_{n \in \mathbb{N}}$ constructed in section 3.3 and the diffeomorphisms g_{n} from chapter 3.2. Furthermore let $\left(H_{n}\right)_{n \in \mathbb{N}}$ be a sequence of measurepreserving smooth diffeomorphisms satisfying $\left\|D H_{n-1}\right\| \leq \frac{\ln \left(q_{n}\right)}{n}$ for every $n \in \mathbb{N}$ and define the partial partitions $\nu_{n}=\left\{\Gamma_{n}=H_{n-1} \circ g_{n}\left(\hat{I}_{n}\right): \hat{I}_{n} \in \eta_{n}\right\}$. Then we get $\nu_{n} \rightarrow \varepsilon$.
Proof. By construction $\eta_{n}=\left\{\hat{I}_{n}^{i}: i \in \Lambda_{n}\right\}$, where Λ_{n} is a countable set of indices. Because of $\eta_{n} \rightarrow \varepsilon$ it holds $\lim _{n \rightarrow \infty} \mu\left(\bigcup_{i \in \Lambda_{n}} \hat{I}_{n}^{i}\right)=1$. Since $H_{n-1} \circ g_{n}$ is measure-preserving we conclude:

$$
\lim _{n \rightarrow \infty} \mu\left(\bigcup_{i \in \Lambda_{n}} \Gamma_{n}^{i}\right)=\lim _{n \rightarrow \infty} \mu\left(\bigcup_{i \in \Lambda_{n}} H_{n-1} \circ g_{n}\left(\hat{I}_{n}^{i}\right)\right)=\lim _{n \rightarrow \infty} \mu\left(H_{n-1} \circ g_{n}\left(\bigcup_{i \in \Lambda_{n}} \hat{I}_{n}^{i}\right)\right)=1
$$

For any m-dimensional cube with sidelength l_{n} it holds: $\operatorname{diam}\left(W_{n}\right)=\sqrt{m} \cdot l_{n}$. Because every element of the partition η_{n} is contained in a cube of side length $\frac{1}{n^{2} \cdot q_{n}^{2}}$ it follows for every $i \in \Lambda_{n}$: $\operatorname{diam}\left(\hat{I}_{n}^{i}\right) \leq \sqrt{m} \cdot \frac{1}{n^{2} \cdot q_{n}^{2}}$. Hence, we have for every $\Gamma_{n}^{i}=H_{n-1} \circ g_{n}\left(\hat{I}_{n}^{i}\right)$:

$$
\operatorname{diam}\left(\Gamma_{n}^{i}\right) \leq\left\|D H_{n-1}\right\|_{0} \cdot\left\|D g_{n}\right\|_{0} \cdot \frac{\sqrt{m}}{n^{2} \cdot q_{n}^{2}} \leq \frac{\ln \left(q_{n}\right)}{n} \cdot n \cdot q_{n} \cdot \frac{\sqrt{m}}{n^{2} \cdot q_{n}^{2}} \leq \sqrt{m} \cdot \frac{\ln \left(q_{n}\right)}{n^{2} \cdot q_{n}}
$$

We conclude $\lim _{n \rightarrow \infty} \operatorname{diam}\left(\Gamma_{n}^{i}\right)=0$ and consequently $\nu_{n} \rightarrow \varepsilon$.
In the following the Lebesgue measures on $\mathbb{S}^{1},[0,1]^{m-2},[0,1]^{m-1}$ are denoted by $\tilde{\lambda}, \mu^{(m-2)}$ and $\tilde{\mu}$ respectively. The next technical result is needed in the proof of Lemma 5.3 .

Lemma 5.2. Given an interval K on the r_{1}-axis and a $(m-2)$-dimensional interval Z in $\left(r_{2}, \ldots, r_{m-1}\right)$ $K_{c, \gamma}$ denotes the cuboid $[c, c+\gamma] \times K \times Z$ for some $\gamma>0$. We consider the diffeomorphism $\tilde{g}_{b}: M \rightarrow M, \tilde{g}_{b}\left(\theta, r_{1}, \ldots, r_{m-1}\right)=\left(\theta+b \cdot r_{1}, r_{1}, \ldots, r_{m-1}\right)$ with some $b \in \mathbb{N}$ and an interval $L=\left[l_{1}, l_{2}\right]$ of \mathbb{S}^{1}. If $b \cdot \lambda(K)>2$, then for the set $Q:=\pi_{\vec{r}}\left(K_{c, \gamma} \cap \tilde{g}_{b}^{-1}(L \times K \times Z)\right)$ we have:

$$
\left|\tilde{\mu}(Q)-\lambda(K) \cdot \tilde{\lambda}(L) \cdot \mu^{(m-2)}(Z)\right| \leq\left(\frac{2}{b} \cdot \tilde{\lambda}(L)+\frac{2 \cdot \gamma}{b}+\gamma \cdot \lambda(K)\right) \cdot \mu^{(m-2)}(Z)
$$

Proof. We consider the set:

$$
\begin{aligned}
Q_{b} & :=\pi_{\vec{r}}\left(K_{c, \gamma} \cap \tilde{g}_{b}^{-1}(L \times K \times Z)\right) \\
& =\left\{\left(r_{1}, r_{2}, \ldots, r_{m-1}\right) \in K \times Z:\left(\theta+b \cdot r_{1}, \vec{r}\right) \in L \times K \times Z, \theta \in[c, c+\gamma]\right\} \\
& =\left\{\left(r_{1}, r_{2}, \ldots, r_{m-1}\right) \in K \times Z: b \cdot r_{1} \in\left[l_{1}-c-\gamma, l_{2}-c\right] \bmod 1\right\}
\end{aligned}
$$

The interval $b \cdot K$ seen as an interval in \mathbb{R} does not intersect more than $b \cdot \lambda(K)+2$ and not less than $b \cdot \lambda(K)-2$ intervals of the form $[i, i+1]$ with $i \in \mathbb{Z}$. Therefore we compute on the one side:

$$
\begin{aligned}
\tilde{\mu}(Q) & \leq(b \cdot \lambda(K)+2) \cdot \frac{l_{2}-\left(l_{1}-\gamma\right)}{b} \cdot \mu^{(m-2)}(Z) \\
& =\left(\lambda(K) \cdot \tilde{\lambda}(L)+2 \cdot \frac{\tilde{\lambda}(L)}{b}+\lambda(K) \cdot \gamma+\frac{2 \cdot \gamma}{b}\right) \cdot \mu^{(m-2)}(Z)
\end{aligned}
$$

and on the other side

$$
\begin{aligned}
\tilde{\mu}(Q) & \geq(b \cdot \lambda(K)-2) \cdot \frac{l_{2}-\left(l_{1}-\gamma\right)}{b} \cdot \mu^{(m-2)}(Z) \\
& =\left(\lambda(K) \cdot \tilde{\lambda}(L)-2 \cdot \frac{\tilde{\lambda}(L)}{b}+\lambda(K) \cdot \gamma-\frac{2 \cdot \gamma}{b}\right) \cdot \mu^{(m-2)}(Z) .
\end{aligned}
$$

Both equations together yield:

$$
\left|\tilde{\mu}(Q)-\lambda(K) \cdot \tilde{\lambda}(L) \cdot \mu^{(m-2)}(Z)-\gamma \cdot \lambda(K) \cdot \mu^{(m-2)}(Z)\right| \leq\left(\frac{2}{b} \cdot \tilde{\lambda}(L)+\frac{2 \cdot \gamma}{b}\right) \cdot \mu^{(m-2)}(Z) .
$$

The claim follows because

$$
\begin{aligned}
& \left|\tilde{\mu}(Q)-\lambda(K) \cdot \tilde{\lambda}(L) \cdot \mu^{(m-2)}(Z)\right|-\gamma \cdot \lambda(K) \cdot \mu^{(m-2)}(Z) \\
& \leq\left|\tilde{\mu}(Q)-\lambda(K) \cdot \tilde{\lambda}(L) \cdot \mu^{(m-2)}(Z)-\gamma \cdot \lambda(K) \cdot \mu^{(m-2)}(Z)\right| .
\end{aligned}
$$

Lemma 5.3. Let n be sufficiently large, g_{n} as in section 3.2 and $\hat{I}_{n}=\bigcup_{j=0}^{N} I_{j} \times W \in \eta_{n}$, where η_{n} is the partial partition constructed in section 3.3. For the diffeomorphism ϕ_{n} constructed in section 3.1 and m_{n} as in chapter 4 we consider $\Phi_{n}=\phi_{n} \circ R_{\alpha_{n+1}}^{i \cdot m_{n}} \circ \phi_{n}^{-1}$ for some $i \in\{1, \ldots, k\}$. We assume that $\Phi_{n}\left(\frac{1}{d_{n} \cdot\left(n q_{n}\right)^{2}}, \frac{1}{10 n^{4}}, \frac{1}{n q_{n}^{2}}, q_{n}^{-1}, \frac{3}{n}\right)$-uniformly distributes $I_{j} \times W$ and denote $\left[\frac{1}{10 n^{4}}, 1-\frac{1}{10 n^{4}}\right]^{m-1}$ by J_{n}. Then for every m-dimensional cube S of side length q_{n}^{-1} lying in $\mathbb{S}^{1} \times J_{n}$ we get

$$
\begin{equation*}
\left|\mu\left(I_{j} \times W \cap \Phi_{n}^{-1} \circ g_{n}^{-1}(S)\right)-\mu\left(I_{j} \times W\right) \cdot \mu(S)\right| \leq \frac{22}{n} \cdot \mu\left(I_{j} \times W\right) \cdot \mu(S) \tag{4}
\end{equation*}
$$

In other words this Lemma tells us that parts of a partition element contained in the "distribution part" of Φ_{n} are "almost uniformly distributed" under $g_{n} \circ \Phi_{n}$ on the whole manifold $M=\mathbb{S}^{1} \times$ $[0,1]^{m-1}$.
Proof. Let S be a m-dimensional cube with sidelength q_{n}^{-1} lying in $\mathbb{S}^{1} \times J_{n}$. Furthermore we denote:

$$
S_{\theta}=\pi_{\theta}(S) \quad S_{r_{1}}=\pi_{r_{1}}(S) \quad S_{\tilde{r}}=\pi_{\left(r_{2}, \ldots, r_{m-1}\right)}(S) \quad S_{r}=S_{r_{1}} \times S_{\tilde{r}}=\pi_{\vec{r}}(S) .
$$

Obviously: $\tilde{\lambda}\left(S_{\theta}\right)=\lambda\left(S_{r_{1}}\right)=q_{n}^{-1}$ and $\tilde{\lambda}\left(S_{\theta}\right) \cdot \lambda\left(S_{r_{1}}\right) \cdot \mu^{(m-2)}\left(S_{\tilde{r}}\right)=\mu(S)=q_{n}^{-m}$.
By assumption $\Phi_{n}\left(\frac{1}{d_{n} \cdot\left(n q_{n}\right)^{2}}, \frac{1}{10 n^{4}}, \frac{1}{n q_{n}^{2}}, q_{n}^{-1}, \frac{3}{n}\right)$-distributes $I_{j} \times W$, in particular $\Phi_{n}\left(I_{j} \times W\right) \subseteq$ $[c, c+\gamma] \times J_{n}$ for some $c \in \mathbb{S}^{1}$ and some $\gamma \leq \frac{1}{d_{n} \cdot\left(\cdot \cdot q_{n}\right)^{2}}$. By construction of the map g_{n} it holds: $\Phi_{n}\left(I_{j} \times W\right) \cap g_{n}^{-1}(S) \subseteq[c, c+\gamma] \times S_{r}=: K_{c, \gamma}$.
Since $2 \gamma \leq \frac{2}{d_{n} \cdot\left(n \cdot q_{n}\right)^{2}}<q_{n}^{-1}$, we can define a cuboid $S_{1} \subseteq S$, where $S_{1}:=\left[s_{1}+\gamma, s_{2}-\gamma\right] \times S_{r}$ using the notation $S_{\theta}=\left[s_{1}, s_{2}\right]$. We examine the two sets

$$
Q:=\pi_{\vec{r}}\left(K_{c, \gamma} \cap g_{n}^{-1}\left(S_{\theta} \times S_{r}\right)\right) \quad Q_{1}:=\pi_{\vec{r}}\left(K_{c, \gamma} \cap g_{n}^{-1}\left(\left[s_{1}+\gamma, s_{2}-\gamma\right] \times S_{r}\right)\right)
$$

As seen above $\Phi_{n}\left(I_{j} \times W\right) \cap g_{n}^{-1}(S) \subseteq \Phi_{n}\left(I_{j} \times W\right) \cap g_{n}^{-1}(S) \cap K_{c, \gamma}$, which implies the inclusion $\Phi_{n}\left(I_{j} \times W\right) \cap g_{n}^{-1}(S) \subseteq \Phi_{n}\left(I_{j} \times W\right) \cap\left(\mathbb{S}^{1} \times Q\right)$.

