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A projector based convergence proof of the Ginelli algorithm for covariant
Lyapunov vectors

Florian Noethen∗

Abstract. Linear perturbations of solutions of dynamical systems exhibit different asymptotic growth rates,
which are naturally characterized by so-called covariant Lyapunov vectors (CLVs). Due to an in-
creased interest of CLVs in applications, several algorithms were developed to compute them. The
Ginelli algorithm is among the most commonly used ones. Although several properties of the algo-
rithm have been analyzed, there exists no mathematically rigorous convergence proof yet.
In this article we extend existing approaches in order to construct a projector based convergence
proof of Ginelli’s algorithm. One of the main ingredients will be an asymptotic characterization
of CLVs via the Multiplicative Ergodic Theorem. In the proof, we keep a rather general setting
allowing even for degenerate Lyapunov spectra.
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nents, Ginelli Algorithm, Convergence Proof
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1. Introduction. Dynamical systems play a fundamental role in mathematics. They are
of interest not only as a theoretical tool, but they provide methods to study a wide range
of interdisciplinary applications. However, due to high dimension and complexity it can be
difficult or numerically expensive to completely explore a system. Nevertheless, local struc-
tures around simple objects can be understood in terms of linear models. For example, the
Hartman-Grobman theorem links the linearization of a hyperbolic steady-state with the origi-
nal system. Eigenspaces correspond to invariant manifolds of the flow and eigenvalues indicate
exponential growth/decay rates of perturbations of the equilibrium. Similar relations can be
established for periodic orbits via Floquet theory.
In 1968 Oseledets formulated his celebrated Multiplicative Ergodic Theorem (MET) [20]. He
managed to find a suitable generalization that goes beyond the analysis of steady-states and
periodic orbits. In his theorem the long-term behavior of linear perturbations of arbitrary
trajectories is explained. Similar to the situation before, the tangent space is split into invari-
ant subspaces that capture different directions of asymptotic growth rates. We refer to this
splitting as Oseledets splitting. It was shown afterwards [21] that Oseledets spaces are linked
to invariant manifolds of the original system, making them a valuable tool for understanding
dynamics.
Despite their prominent role, it was not until a few years ago that first algorithms to compute
Oseledets spaces were developed. Following Ginelli’s algorithm [15] in 2007 several other ap-
proaches emerged [12, 18, 30], some of which are explained only for nondegenerate scenarios.
That is, Oseledets spaces are one-dimensional, and, thus, can be identifies with a basis of
vectors for each point of the trajectory. These vectors are called covariant Lyapunov vectors
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(CLVs). Similar to eigenvectors for the linear model of a steady-state, they are preserved by
the linear propagator along a trajectory except for rescaling factors. Increasing propagation
time, it turns out that those rescaling factors grow exponentially fast. The specific exponents
associated with them are called Lyapunov exponents (LEs). They can be seen as generaliza-
tions to eigenvalues corresponding to CLVs instead of eigenvectors.

With computational tools like Ginelli’s algorithm at hand, CLVs became a frequent inter-
est in applications. Amongst others, CLVs reveal structures in turbulent flows [9, 16] and are
used to analyze hard-disk systems [6, 7, 19, 27] and climate models [23, 24, 28]. Moreover,
they constitute a hyperbolic decoupling of the tangent space of dissipative systems that ex-
tracts the physically relevant modes [26]. Furthermore, the angle between CLVs is used as an
indicator for critical transitions in long-term behavior of solutions [3, 25] and as a degree of
hyperbolicity [9, 22, 31, 32] in dynamical systems.
Despite the existence of numerous applications, many theoretical aspects of CLV-algorithms
are still unexplored. This paper is a step to reducing the gap between theory and applications.
It is our goal to verify convergence of Ginelli’s algorithm by correcting and extending previous
results.
In 1998 Ershov and Potapov investigated what could be called the first phase of Ginelli’s
algorithm, where past states of a reference point are explored to compute the fastest growing
directions [11]. 15 years later Ginelli et al. built upon the work of Ershov and Potapov to
formulate a convergence proof of their full algorithm [14]. They focused on a second phase,
where future states are probed to obtain the fastest decaying directions. By a certain relation
between both phases it is possible to extract the CLVs.
While [11] and [14] present fundamental ideas on convergence of Ginelli’s algorithm, we find it
necessary to be more precise in some arguments. In particular, [11] shows that almost all ini-
tial vectors propagated from present to future will align with a so-called stationary Lyapunov
basis asymptotically. Then, an estimate for propagation from past to present is obtained by
shifting the estimate for propagation from present to future. This argument not only requires
uniformity, but the condition on exceptional vectors that will not yield convergence depends
on the starting point, which is neglected in [11]. Hence, the set of admissible initial vectors
can be different for each starting point that is associated with a chosen runtime. Additionally,
we find that both phases of Ginelli’s algorithm should be treated as connected. Whereas, until
now perfect convergence of the first phase was assumed to simplify the second phase.
Despite the criticism, both papers are significant steps to better understand the connection be-
tween Oseledets MET and the Ginelli algorithm. Moreover, they inspire many ideas presented
here. These ideas fill missing details and even extend the existing results. Namely, unlike in a
nondegenerate scenario, we do not pose any restrictions on the Lyapunov spectrum. Arbitrary
dimensions for Oseledets spaces are allowed. Moreover, we distinguish between a discrete and
continuous time version of the algorithm. It turns out that both versions converge, however
the precise notion of convergence is different:

Theorem 1.1. Ginelli’s algorithm converges in measure.

Given discrete time, we are able to prove a stronger kind of convergence, which does not hold
for continuous time in general.
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Theorem 1.2. The discrete version of Ginelli’s algorithm converges for almost all configu-
rations of initial vectors.

Furthermore, we use the Lyapunov index notation to find an estimate for the speed of con-
vergence. As already predicted and observed [11, 12, 14, 28], the speed of convergence is
exponential with a rate determined by the minimal distance of LEs.

The article is divided into three sections. Section 2 sets the notation and constructs tools
needed for the convergence proof later on. A special interest lies in the evolution of vec-
tors/subspaces in terms of distances and angles. In particular, the relation of propagated
vectors to singular vectors is of importance, since singular vectors form directions of optimal
growth rates for finite time.
In section 3 we present Ginelli’s algorithm and state a deterministic version of Oseledets MET.
By having a fairly general setting, we try to include as many scenarios as possible. Though,
we assume finite dimensional dynamics.
With all preparations finished, we are in a position to precisely formulate and prove conver-
gence of Ginelli’s algorithm. The main work of section 4 consists in assembling previous tools
obtained in section 2, while the MET from section 3 serves as an interface between evolution
of singular vectors and CLVs.
A summary and concluding remarks will be provided in section 5.

2. Notation and Tools. This section is primarily concerned with the evolution of vectors
and subspaces. In order to keep track of the speed of convergence, we define the notion of
a Lyapunov index. Next, we set up necessary notation to describe distances and angles of
subspaces. In particular, we are interested in how these quantities change after applying a
propagation map and after orthogonalization, e.g. the Gram-Schmidt procedure. An estimate
of the evolution rate is based on a relation to singular vectors of the propagating linear map.
As it turns out, there are configurations of vectors that perform better than others. A dis-
tinction between them will be made by introducing a so-called admissibility parameter.

