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On observers for nonlinear differential-algebraic systems
Thomas Berger

Abstract—We extend a recent approach to observer design for linear
differential-algebraic systems to impulse observable systems with Lip-
schitz nonlinearities. The observer design further extends the standard
Luenberger type observer design. We show that the design parameters for
the observer can be obtained by the solution of a Riccati type inequality.
The solutions of the latter can in turn be obtained by solving a set of
LMIs and BMIs which provides a computational procedure. A feature
of our observer design is the possibility of reformulation as an ordinary
differential equation.

Index Terms—Differential-algebraic systems, nonlinear systems, ob-
servers, Riccati inequality, LMIs.

Nomenclature:
N, N0 set of natural numbers, N0 = N∪{0}
Rn×m the set of real n×m matrices

rkA, imA rank and image of A ∈ Rn×m

Gln(R) the group of invertible matrices in Rn×n

M >V 0 :⇐⇒ ∀x ∈ V \{0} : x>Mx > 0, for a matrix M ∈
Rn×n and a subspace V ⊆ Rn

C k(X→Y ) set of k-times continuously differentiable functions
f : X→Y , k ∈N0∪{∞}; C (X→Y ) := C 0(X→Y );
if k = ∞ the function f is called smooth

dom f the domain of the function f

f |I restriction of the function f to the set I

I. INTRODUCTION

We study observer design for nonlinear systems governed by
differential-algebraic equations (DAEs). We follow the recent ap-
proach to observer design developed in [1] for linear DAE systems.
In the main result in Theorem III.2 we show that an asymptotic
observer can be designed whenever a certain Riccati inequality is
solvable. We later show that solvability of certain linear and bilinear
matrix inequalities (LMIs and BMIs) is sufficient for solvability of
the Riccati inequality.

We consider DAE systems of the form

ẋ1(t) = Ax1(t)+Bx2(t)+ f1
(
x1(t),x2(t),u(t),y(t)

)
,

0 =Cx1(t)+Dx2(t)+ f2
(
u(t),y(t)

)
,

y(t) = Fx1(t)+Gx2(t)+h
(
u(t)
)
,

(1)

with A ∈ Rr×r and all other matrices of appropriate dimensions so
that [

A B
C D

]
∈ Rl×n, [F,G] ∈ Rp×n;

furthermore, f1 ∈C 1(X1×X2×Rm×Rp→Rr), f2 ∈C 1(Rm×Rp→
Rl−r), h ∈ C 1(Rm→Rp), where X1 ⊆Rr,X2 ⊆Rn−r are open, such
that the following Lipschitz condition is satisfied:

∃L > 0 ∀ (xi
1,x

i
2) ∈ X1×X2 i = 1,2 ∀ (u,y) ∈ Rm×Rp :

‖ f1(x1
1,x

1
2,u,y)− f1(x2

1,x
2
2,u,y)‖ ≤ L‖(x1

1− x2
1,x

1
2− x2

2)‖.
(2)

The functions u : I→Rm and y : I→Rp are called input and output of
the system, resp. Note that although y from the last equation in (1)
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may be inserted in the first equation which may hence be written in
the form

ẋ1(t) = Ax1(t)+Bx2(t)+ f̃1
(
x1(t),x2(t),u(t)

)
,

this would be a smaller class of systems as we would need to
require f̃1 to be Lipschitz continuous w.r.t. x1 and x2, while f1 does
not need to be Lipschitz w.r.t. y.

The system class (1) includes any linear DAE system and numerous
important classes of nonlinear DAE systems (e.g. chemical process
systems [2], mechanical systems [3], [4] and modified nodal analysis
models of electrical circuits [5]). Nonlinear DAE systems seem
to have been first considered by LUENBERGER [6]; see also the
textbooks [7], [8] and the recent works [9], [10].

The design of estimators for DAE systems similar to (1) has
been studied in [11]–[14]. In [11] the regularity of the linear part
is assumed, while in [12] it only needs to be square and in this way
quite general results are obtained. A unified approach is presented,
where existence of the designed estimator is shown to depend on the
solvability of certain LMIs. Due to the allowed Lipschitz continuity
of the nonlinearities it is clear that the Lipschitz constant must
be small enough (compared to the linear part) for an estimator
to exist; this can be made precise in terms of the solvability of
LMIs. A similar approach has been taken before in [15], [16] for
nonlinear systems of ordinary differential equations (ODEs) with
unknown inputs, which may be treated as DAE systems (1) as well.
Recently, the approach from [12] has been extended in [13], where
actuator and sensor faults (similar to [11]) as well as uncertainties
are incorporated, and in [14], where the Lipschitz nonlinearities
are also allowed in the output equation. Furthermore, the observer
design in [13] and [14] additionally requires the solvability of certain
BMIs. Different approaches are taken in [17], where the system
is completely nonlinear, but semi-explicit and of index 1, and a
nonlinear estimator is constructed, and in [18] where a nonlinear
generalized PI observer design is used, see also the references therein.

