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1 Introduction

Electrical networks with complex components like semiconductors can be re-
duced using MOR methods. In this paper we investigate the POD approach
with the discrete empirical interpolation method (DEIM) for the reduction of
the nonlinearities, see [7]. We emphasize that our MOR approach is not re-
stricted to electrical networks with semiconductors but also extends to networks
containing many simple components, and complex components modeled by PDE
systems (see Figure 1) if the network allows modeling with modified nodal anal-
ysis (MNA).

For small length of the semiconductor quantum effects may become impor-
tant. So we compare the drift-diffusion (DD) and quantum-drift-diffusion (QDD)
equations for semiconductors. We find that for larger semiconductor length the
difference of the DD and QDD model results is negligible, but the quantum
term is more challenging for the POD-MOR approach, see Section 3. For smaller
semiconductor length, where the DD and QDD model differ more, both are in-
accurate by a large factor and energy transport in the semiconductor should be
considered, see e.g. [11].



2 Michael Hinze and Ulrich Matthes

Fig. 1. Sketch of a network with many simple components and a complex component
representing a semiconductor.

Second we investigate how complex components of networks can be reduced.
It is necessary to use simulation based MOR approaches for parametric MOR?
Or can the full model results used for the snapshots there simply interpolated
over the parameter space, without the need of a reduced order model? In Sec-
tion 6 we compare both methods for frequency as parameter and find that only
if the solution does not depend much on the parameter, at low frequencies, the
interpolation approach is comparative. In all other cases the POD-MOR ap-
proach outperforms the interpolation approach clearly in accuracy for two full
simulations only, even when a very large number of expensive full simulations
points in the (1-dim) parameter space are used.

In Section 2 we describe the mathematical model for the electrical network
with complex components and the QDD-model for semiconductors, and in Sec-
tion 3 we present some simulation results. In Section 4 we briefly summarize
the implementation of the POD-DEIM method. In Section 5 we describe our
interpolation method and in Section 6 compare it with parametric POD-DEIM
for a simple test example. Finally we present some conclusions.

2 Modeling of the electrical network with semiconductors
and Quantum-Drift-Diffusion equations

We now describe the mathematical model for electrical networks with many sim-
ple components like resistors, capacitors, and inductors and complex components
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like semiconductors modeled by DD or QDD equations. First the network con-
taining only the simple components is modeled by a differential algebraic equa-
tion (DAE) system which is obtained by a modified nodal analysis (MNA) [10],
including the Ohmic contacts ΓO,k, k = 1, . . . , Nc of the semiconductors as net-
work nodes. Denoting by e the node potentials and by jL, jV , and jS the currents
of inductive, voltage source, and semiconductor branches, the DAE reads (see,
e.g. [6, 10, 18])

AC
d

dt
qC(A>Ce, t) +ARg(A>Re, t) +ALjL +AV jV +ASjS = −AI is(t), (2.1)

d

dt
φL(jL, t)−A>Le = 0, (2.2)

A>V e = vs(t). (2.3)

Here, the incidence matrix A = [AR, AC , AL, AV , AS , AI ] = (aij) represents the
network topology, e.g. at each non mass node i, aij = 1 if the branch j leaves
node i and aij = −1 if the branch j enters node i, and aij = 0 else. The indices
R,C,L, V, S, I denote the capacitive, resistive, inductive, voltage source, semi-
conductor, and current source branches, respectively. In particular the matrix
AS denotes the semiconductor incidence matrix. The vector valued functions qC ,
g and φL are continuously differentiable defining the voltage-current relations of
the network components. The continuous vector valued functions vs and is are
the voltage and current sources. For details we refer to [8].

In a second step the semiconductors are modeled by PDE systems, which
are then coupled to the DAE of the network via the nodes related to the Ohmic
contacts. Here we first use the transient drift-diffusion equations as a continuous
model for semiconductors, see e.g. [1, 2] and the references cited there. We use
the notation and scaling introduced there. For small semiconductors quantum
effects have to be considered to improve the semiconductor model. This leads to
the QDD-equations f.e. [11, Ch.12] or [14]. We use the quantum correction form
of the DD-equations with holes.