We formulate our statements for discrete time T = Z and continuous time T = R simul-
taneously.

2.1. Lyapunov Index. When analyzing an algorithm, one of the main aspects to consider
is the speed of convergence. Often this rate is defined as the change of distance between
a current and a sough-after state as a parameter, such as time, is increased. Moreover,
the nature of the problem or features of the algorithm might prescribe certain timescales to
consider. Behavior on an exponential scale can be captured by the Lyapunov index.

Definition 2.1. The Lyapunov index λ(f) ∈ R ∪ {±∞} of a function f : T≥0 → R≥0 is
defined as the limit

λ(f) := lim sup
t→∞

1

t
log f(t).

Roughly speaking, the function f behaves similar to etλ(f) on an exponential scale. For exam-
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ple, a negative Lyapunov index means exponential decay with rate λ(f). However, one should
note that variations on smaller scales are not included in this notation1, but very well may be
of importance for limited time scenarios such as numerical computations.

We list some useful properties for the Lyapunov index, which can be found in Arnold’s
book [1] and are easily verified:

Proposition 2.2. Let f, g : T≥0 → R≥0. The following are true:
1. λ(0) = −∞
2. λ(c) = 0 for c > 0 constant
3. λ(αf) = λ(f) for α > 0
4. λ(fα) = αλ(f) for α > 0
5. f ≤ g =⇒ λ(f) ≤ λ(g)
6. λ(f + g) ≤ max(λ(f), λ(g))
7. λ(fg) ≤ λ(f) + λ(g) (if the right-hand side makes sense)

As the algorithm consists of two subsequent phases, the Lyapunov index is not enough for
discussing Ginelli’s algorithm. Each phase has its own runtime that influences the resulting
approximation. For a good approximation, both runtimes need to be increased. Certainly,
there are circumstances and rules that prescribe a favoring relation between those runtimes.
However, we will not discuss them here. Instead, we settle for a formulation that allows
two different runtimes. For this purpose, we extend the notion of a Lyapunov index to a
formulation depending on two parameters.

Definition 2.3. The extended Lyapunov index λ(f) ∈ R ∪ {±∞} of a function f : T≥0 ×
T≥0 → R≥0 is defined as the limit

λ(f) := lim sup
T→∞

sup
t1,t2≥T

1

min(t1, t2)
log f(t1, t2).

In contrast to the standard Lyapunov index, the new quantity describes behavior on an expo-
nential timescale as min(t1, t2) is increased. Especially, when fixing a certain relation between
both parameters, an upper bound on the speed of convergence is given by the extended Lya-
punov index.2 In fact, the extended version exhibits similar properties to the usual Lyapunov
index.

Proposition 2.4. Rules 1-7 of Proposition 2.2 hold true with λ replaced by λ. Furthermore,
if we extend a function f : T≥0 → R≥0 to f : T≥0 × T≥0 → R≥0 by setting f(t1, t2) := f(t1),
then

8. λ(f) < 0 =⇒ λ
(

f
)

= λ(f).

Proof. Rules 1,2,4,5 and 7 follow directly from the definition. To show rule 3, we have
f ≤ αf for α ≥ 1, and hence

λ(f) ≤ λ(αf) ≤ λ(α) + λ(f) = λ(f).

1For example, e−t and sin(t)t2e−t have the same Lyapunov index.
2For example, given the relation t1 = 2t2 we have λ(f(2t, t)) ≤ λ(f).
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The case 0 < α < 1 follows by looking at β := 1
α
and g := αf . Moreover, it is easily verified

that

λ(f + g) ≤ λ(2max(f, g)) = λ(max(f, g)) = max
(

λ(f), λ(g)
)

.

The relation λ(f) ≤ λ(f) is always satisfied. To show equality, we remark that λ(f) < 0
implies the existence of some T > 0 with log f(t) < 0 for all t ≥ T . In particular, it holds

sup
t1,t2≥t

1

min(t1, t2)
log f(t1) ≤ sup

t1≥t

1

t1
log f(t1)

with right-hand side converging to λ(f) for t → ∞.

We demonstrate two exceptional cases where the function is growing/decaying either too slow
or too fast to be captured by the notation.

Example 2.5. Let f(t1, t2) :=
⌈

min(t1, t2)
2
⌉

and g(t1, t2) := α2f(t1 ,t2)−1 for 0 < α < 1. We
compute

0 = λ(1) ≤ λ(f) ≤ λ
(

min(t1, t2)
2 + 1

)

≤ max
(

2λ(min(t1, t2)), 0
)

= 0

and

λ(g) = λ

(

1

α

(

αf
)2
)

= 2λ
(

αf
)

≤ 2λ
(

αmin(t1,t2)2
)

= −∞.

2.2. Orthogonal Projections. We present some essential results about orthogonal projec-
tion. For most facts, we specifically refer to chapter 1.6 of Kato’s book [17], the chapter on
projections in Galántai’s book [13] and the chapter by Deutsch [10].

Amongst others, orthogonal projections are a tool to describe geometric properties of sub-
spaces. We associate a subspace M ⊂ R

d and its corresponding orthogonal projection PM

using the standard inner product. This lets us define distances and angles between subspaces,
or even speak of converging sequences of subspaces.

Since we focus on the euclidean norm ‖ · ‖2, let us drop the subscript and simply write
‖ · ‖.3

Definition 2.6. The distance between two subspaces M,N ⊂ R
d is defined as

d(M,N) := ‖PM − PN‖.

We state a collection of handy properties mostly from [13].

Proposition 2.7. The distance d is a metric on the set of subspaces. Moreover, the following
holds for all subspaces M,N ⊂ R

d:

3As all norms on R
d are equivalent, quantities that are defined on an exponential scale remain the same. In

particular, LEs and CLVs are independent of the chosen norm. Moreover, estimates on the exponential speed
of convergence in our main theorems in section 4 stay unchanged.
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1. 0 ≤ d(M,N) ≤ 1
2. d(M,N) = d

(

M⊥, N⊥)

3. d(M,N) < 1 ⇒ dim(M) = dim(N)
In case that dim(M) = dim(N), we also have:

4. d(M,N) = ‖PMPN⊥‖
5. d(M,N) = 1 ⇐⇒ M ∩N⊥ 6= {0}

If V ∈ O(d,R) is an orthogonal transformation, then
6. d(V (M), V (N)) = d(M,N).

Each invertible linear map induces a Lipschitz-continuous transformation of the set of sub-
spaces.

Corollary 2.8. For each A ∈ Gl(d,R) and all subspaces M,N ⊂ R
d, we have

d(A(M), A(N)) ≤ ‖A‖ ‖A−1‖ d(M,N).