Claim: On the other hand: $\Phi_{n}\left(I_{j} \times W\right) \cap\left(\mathbb{S}^{1} \times Q_{1}\right) \subseteq \Phi_{n}\left(I_{j} \times W\right) \cap g_{n}^{-1}(S)$.
Proof of the claim: For $(\theta, \vec{r}) \in \Phi_{n}\left(I_{j} \times W\right) \cap\left(\mathbb{S}^{1} \times Q_{1}\right)$ arbitrary it holds $(\theta, \vec{r}) \in \Phi_{n}\left(I_{j} \times W\right)$, i.e. $\theta \in[c, c+\gamma]$, and $\vec{r} \in \pi_{\vec{r}}\left(K_{c, \gamma} \cap g_{n}^{-1}\left(\left[s_{1}+\gamma, s_{2}-\gamma\right] \times S_{r}\right)\right)$. This implies the existence of $\bar{\theta} \in[c, c+\gamma]$ satisfying $(\bar{\theta}, \vec{r}) \in K_{c, \gamma} \cap g_{n}^{-1}\left(S_{1}\right)$. Hence, there are $\beta \in\left[s_{1}+\gamma, s_{2}-\gamma\right]$ and $\vec{r}_{1} \in S_{r}$, such that $g_{n}(\bar{\theta}, \vec{r})=\left(\beta, \vec{r}_{1}\right)$. Since g_{n} maps sets of the form $I \times \vec{r}$ to a set $\tilde{I} \times \vec{r}$, where $I, \tilde{I} \subset \mathbb{S}^{1}$ are intervals of the same length, and $|\theta-\bar{\theta}| \leq \gamma$, we have $g_{n}(\theta, \vec{r})=(\bar{\beta}, \vec{r})$ for some $\bar{\beta} \in\left[s_{1}, s_{2}\right]$. So $(\theta, \vec{r}) \in \Phi_{n}\left(I_{j} \times W\right) \cap g_{n}^{-1}(S)$.
Altogether the following inclusions are true:

$$
\Phi_{n}\left(I_{j} \times W\right) \cap\left(\mathbb{S}^{1} \times Q_{1}\right) \subseteq \Phi_{n}\left(I_{j} \times W\right) \cap g_{n}^{-1}(S) \subseteq \Phi_{n}\left(I_{j} \times W\right) \cap\left(\mathbb{S}^{1} \times Q\right)
$$

Thus we obtain:

$$
\begin{array}{r}
\left|\mu\left(I_{j} \times W \cap \Phi_{n}^{-1}\left(g_{n}^{-1}(S)\right)\right)-\mu\left(I_{j} \times W\right) \cdot \mu(S)\right| \\
\leq \max \left(\left|\mu\left(I_{j} \times W \cap \Phi_{n}^{-1}\left(\mathbb{S}^{1} \times Q\right)\right)-\mu\left(I_{j} \times W\right) \cdot \mu(S)\right|\right. \tag{5}\\
\left.\left|\mu\left(I_{j} \times W \cap \Phi_{n}^{-1}\left(\mathbb{S}^{1} \times Q_{1}\right)\right)-\mu\left(I_{j} \times W\right) \cdot \mu(S)\right|\right)
\end{array}
$$

We want to apply Lemma 5.2 for $K=S_{r_{1}}, L=S_{\theta}, Z=S_{\tilde{r}}$ and $b=n \cdot q_{n}$ (note that for $n>2$: $\left.b \cdot \lambda(K)=n \cdot q_{n} \cdot q_{n}^{-1}=n>2\right)$:

$$
\begin{aligned}
|\tilde{\mu}(Q)-\mu(S)| & \leq\left(\frac{2}{n \cdot q_{n}} \cdot \tilde{\lambda}\left(S_{\theta}\right)+\frac{2 \gamma}{n \cdot q_{n}}+\gamma \cdot \lambda\left(S_{r_{1}}\right)\right) \cdot \mu^{(m-2)}\left(S_{\tilde{r}}\right) \\
& \leq\left(\frac{2}{n q_{n}} \cdot \tilde{\lambda}\left(S_{\theta}\right)+\frac{4}{\left(n q_{n}\right)^{3}}+\frac{2 \cdot \lambda\left(S_{r_{1}}\right)}{\left(n q_{n}\right)^{2}}\right) \cdot \mu^{(m-2)}\left(S_{\tilde{r}}\right) \\
& \leq \frac{14}{n} \cdot \mu(S)
\end{aligned}
$$

In particular we receive from this estimate: $\frac{14}{n} \cdot \mu(S) \geq \tilde{\mu}(Q)-\mu(S)$, hence we have $\tilde{\mu}(Q) \leq$ $\left(1+\frac{14}{n}\right) \cdot \mu(S) \leq 2 \cdot \mu(S)$ for n sufficiently large.
Analogously we obtain: $\left|\tilde{\mu}\left(Q_{1}\right)-\mu\left(S_{1}\right)\right| \leq \frac{14}{n} \cdot \mu(S)$ as well as $\tilde{\mu}\left(Q_{1}\right) \leq 2 \cdot \mu(S)$.
Since Q as well as Q_{1} are a finite union of disjoint $(m-1)$-dimensional intervals contained in J_{n} of r_{1}-length at least $\frac{1}{n q_{n}^{2}}$ as well as r_{i}-length $\frac{1}{q_{n}}$ for $i \geq 2$ and $\Phi_{n}\left(\frac{1}{d_{n} \cdot\left(n q_{n}\right)^{2}}, \frac{1}{10 n^{4}}, \frac{1}{n q_{n}^{2}}, \frac{1}{q_{n}}, \frac{3}{n}\right)$ distributes the interval $I_{j} \times W$, we get:

$$
\left|\mu\left(I_{j} \times W \cap \Phi_{n}^{-1}\left(\mathbb{S}^{1} \times Q\right)\right)-\mu\left(I_{j} \times W\right) \tilde{\mu}(Q)\right| \leq \frac{3}{n} \mu\left(I_{j} \times W\right) \cdot \tilde{\mu}(Q) \leq \frac{6}{n} \mu\left(I_{j} \times W\right) \cdot \mu(S)
$$

as well as

$$
\left|\mu\left(I_{j} \times W \cap \Phi_{n}^{-1}\left(\mathbb{S}^{1} \times Q_{1}\right)\right)-\mu\left(I_{j} \times W\right) \tilde{\mu}\left(Q_{1}\right)\right| \leq \frac{3}{n} \mu\left(I_{j} \times W\right) \tilde{\mu}\left(Q_{1}\right) \leq \frac{6}{n} \mu\left(I_{j} \times W\right) \cdot \mu(S)
$$

Now we can proceed

$$
\begin{aligned}
& \left|\mu\left(I_{j} \times W \cap \Phi_{n}^{-1}\left(\mathbb{S}^{1} \times Q\right)\right)-\mu\left(I_{j} \times W\right) \cdot \mu(S)\right| \\
& \leq\left|\mu\left(I_{j} \times W \cap \Phi_{n}^{-1}\left(\mathbb{S}^{1} \times Q\right)\right)-\mu\left(I_{j} \times W\right) \cdot \tilde{\mu}(Q)\right|+\mu\left(I_{j} \times W\right) \cdot|\tilde{\mu}(Q)-\mu(S)| \\
& \leq \frac{6}{n} \cdot \mu\left(I_{j} \times W\right) \cdot \mu(S)+\mu\left(I_{j} \times W\right) \cdot \frac{14}{n} \cdot \mu(S)=\frac{20}{n} \cdot \mu\left(I_{j} \times W\right) \cdot \mu(S) .
\end{aligned}
$$

Noting that $\mu\left(S_{1}\right)=\mu(S)-2 \gamma \cdot \tilde{\mu}\left(S_{r}\right)$ and so $\mu(S)-\mu\left(S_{1}\right) \leq 2 \cdot \frac{1}{n \cdot q_{n}} \cdot \tilde{\mu}\left(S_{r}\right) \leq \frac{2}{n} \cdot \mu(S)$ we obtain in the same way as above:

$$
\left|\mu\left(I_{j} \times W \cap \Phi_{n}^{-1}\left(\mathbb{S}^{1} \times Q_{1}\right)\right)-\mu\left(I_{j} \times W\right) \cdot \mu(S)\right| \leq \frac{22}{n} \cdot \mu\left(I_{j} \times W\right) \cdot \mu(S)
$$

Using equation 5 this yields:

$$
\left|\mu\left(I_{j} \times W \cap \Phi_{n}^{-1}\left(g_{n}^{-1}(S)\right)\right)-\mu\left(I_{j} \times W\right) \cdot \mu(S)\right| \leq \frac{22}{n} \cdot \mu\left(I_{j} \times W\right) \cdot \mu(S)
$$

In the proof of the criterion we will consider specific cubes:
Definition 5.4. By $S_{j_{1}, \ldots, j_{m}}$ we denote the cube $\prod_{i=1}^{m}\left[\frac{j_{i}}{q_{n}}, \frac{j_{i}+1}{q_{n}}\right]$. Let $\tilde{\mathfrak{S}}_{n}$ be the family of cubes $S_{j_{1}, \ldots, j_{m}}$ satisfying $0 \leq j_{1} \leq q_{n}-1$ as well as $\left\lceil\frac{q_{n}}{10 n^{4}}\right\rceil \leq j_{i} \leq q_{n}-\left\lceil\frac{q_{n}}{10 n^{4}}\right\rceil-1$ for $i=2, \ldots, m$. Then \mathfrak{S}_{n} is defined to be the partial partition $\mathfrak{S}_{n}:=\left\{H_{n-1}\left(S_{n}\right): S_{n} \in \tilde{\mathfrak{S}}_{n}\right\}$.
Remark 5.5. A partition element $\hat{I}_{n}=I_{l, v, j_{2}^{(1)}, j_{2}^{(2)}, j_{3}, \ldots, j_{m}}$ is contained in a cube $\left[\frac{s}{q_{n}}+\frac{l}{n q_{n}}+\frac{v}{\left(n q_{n}\right)^{2}}, \frac{s}{q_{n}}+\frac{l}{n q_{n}}+\frac{v+1}{\left(n q_{n}\right)^{2}}\right] \times\left[\frac{j_{2}^{(1)}}{n q_{n}^{2}}+\frac{j_{2}^{(2)}}{n^{2} \cdot q_{n}^{2}}, \frac{j_{2}^{(1)}}{n q_{n}^{2}}+\frac{j_{2}^{(2)}+1}{n^{2} \cdot q_{n}^{2}}\right] \times \prod_{i=3}^{m}\left[\frac{j_{i}}{\left(n q_{n}\right)^{2}}, \frac{j_{i}+1}{\left(n q_{n}\right)^{2}}\right]$
Thus $g_{n}\left(\hat{I}_{n}\right)$ is contained in

$$
\begin{aligned}
& {\left[\frac{s+j_{2}^{(1)}}{q_{n}}+\frac{l+j_{2}^{(2)}}{n \cdot q_{n}}+\frac{v}{n^{2} \cdot q_{n}^{2}}, \frac{s+j_{2}^{(1)}}{q_{n}}+\frac{l+j_{2}^{(2)}+1}{n \cdot q_{n}}+\frac{v+1}{n^{2} \cdot q_{n}^{2}}\right]} \\
& \times\left[\frac{j_{2}^{(1)}}{n \cdot q_{n}^{2}}+\frac{j_{2}^{(2)}}{n^{2} \cdot q_{n}^{2}}, \frac{j_{2}^{(1)}}{n \cdot q_{n}^{2}}+\frac{j_{2}^{(2)}+1}{n^{2} \cdot q_{n}^{2}}\right] \times \prod_{i=3}^{m}\left[\frac{j_{i}}{n^{2} \cdot q_{n}^{2}}, \frac{j_{i}+1}{n^{2} \cdot q_{n}^{2}}\right]
\end{aligned}
$$