In the present paper, we present a more general observer design
than in [12], based on the recent approach in [1], which extends the
standard Luenberger type observer design. In particular, our design
does not require the linear part of the system to be regular or square.
The features of our approach are as follows:

• we do not restrict ourselves to regular or square systems,
• our observer design reduces to Luenberger type observers only

in special cases,
• our observers can always be reformulated as ODE systems.

In order to achieve an observer design which can be reformulated
as an ODE, while at the same time the system does not need
to be square, the assumption of impulse observability is crucial.
Applications of our observer design are e.g. error detection and fault
diagnosis, disturbance (or unknown input) estimation and feedback
control.

The present paper is organized as follows: In Section II we recall
some basic definitions and concepts. Our observer design is presented
in Section III and we prove in the main result Theorem III.2 that
it works provided a certain Riccati type inequality is solvable. In
Section IV we show that solvability of certain LMIs and BMIs is
sufficient for solvability of the Riccati inequality. The case where
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our observer design reduces to standard Luenberger type observers
is discussed in Section V along with consequences thereof. Some
illustrative examples are given in Section VI.

II. PRELIMINARIES

In order to define (asymptotic) observers for nonlinear DAE
systems we consider the general class of nonlinear systems governed
by DAEs of the form

E ẋ(t) = f
(
x(t),u(t),y(t)

)
,

y(t) = h
(
x(t),u(t)

)
,

(3)

where X ⊆Rn is open, f ∈C 1(X×Rm×Rp→Rl), h∈C 1(X×Rm→
Rp) and E ∈Rl×n. Since solutions not necessarily exist globally (e.g.
finite escape times may arise) we consider local solutions of (3). A
trajectory (x,u,y) ∈ C (I→X ×Rm×Rp) is called a solution of (3),
if I = dom x ⊆ R is an open interval, x ∈ C 1(I→Rl) and (x,u,y)
solves (3) for all t ∈ I. Note that the interval of definition I of a
solution of (3) depends on the choice of the input u and that a solution
does not need to be maximal. The behavior of (3) is defined as the
set of all possible solution trajectories

B(3) := {(x,u,y) ∈ C (I→X×Rm×Rp) | I ⊆ R open interval,
(x,u,y) is a solution of (3)}.

We recall that a linear DAE system

E ẋ(t) = Ax(t)+Bu(t),

y(t) =Cx(t)+Du(t),

is called impulse observable if, and only if, kerE ∩ A−1(imE) ∩
kerC = {0}; for a rigorous time domain definition and a detailed
discussion we refer to the survey [19]. The aforementioned condition
for impulse observability is equivalent to the rank condition

rk

E A
0 C
0 E

= n+ rkE

as shown e.g. in [20], [21]. This condition can be generalized to
nonlinear DAE systems (3) as follows.

Definition II.1. A DAE system (3) is called impulse observable, if

∀(x,u,y) ∈ X×Rm×Rp : rk

E ∂ f
∂x (x,u,y)

0 ∂h
∂x (x,u)

0 E

= n+ rkE.

A novel observer design for linear DAE systems has been intro-
duced in [1]. Here, we extend this approach and the accompanying
concepts of (asymptotic) observers to nonlinear DAE systems.

Definition II.2. Consider a system (3). A system

Eo ẋo(t) = fo
(
xo(t),u(t),y(t)

)
,

z(t) = ho
(
xo(t),u(t),y(t)

)
,

(4)

where Eo ∈ Rlo×no , fo ∈ C 1(Xo ×Rm ×Rp → Rlo), ho ∈ C 1(Xo ×
Rm×Rp → Rpo), Xo ⊆ Rno open, is called an acceptor for (3), if
for all (x,u,y) ∈B(3) with I = domx, there exist xo ∈ C 1(I→Rno),
z ∈ C (I→Rpo) such that(

xo,
(u

y
)
,z
)
∈B(4).

We stress that there is a directed signal flow from (3) to its
acceptor (4) via input and output, see Fig. 1. That is, (3) may
influence (4) but not vice-versa.