Proof. Fix an invertible map A. For subspaces of different dimension, the inequality is
trivially satisfied. So, let M and N be of the same dimension. We compute:

d(A(M), A(N)) = ‖PA(M)P(A(N))⊥‖
= ‖PA(M)P(A∗)−1N⊥‖

= max
x∈M\{0}, y∈N⊥\{0}

|〈Ax, (A∗)−1y〉|
‖Ax‖ ‖(A∗)−1y‖

= max
x∈M\{0}, y∈N⊥\{0}

|〈x, y〉|
‖x‖ ‖y‖

‖A−1(Ax)‖
‖Ax‖

‖A∗((A∗)−1y)‖
‖(A∗)−1y‖

≤ max
x∈M\{0}, y∈N⊥\{0}

|〈x, y〉|
‖x‖ ‖y‖ ‖A−1‖ ‖A∗‖

= ‖A‖ ‖A−1‖ ‖PMPN⊥‖
= ‖A‖ ‖A−1‖ d(M,N)

Here, A∗ denotes the adjoint map of A with respect to the standard inner product.

The next concept needed is the (minimal) angle between two subspaces. A lot on this topic
can be found in [10].

Definition 2.9. The cosine of the angle between M and N is given by

c(M,N) := max

{

|〈x, y〉| : x ∈ M ∩ (M ∩N)⊥, ‖x‖ ≤ 1, y ∈ N ∩ (M ∩N)⊥, ‖y‖ ≤ 1

}

and the cosine of the minimal angle between M and N is defined as

c0(M,N) := max{|〈x, y〉| : x ∈ M, ‖x‖ ≤ 1, y ∈ N, ‖y‖ ≤ 1}.

Both definitions agree if M ∩N = {0}. However, they are different in general. We state a few
important properties in order to work with those quantities.
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Proposition 2.10. The following statements are true for all subspaces M,N ⊂ R
d:

1. 0 ≤ c(M,N) ≤ c0(M,N) ≤ 1
2. c(M,N) < 1
3. c0(M,N) < 1 ⇐⇒ M ∩N = {0}
4. c(M,N) = c(N,M) and c0(M,N) = c0(N,M)
5. c(M,N) = c

(

M⊥, N⊥)

6. c0(M,N) = ‖PMPN‖
7. c(M,N) = ‖PMPN − PM∩N‖

The minimal angle depends continuously on M and N , whereas the angle between M and N

is a bit more involved. It also depends on the intersection M ∩N .
One can easily check that PMPN is the orthogonal projection onto M ∩N if, and only if, PM

and PN commute. Nevertheless, if they do not commute, it is still possible to describe PM∩N
via PM and PN through the method of alternating projections, which is due to von Neumann
[29].

Theorem 2.11. For each two subspaces M and N , the method of alternating projections
converges:

lim
k→∞

‖(PMPN )k − PM∩N‖ = 0

A discussion on the speed of convergence can be found in [10]. The following estimate will be
enough for our purposes.

Proposition 2.12. For each two subspaces M and N , it holds

∀k : ‖(PMPN )k − PM∩N‖ ≤ c(M,N)2k−1.

Utilizing the method of alternating projections, we can relate the distance of two intersections
to the distance of intersecting subspaces.

Proposition 2.13. Let M,N ⊂ R
d be two subspaces, and set δ := c0

(

M⊥, N⊥).
For all subspaces M ′, N ′ ⊂ R

d with

d(M ′,M) + d(N ′, N) ≤ 1− δ

2
,

we have

d(M ′ ∩N ′,M ∩N) ≤ δ2k−1 +

(

1 + δ

2

)2k−1

+ k
(

d(M ′,M) + d(N ′, N)
)

with arbitrary k ∈ N.

Proof. AssumeM,N , δ and M ′, N ′ as above. Using the method of alternating projections,
we estimate for arbitrary k ∈ N:

‖PM ′∩N ′ − PM∩N‖ ≤ ‖PM ′∩N ′ − (PM ′PN ′)k‖+ ‖(PM ′PN ′)k − (PMPN )k‖
+ ‖(PMPN )k − PM∩N‖

≤ c(M ′, N ′)2k−1 + ‖(PM ′PN ′)k − (PMPN )k‖+ c(M,N)2k−1
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Since the minimal angle depends continuously on its subspaces, we have

c(M ′, N ′) = c
(

(

M ′)⊥,
(

N ′)⊥
)

≤ c0

(

(

M ′)⊥,
(

N ′)⊥
)

= ‖P(M ′)⊥P(N ′)⊥‖
≤ ‖P(M ′)⊥P(N ′)⊥ − PM⊥P(N ′)⊥‖+ ‖PM⊥P(N ′)⊥ − PM⊥PN⊥‖
+ ‖PM⊥PN⊥‖

≤ ‖P(M ′)⊥ − PM⊥‖+ ‖P(N ′)⊥ − PN⊥‖+ ‖PM⊥PN⊥‖
= ‖PM ′ − PM‖+ ‖PN ′ − PN‖+ δ

≤ 1 + δ

2
.

For the middle summand in the estimate of ‖PM ′∩N ′ − PM∩N‖, we deduce

‖(PM ′PN ′)k − (PMPN )k‖

≤
k−1
∑

l=0

‖(PMPN )l(PM ′PN ′)k−l − (PMPN )lPMPN ′(PM ′PN ′)k−(l+1)‖

+ ‖(PMPN )lPMPN ′(PM ′PN ′)k−(l+1) − (PMPN )l+1(PM ′PN ′)k−(l+1)‖

≤
k−1
∑

l=0

‖PM ′ − PM‖+ ‖PN ′ − PN‖

= k (‖PM ′ − PM‖+ ‖PN ′ − PN‖).
For the last summand, we remark

c(M,N) = c
(

M⊥, N⊥
)

≤ c0

(

M⊥, N⊥
)

= δ.

Combining the above yields the desired estimate.

Now, assume we are given two converging sequences of subspaces (Mt)t∈T and (Nt)t∈T with
transversal4 limits M and N . As an immediate consequence of Proposition 2.13, we see that
the sequence of intersections (Mt ∩Nt)t∈T converges to the intersection of the limits M ∩N .
Moreover, we show that the speed of convergence on an exponential scale can be preserved in
a uniform manner:

Corollary 2.14. Let M,N ⊂ R
d be two transversal subspaces. Moreover, assume (Mt)t∈T

and (Nt)t∈T are two sequences of collections of subspaces that converge to M , resp. N , expo-
nentially fast:

λM := λ

(

sup
M ′∈Mt

d(M ′,M)

)

< 0 and λN := λ

(

sup
N ′∈Nt

d(N ′, N)

)

< 0

4Two subspaces M and N are called transversal if M+N = R
d. Since (M+N)⊥ = M⊥

∩N⊥, transversality
is equivalent to c0

(

M⊥, N⊥
)

< 1.
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Then,

λ

(

sup
M ′∈Mt1

sup
N ′∈Nt2

d(M ′ ∩N ′,M ∩N)

)

≤ max(λM , λN ).

Proof. Let δ := c0
(

M⊥, N⊥) < 1. Since we have λM , λN < 0 (exp. decay of distances),
there is T > 0 with

sup
M ′∈Mt1

sup
N ′∈Nt2

d(M ′,M) + d(N ′, N) ≤ 1− δ

2

for all t1, t2 ≥ T . Invoking Proposition 2.13, we get

sup
M ′∈Mt1

sup
N ′∈Nt2

d(M ′ ∩N ′,M ∩N)

≤ δ2k−1 +

(

1 + δ

2

)2k−1

+ k

(

sup
M ′∈Mt1

d(M ′,M) + sup
N ′∈Nt2

d(N ′, N)

)

with arbitrary k ∈ N. For our purposes, choose k = k(t1, t2) :=
⌈

min(t1, t2)
2
⌉

.