So we observe that $g_{n}\left(\hat{I}_{n}\right)$ is contained in a cube $S_{n} \in \tilde{\mathfrak{S}}_{n}$ completely or both have an empty intersection due to the restrictions on $j_{2}^{(2)}$.
By the same reasoning we have $\mu\left(R_{\alpha_{n+1}}^{i \cdot m_{n}}\left(\hat{I}_{n}\right) \cap g_{n}^{-1}\left(S_{n}\right)\right)=\mu\left(\hat{I}_{n} \cap g_{n}^{-1}\left(S_{n}\right)\right)$ for every $\hat{I}_{n} \in \eta_{n}$, $i \in\{1, \ldots, k\}$ and $S_{n} \in \tilde{\mathfrak{S}}_{n}$. With the aid of Lemma 4.5 and the bounds on a_{n} from Remark 4.4 this also yields

$$
\mu\left(\phi_{n} \circ R_{\alpha_{n+1}}^{i \cdot m_{n}} \circ \phi_{n}^{-1}\left(I_{j} \times W\right) \cap g_{n}^{-1}\left(S_{n}\right)\right)=\mu\left(I_{j} \times W \cap g_{n}^{-1}\left(S_{n}\right)\right)
$$

for every $j \notin N_{i}$.

Remark 5.6. Under the condition $\left\|D H_{n-1}\right\|_{0} \leq \frac{\ln \left(q_{n}\right)}{n}$ we have

$$
\operatorname{diam}\left(H_{n-1}\left(S_{n}\right)\right) \leq \frac{\ln \left(q_{n}\right)}{n} \cdot \frac{\sqrt{m}}{q_{n}} \rightarrow 0
$$

as $n \rightarrow \infty$. So we have $\mathfrak{S}_{n} \rightarrow \varepsilon$.
We investigate $\left(\kappa_{1, n}, \ldots, \kappa_{k, n}\right)$-weak mixing of f_{n} on such sets $A_{n} \in \mathfrak{S}_{n}$ and partition elements $\Gamma_{n} \in \nu_{n}$:

Lemma 5.7. Let $f_{n}=H_{n} \circ R_{\alpha_{n+1}} \circ H_{n}^{-1}$ and the sequence $\left(m_{n}\right)_{n \in \mathbb{N}}$ be constructed as in the previous sections. For $i=1, \ldots, k$, every $A_{n} \in \mathfrak{S}_{n}$ and $\Gamma_{n} \in \nu_{n}$ we have:

$$
\left|\mu\left(\Gamma_{n} \cap f_{n}^{-i \cdot m_{n}}\left(A_{n}\right)\right)-\kappa_{i, n} \cdot \mu\left(\Gamma_{n}\right) \cdot \mu\left(A_{n}\right)-\left(1-\kappa_{i, n}\right) \cdot \mu\left(\Gamma_{n} \cap A_{n}\right)\right|<\frac{22}{n} \cdot \mu\left(\Gamma_{n}\right) \cdot \mu\left(A_{n}\right)
$$

Proof. We write $A_{n}=H_{n-1}\left(S_{n}\right)$ and $\Gamma_{n}=H_{n-1} \circ g_{n}\left(\hat{I}_{n}\right)$, at which $\hat{I}_{n}=\bigcup_{j=0}^{N} I_{j} \times W$. Furthermore we note $f_{n}^{i \cdot m_{n}}=H_{n} \circ R_{\alpha_{n+1}}^{i \cdot m_{n}} \circ H_{n}^{-1}=H_{n-1} \circ g_{n} \circ \Phi_{n}^{i} \circ g_{n}^{-1} \circ H_{n-1}^{-1}$, where $\Phi_{n}=\phi_{n} \circ R_{\alpha_{n+1}}^{m_{n}} \circ \phi_{n}^{-1}$. Then we calculate

$$
\begin{aligned}
& \left|\mu\left(\Gamma_{n} \cap f_{n}^{-i \cdot m_{n}}\left(A_{n}\right)\right)-\kappa_{i, n} \cdot \mu\left(\Gamma_{n}\right) \cdot \mu\left(A_{n}\right)-\left(1-\kappa_{i, n}\right) \cdot \mu\left(\Gamma_{n} \cap A_{n}\right)\right| \\
= & \left|\mu\left(\hat{I}_{n} \cap \Phi_{n}^{-i} \circ g_{n}^{-1}\left(S_{n}\right)\right)-\kappa_{i, n} \cdot \mu\left(\hat{I}_{n}\right) \cdot \mu\left(S_{n}\right)-\left(1-\kappa_{i, n}\right) \cdot \mu\left(\hat{I}_{n} \cap g_{n}^{-1}\left(S_{n}\right)\right)\right| .
\end{aligned}
$$

We recall that for every $i=1, \ldots, k$:

$$
\mu\left(\bigcup_{j \in N_{i}} I_{j} \times W\right)=\kappa_{i, n} \cdot \mu\left(\hat{I}_{n}\right)
$$

(see Remark 4.7). Hereby, we conclude

$$
\begin{aligned}
& \left|\mu\left(\Gamma_{n} \cap f_{n}^{-i \cdot m_{n}}\left(A_{n}\right)\right)-\kappa_{i, n} \cdot \mu\left(\Gamma_{n}\right) \cdot \mu\left(A_{n}\right)-\left(1-\kappa_{i, n}\right) \cdot \mu\left(\Gamma_{n} \cap A_{n}\right)\right| \\
\leq & \left|\mu\left(\Phi_{n}^{i}\left(\bigcup_{j \notin N_{i}} I_{j} \times W\right) \cap g_{n}^{-1}\left(S_{n}\right)\right)-\left(1-\kappa_{i, n}\right) \cdot \mu\left(\hat{I}_{n} \cap g_{n}^{-1}\left(S_{n}\right)\right)\right| \\
& +\sum_{j \in N_{i}}\left|\mu\left(I_{j} \times W \cap \Phi_{n}^{-i} \circ g_{n}^{-1}\left(S_{n}\right)\right)-\mu\left(I_{j} \times W\right) \cdot \mu\left(S_{n}\right)\right| .
\end{aligned}
$$

We start to examine the first term. By Remarks 4.7 and 5.5 we have

$$
\left(1-\kappa_{i, n}\right) \cdot \mu\left(\hat{I}_{n} \cap g_{n}^{-1}\left(S_{n}\right)\right)=\mu\left(\left(\bigcup_{j \notin N_{i}} I_{j} \times W\right) \cap g_{n}^{-1}\left(S_{n}\right)\right)
$$

Additionally, Remark 5.5 tells us that $\mu\left(I_{j} \times W \cap g_{n}^{-1}\left(S_{n}\right)\right)=\mu\left(\Phi_{n}^{-i}\left(I_{j} \times W\right) \cap g_{n}^{-1}\left(S_{n}\right)\right)$ for each $j \notin N_{i}$. Hence, the first term is equal to 0 .

In the next step, we examine the second term. We note that the cube S_{n} is contained in $\mathbb{S}^{1} \times\left[\frac{1}{10 n^{4}}, 1-\frac{1}{10 n^{4}}\right]^{m-1}$. So we can apply Lemma 5.3 for $j \in N_{i}$:

$$
\begin{aligned}
\sum_{j \in N_{i}}\left|\mu\left(I_{j} \times W \cap \Phi_{n}^{-i} \circ g_{n}^{-1}\left(S_{n}\right)\right)-\mu\left(I_{j} \times W\right) \cdot \mu\left(S_{n}\right)\right| & \leq \sum_{j \in N_{i}} \frac{22}{n} \cdot \mu\left(I_{j} \times W\right) \cdot \mu\left(S_{n}\right) \\
& \leq \frac{22}{n} \cdot \mu\left(\hat{I}_{n}\right) \cdot \mu\left(S_{n}\right)
\end{aligned}
$$

Now we are able to prove the aimed criterion for $\left(\kappa_{1}, \ldots, \kappa_{k}\right)$-weak mixing.
Proposition 5.8 (Criterion for $\left(\kappa_{1}, \ldots, \kappa_{k}\right)$-weak mixing). Let $f_{n}=H_{n} \circ R_{\alpha_{n+1}} \circ H_{n}^{-1}$ and the sequence $\left(m_{n}\right)_{n \in \mathbb{N}}$ be constructed as in the previous sections. Suppose additionally that for every $n \in \mathbb{N} d_{0}\left(f^{i \cdot m_{n}}, f_{n}^{i \cdot m_{n}}\right)<\frac{1}{2^{n}}$ for $i=1, \ldots, k,\left\|D H_{n-1}\right\|_{0} \leq \frac{\ln \left(q_{n}\right)}{n}$ and that the limit $f=\lim _{n \rightarrow \infty} f_{n}$ exists. Then f is $\left(\kappa_{1}, \ldots, \kappa_{k}\right)$-weakly mixing.