So we obtain the following scaled system of PDEs for the electrostatic po-
tential ψ(t, x), the electron and hole concentrations n(t, x) and p(t, x) and the
current densities Jn(t, x) and Jp(t, x):

λ∆ψ = n− p− C, (2.4)

−∂tn+ νn div Jn = R(n, p), (2.5)

∂tp+ νp div Jp = −R(n, p), (2.6)

Jn = ∇n− n∇ψ − ε2n∇(
∆
√
n√
n

), (2.7)

Jp = −∇p− p∇ψ. (2.8)

Here (t, x) ∈ [0, T ]×Ω and Ω ⊂ Rd, d = 1, 2, 3. The nonlinear function R de-
scribes the rate of electron/hole recombination, where we focus on the Shockley-
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Read-Hall recombination

R(n, p) :=
np− n2i

τp(n+ ni) + τn(p+ ni)

which does not depend on the current densities. Here, τn and τp are the average
lifetimes of electrons and holes, and ni is the constant intrinsic concentration
which satisfies n2i = np if the semiconductor is in thermal equilibrium. The
scalar λ > 0 is the scaled Debye length, and νn and νp are the scaled mobilities
of electrons and holes. The temperature is assumed to be constant which leads to
a constant thermal voltage UT . The function C is the time independent doping
profile.

The coefficent

ε2 =
~2

2mkBT0L2

is called squared Planck constant and grows in importance with shrinking length
L of the semiconductor. The QDD model (2.4)-(2.8) only differs from the DD
equations through the Bohm potential

−ε2n∇(
∆
√
n√
n

).

For a derivation of this quantum correction of the DD system we refer to [11,
Ch.12] and [14].

This system is supplemented with the boundary conditions

ψ(t, x)=ψbi(x)+(A>S e(t))k=UT log

(√
C(x)2 + 4n2i +C(x)

2ni

)
+(A>S e(t))k, (2.9)

n(t, x)=
1

2

(√
C(x)2 + 4n2i + C(x)

)
, p(t, x)=

1

2

(√
C(x)2 + 4n2i − C(x)

)
,

(2.10)

for (t, x) ∈ [0, T ]×ΓO,k, where the potential of the nodes which are connected to a
semiconductor interface enter in the boundary conditions for ψ. Here, ψbi(x) de-
notes the build-in potential and ni the constant intrinsic concentration. All other
parts of the boundary are isolation boundaries ΓI := Γ \ ΓO, where ∇ψ · ν = 0,
Jn ·ν = 0 and Jp ·ν = 0 holds. The semiconductor model (2.4)-(2.8) is coupled to
the network through the semiconductor current vector jS with the components

jS,k =

∫
ΓO,k

(Jn + Jp − ε∂t∇ψ) · ν dσ, k = 1, . . . , Nc, (2.11)

where ν denotes the unit outward normal to the interface ΓO,k. Further details
are given in [8]. Contributions to the analytical and numerical analysis of PDAE
systems of the presented form can be found in [2, 5, 17, 18].

For the analytical treatment of the DD and QDD systems we refer the reader
to [4, 11]. From the numerical point of view the denominator

√
n in the Bohm
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potential is critical, it requires positivity preserving schemes for the time inte-
gration of (2.4)-(2.8). The space discretization is done by mixed Raviart-Thomas
finite elements for vector valued functions and piecewise constant elements for
scalar valued functions. The time integration is performed with DASPK [3].

The discretized model reads

R1

R2

R3

R4

R5

R

C1

C2

C3

bb

vin

+12 V

AC
dqC
dt

(
A>
Ce(t), t

)
+ARg

(
A>
Re(t), t

)
,

+ALjL(t) +AV jV (t) +ASjS(t) = −AI is(t),
dφL
dt

(jL(t), t)−A>
Le(t) = 0,

A>
V e(t) = vs(t),

jS(t)− C1Jn(t)− C2Jp(t)− C3ġψ(t) = 0,

0

−MLṅ(t)

MLṗ(t)

0

0

0


+AFEM



ψ(t)

n(t)

p(t)

gψ(t)

Jn(t)

Jp(t)


+ F(nh, ph, ghψ)− b(A>

S e(t)) = 0.

The POD model order reduction of the semiconductors in this model is now

De
oupling
POD method PABTEC method

Re
oupling
Fig. 2. PABTEC for MOR of linear networks combined with MOR for the complex
components from [9].

done as in [7]. Let us recall that for MOR of the overall network one may com-
bine the passitivity preserving balanced truncation method of electrical circuits
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(PABTEC) [15, 16] with the MOR approach of e.q. [7] for the semiconductors,
see the sketch in Fig. 2. For details we refer to [9].

3 Numerical Results

Fig. 3. Basic circuit with one diode.