By means of Proposition 2.4 and Example 2.5 we compute

λ

(

sup
M ′∈Mt1

sup
N ′∈Nt2

d(M ′ ∩N ′,M ∩N)

)

≤ max

(

λ
(

δ2k(t1 ,t2)−1
)

, λ

(

(

1 + δ

2

)2k(t1,t2)−1
)

,

λ(k(t1, t2)) + max

(

λ

(

sup
M ′∈Mt1

d(M ′,M)

)

, λ

(

sup
N ′∈Nt2

d(N ′, N)

)))

= max(λM , λN ).

2.3. Singular Value Decomposition. We assume degeneracies d1 + · · · + dp = d with
di ≥ 1 to be given. The case p = d is called nondegenerate. Moreover, the standard basis of
R
d is denoted by

(e) :=
(

e11 , e12 , . . . , e1d1 , e21 , . . . , e2d2 , . . . . . . , ep1 , . . . , epdp

)

.

In the nondegenerate case, we drop the subindex, i.e. (e) = (e1, . . . , ed). Both cases can be
translated into each other via eik = ed1+···+di−1+k.
To further shorten notation, we write (Ae) for the d-tuple of vectors we get from applying a
linear map A to each vector of (e).

Definition 2.15. Let A ∈ R
d×d. The singular value decomposition (SVD) of A is given by

A = UΣV T ,
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where

Σ = diag
(

σ11 , . . . , σpdp

)

is the diagonal matrix of singular values σik ≥ 0 and U, V ∈ O(d,R) are orthogonal matrices.
The columns (u) := (Ue) of U are called left singular vectors and the columns (v) := (V e) of
V are called right singular vectors.

A connection between left and right singular vectors is established via

Avik = σikuik .

In general, the SVD is not unique. One needs to assume distinct nonzero singular values and
have them ordered by size for uniqueness of U, V and Σ. For our purposes, it will be enough to
have uniqueness of spaces spanned by groups of singular vectors. To this end, let A ∈ Gl(d,R)
be invertible with SVD UΣV T . We assume that singular values of A are ordered in groups
by size, i.e. we assume

(2.1) σ11 , . . . , σ1d1 ≥ σ21 , . . . , σ2d2 ≥ · · · ≥ σp1 , . . . , σpdp > 0.

Later on, each group of singular values will correspond to a different LE. Hence, the above
inequalities will eventually be strict. In that case, the spaces spanned by singular vectors of

one group, i.e. span
(

ui1 , . . . , uidi

)

and span
(

vi1 , . . . , vidi

)

, are uniquely determined indepen-

dent of our choice of SVD with (2.1). Thus, each choice satisfying (2.1) is sufficient for an
asymptotic analysis. In particular, we get a SVD Û Σ̂V̂ T for the inverse of A by inverting
A = UΣV T and, heeding (2.1), reversing the order of singular values and vectors. In other
words, a SVD for the inverse is given by (σ̂) =

(

1
σ

)r
, (û) = (v)r, and (v̂) = (u)r with (.)r

being the tuple in reversed order.

We denote the smallest and largest singular value in each group by

σmin
i := min

k=1,...,di
σik and σmax

i := max
k=1,...,di

σik .

2.4. Gram-Schmidt Procedure. We define a generalization of the Gram-Schmidt proce-
dure. To this end, let R

d = U1 ⊕ · · · ⊕ Up be a decomposition into subspaces of dimension
dimUi = di. Inductively, set

Fi :=

i
⊕

j=1

Uj ∩





i−1
⊕

j=1

Uj





⊥

for i = 1, . . . , p. Then, Rd = F1 ⊕ · · · ⊕ Fp is a decomposition with dimFi = di, Fi ⊥ Fj for
i 6= j and with

i
⊕

j=1

Uj =
i
⊕

j=1

Fj
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for all i. Actually, the outcome only depends on the filtration

{0} ⊂ U1 ⊂ U2 ⊂ · · · ⊂ Up = R
d

given by

U i :=

i
⊕

j=1

Uj .

In later scenarios the above spaces are spanned by groups of vectors. Thus, for a given basis

(b), set U
(b)
i as the span of bi1 , . . . , bidi . From U

(b)
i we get U

(b)
i and F

(b)
i . The associated

orthogonal projection onto F
(b)
i will be denoted by

P
(b)
i := P

F
(b)
i

.

It follows that

P
(b)
i :=

i
∑

j=1

P
(b)
j

is the orthogonal projection onto U
(b)
i . Another consequence of our notation is the relation

A
(

U
(b)
i

)

= U
(Ab)
i

for an invertible linear map A. Moreover, the resulting orthogonal projections after applying
A do not depend on whether (b) is orthogonal or not.

Proposition 2.16. For each A ∈ Gl(d,R) and each basis (b), we have

∀i : P (Ab)
i = P

(Af)
i ,

where (f) := GS(b) is the Gram-Schmidt basis of (b).

Proof. Since (b) and (f) create the same filtration, the filtrations of (Ab) and (Af) coincide
as well.

2.5. Admissibility. Ultimately, the MET provides an asymptotic link between singular
vectors (resp. singular values) and Oseledets spaces (resp. LEs). Hence, in order to inves-
tigate how a tuple of vectors evolves under subsequent application of linear maps and the
Gram-Schmidt procedure, we relate it to singular vectors. This relation is represented by a
single parameter δ. It describes how strong the corresponding filtrations are correlated. A
value of 0 means no correlation and a value of 1 implies equality. Thus, we call tuples that
have a certain level of correlation admissible.
A special task will be to understand how many tuples are at least δ-admissible. For this
purpose, we denote by µ the Lebesgue-measure of respective dimension.

Let 0 < δ ≤ 1 and a basis (c) of Rd be given.
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Definition 2.17. A d-tuple (b) is called δ-admissible with respect to (c) if it is linearly
independent and

∀ i < p : d
(

U
(b)
i , U

(c)
i

)2
≤ 1− δ2.

We denote the set of all δ-admissible tuples by Ad(c)(δ) and the set of all tuples that are
admissible for some δ > 0 by Ad(c).

As admissibility only depends on filtrations, we are allowed to interchange involved tuples
with their Gram-Schmidt bases. So, let us assume (c) to be an ONB from now on.
Moreover, invariance of distances between subspaces under orthogonal transformations im-
plies that δ-admissibility of (b) w.r.t. (c) is equivalent to δ-admissibility of (V b) w.r.t. (V c)
for each V ∈ O(d,R). Hence, V d

(

Ad(c)(δ)
)

and Ad(V c)(δ) coincide.

Let us proceed with an alternative characterization of admissibility.

Lemma 2.18. A basis (b) is δ-admissible w.r.t. (c) if, and only if, for all i < p and x ∈ U
(b)
i

with ‖x‖ = 1, we have

i
∑

j=1

∑

k

|〈x, cjk〉|2 ≥ δ2.