Definition II.3. Consider a system (3). Then a system (4) with po = n
is called

E ẋ(t) = f
(
x(t),u(t),y(t)

)
y(t) = h

(
x(t),u(t)

)

Eo ẋo(t) = fo
(
xo(t),u(t),y(t)

)
z(t) = ho

(
xo(t),u(t),y(t)

)

u(t) y(t)

z(t)

Fig. 1: Interconnection with an acceptor

a) an observer for (3), if it is an acceptor for (3), and

∀ I ⊆ R open intvl. ∀ t0 ∈ I

∀(x,u,y,xo,z) ∈ C (I→Rn×Rm×Rp×Rno ×Rn) :(
(x,u,y) ∈B(3) ∧ (xo,

(u
y
)
,z) ∈B(4) ∧ Ez(t0) = Ex(t0)

)
=⇒ z = x.

b) an asymptotic observer for (3), if it is an observer for (3), and

∀ t0 ∈ R ∀(x,u,y,xo,z) ∈ C ([t0,∞)→Rn×Rm×Rp×Rno ×Rn) :(
(x,u,y) ∈B(3) ∧ (xo,

(u
y
)
,z) ∈B(4)

)
=⇒ lim

t→∞
z(t)− x(t) = 0.

We like to note that while for linear impulse observable DAE
systems there always exists an observer as shown in [1] (and it
can even be reformulated as an ODE, cf. [22]), this is not true for
nonlinear systems in general.

Example II.4. Consider the system

0 = x(t)2−1, y(t) = 0 (5)

in the form (3) with

f : X → R, x 7→ x2−1, X := R\{0}.

Since ∂ f
∂x (x) = 2x 6= 0 for all x∈ X , system (5) is impulse observable.

However, the system has two different solutions, x1(t) ≡ 1 and
x2(t) ≡ −1, and it is impossible to reconstruct the solution from
the information of the output y(t) and the initial condition Ex(t0), as
E = 0. Therefore, there does not exist an observer for system (5).

As a consequence, we restrict ourselves to nonlinear systems of
the form (1).

III. OBSERVER DESIGN BY RICCATI INEQUALITY

In this section we propose a design of asymptotic observers for
systems (1). We improve upon earlier approaches by allowing a larger
class of systems and we use an observer design which extends the
Luenberger type observer design. We present a Riccati type inequality
whose solutions are used for the observer design. In the subsequent
Section IV we show that the solution of certain LMIs and BMIs
yields a solution to this Riccati inequality. The LMIs and BMIs then
yield a computational procedure for obtaining the observer.

First, we record the following observation.

Lemma III.1. A system (1) is impulse observable if, and only if,

rk
[

D
G

]
= n− r. (6)
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Proof. Observe that impulse observability of (1) means

rk


Ir 0 A+ ∂ f1

∂x1
(x1,x2,u,y) B+ ∂ f1

∂x2
(x1,x2,u,y)

0 0 C D
0 0 F G
0 0 Ir 0
0 0 0 0

= n+ r

for all (x1,x2,u,y)∈X1×X2×Rm×Rp. This is equivalent to (6).

Note that impulse observability implies n≤ l+ p, since otherwise
n− r > l + p− r by which condition (6) could never be true.

Motivated by the observer design in [1] (which is closely related
to that in [23] for behavioral systems) we propose the following
observer, which consists of an internal model of the system (1) driven
by additional “innovations” terms:

ż1(t) = Az1(t)+Bz2(t)+ f1
(
z1(t),z2(t),u(t),y(t)

)
+L1d(t),

0 =Cz1(t)+Dz2(t)+ f2
(
u(t),y(t)

)
+L2d(t),

0 = Fz1(t)+Gz2(t)+h
(
u(t)
)
− y(t)+L3d(t),

z(t) =
(

z1(t)
z2(t)

)
,

(7)

where L1 ∈Rr×k,L2 ∈R(l−r)×k,L3 ∈Rp×k, k∈N0, and the additional
observer state d(t) represents the innovations; the complete observer
state is

xo(t) =

z1(t)
z2(t)
d(t)

 .