Proof. Since every measurable set in $M=\mathbb{S}^{1} \times[0,1]^{m-1}$ can be approximated by a countable disjoint union of cubes in $\mathbb{S}^{1} \times(0,1)^{m-1}$ in arbitrary precision, we only have to prove the $\left(\kappa_{1}, \ldots, \kappa_{k}\right)$ weak mixing property in case that A and B are m-dimensional cubes in $\mathbb{S}^{1} \times(0,1)^{m-1}$. So let $A, B \subseteq \mathbb{S}^{1} \times(0,1)^{m-1}$ be m-dimensional cubes and $\varepsilon>0$ be given.
According to Lemma5.1 and Remark5.6 respectively the partial partitions $\nu_{n}:=H_{n-1} \circ g_{n}\left(\eta_{n}\right)$ and \mathfrak{S}_{n} converge to the decomposition into points. Thus we can approximate B by a countable disjoint union of sets $\Gamma_{n} \in \nu_{n}$ and A by a countable disjoint union of sets $C_{n} \in \mathfrak{S}_{n}$ in given precision, when n is chosen big enough. Consequently for n sufficiently large there are sets $B_{1}=\bigcup_{i \in \Sigma_{n}^{1}} \Gamma_{n}^{i}$, $B_{2}=\dot{U}_{i \in \Sigma_{n}^{2}} \Gamma_{n}^{i}$ with countable sets $\Sigma_{n}^{1}, \Sigma_{n}^{2}$ of indices satisfying $B_{1} \subseteq B \subseteq B_{2}$ and $\mu\left(B \triangle B_{j}\right) \leq$ $\varepsilon \cdot \mu(A) \cdot \mu(B)$ for $j=1,2$. Furthermore, there are sets $A_{1}=\dot{\bigcup}_{i \in \Sigma_{n}^{3}} C_{n}^{i}, A_{2}=\dot{U}_{i \in \Sigma_{n}^{4}} C_{n}^{i}$ with countable sets $\Sigma_{n}^{3}, \Sigma_{n}^{4}$ of indices satisfying $A_{1} \subseteq A \subseteq A_{2},\left|\mu(A)-\mu\left(A_{j}\right)\right| \leq \varepsilon \cdot \mu(A) \cdot \mu(B)$ as well as $\operatorname{dist}\left(\partial A, \partial A_{j}\right)>\frac{1}{2^{n}}$ for $j=1,2$, if n is chosen sufficiently large. Because of $d_{0}\left(f^{i \cdot m_{n}}, f_{n}^{i \cdot m_{n}}\right)<\frac{1}{2^{n}}$ for $i=1, \ldots, k$ the following relations are true:

$$
\begin{aligned}
f_{n}^{i \cdot m_{n}}(x) \in A_{1} & \Longrightarrow f^{i \cdot m_{n}}(x) \in A \\
f^{i \cdot m_{n}}(x) \in A & \Longrightarrow f_{n}^{i \cdot m_{n}}(x) \in A_{2}
\end{aligned}
$$

Thus:

$$
\begin{aligned}
\mu\left(B_{1} \cap f_{n}^{-i \cdot m_{n}}\left(A_{1}\right)\right) \leq \mu\left(B \cap f_{n}^{-i \cdot m_{n}}\left(A_{1}\right)\right) & \leq \mu\left(B \cap f^{-i \cdot m_{n}}(A)\right) \\
& \leq \mu\left(B \cap f_{n}^{-i \cdot m_{n}}\left(A_{2}\right)\right) \leq \mu\left(B_{2} \cap f_{n}^{-i \cdot m_{n}}\left(A_{2}\right)\right)
\end{aligned}
$$

Additionally we choose n such that $\frac{22}{n}<\varepsilon$ as well as $\left|\kappa_{i}-\kappa_{i, n}\right|<\varepsilon \cdot \mu(A) \cdot \mu(B)$ hold. We can apply Lemma 5.7 on the sets A_{2} and B_{2}. Therewith we obtain the following estimate from above
for every $i \in\{1, \ldots, k\}$:

$$
\begin{aligned}
& \mu\left(B \cap f^{-i \cdot m_{n}}(A)\right)-\kappa_{i} \cdot \mu(A) \cdot \mu(B)-\left(1-\kappa_{i}\right) \cdot \mu(A \cap B) \\
\leq & \mu\left(B_{2} \cap f_{n}^{-i \cdot m_{n}}\left(A_{2}\right)\right)-\kappa_{i, n} \cdot \mu(A) \cdot \mu(B)-\left(1-\kappa_{i, n}\right) \cdot \mu(A \cap B)+2 \cdot\left|\kappa_{i}-\kappa_{i, n}\right| \\
\leq & \varepsilon \cdot \mu\left(A_{2}\right) \cdot \mu\left(B_{2}\right)+\kappa_{i, n} \cdot \mu\left(A_{2}\right) \cdot \mu\left(B_{2}\right)+\left(1-\kappa_{i, n}\right) \cdot \mu\left(A_{2} \cap B_{2}\right)-\kappa_{i, n} \cdot \mu(A) \cdot \mu(B) \\
& -\left(1-\kappa_{i, n}\right) \cdot \mu(A \cap B)+2 \cdot \varepsilon \cdot \mu(A) \cdot \mu(B) \\
\leq & \varepsilon \cdot\left(\mu(A)+\mu\left(A \triangle A_{2}\right)\right) \cdot\left(\mu(B)+\mu\left(B \triangle B_{2}\right)\right)+\kappa_{i, n} \cdot 3 \cdot \varepsilon \cdot \mu(A) \cdot \mu(B) \\
\quad & +\left(1-\kappa_{i, n}\right) \cdot\left(\mu\left(A \triangle A_{2}\right)+\mu\left(B \triangle B_{2}\right)\right)+2 \cdot \varepsilon \cdot \mu(A) \cdot \mu(B) \\
\leq & 8 \cdot \varepsilon \cdot \mu(A) \cdot \mu(B) .
\end{aligned}
$$

Analogously we estimate:

$$
\mu\left(B \cap f^{-i \cdot m_{n}}(A)\right)-\kappa_{i} \cdot \mu(A) \cdot \mu(B)-\left(1-\kappa_{i}\right) \cdot \mu(A \cap B) \geq-8 \cdot \varepsilon \cdot \mu(A) \cdot \mu(B) .
$$

Both estimates combined enable us to conclude:

$$
\left|\mu\left(B \cap f^{-i \cdot m_{n}}(A)\right)-\kappa_{i} \cdot \mu(A) \cdot \mu(B)-\left(1-\kappa_{i}\right) \cdot \mu(A \cap B)\right| \leq 8 \cdot \varepsilon \cdot \mu(A) \cdot \mu(B) .
$$

Since ε can be chosen arbitrarily small, the $\left(\kappa_{1}, \ldots, \kappa_{k}\right)$-weak mixing property is proven.

6 Convergence of $\left(f_{n}\right)_{n \in \mathbb{N}}$ in Diff ${ }^{\infty}(M)$

In the following we show that the sequence of constructed measure-preserving smooth diffeomorphisms $f_{n}=H_{n} \circ R_{\alpha_{n+1}} \circ H_{n}^{-1}$ converges. For this purpose, we need a couple of results concerning the conjugation maps.

6.1 Properties of the conjugation maps ϕ_{n} and H_{n}

In this subsection we want to find estimates on the norms $\left\|\left|H_{n}\right|\right\|_{k}$. For this we will need the next technical result which is an application of the chain rule:
Lemma 6.1. Let $\phi:=\phi_{\lambda_{m}}^{(m)} \circ \ldots \circ \phi_{\lambda_{2}}^{(2)}, j \in\{1, \ldots, m\}$ and $k \in \mathbb{N}$. For any multiindex \vec{a} with $|\vec{a}|=k$ the partial derivative $D_{\vec{a}}[\phi]_{j}$ consists of a sum of products of at most $(m-1) \cdot k$ terms of the following form

$$
D_{\vec{b}}\left(\left[\phi_{\lambda_{i}}^{(i)}\right]_{l}\right) \circ \phi_{\lambda_{i-1}}^{(i-1)} \circ \ldots \circ \phi_{\lambda_{2}}^{(2)}
$$

where $l \in\{1, \ldots, m\}, i \in\{2, \ldots, m\}$ and \vec{b} is a multiindex with $|\vec{b}| \leq k$.
In the same way we obtain a similar statement holding for the inverses:
Lemma 6.2. Let $\psi:=\left(\phi_{\lambda_{2}}^{(2)}\right)^{-1} \circ \ldots \circ\left(\phi_{\lambda_{m}}^{(m)}\right)^{-1}, j \in\{1, \ldots, m\}$ and $k \in \mathbb{N}$. For any multiindex \vec{a} with $|\vec{a}|=k$ the partial derivative $D_{\vec{a}}[\psi]_{j}$ consists of a sum of products of at most $(m-1) \cdot k$ terms of the following form

$$
D_{\vec{b}}\left(\left[\left(\phi_{\lambda_{i}}^{(i)}\right)^{-1}\right]_{l}\right) \circ\left(\phi_{\lambda_{i+1}}^{(i+1)}\right)^{-1} \circ \ldots \circ\left(\phi_{\lambda_{m}}^{(m)}\right)^{-1}
$$

where $l \in\{1, \ldots, m\}, i \in\{2, \ldots, m\}$ and \vec{b} is a multiindex with $|\vec{b}| \leq k$.

With the aid of these technical results we can prove an estimate on the norms of the map ϕ_{n} :
Lemma 6.3. For every $l \in \mathbb{N}$ it holds

$$
\left\|\mid \phi_{n}\right\| \|_{l} \leq C \cdot q_{n}^{2 \cdot(m-1)^{2} \cdot l \cdot(n-1+k)}
$$

where C is a constant depending on m, l and n, but is independent of q_{n}.
Proof. First of all we consider the map $\tilde{\phi}_{\lambda}:=\phi_{\lambda, \varepsilon, j}=C_{\lambda}^{-1} \circ \varphi_{\varepsilon, 1, j} \circ C_{\lambda}$ introduced in subsection 3.1 .

$$
\tilde{\phi}_{\lambda}\left(x_{1}, \ldots, x_{m}\right)=\left(\frac{1}{\lambda}\left[\varphi_{\varepsilon}\right]_{1}\left(\lambda x_{1}, x_{2}, \ldots, x_{m}\right),\left[\varphi_{\varepsilon}\right]_{2}\left(\lambda x_{1}, x_{2}, \ldots, x_{m}\right), \ldots,\left[\varphi_{\varepsilon}\right]_{m}\left(\lambda x_{1}, x_{2}, \ldots, x_{m}\right)\right)
$$

Let $l \in \mathbb{N}$. We compute for a multiindex \vec{a} with $0 \leq|\vec{a}| \leq l:\left\|D_{\vec{a}}\left[\phi_{\lambda}\right]_{1}\right\|_{0} \leq \lambda^{l-1} \cdot\left\|\mid \varphi_{\varepsilon}\right\| \|_{l}$ and for $r \in\{2, \ldots, m\}:\left\|D_{\vec{a}}\left[\phi_{\lambda}\right]_{r}\right\|_{0} \leq \lambda^{l} \cdot\left\|\varphi_{\varepsilon}\right\| \|_{l}$. Hereby we estimate $\left\|D_{\vec{a}}\left[\phi_{\lambda}\right]_{r}\right\|_{0} \leq C \cdot \lambda^{l}$ and analogously $\left\|D_{\vec{a}}\left[\phi_{\lambda}^{-1}\right]_{r}\right\|_{0} \leq C \cdot \lambda^{l}$ for a constant independent of λ. In conclusion this yields $\left\|\mid \phi_{\lambda}\right\| \|_{l} \leq C \cdot \lambda^{l}$. In the next step we consider $\phi:=\phi_{\lambda_{m}}^{(m)} \circ \ldots \circ \phi_{\lambda_{2}}^{(2)}$. Let $\lambda_{\text {max }}:=\max \left\{\lambda_{2}, \ldots, \lambda_{m}\right\}$. Inductively we will show $\|\phi\|_{l} \leq \tilde{C} \cdot \lambda_{\max }^{(m-1) \cdot l}$ for every $l \in \mathbb{N}$, where \tilde{C} is a constant independent of λ_{i}.
Start: $l=1$. Let $l \in\{1, \ldots, m\}$ be arbitrary. By Lemma 6.1 a partial derivative of $[\phi]_{l}$ of first order consists of a sum of products of at most $m-1$ first order partial derivatives of functions $\phi_{\lambda_{j}}^{(j)}$. Therewith we obtain using $\left\|\left\|\phi_{\lambda, \varepsilon}^{(j)}\right\|\right\|_{1} \leq C \cdot \lambda_{\max }$ the estimate $\left\|D_{i}[\phi]_{l}\right\|_{0} \leq C_{1} \cdot \lambda_{\max }^{m-1}$ for every $i \in\{1, \ldots, m\}$, where C_{1} is a constant independent of λ.
With the aid of Lemma 6.2 we obtain the same statement for $\phi^{-1}=\left(\phi_{\lambda_{2}}^{(2)}\right)^{-1} \circ \ldots \circ\left(\phi_{\lambda_{m}}^{(m)}\right)^{-1}$. Hence we conclude: $\||\phi|\|_{1} \leq \tilde{C}_{1} \cdot \lambda_{\max }^{m-1}$.
Assumption: The claim is true for $l \in \mathbb{N}$.
Induction step $l \rightarrow l+1$: In the proof of Lemma 6.1 one observes that at the transition $l \rightarrow l+1$ in the product of at most $(m-1) \cdot l$ terms of the form $D_{\vec{b}}\left(\left[\phi_{\lambda_{i}}^{(i)}\right]_{l}\right) \circ \phi_{\lambda_{i-1}}^{(i-1)} \circ \ldots \circ \phi_{\lambda_{2}}^{(2)}$ one is replaced by a product of a term $\left(D_{j} D_{\vec{b}}\left[\phi_{\lambda_{i}}^{(i)}\right]_{l}\right) \circ \phi_{\lambda_{i-1}}^{(i-1)} \circ \ldots \circ \phi_{\lambda_{2}}^{(2)}$ with $j \in\{1, \ldots, m\}$ and at most $m-2$ partial derivatives of first order. Because of $\left\|\mid \phi_{\lambda_{i}}^{(i)}\right\| \|_{l+1} \leq C \cdot \lambda_{\max }^{l+1}$ and $\left\|\left\|\phi_{\lambda_{j}}^{(j)}\right\|\right\|_{1} \leq C \cdot \lambda_{\max }$ the $\lambda_{\text {max }}$-exponent increases by at most $1+(m-2) \cdot 1=m-1$.
In the same spirit one uses the proof of Lemma 6.2 to show that also in case of ϕ^{-1} the $\lambda_{\text {max }}{ }^{-}$ exponent increases by at most $m-1$.
Using the assumption we conclude