In this section we present a comparison of simulation results for the DD and
the QDD equations in a simple network, see Figure 3, as described in [8]. As a
solver for the full and the reduced DAE systems we use DASPK, see [3, 13].

We start with the simulation of the full model at the frequency ω := 1010 Hz.
The number of POD basis functions s in the examples is chosen such that the
lack of information content

0 ≤ ∆(s) =

√∑m
i=s+1 σ

2
i∑m

i=1 σ
2
i

≤ 1

ranges between 10−4 and 10−8.
In Figure 4 we show the evolution of the currents through a 1000 nm diode

(ε2 = 9e − 5) modeled by the QDD- and DD-equation respectively. As one can
see the differences are negligible.

The results for a 100 nm diode (ε2 = 9e− 3) are depicted in Figure 5. In this
case the difference in the currents is still small, see Figure 5(right).

We observe that the influence of the quantum term only increases slightly
with decreasing structure size in the considered range from 1000 to 100 nm. To
include quantum effects for these sizes more sophisticated semiconductor models
should be considered.

4 Parametric MOR

To obtain reduced order models which are valid over a certain parameter range
we apply parametric MOR (PMOR) with greedy sampling, see [12]. The param-
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Fig. 4. Current and voltage: QDD (left) versus DD (middle), and current difference
QDD - DD (in nA)(right), diode length 1000 nm, ε2 = 9e− 5.
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Fig. 5. Current and voltage: QDD (left) versus DD (middle), and current difference
QDD - DD (in nA)(right), diode length 100 nm, ε2 = 9e− 3.

eter in our application is given by the frequecy which ranges is the parameter
interval P := [fl, fu]. The sampling procedure is summarized in Algorithm 1.
For details we refer to e.g. [8].

Algorithm 1 (Sampling)

1. Select ω1 ∈ P, Ptest ⊂ P, tol > 0, and set k := 1, P1 := {ω1}. Simulate
the unreduced model at ω1 and calculate the reduced model with POD basis
functions U1.

2. Calculate the residual ‖R(zPOD(ω, Pk))‖ for all ω ∈ Ptest.
3. Check termination conditions, e.g.

– maxω∈Ptest ‖R(zPOD(ω, Pk))‖ < tol, or
– no further reduction of residual, then STOP.

4. Calculate ωk+1 := arg maxω∈Ptest ‖D(ω)R(zPOD(ω, Pk))‖.
5. Simulate the unreduced model at ωk+1 and create a new reduced model with

POD basis Uk+1 using also the already available information at ω1, . . ., ωk.
6. Set Pk+1 := Pk ∪ {ωk+1}, k := k + 1 and goto 3.

Here, D(ω) denotes a scaling matrix tailored to the dimension of the compo-
nents appearing in the residual vector R.
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5 Interpolation

A further possibility for obtaining a parametric reduced order model is interpo-
lation over the frequency range.

In the following the interpolation is applied componentwise on the variables
ψ, n, p, gψ, Jn, Jp in the semiconductor, the current j, and the electric field e of
the network. Here gψ = ∇ψ. The interpolation is applied on snapshots taken at
the same phase φi = fkti,k for different parameters.

The interpolation is performed on the logarithm of the parameter frequency.
The logarithm of the frequency is used since relative changes in the frequency
are a better measure for the change of the variables ψ, n, p, gψ, Jn, Jp, j, e with
respect to the frequency than the absolute frequency difference. The time points
are multiplied by the frequency to ensure that the interpolation is performed at
the same phase.

The interpolation is now described in detail for the variable n. The other
parameters can be treated analoguosly.

Let the parameters fk be the frequencies with k = 1, . . . ,m the index of the
interpolation points. nlog fk(ti,k) denotes the i-th snapshot of the electron density
n for the parameter log fk at time ti,k with phase φi = fkti,k.

Now we interpolate the electron density according to

ninter
log f (φi) = splinelog fk,k=1,...,m{nlog f1(φi), . . . , nlog fm(φi)}

with a piecewise cubic or linear spline at each time point ti = φi/f .
Interpolation for the other variables ψ, p, gψ, Jn, Jp, j, e is performed similarly.
The total relative error of the interpolation is

err2 = η2ψ + η2n + η2p + η2gψ + η2Jn + η2Jp + η2j + η2e , (5.12)

where e.g.

ηn =
‖ninter

log f (φi)− nlog f (φi)‖L2

‖nlog f (φi)‖L2

.

The error of the reduced model is calculated in the same way.