The innovations in the observer design have been first introduced by
Polderman and Willems [24, p. 351] in order to “express how far the
actual observed output differs from what we would have expected to
observe”. Set

E =

Ir 0 0
0 0 0
0 0 0

 , A =

A B L1
C D L2
F G L3

 (8)

and

V = im
[

Ir
M

]
, M =−

[
D L2
G L3

]−1 [C
F

]
, (9)

provided that
[

D L2
G L3

]
is invertible. In the following main result of

the paper we show that there exists an asymptotic observer of the
form (7), if the Riccati type inequality

A >PE +E >PA +
1
δ

E >P2E +(δL2)In+k <V 0 (10)

has a solution L1,L2,L3, δ > 0 and P = P> ∈R(n+k)×(n+k) such that

[Ir,0]P
[

Ir
0

]
> 0.

Riccati inequalities of the form (10), i.e., restricted to certain sub-
spaces, have been studied before, see e.g. [25] and the references
therein.

Theorem III.2. Consider a system (1) which satisfies (2) and is
impulse observable, i.e., (6) holds. Let k = l + p− n and assume
that L1 ∈ Rr×k,L2 ∈ R(l−r)×k,L3 ∈ Rp×k, δ > 0 and P = P> ∈
R(n+k)×(n+k) solve (10) such that[

D L2
G L3

]
∈Gln−r+k(R) and [Ir,0]P

[
Ir
0

]
> 0.

Then (7) is an asymptotic observer for (1).

Proof. System (7) is an acceptor for (1) since for any (x,u,y) ∈B(1)

we have that
(( x1

x2
0

)
,
(u

y
)
,x
)
∈B(7).

Step 1: We show that (7) is an observer for (1). To this end, let I ⊆
R be an open interval, t0 ∈ I and (( x1

x2 ) ,u,y)∈B(1),
(( z1

z2
d

)
,
(u

y
)
,z
)
∈

B(7) be defined on I such that x1(t0) = z1(t0). From (7) we have that(
z2(t)
d(t)

)
=−

[
D L2
G L3

]−1([C
F

]
z1(t)+

(
f2
(
u(t),y(t)

)
h
(
u(t)
)
− y(t)

))
for all t ∈ I, and from (1), in a similar way,(

x2(t)
0

)
=−

[
D L2
G L3

]−1([C
F

]
x1(t)+

(
f2
(
u(t),y(t)

)
h
(
u(t)
)
− y(t)

))
.

With(
g1
(
x1,u,y

)
g2
(
x1,u,y

)) :=−
[

D L2
G L3

]−1([C
F

]
x1 +

(
f2
(
u,y
)

h
(
u
)
− y

))
(11)

for (x1,u,y) ∈ X1×Rm×Rp we thus have

ẋ1(t) = Ax1(t)+Bg1
(
x1(t),u(t),y(t)

)
+ f1

(
x1(t),g1

(
x1(t),u(t),y(t)

)
,u(t),y(t)

)
+L1g2

(
x1(t),u(t),y(t)

)
for all t ∈ I, and z1 solves the same ODE with the same initial
value z1(t0) = x1(t0). Therefore, since g1 and g2 are linear in x1
and

X1 3 x1 7→ f1
(
x1,g(x1,u,y),u,y

)
is Lipschitz in x1 for all (u,y) ∈ Rm×Rp, the uniqueness theorem
for ODEs (see [26, Thm. 4.17]) yields that x1(t) = z1(t) for all t ∈ I.
Moreover,

z2(t) = g1
(
z1(t),u(t),y(t)

)
= g1

(
x1(t),u(t),y(t)

)
= x2(t)

for all t ∈ I, and this shows that (7) is an observer.

Step 2: We determine the observation error dynamics. Let e1 :=
z1− x1 and e2 := z2− x2, then

ė1(t) = Ae1(t)+Be2(t)+L1d(t)

+ f1
(
z1(t),z2(t),u(t),y(t)

)
− f1

(
x1(t),x2(t),u(t),y(t)

)
,

0 =Ce1(t)+De2(t)+L2d(t),

0 = Fe1(t)+Ge2(t)+L3d(t).
(12)

Let M and V be as in (9), then(
e2(t)
d(t)

)
= Me1(t),

and hence any solution (e1,e2,d) of (12) evolves in V .

Step 3: We show that the observer (7) is asymptotic. To this end,
let t0 ∈ R and (( x1

x2 ) ,u,y) ∈B(1),
(( z1

z2
d

)
,
(u

y
)
,z
)
∈B(7) be defined

on [t0,∞). The corresponding observation errors solve (12) and hence
in particular, by Step 2,

∀ t ≥ t0 : w(t) :=

e1(t)
e2(t)
d(t)

 ∈ V . (13)

Use E and A from (8) and let

V : Rn+k→ R, w 7→ w>E >PE w.