$$
\|\phi\|_{l+1} \leq \hat{C} \cdot \lambda_{\max }^{l \cdot(m-1)+m-1}=\hat{C} \cdot \lambda_{\max }^{(l+1) \cdot(m-1)}
$$

So the proof by induction is completed.
In the setting of our explicit construction of the map ϕ_{n} in section 3.1 we have $\varepsilon=\frac{1}{40 \cdot n^{4}}$ and $\lambda_{\max }=d_{n} \cdot\left(n \cdot q_{n}\right)^{2 \cdot(m-1) \cdot(n-1+k)}$. Thus:

$$
\begin{aligned}
\left\|\mid \phi_{n}\right\| \|_{l} & \leq \tilde{C}(m, l, n) \cdot\left(d_{n} \cdot(n \cdot q)^{2 \cdot(m-1) \cdot(n-1+k)}\right)^{(m-1) \cdot l} \\
& \leq C(m, l, n) \cdot q_{n}^{2 \cdot(m-1)^{2} \cdot l \cdot(n-1+k)}
\end{aligned}
$$

where $C(m, l, n)$ is a constant independent of q_{n}.

In the next step we consider the map $h_{n}=g_{n} \circ \phi_{n}$ defined in section 3.2,
Lemma 6.4. For every $l \in \mathbb{N}$ it holds.

$$
\left\|\left\|h_{n}\right\|_{l} \leq \bar{C} \cdot q_{n}^{2 \cdot(m-1)^{2} \cdot l \cdot(n+k)}\right.
$$

where \bar{C} is a constant depending on m, l and n, but is independent of q_{n}.
Proof. By definition of the map $h_{n}=g_{n} \circ \phi_{n}$ in section 3.2 we have:

$$
\begin{aligned}
& h_{n}\left(x_{1}, \ldots, x_{m}\right)=g_{n} \circ \phi_{n}\left(x_{1}, \ldots, x_{m}\right) \\
& =\left(\left[\phi_{n}\left(x_{1}, \ldots, x_{m}\right)\right]_{1}+n \cdot q_{n} \cdot\left[\phi_{n}\left(x_{1}, \ldots, x_{m}\right)\right]_{2},\left[\phi_{n}\left(x_{1}, \ldots, x_{m}\right)\right]_{2}, \ldots,\left[\phi_{n}\left(x_{1}, \ldots, x_{m}\right)\right]_{m}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& h_{n}^{-1}\left(x_{1}, \ldots, x_{m}\right)=\phi_{n}^{-1} \circ g_{n}^{-1}\left(x_{1}, \ldots, x_{m}\right) \\
& =\left(\left[\phi_{n}^{-1}\left(x_{1}-n \cdot q_{n} \cdot x_{2}, x_{2}, \ldots, x_{m}\right)\right]_{1}, \ldots,\left[\phi_{n}^{-1}\left(x_{1}-n \cdot q_{n} \cdot x_{2}, x_{2}, \ldots, x_{m}\right)\right]_{m}\right)
\end{aligned}
$$

We estimate:

$$
\left\|\left\|h_{n}\right\|_{l} \leq 2 \cdot\left(n \cdot q_{n}\right)^{l} \cdot\right\| \mid \phi_{n} \|_{l} \leq \bar{C}(m, l, n) \cdot q_{n}^{l} \cdot q_{n}^{2 \cdot(m-1)^{2} \cdot l \cdot(n-1+k)} \leq \bar{C}(m, l, n) \cdot q_{n}^{2 \cdot(m-1)^{2} \cdot l \cdot(n+k)}
$$

with a constant $\bar{C}(m, l, n)$ independent of q_{n}.
Remark 6.5. In the proof of the following Lemma we will use the formula of Faà di Bruno in several variables (e.g. CS96]). For this we introduce an ordering on \mathbb{N}_{0}^{d} : For multiindices $\vec{\mu}=\left(\mu_{1}, \ldots, \mu_{d}\right)$ and $\vec{\nu}=\left(\nu_{1}, \ldots, \nu_{d}\right)$ in \mathbb{N}_{0}^{d} we will write $\vec{\mu} \prec \vec{\nu}$, if one of the following properties is satisfied:

1. $|\vec{\mu}|<|\vec{\nu}|$, where $|\vec{\mu}|=\sum_{i=1}^{d} \mu_{i}$.
2. $|\vec{\mu}|=|\vec{\nu}|$ and $\mu_{1}<\nu_{1}$
3. $|\vec{\mu}|=|\vec{\nu}|, \mu_{i}=\nu_{i}$ for $1 \leq i \leq k$ and $\mu_{k+1}<\nu_{k+1}$ for a $1 \leq k<d$

Additionally we will use these notations:

- For $\vec{\nu}=\left(\nu_{1}, \ldots, \nu_{d}\right) \in \mathbb{N}_{0}^{d}$:

$$
\vec{\nu}!=\prod_{i=1}^{d} \nu_{i}!
$$

- For $\vec{\nu}=\left(\nu_{1}, \ldots, \nu_{d}\right) \in \mathbb{N}_{0}^{d}$ and $\vec{z}=\left(z_{1}, \ldots, z_{d}\right) \in \mathbb{R}^{d}$:

$$
\vec{z}^{\vec{\nu}}=\prod_{i=1}^{d} z_{i}^{\nu_{i}}
$$

Then we get for the composition $h\left(x_{1}, \ldots, x_{d}\right):=f\left(g^{(1)}\left(x_{1}, \ldots, x_{d}\right), \ldots, g^{(m)}\left(x_{1}, \ldots, x_{d}\right)\right)$ with sufficiently differentiable functions $f: \mathbb{R}^{m} \rightarrow \mathbb{R}, g^{(i)}: \mathbb{R}^{d} \rightarrow \mathbb{R}$ and a multiindex $\vec{\nu} \in \mathbb{N}_{0}^{d}$ with $|\vec{\nu}|=n$:

$$
D_{\vec{\nu}} h=\sum_{\vec{\lambda} \in \mathbb{N}_{0}^{m}} \sum_{\vec{\lambda} \text { with } 1 \leq|\vec{\lambda}| \leq n} f \cdot \sum_{s=1}^{n} \sum_{p_{s}(\vec{\nu}, \vec{\lambda})} \vec{\nu}!\cdot \prod_{j=1}^{s} \frac{\left[D_{\vec{l}_{j}} \vec{g}\right]^{\vec{k}_{j}}}{\vec{k}_{j}!\cdot\left(\vec{l}_{j}!\right)^{\left|\vec{k}_{j}\right|}}
$$

Hereby $\left[D_{\vec{l}_{j}} \vec{g}\right]$ denotes $\left(D_{\vec{l}_{j}} g^{(1)}, \ldots, D_{\vec{l}_{j}} g^{(m)}\right)$ and
$p_{s}(\vec{\nu}, \vec{\lambda}):=$

$$
\left\{\left(\vec{k}_{1}, \ldots, \vec{k}_{s}, \vec{l}_{1}, \ldots, \vec{l}_{s}\right): \vec{k}_{i} \in \mathbb{N}_{0}^{m},\left|\vec{k}_{i}\right|>0, \vec{l}_{i} \in \mathbb{N}_{0}^{d}, 0 \prec \vec{l}_{1} \prec \ldots \prec \vec{l}_{s}, \sum_{i=1}^{s} \vec{k}_{i}=\vec{\lambda} \text { and } \sum_{i=1}^{s}\left|\vec{k}_{i}\right| \cdot \vec{l}_{i}=\vec{\nu}\right\}
$$

Finally we are able to prove an estimate on the norms of the map H_{n} :
Lemma 6.6. For every $l \in \mathbb{N}$ we get:

$$
\left\|\left\|H_{n}\right\|\right\|_{l} \leq \breve{C} \cdot q_{n}^{2 \cdot(m-1)^{2} \cdot l \cdot(n+k)}
$$

where \breve{C} is a constant depending solely on m, l, n and H_{n-1}. Since H_{n-1} is independent of q_{n} in particular, the same is true for \breve{C}.

Proof. Let $l \in \mathbb{N}, r \in\{1, \ldots, m\}$ and $\vec{\nu} \in \mathbb{N}_{0}^{m}$ be a multiindex with $|\vec{\nu}|=l$. By applying the before mentioned formula of Faà di Bruno we estimate:

$$
\begin{aligned}
\left\|D_{\vec{\nu}}\left[H_{n}\right]_{r}\right\|_{0} & =\left\|D_{\vec{\nu}}\left[H_{n-1} \circ h_{n}\right]_{r}\right\|_{0} \\
& \leq \sum_{\vec{\lambda} \in \mathbb{N}_{0}^{m} \text { with }} \| \leq|\vec{\lambda}| \leq l \\
& \left\|D_{\vec{\lambda}}\left[H_{n-1}\right]_{r}\right\|_{0} \cdot \sum_{s=1}^{l} \sum_{p_{s}(\vec{\nu}, \vec{\lambda})} \vec{\nu}!\cdot \prod_{j=1}^{s} \frac{\left\|h _ { n } \left|\|\left|\left|\vec{k}_{j}\right|\right.\right.\right.}{\vec{k}_{j}!\cdot\left(\vec{l}_{j}!\right)^{\left|\vec{k}_{j}\right|}} .
\end{aligned}
$$

By definition of the set $p_{s}(\vec{\nu}, \vec{\lambda})$ we have $\sum_{i=1}^{s}\left|\vec{k}_{i}\right| \cdot \vec{l}_{i}=\vec{\nu}$. Hence:

$$
l=|\vec{\nu}|=\left|\sum_{i=1}^{s}\right| \vec{k}_{i}\left|\cdot \vec{l}_{i}\right|=\sum_{t=1}^{m}\left(\sum_{i=1}^{s}\left|\vec{k}_{i}\right| \cdot \vec{l}_{i}\right)_{t}=\sum_{t=1}^{m} \sum_{i=1}^{s}\left|\vec{k}_{i}\right| \cdot \vec{l}_{i_{t}}=\sum_{i=1}^{s}\left|\vec{k}_{i}\right| \cdot\left(\sum_{t=1}^{m} \vec{l}_{i_{t}}\right)=\sum_{i=1}^{s}\left|\vec{k}_{i}\right| \cdot\left|\vec{l}_{i}\right|
$$

Hereby, we compute using Lemma 6.4 $\prod_{j=1}^{s}| |\left|h_{n}\right|| |\left|\vec{l}_{j}\right|\left|\vec{k}_{j}\right| \leq \hat{C} \cdot q_{n}^{2 \cdot(m-1)^{2} \cdot l \cdot(n+k)}$, where \hat{C} is a constant independent of q_{n}. Since H_{n-1} is independent of q_{n}, we conclude:

$$
\left\|D_{\vec{\nu}}\left[H_{n}\right]_{r}\right\|_{0} \leq \check{C} \cdot q_{n}^{2 \cdot(m-1)^{2} \cdot l \cdot(n+k)}
$$

where \check{C} is a constant independent of q_{n}.
In the same way we prove an analogous estimate on $\left\|D_{\vec{\nu}}\left[H_{n}^{-1}\right]_{r}\right\|_{0}$ and verify the claim.
In particular we see that this norm can be estimated by a power of q_{n}.