Proof. We reformulate the distance between filtration spaces as follows:

∥

∥

∥

(

I − P
(c)
i

)

P
(b)
i

∥

∥

∥

2
= max

‖x‖=1

∥

∥

∥

(

I − P
(c)
i

)

P
(b)
i x
∥

∥

∥

2
= max

x∈U(b)
i

‖x‖=1

∥

∥

∥

(

I − P
(c)
i

)

x
∥

∥

∥

2

= 1− min
x∈U(b)

i

‖x‖=1

∥

∥

∥P
(c)
i x
∥

∥

∥

2
= 1− min

x∈U(b)
i

‖x‖=1

i
∑

j=1

∑

k

|〈x, cjk〉|2

Now, we are able to relate the evolution of a tuple under a linear map to singular vectors.
It turns out that this important relation is sensitive to the admissibility parameter. In fact,
controlling the dependence was a major reason to introduce the concept of admissibility.

Proposition 2.19. Let A = UΣV T be invertible and 0 < δ ≤ 1. For all (b) ∈ Ad(v)(δ), it
holds

∀i : d
(

U
(Ab)
i , U

(u)
i

)

≤ i(p− i)

δ

σmax
i+1

σmin
i

.

Proof. Assume p > 1. We will derive the estimate from

∀ l < m :
∥

∥

∥
P (u)
m P

(Ab)
l

∥

∥

∥
≤ 1

δ

σmax
m

σmin
l

.



CONVERGENCE PROOF OF THE GINELLI ALGORITHM FOR CLVS 13

To show the above, use right singular vectors and write x ∈ R
d as

x =
∑

jk

〈x, vjk〉vjk .

Applying the linear map A = UΣV T , we get

Ax =
∑

jk

〈x, vjk〉σjkujk ⇒ ‖Ax‖2 =
∑

jk

|〈x, vjk〉|2σ2
jk
.

For x ∈ U
(b)
l with ‖x‖ = 1, this means

‖Ax‖2 ≥
l
∑

j=1

∑

k

|〈x, vjk〉|2σ2
jk

≥
(

σmin
l

)2
l
∑

j=1

∑

k

|〈x, vjk〉|2 ≥ δ2
(

σmin
l

)2

by admissibility of (b). Moreover, the following holds for x ∈ R
d with ‖x‖ = 1:

∥

∥

∥
P (u)
m Ax

∥

∥

∥

2
=
∑

k

|〈x, vmk
〉|2σ2

mk
≤ (σmax

m )2

Since

∥

∥

∥
P (u)
m P

(Ab)
l

∥

∥

∥
= max

y∈imP
(Ab)
l

\{0}

∥

∥

∥P
(u)
m y

∥

∥

∥

‖y‖ ≤ max
y∈U (Ab)

l \{0}

∥

∥

∥P
(u)
m y

∥

∥

∥

‖y‖

= max
x∈U (b)

l \{0}

∥

∥

∥P
(u)
m Ax

∥

∥

∥

‖Ax‖ = max
x∈U (b)

l

‖x‖=1

∥

∥

∥P
(u)
m Ax

∥

∥

∥

‖Ax‖ ,

it follows that

∥

∥

∥
P (u)
m P

(Ab)
l

∥

∥

∥
≤ 1

δ

σmax
m

σmin
l

.

Now, we compute for i < p:

d
(

U
(Ab)
i , U

(u)
i

)

=
∥

∥

∥

(

I − P
(u)
i

)

P
(Ab)
i

∥

∥

∥ ≤
∑

l,m
l≤i<m

∥

∥

∥P (u)
m P

(Ab)
l

∥

∥

∥

≤ 1

δ

∑

l,m
l≤i<m

σmax
m

σmin
l

≤ i(p − i)

δ

σmax
i+1

σmin
i

.

The above proposition describes behavior only of admissible tuples. However, it turns out
that almost all tuples are admissible. Indeed, for admissibility to be generic, the complement
of the open set

Ad(c) =
{

(b) basis | ∀i : d
(

U
(b)
i , U

(c)
i

)

< 1
}

⊂
(

R
d
)d
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must be a set of measure zero. Using Proposition 2.7, we can rewrite the condition as follows:

d
(

U
(b)
i , U

(c)
i

)

< 1 ⇐⇒ U
(b)
i ⊕

(

U
(c)
i

)⊥
= R

d

Since (c) is an ONB, we yet have another equivalent formulation on the level of basis vectors:

d
(

U
(b)
i , U

(c)
i

)

< 1 ⇐⇒ det
(

b11 , . . . , bidi , c(i+1)1 , . . . , cpdp

)

6= 0

This form easily reveals the following:

Proposition 2.20. The set of nonadmissible tuples
(

R
d
)d\Ad(c) has Lebesgue-measure zero.

Proof. In the above expression write vectors of (b) as coefficients in terms of (c). Now,
the claim is a direct consequence of the fact that det−1(0) ⊂ R

k×k is a subset of measure zero
for each k ≥ 1.

Restricted to a domain of finite measure, the last proposition tells us that the measure of
non-δ-admissible tuples converges to zero as δ goes to zero.

Corollary 2.21. For any subset F ⊂
(

R
d
)d

of finite Lebesgue-measure, it holds

lim
δց0

µ
(

F \ Ad(c)(δ)
)

= 0.

Proof. This is a direct consequence of the previous result and continuity of the Lebesgue
measure:

lim
δց0

µ
(

F \ Ad(c)(δ)
)

= µ





⋂

0<δ≤1

F \ Ad(c)(δ)



 = µ
(

F \ Ad(c)
)

= 0

In the second part of Ginelli’s algorithm, we need a special domain for initial tuples (b).
Namely, we look at

bi1 , . . . , bidi ∈ span
(

ci1 , . . . , cpdp

)

= U
(c)
i ⊕ · · · ⊕ U (c)

p .

Instead of admissibility, it will be enough that bi1 , . . . , bidi can be extended to an admissible
tuple of the form

(

∗, . . . , ∗, bi1 , . . . , bidi , ∗, . . . , ∗
)

∈ Ad(c)(δ)

for each index i. The set of all (b) satisfying this extension property will be denoted by

Ad
(c)
ext(δ). We write Ad

(c)
ext for the union of those sets over 0 < δ ≤ 1. As before, one readily

checks that V d
(

Ad
(c)
ext(δ)

)

= Ad
(V c)
ext (δ) for V ∈ O(d,R). Moreover, we again conclude that

almost all tuples satisfy extendable admissibility.

Proposition 2.22. The set

(

(

U
(c)
1 ⊕ · · · ⊕ U (c)

p

)d1 ×
(

U
(c)
2 ⊕ · · · ⊕ U (c)

p

)d2 × · · · ×
(

U (c)
p

)dp
)

\ Ad
(c)
ext
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has Lebesgue-measure zero.

Proof. For each i, we show that the set of tuples

(

bi1 , . . . , bidi

)

∈
(

U
(c)
i ⊕ · · · ⊕ U (c)

p

)di

not satisfying the extension property has Lebesgue-measure zero.

The idea is to apply Proposition 2.20 to a reduced setting for fixed i. To this end, look at
R
d′ with degeneracies d′ = d′1+ · · ·+ d′p′ given by d′j := di−1+j for all j = 1, . . . , p′ := p+1− i,

and let (e′) be its standard basis. We get

µ

(

(

R
d′
)d′

\ Ad(e
′)

)

= 0.

In particular, this implies

µ

(

(

R
d′
)d′1 \

{(

b′11 , . . . , b
′
1d′

1

)

has admissible extension

})

= 0.