Let χz(t) :=
(
z1(t),z2(t),u(t),y(t)

)
and χx(t) :=
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(
z1(t),z2(t),u(t),y(t)

)
, then by (12) we have

d
dt V
(
w(t)

)
= w(t)>

(
A >PE +E >PA

)
w(t)

+w(t)>E >P
[

Ir
0
0

](
f1
(
χz(t)

)
− f1

(
χx(t)

))
+

([
Ir
0
0

](
f1
(
χz(t)

)
− f1

(
χx(t)

)))>
PE w(t)

= w(t)>
(
A >PE +E >PA

)
w(t)+w(t)>E >P f̃ (t)+ f̃ (t)>PE w(t),

where
f̃ (t) :=

[
Ir
0
0

](
f1
(
χz(t)

)
− f1

(
χx(t)

))
.

Since for any vectors u,v ∈ Rq we have

u>v+ v>u≤ δu>u+
1
δ

v>v

we obtain the inequality

d
dt V
(
w(t)

)
≤ w(t)>

(
A >PE +E >PA

)
w(t)+

1
δ

w(t)>E >P2E w(t)

+δ f̃ (t)> f̃ (t)
(2)
≤ w(t)>

(
A >PE +E >PA +

1
δ

E >P2E +δL2In+k
)
w(t)

=−w(t)>Qw(t)

for all t ≥ t0, where

Q :=−
(
A >PE +E >PA +

1
δ

E >P2E +δL2In+k
)
.

By (10) we have Q >V 0 and thus, invoking (13), it follows that

d
dt V
(
w(t)

)
≤−cV

(
w(t)

)
, t ≥ t0,

for some c > 0, hence an application of Gronwall’s lemma yields
limt→∞ V

(
w(t)

)
= 0. Invoking that [Ir,0]P

[ Ir
0

]
> 0 we obtain that e1

converges to zero, and hence
( e2

d
)
= Me1 converges to zero, too.

Therefore,
lim
t→∞

z(t)− x(t) = 0,

and this completes the proof of the theorem.

We like to stress that since
[

D L2
G L3

]
is invertible the asymptotic

observer (7) can be reformulated as an ODE system as follows:

ż1(t) =

(
A− [B,L1]

[
D L2
G L3

]−1 [C
F

])
z1(t)

+ f1
(
z1(t),g1

(
z1(t),u(t),y(t)

)
,u(t),y(t)

)
− [B,L1]

[
D L2
G L3

]−1( f2
(
u(t),y(t)

)
h
(
u(t)
)
− y(t)

)
,

z(t) =
(

z1(t)
g1
(
z1(t),u(t),y(t)

)) ,

(14)

where g1 is as in (11). However, since this structure is quite
complicated, (7) may be preferred for implementation and numerical
computations. We also stress that (14) is not of Luenberger type in
general.

IV. OBSERVER DESIGN BY SOLUTION OF LMIS AND BMIS

In this section we derive a set of LMIs and BMIs and show how
their solution yields a solution of the Riccati inequality (10). LMIs
impose convex problems and can be solved efficiently with standard
algorithms, however the drawback of our general approach is that
the Riccati inequality (10) cannot be completely reformulated as an
LMI, but we show that it is possible to obtain its solution from a

set of LMIs with an additional BMI constraint. This is the basis
for a computational procedure in order to construct the asymptotic
observer (7).

Lemma IV.1. Let A ∈ Rr×r,B ∈ Rr×(n−r),C ∈ R(l−r)×r,D ∈
R(l−r)×(n−r),F ∈ Rp×r,G ∈ Rp×(n−r) and L > 0 be such
that (6) holds. Assume that V ∈ Gll+p−r(R),W ∈ Rr×r,P = P> ∈
R(n+k)×(n+k) and δ > 0, where k = l+ p−n, solve the following set
of LMIsW>+W +(δL2)Ir [C>,F>]V> [Ir,0]P>

V
[

C
F
]

− 1
δL2 Il+p−r 0

P
[ Ir

0

]
0 −δ In+k

< 0, (15a)

V
[

D
G

]
=

[
In−r

0

]
, (15b)

P11 := [Ir,0]P
[

Ir
0

]
> 0, (15c)

under the additional BMI constraint that

A− [B,L1]V
[

C
F

]
= P−>11 W (16)

for some L1 ∈ Rr×k. Then, with[
L2
L3

]
:=V−1

[
0
Ik

]
,

we have that the Riccati inequality (10) is satisfied, where we use
the notation from (8) and (9).