6.2 Proof of convergence

For the proof of the convergence of the sequence $\left(f_{n}\right)_{n \in \mathbb{N}}$ in the Diff ${ }^{\infty}(M)$-topology the next result, that can be found in FSW07, Lemma 4] is very useful.

Lemma 6.7. Let $k \in \mathbb{N}_{0}$ and h be a C^{∞}-diffeomorphism on M. Then we get for every $\alpha, \beta \in \mathbb{R}$:

$$
d_{k}\left(h \circ R_{\alpha} \circ h^{-1}, h \circ R_{\beta} \circ h^{-1}\right) \leq C_{k} \cdot\left\|| | h\left|\|_{k+1}^{k+1} \cdot\right| \alpha-\beta \mid,\right.
$$

where the constant C_{k} depends solely on k and m. In particular $C_{0}=1$.
In the following Lemma we state that under some assumptions on the sequence $\left(\alpha_{n}\right)_{n \in \mathbb{N}}$ the sequence $\left(f_{n}\right)_{n \in \mathbb{N}}$ converges to $f \in \mathcal{A}_{\alpha}(M)$ in the $\operatorname{Diff}{ }^{\infty}(M)$-topology. Afterwards we will show that we can fulfil these conditions (see Lemma 6.9).

Lemma 6.8. Let $\varepsilon>0$ be arbitrary and $\left(k_{n}\right)_{n \in \mathbb{N}}$ be a strictly increasing sequence of natural numbers satisfying $\sum_{n=1}^{\infty} \frac{1}{k_{n}}<\varepsilon$. Furthermore we assume that in our constructions the following conditions are fulfilled:

$$
\left|\alpha-\alpha_{1}\right|<\varepsilon \quad \text { and } \quad\left|\alpha-\alpha_{n}\right| \leq \frac{1}{2 \cdot k_{n} \cdot C_{k_{n}} \cdot\left\|\mid H_{n}\right\| \|_{k_{n}+1}^{k_{n}+1}} \text { for every } n \in \mathbb{N}
$$

where $C_{k_{n}}$ are the constants from Lemma 6.7.

1. Then the sequence of diffeomorphisms $f_{n}=H_{n} \circ R_{\alpha_{n+1}} \circ H_{n}^{-1}$ converges in the Diff $\circ(M)$ topology to a measure-preserving smooth diffeomorphism f, for which $d_{\infty}\left(f, R_{\alpha}\right)<3 \cdot \varepsilon$ holds.
2. Also the sequence of diffeomorphisms $\hat{f}_{n}=H_{n} \circ R_{\alpha} \circ H_{n}^{-1} \in \mathcal{A}_{\alpha}(M)$ converges to f in the Diff ${ }^{\infty}(M)$-topology. Hence $f \in \mathcal{A}_{\alpha}(M)$.

Proof. See [Ku16, Lemma 5.8.].
As announced we show that we can satisfy the conditions from Lemma 6.8 in our constructions:
Lemma 6.9. Let $\left(k_{n}\right)_{n \in \mathbb{N}}$ be a strictly increasing sequence of natural numbers with $\sum_{n=1}^{\infty} \frac{1}{k_{n}}<\infty$ and $C_{k_{n}}$ be the constants from Lemma 6.7. For any Liouvillean number α there exists a sequence $\alpha_{n}=\frac{p_{n}}{q_{n}}$ of rational numbers with $10 n^{2}$ divides q_{n}, such that our conjugation maps H_{n} constructed in section 3.1 and 3.2 fulfil the following conditions:

1. For every $n \in \mathbb{N}$:

$$
\left|\alpha-\alpha_{n}\right|<\frac{1}{2 \cdot k_{n} \cdot C_{k_{n}} \cdot| |\left|H_{n}\right| \|_{k_{n}+1}^{k_{n}+1}}
$$

2. For every $n \in \mathbb{N}$:

$$
\left|\alpha-\alpha_{n}\right|<\frac{1}{2^{n+1} \cdot k \cdot q_{n} \cdot| |\left|H_{n}\right| \|_{1}}
$$

3. For every $n \in \mathbb{N}$

$$
\left\|D H_{n-1}\right\|_{0}<\frac{\ln \left(q_{n}\right)}{n}
$$

Proof. In Lemma 6.6 we saw $\left\|\mid H_{n}\right\| \|_{k_{n}+1} \leq \breve{C}_{n} \cdot q_{n}^{2 \cdot(m-1)^{2} \cdot(n+k) \cdot\left(k_{n}+1\right)}$, where the constant \breve{C}_{n} was independent of q_{n}. Thus we can choose $q_{n} \geq \breve{C}_{n}$ for every $n \in \mathbb{N}$. Hence we obtain: $\left\|\mid H_{n}\right\| \|_{k_{n}+1} \leq$ $q_{n}^{2 \cdot m^{2} \cdot(n+k) \cdot\left(k_{n}+1\right)}$.
Besides $q_{n} \geq \breve{C}_{n}$ we keep the condition $q_{n} \geq 200 \cdot(n-1)^{2} \cdot k \cdot d_{n-1}^{2} \cdot(n-1)^{4 \cdot(n-1+k)} \cdot q_{n-1}^{4 \cdot(n-2+k)}$ from Remark 4.4 in mind. Furthermore we can demand $\left\|D H_{n-1}\right\|_{0}<\frac{\ln \left(q_{n}\right)}{n}$ from q_{n} because H_{n-1}
is independent of q_{n}. Since α is a Liouvillean number, we find a sequence of rational numbers $\tilde{\alpha}_{n}=\frac{\tilde{p}_{n}}{\tilde{q}_{n}}, \tilde{p}_{n}, \tilde{q}_{n}$ relatively prime, under the above restrictions (formulated for \tilde{q}_{n}) satisfying:

$$
\left|\alpha-\tilde{\alpha}_{n}\right|=\left|\alpha-\frac{\tilde{p}_{n}}{\tilde{q}_{n}}\right|<\frac{\left|\alpha-\alpha_{n-1}\right|}{2^{n+1} \cdot k \cdot k_{n} \cdot C_{k_{n}} \cdot\left(10 n^{2}\right)^{1+2 \cdot m^{2} \cdot(n+k) \cdot\left(k_{n}+1\right)^{2}} \cdot \tilde{q}_{n}^{1+2 \cdot m^{2} \cdot(n+k) \cdot\left(k_{n}+1\right)^{2}}}
$$

Put $q_{n}:=10 n^{2} \cdot \tilde{q}_{n}$ and $p_{n}:=10 n^{2} \cdot \tilde{p}_{n}$. Then we obtain:

$$
\left|\alpha-\alpha_{n}\right|<\frac{\left|\alpha-\alpha_{n-1}\right|}{2^{n+1} \cdot k \cdot k_{n} \cdot C_{k_{n}} \cdot q_{n}^{1+2 \cdot m^{2} \cdot(n+k) \cdot\left(k_{n}+1\right)^{2}}}
$$

So we have $\left|\alpha-\alpha_{n}\right| \xrightarrow{n \rightarrow \infty} 0$ monotonically. Because of $\left\|\mid H_{n}\right\|_{k_{n}+1}^{k_{n}+1} \leq q_{n}^{2 \cdot m^{2} \cdot(n+k) \cdot\left(k_{n}+1\right)^{2}}$ this yields: $\left|\alpha-\alpha_{n}\right|<\frac{1}{2^{n+1} \cdot k \cdot q_{n} \cdot k_{n} \cdot C_{k_{n}} \cdot\left\|\mid H_{n}\right\| \|_{k_{n}+1}^{k_{n}+1}}$. Thus the first property of this Lemma is fulfilled.
Furthermore, we note $k_{n} \geq 1$ and $C_{k_{n}} \geq 1$ by Lemma 6.7. Thus $q_{n} \cdot k_{n} \cdot C_{k_{n}} \geq q_{n}$. Moreover, $\left\|H_{n}\right\|_{1} \geq\left\|H_{n}\right\|_{0}=1$, because $H_{n}: \mathbb{S}^{1} \times[0,1]^{m-1} \rightarrow \mathbb{S}^{1} \times[0,1]^{m-1}$ is a diffeomorphism. Hence $\left\|\left|\left|H_{n}\| \|_{k_{n}+1}^{k_{n}+1} \geq\right|\left\|H_{n}\right\| \|_{1}\right.\right.$. Altogether we conclude $2^{n+1} \cdot q_{n} \cdot k_{n} \cdot C_{k_{n}} \cdot\left\|\left|H_{n}\| \|_{k_{n}+1}^{k_{n}+1} \geq 2^{n+1} \cdot q_{n} \cdot\right|\right\| H_{n}\| \|_{1}$ and so:

$$
\begin{equation*}
\left|\alpha-\alpha_{n}\right|<\frac{1}{2^{n+1} \cdot k \cdot q_{n} \cdot k_{n} \cdot C_{k_{n}} \cdot\left\|| | H_{n} \mid\right\|_{k_{n}+1}^{k_{n}+1}} \leq \frac{1}{2^{n+1} \cdot k \cdot q_{n} \cdot\left|\left\|H_{n} \mid\right\|_{1}\right.} \tag{6}
\end{equation*}
$$

i.e. we verified the second property.

Remark 6.10. Lemma 6.9 shows that the conditions of Lemma 6.8 are satisfied. Therefore our sequence of constructed diffeomorphisms f_{n} converges in the Diff ${ }^{\infty}(M)$-topology to a diffeomorphism $f \in \mathcal{A}_{\alpha}(M)$.