Now, we transfer the result from R
d′ to U

(c)
i ⊕· · ·⊕U

(c)
p by identifying (e′) with (ci1 , . . . , cpdp ).

As an identification between orthonormal bases, Lebesgue-measure, distance between sub-

spaces, and admissibility are preserved. Hence, for almost all given tuples
(

bi1 , . . . , bidi

)

∈
(

U
(c)
i ⊕ · · · ⊕ U

(c)
p

)di
, we find 0 < δ ≤ 1 and g(i+1)1 , . . . , gpdp ∈ U

(c)
i ⊕ · · · ⊕ U

(c)
p such that

d
(

span
(

bi1 , . . . , bidi

)

, U
(c)
i

)2
≤ 1− δ2

and

∀ j > i : d
(

span
(

bi1 , . . . , bidi , g(i+1)1 , . . . , gjdj

)

, U
(c)
i ⊕ · · · ⊕ U

(c)
j

)2
≤ 1− δ2.

We can extend such a tuple

(

bi1 , . . . , bidi , g(i+1)1 , . . . , gpdp

)

to a δ-admissible tuple (g) by setting gjk := cjk for j < i. This concludes the proof.

As a consequence, we get the following corollary:

Corollary 2.23. Given a subset F ⊂
(

U
(c)
1 ⊕ · · · ⊕ U

(c)
p

)d1×· · ·×
(

U
(c)
p

)dp
of finite Lebesgue-

measure, it holds

lim
δց0

µ
(

F \ Ad
(c)
ext(δ)

)

= 0.

In the discrete time convergence proof of Ginelli’s algorithm, a more precise estimate on non-
δ-admissible tuples will be necessary. However, it will be sufficient to know the case, where
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F is a products of balls. The rest of subsection 2.5 will be devoted to a rather technical
derivation of explicit estimates needed only for this proof.

Proposition 2.24. Let d > 1. There is a constant η = η(d,M) > 0 such that

µ
(

Bd(0,M)d \ Ad(c)(δ)
)

≤ ηδ
1

d−1 .

Two lemmata on how to construct admissible tuples will guide us to the above proposition.
Since admissible tuples for the nondegenerate case are admissible for all possible degenerate
cases, it is enough to find an estimate for the nondegenerate case.

Lemma 2.25. Let (f) be an ONB of Rd. Fix 1 < i < d and 0 < δ1, δ2 ≤ 1. If

∥

∥Pspan(f1,...,fi−1,ci+1,...,cd)fi
∥

∥

2 ≤ 1− δ21 and
∥

∥

∥P
(f)
i−1

(

I − P
(c)
i

)∥

∥

∥

2
≤ 1− δ22 ,

then

d
(

U
(f)
i , U

(c)
i

)2
≤ 1− (δ1δ2)

2.

Proof. First, we reduce the problem to the case i = 2 and d = 3:

There are unit vectors f ′
1 ∈ span(f1, . . . , fi−1) and c′3 ∈ span(ci+1, . . . , cd) such that

∥

∥

∥P
(f)
i

(

I − P
(c)
i

)∥

∥

∥

2
=
∥

∥

∥P
(f)
i c′3

∥

∥

∥

2
=
∥

∥

∥P
(f)
i−1c

′
3

∥

∥

∥

2
+ |〈fi, c′3〉|2 = |〈f ′

1, c
′
3〉|2 + |〈f ′

2, c
′
3〉|2

with f ′
2 := fi. Furthermore, the assumptions yield

∥

∥

∥Pspan(f ′

1,c
′

3)
f ′
2

∥

∥

∥

2
≤
∥

∥Pspan(f1,...,fi−1,ci+1,...,cd)fi
∥

∥

2 ≤ 1− δ21

and

|〈f ′
1, c

′
3〉|2 ≤

∥

∥

∥P
(f)
i−1c

′
3

∥

∥

∥

2
≤
∥

∥

∥P
(f)
i−1

(

I − P
(c)
i

)∥

∥

∥

2
≤ 1− δ22 .

In particular, f ′
1, f

′
2 and c′3 are linearly independent. Thus, the problem reduces to finding

the right estimate to

d
(

U
(f ′)
2 , U

(c′)
2

)2
=
∥

∥

∥P
(f ′)
2 c′3

∥

∥

∥

2
= |〈f ′

1, c
′
3〉|2 + |〈f ′

2, c
′
3〉|2

inside span(f ′
1, f

′
2, c

′
3)

∼= R
3, where (f ′) and (c′) are some ONBs of span(f ′

1, f
′
2, c

′
3) extending

(f ′
1, f

′
2) and c′3.
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The case i = 2 and d = 3 can be shown by a short calculation. It holds

∥

∥

∥
Pspan(f ′

1,c
′

3)
f ′
2

∥

∥

∥

2
= |〈f ′

1, f
′
2〉|2 +

∣

∣

∣

∣

(

c′3 − 〈f ′
1, c

′
3〉f ′

1

‖c′3 − 〈f ′
1, c

′
3〉f ′

1‖
, f ′

2

)∣

∣

∣

∣

2

=
|〈c′3, f ′

2〉|2
‖c′3 − 〈f ′

1, c
′
3〉f ′

1‖2

=
|〈c′3, f ′

2〉|2
1− |〈f ′

1, c
′
3〉|2

.

Thus, by our assumptions:

|〈f ′
2, c

′
3〉|2 =

∥

∥

∥
Pspan(f ′

1,c
′

3)
f ′
2

∥

∥

∥

2
(1− |〈f ′

1, c
′
3〉|2) ≤ (1− δ21)(1− |〈f ′

1, c
′
3〉|2)

We estimate:

|〈f ′
1, c

′
3〉|2 + |〈f ′

2, c
′
3〉|2 ≤ |〈f ′

1, c
′
3〉|2 + (1− δ21)(1− |〈f ′

1, c
′
3〉|2) = 1− δ21 + δ21 |〈f ′

1, c
′
3〉|2

≤ 1− δ21 + δ21(1− δ22) = 1− (δ1δ2)
2

The previous lemma can be used to give a sufficient condition for a tuple to be δ-admissible.

Lemma 2.26. If a basis (b) satisfies

∀ i < d :
∥

∥Pspan(f1,...,fi−1,ci+1,...,cd)fi
∥

∥

2 ≤ 1−
(

δ
1

d−1

)2
,

where (f) := GS(b), then (b) is δ-admissible.

Proof. We prove the result by induction over i showing that

d
(

U
(b)
i , U

(c)
i

)2
= d
(

U
(f)
i , U

(c)
i

)2
≤ 1−

(

δ
i

d−1

)2
≤ 1− δ2.

For i = 1, we have

d
(

U
(f)
1 , U

(c)
1

)2
=
∥

∥

∥

(

I − P
(c)
1

)

f1

∥

∥

∥

2
=
∥

∥Pspan(c2,...,cd)f1
∥

∥

2 ≤ 1−
(

δ
1

d−1

)2
.

Let 1 < i < d and assume the induction hypothesis is true for i− 1, which implies that

∥

∥

∥
P

(f)
i−1

(

I − P
(c)
i

)∥

∥

∥

2
≤
∥

∥

∥
P

(f)
i−1

(

I − P
(c)
i−1

)∥

∥

∥

2
= d
(

U
(f)
i−1, U

(c)
i−1

)2
≤ 1−

(

δ
i−1
d−1

)2
.