Proof. With K := P−>11 W and Z := P
[ Ir

0

]
we find that, by (15a),[K>,0]Z +Z>

[
K
0
]
+(δL2)Ir [C>,F>]V> Z>

V
[

C
F
]

− 1
δL2 Il+p−r 0

Z 0 −δ In+k

< 0.

Using the Schur complement lemma this is equivalent to[
[K>,0]Z+Z>

[
K
0
]
+(δL2)

(
Ir+[C>,F>]V>V

[
C
F
])

Z>

Z −δ In+k

]
< 0.

(17)
Now, invoking (15b), we have

V =

[
D L2
G L3

]−1

and hence we may calculate[
K

0(l+p−r)×r

]
(16)
=

[
A− [B,L1]

[
D L2
G L3

]−1 [
C
F
]

0(l+p−r)×r

]

=

A
C
F

−
B L1

D L2
G L3

[D L2
G L3

]−1 [C
F

]
=

A B L1
C D L2
F G L3

[Ir
M

]
,

where M is defined in (9). Furthermore,

[C>,F>]V>V
[

C
F
]
= M>M,

and hence (17) becomes[
[Ir,M>]A >Z +Z>A

[ Ir
M

]
+(δL2)

(
Ir +M>M

)
Z>

Z −δ In+k

]
< 0.

(18)
Applying the Schur complement lemma to (18) yields

[Ir,M>]A >Z +Z>A
[ Ir

M

]
+

1
δ

Z>Z +(δL2)
(

Ir +M>M
)
< 0
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and this is equivalent to

[Ir,M>]
(

A >[Z,0]+
[

Z>
0

]
A +

1
δ

[
Z>
0

]
[Z,0]+ (δL2)Il+p

)[
Ir
M

]
< 0.

Invoking (9) this is in turn the same as

A >[Z,0]+
[

Z>
0

]
A +

1
δ

[
Z>
0

]
[Z,0]+ (δL2)Il+p <V 0.

Observing that
[Z,0] = PE

yields (10) and this finishes the proof.

Remark IV.2.
(i) Note that we refer to (16) as a BMI since the equality can be

equivalently written as two inequalities.
(ii) While the equality constraint in (15b) is not a LMI at first sight,

it can be incorporated into the other LMIs and BMIs as follows.
Let V1, . . . ,Vq be a basis of the linear subspace

span
{

V ∈ R(l+p−r)×(l+p−r)
∣∣∣∣ V
[

D
G

]
= 0

}
and let V0 ∈ R(l+p−r)×(l+p−r) be such that

V0

[
D
G

]
=

[
In−r

0

]
.

Then solve (15a), (15c) and (16) with V = V0 +
∑q

i=1 αiVi for
W,P,L1,δ and α1, . . . ,αq ∈ R. Therefore, it is common to refer
to an equality constraint as in (15b) as a LMI as well.

(iii) We like to stress that the solutions of (15a)–(15c) and (16) have
to satisfy the additional constraint that V must be invertible. This
condition is equivalent to the non-convex quadratic inequality
V>V > 0. By introducing a new variable J =V , this inequality
can also be equivalently written as a BMI as follows

V>J > 0, V − J ≥ 0, J−V ≥ 0.

Therefore, the problems (15a)–(15c), (16) consist only of LMIs
and BMIs which may be solved by standard MATLAB toolboxes
like YALMIP [27] and PENLAB [28]. For other algorithmic
approaches see e.g. the tutorial paper [29].

(iv) A careful inspection of the proof of Lemma IV.1 reveals
that the opposite implication is true as well, that is if L1 ∈
Rr×k,L2 ∈ R(l−r)×k,L3 ∈ Rp×k, P = P> ∈ R(n+k)×(n+k) and
δ > 0 solve (10) such that (15c) holds and

[
D L2
G L3

]
is invertible,

then there exists W ∈ Rr×r such that V =
[

D L2
G L3

]−1
,W,P,L1

and δ solve (15a)–(15c) and (16). Therefore, solvability of the
LMIs and BMIs is necessary and sufficient for solvability of the
Riccati inequality (10).