To apply Proposition 5.8 we need another result:
Lemma 6.11. Let $\left(\alpha_{n}\right)_{n \in \mathbb{N}}$ be constructed as in Lemma 6.9. Then it holds for every $n \in \mathbb{N}$, for every $i \in \mathbb{N}$, $i \leq k$, and for every $\tilde{m} \leq q_{n+1}$:

$$
d_{0}\left(f^{i \cdot \tilde{m}}, f_{n}^{i \cdot \tilde{m}}\right) \leq \frac{1}{2^{n}}
$$

Proof. According to our construction it holds $h_{n} \circ R_{\alpha_{n}}=R_{\alpha_{n}} \circ h_{n}$ and hence

$$
\begin{aligned}
f_{n-1} & =H_{n-1} \circ R_{\alpha_{n}} \circ H_{n-1}^{-1}=H_{n-1} \circ R_{\alpha_{n}} \circ h_{n} \circ h_{n}^{-1} \circ H_{n-1}^{-1} \\
& =H_{n-1} \circ h_{n} \circ R_{\alpha_{n}} \circ h_{n}^{-1} \circ H_{n-1}^{-1}=H_{n} \circ R_{\alpha_{n}} \circ H_{n}^{-1} .
\end{aligned}
$$

Hereby and with the aid of Lemma 6.7 we compute:

$$
d_{0}\left(f_{j}^{i \cdot \tilde{m}}, f_{j-1}^{i \cdot \tilde{m}}\right)=d_{0}\left(H_{j} \circ R_{i \cdot \tilde{m} \cdot \alpha_{j+1}} \circ H_{j}^{-1}, H_{j} \circ R_{i \cdot \tilde{m} \cdot \alpha_{j}} \circ H_{i}^{-1}\right) \leq\left\|\left|\left|H_{j}\right|\| \|_{1} \cdot i \cdot \tilde{m} \cdot 2 \cdot\right| \alpha-\alpha_{j} \mid\right.
$$

Since $\tilde{m} \leq q_{n+1} \leq q_{j}$ we conclude for every $j>n$ using equation 6:
$d_{0}\left(f_{j}^{i \cdot \tilde{m}}, f_{j-1}^{i \cdot \tilde{m}}\right) \leq\left\|\left|\left|H_{j}\right|\left\|_{1} \cdot i \cdot \tilde{m} \cdot 2 \cdot\left|\alpha-\alpha_{j}\right| \leq\right\|\right| \mid H_{j}\right\| \|_{1} \cdot i \cdot \tilde{m} \cdot 2 \cdot \frac{1}{2^{j+1} \cdot k \cdot q_{j} \cdot\| \| H_{j}\| \|_{1}} \leq \frac{i \cdot \tilde{m}}{k \cdot q_{j}} \cdot \frac{1}{2^{j}} \leq \frac{1}{2^{j}}$.
Thus for every $\tilde{m} \leq q_{n+1}$ we get the claimed result:

$$
d_{0}\left(f^{i \cdot \tilde{m}}, f_{n}^{i \cdot \tilde{m}}\right)=\lim _{k \rightarrow \infty} d_{0}\left(f_{k}^{i \cdot \tilde{m}}, f_{n}^{i \cdot \tilde{m}}\right) \leq \lim _{k \rightarrow \infty} \sum_{j=n+1}^{k} d_{0}\left(f_{j}^{i \cdot \tilde{m}}, f_{j-1}^{i \cdot \tilde{m}}\right) \leq \sum_{j=n+1}^{\infty} \frac{1}{2^{j}}=\left(\frac{1}{2}\right)^{n}
$$

Remark 6.12. Note that the sequence $\left(m_{n}\right)_{n \in \mathbb{N}}$ defined in section 4 meets the mentioned condition $m_{n} \leq q_{n+1}$ and hence 6.11 can be applied on it.

Concluding we have checked that all the assumptions of Proposition 5.8 are satisfied. Thus this criterion guarentees that the constructed diffeomorphism $f \in \mathcal{A}_{\alpha}(M)$ is $\left(\kappa_{1}, \ldots, \kappa_{k}\right)$-weakly mixing. In addition, for every $\varepsilon>0$ we can choose the parameters by Lemma 6.8 in such a way, that $d_{\infty}\left(f, R_{\alpha}\right)<\varepsilon$ holds.

In order to prove the genericity results in section 7 we have to compute the weak distance between f and f_{n} :

Lemma 6.13. Let $\nu_{n}:=H_{n-1} \circ g_{n}\left(\eta_{n}\right)$ and $\left(m_{n}\right)_{n \in \mathbb{N}}$ be the sequence of natural numbers defined in section 4. Then we have for every $i \in\{1, \ldots, k\}$

$$
\sum_{c \in \nu_{n}} \mu\left(f_{n}^{i \cdot m_{n}}(c) \triangle f^{i \cdot m_{n}}(c)\right)<\frac{1}{n} \cdot \frac{1}{n^{2 m} \cdot q_{n}^{3 m}}
$$

Proof. At first we observe for $\Gamma_{n}=H_{n-1} \circ g_{n}\left(\hat{I}_{n}\right) \in \nu_{n}$

$$
\mu\left(f_{n}^{i \cdot m_{n}}\left(\Gamma_{n}\right) \triangle f_{n+1}^{i \cdot m_{n}}\left(\Gamma_{n}\right)\right)=\mu\left(R_{\alpha_{n+1}}^{i \cdot m_{n}}\left(\phi_{n}^{-1}\left(\hat{I}_{n}\right)\right) \triangle h_{n+1} \circ R_{\alpha_{n+2}}^{i \cdot m_{n}} \circ h_{n+1}^{-1}\left(\phi_{n}^{-1}\left(\hat{I}_{n}\right)\right)\right)
$$

and introduce the notation $b_{n, i}:=d_{0}\left(R_{\alpha_{n+1}}^{i \cdot m_{n}}, h_{n+1} \circ R_{\alpha_{n+2}}^{i \cdot m_{n}} \circ h_{n+1}^{-1}\right)$.
In case of $0 \leq l<n-k$ there are

$$
n \cdot q_{n} \cdot\left(n q_{n}^{2}-2 \cdot\left\lceil\frac{q_{n}^{2}}{10 n^{3}}\right\rceil\right) \cdot(n-k-1) \cdot\left(n^{2} q_{n}^{2}-2 \cdot\left\lceil\frac{q_{n}^{2}}{10 n^{2}}\right\rceil\right)^{m-2} \leq\left(n \cdot q_{n}\right)^{2 \cdot(m-1)+1}
$$

elements of the partition η_{n} on $\left[\frac{l}{n \cdot q_{n}}, \frac{l+1}{n \cdot q_{n}}\right] \times[0,1]^{m-1}$. By the shape of elements in η_{n} and the calculations in the proof of Lemma 4.5 the image of such an element under $R_{\alpha_{n+1}}^{i \cdot m_{n}} \circ \phi_{n}^{-1}$ consists of

$$
\begin{aligned}
& 1+\sum_{d=1}^{k} c_{d, n} \cdot\left(n^{2} q_{n}^{2}-2 \cdot\left\lceil\frac{q_{n}^{2}}{10 n^{2}}\right\rceil\right)^{m \cdot(n-1+k)-1} \cdot\left(n^{2} q_{n}^{2}-2 \cdot\left\lceil\frac{q_{n}^{2}}{10 n^{2}}\right\rceil\right)^{(m-1) \cdot(n-2+k)} \\
\leq & \sum_{d=1}^{k} c_{d, n} \cdot\left(n q_{n}\right)^{4 \cdot m \cdot(n-1+k)}
\end{aligned}
$$

blocks.
On the "distribution part" such a block has sidelengths $\frac{1-\frac{1}{5 n^{4}}}{d_{n} \cdot\left(n \cdot q_{n}\right)^{2 \cdot(n-1+k+T)}}$ in the θ-coordinate, $\frac{1-\frac{1}{5 n^{4}}}{\left(n \cdot q_{n}\right)^{2 \cdot(n-1+k+T)}}$ in the coordinates r_{1}, \ldots, r_{m-2} as well as $\frac{1-\frac{1}{5 n^{4}}}{\left(n \cdot q_{n}\right)^{2 \cdot m \cdot(n-1+k)-2 \cdot(m-1) \cdot T}}$ in the $r_{m-1^{-}}$ coordinate for some $T \in\{1, \ldots, n-1\}$. The part of $h_{n+1} \circ R_{\alpha_{n+2}}^{i \cdot m_{n}} \circ h_{n+1}^{-1}\left(\phi_{n}^{-1}\left(\hat{I}_{n}\right)\right)$ corresponding to any block of $R_{\alpha_{n+1}}^{i \cdot m_{n}}\left(\phi_{n}^{-1}\left(\hat{I}_{n}\right)\right)$ surrounds a block of sidelengths $\frac{1-\frac{1}{54^{4}}}{d_{n} \cdot\left(n \cdot q_{n}\right)^{2 \cdot(n-1+k+T)}}-2 b_{n, i}$ in the θ-coordinate, $\frac{1-\frac{1}{5 n^{4}}}{\left(n \cdot q_{n}\right)^{2 \cdot(n-1+k+T)}}-2 b_{n, i}$ in the r_{1}, \ldots, r_{m-2}-coordinates and $\frac{1-\frac{1}{5 n^{4}}}{\left(n \cdot q_{n}\right)^{2 \cdot m \cdot(n-1+k)-2 \cdot(m-1) \cdot T}}-$
$2 b_{n, i}$ in the r_{m-1}-coordinate as well as it is contained in a block of sidelengths $\frac{1-\frac{1}{5 n^{4}}}{d_{n} \cdot\left(n \cdot q_{n}\right)^{2 \cdot(n-1+k+T)}}+$ $2 b_{n, i}$ in the θ-coordinate, $\frac{1-\frac{1}{5 n^{4}}}{\left(n \cdot q_{n}\right)^{2 \cdot(n-1+k+T)}}+2 b_{n, i}$ in the r_{1}, \ldots, r_{m-2}-coordinates and $\frac{1-\frac{1}{5 n^{4}}}{\left(n \cdot q_{n}\right)^{2 \cdot m \cdot(n-1+k)-2 \cdot(m-1) \cdot T}}+$ $2 b_{n, i}$ in the r_{m-1}-coordinate.
Similar considerations apply on the block $R_{\alpha_{n+1}}^{i \cdot m_{n}} \circ \phi_{n}^{-1}\left(I_{N} \times W\right)$.
Since

$$
\begin{aligned}
b_{n, i} & =d_{0}\left(R_{\alpha_{n+1}}^{i \cdot m_{n}}, h_{n+1} \circ R_{\alpha_{n+2}}^{i \cdot m_{n}} \circ h_{n+1}^{-1}\right) \leq\| \| h_{n+1}\left|\|_{1} \cdot k \cdot m_{n} \cdot\right| \alpha_{n+1}-\alpha_{n+2} \mid \\
& <\left|\left\|H_{n+1}\left|\|_{1} \cdot q_{n+1} \cdot 2 \cdot\right| \alpha_{n+1}-\alpha \left\lvert\,<\frac{1}{q_{n+1}^{2 \cdot m^{2} \cdot(n+k+1) \cdot k_{n+1}^{2}}}\right.\right.\right.
\end{aligned}
$$

by Lemma 6.9. we conclude

$$
\begin{aligned}
\sum_{c \in \nu_{n}} \mu\left(f_{n}^{i \cdot m_{n}}(c) \triangle f_{n+1}^{i \cdot m_{n}}(c)\right) & \leq(n-k) \cdot q_{n} \cdot\left(n \cdot q_{n}\right)^{2 \cdot(m-1)+1} \cdot \sum_{d=1}^{k} c_{d, n} \cdot\left(n q_{n}\right)^{4 \cdot m \cdot(n-1+k)} \cdot 4 \cdot m \cdot b_{n, i} \\
& <\frac{1}{2 n} \cdot \frac{1}{n^{2 m} \cdot q_{n}^{3 m}}
\end{aligned}
$$

This implies the claim.

7 Proof of genericity

First of all, Proposition 2.2 yields the denseness of $\left(\kappa_{1}, \ldots, \kappa_{k}\right)$-weakly mixing diffeomorphisms in $\mathcal{A}_{\alpha}(M):$
Because of $\mathcal{A}_{\alpha}(M)=\overline{\left\{h \circ R_{\alpha} \circ h^{-1}: h \in \operatorname{Diff}^{\infty}(M, \mu)\right\}}{ }^{C}$ it is enough to show that for every diffeomorphism $h \in \operatorname{Diff}^{\infty}(M, \mu)$ and every $\epsilon>0$ there is a $\left(\kappa_{1}, \ldots, \kappa_{k}\right)$-weakly mixing diffeomorphism \tilde{f} such that $d_{\infty}\left(\tilde{f}, h \circ R_{\alpha} \circ h^{-1}\right)<\epsilon$. For this purpose, let $h \in \operatorname{Diff}^{\infty}(M, \mu)$ and $\epsilon>0$ be arbitrary. Since Diff ${ }^{\infty}(M)$ is a Lie group, the conjugating map $g \mapsto h \circ g \circ h^{-1}$ is continuous with respect to the metric d_{∞}. Continuity in the point R_{α} yields the existence of $\delta>0$, such that $d_{\infty}\left(g, R_{\alpha}\right)<\delta$ implies $d_{\infty}\left(h \circ g \circ h^{-1}, h \circ R_{\alpha} \circ h^{-1}\right)<\epsilon$. By Proposition 2.2 we can find a $\left(\kappa_{1}, \ldots, \kappa_{k}\right)$-weakly mixing diffeomorphism f with $d_{\infty}\left(f, R_{\alpha}\right)<\delta$. Hence $\tilde{f}:=h \circ f \circ h^{-1}$ satisfies $d_{\infty}\left(\tilde{f}, h \circ R_{\alpha} \circ h^{-1}\right)<\epsilon$. Note that \tilde{f} is $\left(\kappa_{1}, \ldots, \kappa_{k}\right)$-weakly mixing.