6 Interpolation vs. POD-MOR

In this section we compare the results of the interpolation approach with these
obtained by MOR. We use an one-dimensional parameter space. The parameter
is the logarithm of the frequency. As a solver for the full and reduced DAE we
use DASPK, see [3, 13].

As an example we again take the circuit with one diode depicted in Figure 3.
We choose the frequency of the input voltage vs as model parameter with

parameter space P := [108, 1012] Hz. We initialize PMOR with a reduced model
constructed from the simulation of the full model at the reference frequency
ω1 := 1010 Hz. In the case of interpolation we start with functions that are



MOR of Electrical Networks with Semiconductors modelled by QDD Models 9

constant with respect to the parameter. The number of POD basis functions
s is chosen such that the lack of information content ∆(s) is approximately
10−7. The relative error and the residual for the PMOR approach are plotted
in Figure 8. We observe that the residual admits a structure similar to that of
the approximation error. Using Algorithm 1 the next chosen frequency is ω2 :=
108 Hz since it maximizes the residual. For the selection of the interpolation
points we can proceed similarly.

frequency average error interpolation POD-DEIM

Hz 5 10 20 40 1 2 3

- - - - 5 10 15

1e8-1e9 0.2285 0.0676 0.0324 0.0163 0.2640 0.0159 0.0109

1e9-1e10 0.4028 0.2288 0.1210 0.0717 0.0980 0.0095 0.0058

1e10-1e11 0.6058 0.2632 0.1178 0.0516 0.0158 0.0066 0.0085

1e11-1e12 0.9667 0.3225 0.1213 0.0354 0.0183 0.0066 0.0057

1e8-1e12 0.5617 0.2167 0.0961 0.0425 0.0990 0.0097 0.0077

Table 1. Errors: Interpolation with 5, 10, 20, and 40 (log-equidistant) interpolation
nodes (each obtained by a full simulation) vs. POD-DEIM with 1, 2, or 3 full simulations
and 5, 10, or 15 reduced simulations

In Table 1 we show the average relative errors of the interpolation for different
frequency ranges from 1e8-1e9 to 1e11-1e12. This is done for interpolation of 5,
10, 20, and 40 nodes over the whole parameter range P. In the last columns we
show the errors of the reduced model from PMOR for comparison. In the case
of interpolation the errors are small at low frequencies ≤ 109 Hz, in particular
for a large number of interpolation points. For high frequencies the error in the
interpolated variables are large, even for a large number of interpolation points.
The PMOR approach produces only small errors (especially for medium and high
frequencies) even for a low number of full simulations. This can be explained with
the good approximation properties of the reduced POD model. If the reduced
POD model can be solved sufficently fast, then the two full simulations plus two
PODs to generate two reduced models plus 10 (or even 100) reduced simulations
(second last column in table 1) are faster than 20 or even 10 full simulations
(forth and third column).

In Figure 6 (upper-left) the relative error of the interpolation is shown as
calculated by formula (5.12). The errors are larger as for MOR for the same ref-
erence frequencies which are shown as thin lines. The weighted residuals (upper-
right) are large. In the lower part we see the errors and residuals after one and
two sampling steps.
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Fig. 6. Interpolation, residual based sampling, greedy approach: relative error (upper-
left) weighted residuals (upper-right) for 1 (solid), 2 (dashed), or 3 (dash-doted) sam-
pling steps and errors and residuals after one and two sampling steps (lower part).

In Figure 7 we show the results for log-equidistant interpolation at 5, 10,
20, or 40 interpolation points compared to PMOR with one full simulation at
ω = 1e10 Hz. Even for a number of 40 interpolation points the interpolation
error is larger for medium and high frequencies.

In Figure 8 (upper-left) the relative error of the PMOR is shown as calculated
by (5.12). The errors and residuals are substantial smaller for POD-MOR than
for the interpolation approach, compare Figure 6. In the lower part we show the
errors and residuals for PMOR after one and two sampling steps.

7 Conclusions

For the considered size of the semiconductors (in the range of 100 to 1000nm),
the difference in simulation and MOR for the DD and QDD equations is negli-
gible. We compare a PMOR approach related to frequency as parameter based
on residual based greedy sampling with snapshot interpolation. Interpolation
works well for lower frequencies, but is clearly outperformed by PMOR in the
approximation related to hight frequencies.
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Fig. 7. Interpolation log-equidistant, interpolation error with 5, 10, 20, or 40 interpo-
lation points (dashed); PMOR with one full simulation at ω = 1e10 Hz for comparison
(solid).
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