(v) In the case C = 0 and F = 0 the LMIs (15a)–(15c) always have
a solution. We may choose P = In+k and V such that (15b) is
satisfied. With W = W> the LMI (15a) leads to the condition
W <− 1

2
(
δL2+ 1

δ

)
Ir. The BMI (16) yields A = P−>11 W =W and

choosing δ = 1
L we obtain the condition

A <−LIr

on the system data in this case. This is a reasonable condition
from the point of view that then the error dynamics

ė1(t) = Ae1(t)+ f1
(
z1(t),z2(t),u(t),y(t)

)
− f1

(
x1(t),x2(t),u(t),y(t)

)
,(

e2(t)
d(t)

)
= 0,

are asymptotically stable for all f1 which satisfy (2).

V. OBSERVER OF LUENBERGER TYPE

In order to illustrate the observer (7) and Lemma IV.1 we consider
the question as to when the observer (7) is of Luenberger type as
considered e.g. in [12]. If we would have L3 = Ik, then we can
eliminate the variable d in (7) and reformulate it as

ż1(t) = ([A,B]−L1[F,G])

(
z1(t)
z2(t)

)
+L1

(
y(t)−h

(
u(t)
))

+ f1
(
z1(t),z2(t),u(t),y(t)

)
,

0 = ([C,D]−L2[F,G])

(
z1(t)
z2(t)

)
+L2

(
y(t)−h

(
u(t)
))

+ f2
(
u(t),y(t)

)
,

z(t) =
(

z1(t)
z2(t)

)
,

and the first two equations are equivalent to[
Ir 0
0 0

](
ż1(t)
ż2(t)

)
=

([
A B
C D

]
−
[

L1
L2

]
[F,G]

)(
z1(t)
z2(t)

)
+

[
L1
L2

](
y(t)−h

(
u(t)
))

+

(
f1
(
z1(t),z2(t),u(t),y(t)

)
f2
(
u(t),y(t)

) )
.

This is a Luenberger type observer for system (1) with gain
[

L1
L2

]
.

With e1 := z1−x1 and e2 := z2−x2 the error dynamics (12) become[
Ir 0
0 0

](
ė1(t)
ė2(t)

)
=

[
A−L1F B−L1G
C−L2F D−L2G

](
e1(t)
e2(t)

)
+

(
f1
(
z1(t),z2(t),u(t),y(t)

)
− f1

(
x1(t),x2(t),u(t),y(t)

)
0

)
. (19)

Having a look at dimension, L3 = Ik can only be true if k = p
or, equivalently, l = n. If the latter is the case, then the matrix D
is square, i.e., D ∈ R(n−r)×(n−r) and hence condition (6) implies
existence of L2 ∈R(n−r)×k such that D−L2G is invertible. Therefore,
the matrix

[
D L2
G Ik

]
is invertible, i.e., it is always possible to choose

L3 = Ik. In this case, the second equation in (19) can be solved for e2
and with Y := (D−L2G)−1(C−L2F) we find

ė1(t) =
(
(A−L1F)− (B−L1G)Y

)
e1(t)

+ f1
(
z1(t),z2(t),u(t),y(t)

)
− f1

(
x1(t),x2(t),u(t),y(t)

)
,

e2(t) =−Ye1(t).
(20)

Summarizing, we find that if l = n, then the observer (7) can be
chosen to be of Luenberger type by k = p, L3 = Ik and L2 such that
D−L2G is invertible.

Finally, we have a look at the solvability of the LMIs (15a)–
(15c) together with the BMI (16) in this case. Use the notation from
Lemma IV.1, then

V =

[
D L2
G Ik

]−1

=

[
(D−L2G)−1 −(D−L2G)−1L2
−G(D−L2G)−1 Ik +G(D−L2G)−1L2

]
.

We restrict ourselves to P = In+k and W =W>. Then (15a) reads
2W +δL2Ir Y> (F−GY )> [Ir,0]

Y − 1
δL2 In−r 0 0

F−GY 0 − 1
δL2 Ik 0[ Ir

0

]
0 0 −δ In+k

< 0.

Successively applying the Schur complement lemma yields the equiv-
alent inequality

2W +δL2
(

Ir +(F−GY )>(F−GY )+Y>Y
)
+

1
δ

Ir < 0. (21)
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The equation (16) becomes

A−L1F +L1GY −BY =W,

which needs to be solved for L1. Together with (21) we obtain the
condition

A−L1F +L1GY −BY

<−δL2

2

(
Ir +(F−GY )>(F−GY )+Y>Y

)
− 1

2δ
Ir. (22)

on L1, where Y depends on the choice of L2. Choosing δ = 1
L we

obtain

A−L1F +L1GY −BY <−LIr−
L
2

(
(F−GY )>(F−GY )+Y>Y

)
.