In order to prove the genericity statement in Theorem 1 we consider all sequences of constructed diffeomorphisms $\left(f_{n}\right)_{n \in \mathbb{N}}$ satisfying the requirements from the previous sections. Let $U_{n}\left(f_{n}\right)$ be the subsequent neighbourhood of the diffeomorphism f_{n} :

$$
\begin{aligned}
& U_{n}\left(f_{n}\right):= \\
& \left\{g \in \operatorname{Diff}^{\infty}(M, \mu): d_{k_{n+1}}\left(f_{n}, g\right)<\frac{2}{k_{n+1}}, \sum_{\Gamma_{n} \in \nu_{n}} \mu\left(g^{i \cdot m_{n}}\left(\Gamma_{n}\right) \triangle f_{n}^{i \cdot m_{n}}\left(\Gamma_{n}\right)\right)<\frac{1}{n} \cdot \frac{1}{n^{2 m} \cdot q_{n}^{3 m}} \text { for } i=1, \ldots, k\right\}
\end{aligned}
$$

By Θ_{n} we denote the union of all neighbourhoods $U_{n}\left(f_{n}\right)$ over all the n-th diffeomorphisms in the above mentioned sequences. Since the neighbourhoods $U_{n}\left(f_{n}\right)$ are open the sets Θ_{n} are open as
well. Then

$$
\Theta:=\bigcap_{n \in \mathbb{N}} \bigcup_{s \geq n} \Theta_{s}
$$

is a G_{δ}-set as the countable intersection of open sets.

- For all the sequences $\left(f_{n}\right)_{n \in \mathbb{N}}$ the respective limit diffeomorphism $f \in \mathcal{A}_{\alpha}(M)$ belongs to Θ, because it belongs to $U_{n}\left(f_{n}\right)$ for every $n \in \mathbb{N}$ by construction (cf. Lemma 6.13). So Θ contains all the constructed diffeomorphisms with the aimed properties. Hence, it is dense in $\mathcal{A}_{\alpha}(M)$ due to the above considerations.
- In the next step we want to show that $f \in \Theta$ is a $\left(\kappa_{1}, \ldots, \kappa_{k}\right)$-weakly mixing diffeomorphism: For any $f \in \bigcap_{n \in \mathbb{N}} \bigcup_{s \geq n} \Theta_{s}$ there is a sequence $\left(n_{l}\right)_{l \in \mathbb{N}}$ with $n_{l} \rightarrow \infty$ as $l \rightarrow \infty$, such that $f \in \Theta_{n_{l}}$. So there is a sequence $\left(f_{n_{l}}\right)_{l \in \mathbb{N}}$ of diffeomorphisms, at which $f_{n_{l}}$ is the n_{l}-th element of one of the above mentioned sequences of constructed diffeomorphisms, such that $f \in U_{n_{l}}\left(f_{n_{l}}\right)$. We observe that $\nu_{n_{l}} \rightarrow \varepsilon$ as $l \rightarrow \infty$, where $\nu_{n_{l}}$ is the partition belonging to the diffeomorphism $f_{n_{l}}$. Moreover, we have

$$
\begin{aligned}
& \left|\mu\left(\Gamma_{n_{l}} \cap f^{-i \cdot m_{n_{l}}}\left(A_{n_{l}}\right)\right)-\kappa_{i, n_{l}} \cdot \mu\left(\Gamma_{n_{l}}\right) \cdot \mu\left(A_{n_{l}}\right)-\left(1-\kappa_{i, n_{l}}\right) \cdot \mu\left(\Gamma_{n_{l}} \cap A_{n_{l}}\right)\right| \\
< & \frac{23}{n_{l}} \cdot \mu\left(\Gamma_{n_{l}}\right) \cdot \mu\left(A_{n_{l}}\right)
\end{aligned}
$$

for every $\Gamma_{n_{l}} \in \nu_{n_{l}}$ and $A_{n_{l}} \in \mathfrak{S}_{n_{l}}$ by the definition of the neighbourhoods $U_{n_{l}}\left(f_{n_{l}}\right)$. Then we can conclude that f is $\left(\kappa_{1}, \ldots, \kappa_{k}\right)$-weakly mixing.

Thus the set of $\left(\kappa_{1}, \ldots, \kappa_{k}\right)$-weakly mixing diffeomorphisms in $\mathcal{A}_{\alpha}(M)$ contains a dense G_{δ}-set. Hence, Theorem 1 is deduced from Proposition 2.2

8 Applications

As a first application of the $\left(\kappa_{1}, \ldots, \kappa_{k}\right)$-weak mixing property we state [JL92, Lemma 1.3]:
Lemma 8.1. Suppose that T is $\left(1-\kappa_{1}, \ldots, 1-\kappa_{K}\right)$-weakly mixing with $\kappa_{1}, \ldots, \kappa_{K} \in(0,1)$ and $\left(\log \left(\kappa_{1}\right), \ldots, \log \left(\kappa_{K}\right)\right\}$ linearly independent over \mathbb{Q}. Then

$$
\sigma_{T^{k(1)}} * \cdots * \sigma_{T^{k(l)}} \perp \sigma_{T^{k^{\prime}(1)}} * \cdots * \sigma_{T^{k^{\prime}(l)}}
$$

for all numbers $0<k(1), \ldots, k(l), k^{\prime}(1), \ldots, k^{\prime}\left(l^{\prime}\right) \leq K$ unless $(k(1), \ldots, k(l))$ is a permutation of $\left(k^{\prime}(1), \ldots, k^{\prime}\left(l^{\prime}\right)\right)$.

Hereby, Corollary 1 follows from Theorem 1.
Moreover, we can follow the lines of JL92 and Ru79, Example 2] to get a smooth weakly mixing diffeomorphism with no measurable square root: Let $T \in \mathcal{A}_{\alpha}(M)$ be a diffeomorphism as constructed in Corollary 1 and $S=T \times T \times T$. By JL92, Corollary 3] any measurable square root must have the form $\left(T^{l(1)} \times T^{l(2)} \times T^{l(3)}\right) U_{\pi}$ with $l(i) \in \mathbb{Z}$ and $\pi^{2}=\mathrm{id}$, where $U_{\pi}: M^{3} \rightarrow M^{3}$ is defined by $U_{\pi}(x)(j)=x(\pi(j))$. Thus, for some i we would have $\pi(i)=i$ and then $2 l(i)=1$ which is impossible for $l(i) \in \mathbb{Z}$.

9 References

[AK70] D. V. Anosov and A. Katok: New examples in smooth ergodic theory. Ergodic diffeomorphisms. Trudy Moskov. Mat. Obsc., 23: 3-36, 1970.
[Ba17] S. Banerjee: Non-standard real-analytic realization of some rotations of the circle. Ergodic Theory \& Dynamical Systems, 37 (5): 1369-1386, 2017.
[BK] S. Banerjee and P. Kunde, Real-analytic AbC constructions on the torus. Submitted to Ergodic Theory \& Dynamical Systems, arXiv:1611.06621.
[BSZ12] J. Bourgain, P. Sarnak, T. Ziegler: Disjointness of Möbius from horocycle flows. In: From Fourier and Number theory to Radon Transforms and Geometry, Developments in Mathematics, 28: 67-83, 2012.
[CS96] G. M. Constantine and T. H. Savits: A multivariate Faà di Bruno formula with applications. Trans. Amer. Math. Soc., 348 (2): 503-520, 1996.
[ELR14] H. El Abdalaoui, M. Lemanczyk and T. de la Rue: On spectral disjointness of powers for rank-one transformations and Möbius orthogonality. J. Funct. Anal., 266 (1): $284-317,2014$.
[FK04] B. Fayad and A. Katok: Constructions in elliptic dynamics. Ergodic Theory Dynam. Systems, 24 (5): 1477-1520, 2004.
[FS05] B. Fayad and M. Saprykina: Weak mixing disc and annulus diffeomorphisms with arbitrary Liouville rotation number on the boundary. Ann. Scient. École. Norm. Sup.(4), 38(3): 339-364, 2005.
[FSW07] B. Fayad, M. Saprykina and A. Windsor: Nonstandard smooth realizations of Liouville rotations. Ergodic Theory Dynam. Systems, 27: 1803-1818, 2007.
[Fu67] H. Furstenberg: Disjointness in ergodic theory, minimal sets and diophantine approximation. Math. Syst. Th., 1: $1-49,1967$.
[GKu] R. Gunesch and P. Kunde: Weakly mixing diffeomorphisms preserving a measurable Riemannian metric with prescribed Liouvillean rotation behavior. Submitted to Journal of Discrete and Continuous Dynamical Systems A, arXiv:1512.00075.
[JL92] A. del Junco and M. Lemanczyk: Generic spectral properties of measurepreserving maps and applications. Proc. Amer. Math. Soc., 115 (3): 725-736, 1992.
[Ka79] A. Katok: Bernoulli diffeomorphisms on surfaces. Ann. of Math., 110: 529-547, 1979.
[Ka03] A. Katok: Combinatorical Constructions in Ergodic Theory and Dynamics. American Mathematical Society, Providence, 2003.
[Ku16] P. Kunde: Smooth diffeomorphisms with homogeneous spectrum and disjointness of convolutions. Journal of Modern Dynamics, 10: 439-481, 2016.
[Ku17] P. Kunde: Real-analytic weak mixing diffeomorphism preserving a measurable Riemannian metric. Ergodic Theory \& Dynamical Systems, 37 (5): 1547-1569, 2017.
[Ku] P. Kunde: Weakly mixing diffeomorphism with ergodic derivative extension. Submitted to Commentarii Mathematici Helvetici, 2016.
[Ne32] J. von Neumann: Zur Operatorenmethode in der klassischen Mechanik. Ann. of Math., 33(3): 587-642, 1932.
[Os69] V. I. Oseledets: An automorphism with simple continuous spectrum not having the group property. Mat. Zametki 5: 323-326, 1969.
[OW91] D. S. Ornstein and B. Weiss: Statistical properties of chaotic systems. Bull. Amer. Math. Soc., 24: 11-116, 1991.
[Ru79] D. J. Rudolph: An example of a measure-preserving map with minimal selfjoinings and applications. J. Anal. Math. 35, 97-122, 1979.
[Sa] P. Sarnak: Three lectures on the Möbius function - randomness and dynamics. publications.ias.edu/sarnak
[Skl67] M. D. Sklover: Classical dynamical systems on the torus with continuous spectrum. Izv. Vys. Ucebn. Zaved. Mat., 10: 113-124, 1967.
[St66] A. M. Stepin: Spectral properties of ergodic dynamical systems with locally compact time. Dokl. Akad. Nauk SSSR, 169(4): 773-776, 1966.
[St87] A. M. Stepin: Spectral properties of generic dynamical systems. Math. USSR-Izv. 29, 159-192, 1987.