Simply apply Lemma 2.25 to close the induction step.

Now, we prove the proposition.

Proof of Proposition 2.24. Set δ̃ := δ
1

d−1 and let

N :=
{

(b) ∈ Bd(0,M)d
∣

∣

∣
∃i : det(b1, . . . , bi, ci+1, . . . , cd) = 0

}
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be the set of all nonadmissible vector tuples inside Bd(0,M)d. From Proposition 2.20 we know
that N has measure zero. On its complement we define a continuous mapping into the d-fold
product of spheres:

w : Bd(0,M)d \ N →
(

Sd−1
)d

with components

wi(b1, . . . , bd) := GSd(b1, . . . , bi−1, ci+1, . . . , cd, ci),

where GSd is the last component of the Gram-Schmidt procedure. By construction wi =
wi(b1, . . . , bd) is the unique unit-vector orthogonal to

span(b1, . . . , bi−1, ci+1, . . . , cd)

with (wi, ci) > 0, and only depends on the first i− 1 vectors of (b). w will help us to measure
sets of admissible vectors.

The Gram-Schmidt basis of (b) is constructed by setting fi :=
b′i

‖b′i‖
with b′i :=

(

I − P
(b)
i−1

)

bi.

Assuming |〈wi, bi〉| ≥ Mδ̃, we get

∥

∥Pspan(f1,...,fi−1,ci+1,...,cd)fi
∥

∥

2
=
∥

∥Pspan(b1,...,bi−1,ci+1,...,cd)fi
∥

∥

2
= 1− |〈wi, fi〉|2 = 1− |〈wi, b

′
i〉|2

‖b′i‖2

= 1− |〈wi, bi〉|2
‖b′i‖2

≤ 1− |〈wi, bi〉|2
‖bi‖2

≤ 1− |〈wi, bi〉|2
M2

≤ 1− δ̃2.

Hence, if (b) ∈ Bd(0,M)d \ N satisfies

∀ i < d : |〈wi, bi〉| ≥ Mδ̃,

then (b) is δ-admissible by Lemma 2.26. In particular, the subset of all non-δ-admissible tuples
is contained in the subset of all (b), which do not fulfill the above condition. Therefore, a
measure-estimate on those tuples is enough for the claim:



CONVERGENCE PROOF OF THE GINELLI ALGORITHM FOR CLVS 19

µ
({

(b) ∈ Bd(0,M)d \ N
∣

∣

∣
∃ i < d : |〈wi, bi〉| < Mδ̃

})

≤
∑

i<d

µ
({

(b) ∈ Bd(0,M)d \ N
∣

∣

∣
|〈wi, bi〉| < Mδ̃

})

=
∑

i<d

µ
({

(b) ∈ Bd(0,M)d
∣

∣

∣
det(b1, . . . , bi−1, ci, . . . , cd) 6= 0 and |〈wi, bi〉| < Mδ̃

})

=
∑

i<d

(µ(Bd(0,M)))d−i

∫

{ (b1,...,bi−1)∈Bd(0,M)i−1 | det(b1,...,bi−1,ci,...,cd)6=0}
∫

{bi∈Bd(0,M) : |〈wi,bi〉|<Mδ̃}
1 dbi d(b1, . . . , bi−1)

=
(⋆)

∑

i<d

(µ(Bd(0,M)))d−i

∫

{ (b1,...,bi−1)∈Bd(0,M)i−1 | det(b1,...,bi−1,ci,...,cd)6=0}
∫

{bi∈Bd(0,M) : |〈e1,bi〉|<Mδ̃}
1 dbi d(b1, . . . , bi−1)

=
∑

i<d

(µ(Bd(0,M)))d−1µ
(

Bd(0,M) ∩
((

−Mδ̃,Mδ̃
)

× R
d−1
))

≤ (d− 1)(µ(Bd(0,M)))d−1(2M)dδ̃

We used Fubini’s theorem to measure components separately. In (⋆) we rotated wi to the first

vector of the standard basis. Afterwards, we enlarged Bd(0,M) ∩
((

−Mδ̃,Mδ̃
)

× R
d−1
)

to
(

−Mδ̃,Mδ̃
)

× (−M,M)d−1 for a simple estimate.

Setting η := (d− 1)(µ(Bd(0,M)))d−1(2M)d yields the desired estimate.

A similar estimate will be necessary for non-δ-admissible tuples inside the special domain.

Proposition 2.27. Let d > 1. There is a constant η = η(d,M) > 0 such that

µ
(

B(M) \ Ad
(c)
ext(δ)

)

≤ ηδ
1

d−1 ,

where B(M) is given by a product of balls of radius M inside the special domain:

Bd(0,M)d1 × · · · ×Bdp(0,M)dp ⊂
(

U
(c)
1 ⊕ · · · ⊕ U (c)

p

)d1 × · · · ×
(

U (c)
p

)dp

Proof. The proof is similar to the one of Proposition 2.22. Again, it is enough to find such
a bound for the set of all tuples in

Bdi+···+dp(0,M)di ⊂
(

U
(c)
i ⊕ · · · ⊕ U (c)

p

)di

that cannot be extended to a δ-admissible tuple.
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Using the same identification as before, we reduce the problem to finding such an estimate
for the set

Bd′(0,M)d
′

1 \
{(

b′11 , . . . , b
′
1d′

1

)

has a δ-admissible extension

}

.

Proposition 2.24 yields η′ only depending on d′ and M with

µ

(

Bd′

(

0,
√
2M
)d′

\ Ad(e
′)(δ)

)

≤ η′δ
1

d′−1 .

Since Bd′(0,M)d
′

1 ×Bd′(0,M)d
′−d′1 ⊂ Bd′

(

0,
√
2M

)d′

, we have

µ

(

Bd′(0,M)d
′

1 \
{(

b′11 , . . . , b
′
1d′

1

)

has a δ-admissible extension

})

≤
(

1

vol(Bd′(0,M))

)d′−d′1

η′δ
1

d′−1 .

Finally, an estimate η only depending on M and d is archived by taking the maximum over
estimates for all possible combinations of degeneracies.

3. Ginelli’s Algorithm. Understanding long-term behavior of solutions can prove to be
a challenging task due to nonlinearity of the underlying system. However, locally, around a
reference solution the problem becomes a lot easier. Instead of the full nonlinear dynamics,
it may be sufficient to only regard the tangent linear model along the reference solution for a
qualitative analysis.
In this chapter we define a minimalistic setting suitable for both the MET and Ginelli’s
algorithm.

3.1. Setting. Since we want to cover as many applications for Ginelli’s algorithm as
possible, we do not specify a type of state space or system. Instead, we assume a non-empty
set Ω = {θtω0 | t ∈ T} to be the abstract orbit of our state of interest ω0 respective to the
flow (θt)t∈T. Here, θt : Ω → Ω represents the time-t-flow on our orbit. The flow should satisfy
θ0 = idΩ and θs+t = θsθt. Remaining information of the linear model is encoded in a cocycle
Φ(t, ω) assigning a timestep t and a state ω to the linear propagator on tangent space from ω

to θtω.