(23)
This condition immediately implies the asymptotic stability of the
error dynamics (20) for any f1 satisfying (2) since

‖ f1
(
z1(t),z2(t),u(t),y(t)

)
− f1

(
x1(t),x2(t),u(t),y(t)

)
‖

≤ L‖(e1(t),e2(t))‖ ≤ L
∥∥∥[ Ir
−Y

]∥∥∥ ‖e1(t)‖

which explains the term Y>Y on the right hand side of (23). The term
(F −GY )>(F −GY ) is due to the fact that the original Riccati in-
equality (10) is formulated on the space V for the variables (e1,e2,d),
so it is actually possible to allow f1 to depend on the “innovations”
d = (F −GY )e1, which is expected by the inequality (23) in some
sense.

Different special cases may be discussed in terms of (22). For
instance, if F = 0 and C = 0, then Y = 0 and (22) reduces to the
inequality discussed in Remark IV.2 (v).

VI. EXAMPLES

We consider two illustrative examples with l 6= n, i.e., the corre-
sponding observer cannot be reformulated as an observer of Luen-
berger type as discussed in Section V. In particular, this shows that
our observer design is applicable to a larger class of systems than
those presented in [11], [12] for instance.

A. Example

Consider (1) with

A = [−1], B = [1], C =

[
0
1

]
, D =

[
1
0

]
,

F = [1], G = [0]

and some functions f1, f2,h such that (2) is satisfied. Then k = l +
p−n = 2 and in order to find a solution to (15a)–(15c) and (16) we
set P = I4 and

L2 =

[
0 0
1 0

]
, L3 = [0,1],

thus [
D L2
G L3

]
= I3 =V−1.

The LMIs (15b) and (15c) are already satisfied and (15a) reads[
2W +δL2 + 1

δ
[0,1,1][0

1
1

]
− 1

δL2 I3

]
< 0

which is equivalent to

W <−
δL2 + 1

δ

2
−δL2 =−2L

where in the latter equality we chose δ = 1
L . Now we choose W =

−2L−1. It remains to find L1 so that (16) is satisfied, i.e.,

L1

[
1
1

]
=−1−W = 2L,

which is fulfilled by
L1 = [L,L].

Now, the observer (7) reads

ż1(t) =−z1(t)+ z2(t)+Ld1(t)+Ld2(t)+ f1
(
z1(t),z2(t),u(t),y(t)

)
,

0 = z2(t)+ f2,1
(
u(t),y(t)

)
,

0 = z1(t)+d1(t)+ f2,2
(
u(t),y(t)

)
,

0 = z1(t)+d2(t)+h
(
u(t)
)
− y(t),

z(t) =
(

z1(t)
z2(t)

)
.

This can be simplified to the ODE observer

ż1(t) =−(2L+1)z1(t)+ f1
(
z1(t),− f2,1

(
u(t),y(t)

)
,u(t),y(t)

)
− f2,1

(
u(t),y(t)

)
−L
(

f2,2
(
u(t),y(t)

)
+h
(
u(t)
)
− y(t)

)
,

z(t) =
(

z1(t)

− f2,1

(
u(t),y(t)

)) .

B. Example

In Example A the LMIs and BMIs were solvable for any Lipschitz
constant L > 0, but usually the solvability depends on the magnitude
of L. Consider Example A with the modification

C =

[
1
0

]
, F = [0]

and choose P,L2,L3 and V as before. Then (16) reads

−1− [1,L1]
[1

0
0

]
=W,

i.e., W =−2. From (15a) we obtain W <−δL2− 1
2δ

which gives

L2 <− 1
2δ 2 +

2
δ

and the right hand side is maximal for δ = 1
2 . Therefore, we obtain

the constraint
L <
√

2

on the Lipschitz constant and the LMIs and BMIs are solvable only
in this case in general.

VII. CONCLUSION

In the present paper we developed a novel observer design for
DAE systems with Lipschitz nonlinearities. The design parameters
of the asymptotic observer are constructed from the solutions of a
Riccati type inequality. We have further shown that the solution of
certain LMIs and BMIs yields a solution to this Riccati inequality.
The solvability of the LMIs and BMIs depends on the magnitude of
the Lipschitz constant in general.

The present work is the basis for extensions in several directions
such as systems which are not impulse observable. Incorporating the
presence of actuator and sensor faults as well as nonlinearities in
the output equation (as discussed in [13], [14] for Luenberger type
observers) is another interesting extension for future work.
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