Definition 3.1. A map Φ : T× Ω → R
d×d is called a (linear) cocycle (over θ) if

1. Φ(0, ω) = id
2. Φ(s+ t, ω) = Φ(s, θtω)Φ(t, ω)

for all s, t ∈ T and ω ∈ Ω.

Since T is two-sided, the cocycle is pointwise invertible with inverse

Φ(t, ω)−1 = Φ(−t, θtω).
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The Multiplicative Ergodic Theorem of Oseledets [20] is not only necessary to describe exis-
tence of CLVs, but will play a crucial role in our convergence proof. We state a deterministic
version found in [1]. It assumes that changes during a short timestep do not matter on an
exponential scale and, furthermore, that expansion rates of different volumes are well-defined
and do not exceed the exponential scale.

Proposition 3.2 (Deterministic MET). Let Φ be a cocycle satisfying

λ

(

sup
s∈[0,1]∩T

‖Φ(s, θtω0)
±1‖
)

≤ 0

and assume that

lim
t→∞

1

t
log ‖ ∧i Φ(t, ω0)‖ ∈ R ∪ {−∞}

exists for all orders of the wedge product of Φ(t, ω0). Then, there is a Lyapunov spectrum with
a corresponding filtration capturing subspaces of different growth rates:

1. The Lyapunov spectrum consists of Lyapunov exponents (LEs)

−∞ ≤ λp < · · · < λ1 < ∞,

which are the distinct limits of singular values, together with degeneracies d1+· · ·+dp =
d:

∀i : ∀ k = 1, . . . , di : λi = lim
t→∞

1

t
log σik(Φ(t, ω0))

2. There is a filtration

{0} =: Vp+1 ⊂ Vp ⊂ · · · ⊂ V1 = R
d

given by subspaces

Vi :=

{

x ∈ R
d

∣

∣

∣

∣

lim
t→∞

1

t
log ‖Φ(t, ω0)x‖ ≤ λi

}

.

Limits in the definition of Vi exist for each x ∈ R
d and take values in {λ1, . . . , λp}.

Moreover, it holds

dimVi − dimVi+1 = di.

The proposition only requires one-sided time and an invertible cocycle to provide the Lyapunov
spectrum and filtration at state ω0 of the orbit. However, since we assumed two-sided time,
we immediately get the existence of those quantities for all states along the orbit.

Corollary 3.3. In the setting of Proposition 3.2 Lyapunov spectrum and filtration are de-
fined for all ω ∈ Ω. Furthermore, p(ω), λi(ω) and di(ω) are independent of ω, and the filtration
changes in a covariant way:

Φ(t, ω)Vi(ω) = Vi(θtω)
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Proof. The first assumption of Proposition 3.2 is trivially satisfied if we replace ω0 by
ω = θuω0. To prove the second assumption, we use the following properties of the wedge
product, which can be found in [1]:

1. ‖ ∧i A‖ = σ1(A) . . . σi(A)
2. ‖ ∧i (AB)‖ ≤ ‖ ∧i A‖ ‖ ∧i B‖

for A,B ∈ R
d×d. The existence of

lim
t→∞

1

t
log ‖ ∧i Φ(t, θuω0)‖ < ∞

follows due to the cocycle property:

(

t+ u

t

)(

1

t+ u
log ‖ ∧i Φ(t+ u, ω0)‖

)

− 1

t
log ‖ ∧i Φ(u, ω0)‖

≤ 1

t
log ‖ ∧i Φ(t, θuω0)‖

≤
(

t+ u

t

)(

1

t+ u
log ‖ ∧i Φ(t+ u, ω0)‖

)

+
1

t
log ‖ ∧i Φ(−u, θuω0)‖

Thus, the proposition gives us the existence of a Lyapunov spectrum and filtration at state
ω. In particular, limits of singular values for ω and ω0 do not differ on an exponential scale.
Hence, the remaining statements of Corollary 3.3 follow.

Similar statements can be derived for the time-reversed cocycle Φ−(t, ω) := Φ(−t, ω) over the
time-reversed flow θ−t := θ−t. We denote its Lyapunov spectrum by (λ−

i , d
−
i )i=1,...,p− and the

corresponding filtration spaces by V −
i (ω).

In order to define a covariant splitting of the tangent space that captures asymptotic
growth rates in both forward and backward time, we require additional assumptions on Lya-
punov spectra and associated splittings of Φ and Φ−:

1. p = p−, d−i = dp+1−i and λ−
i = −λp+1−i

2. Vi+1(ω0) ∩ V −
p+1−i(ω0) = {0}

A direct consequence is that LEs are finite. For convenience sake, we set λ0 := ∞ and
λp+1 := −∞.

Assuming the above, we get the existence of Oseledets spaces characterizing asymptotic
dynamics.

Proposition 3.4. There is a splitting R
d = E1(ω) ⊕ · · · ⊕ Ep(ω) of the tangent space into

so-called Oseledets spaces

(3.1) Ei(ω) := Vi(ω) ∩ V −
p+1−i(ω).

Furthermore, Oseledets spaces can be characterized via

(3.2) x ∈ Ei(ω) \ {0} ⇐⇒ lim
t→±∞

1

|t| log ‖Φ(t, ω)x‖ = ±λi,
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are covariant

Φ(t, ω)Ei(ω) = Ei(θtω)

and satisfy dimEi(ω) = di.

Proof. The proof is purely algebraic and can be found along the lines of the proof of the
MET for two-sided time in [1].

θtω0
∼ etλ1

∼ etλ2

E2

E1

ω0

Figure 1. diagonal cocycle for dimension 2

For a random dynamical system satisfying some integrability condition, it is shown in [1]
that the cocycle along almost all orbits of the system admits an Oseledets splitting. Moreover,
in an ergodic setting the Lyapunov spectrum for almost all orbits coincides. Therefore, in
applications it is often conveniently assumed that the underlying system is ergodic at least
near an interesting structure.5 Via CLVs one hopes to better understand the local flow around
this structure.

Definition 3.5. Normalized basis vectors, which are covariant and chosen subject to the
Oseledets splitting for each ω ∈ Ω, are called covariant Lyapunov vectors (CLVs).

CLVs represent directions of different asymptotic growth rates6 by (3.2). However, they are
uniquely defined (up to sign) only for nondegenerate Lyapunov spectra.

3.2. The Algorithm. The Ginelli algorithm [14, 15] computes Oseledets spaces (or CLVs)
for a given cocycle by using its asymptotic characterization (3.2). The main idea is that every
vector with a nonzero E1-part will approach E1 asymptotically, since its E1-component has
the largest exponential growth rate. More abstractly, almost all (d1 + · · · + di)-dimensional
subspaces will align with E1⊕· · ·⊕Ei, the fastest expanding (or slowest contracting) subspace
of the corresponding dimension, in forward time.
Reversing time, we are able to extract the slowest expanding (or fastest contracting) sub-
spaces. In particular, almost all di-dimensional subspaces of E1 ⊕ · · · ⊕ Ei will align with Ei

5See the concept of SRB-measures for attractors [8].
6Aside from asymptotic growth, the angle between CLVs can be used as a measure of hyperbolicity (see,

e.g., [9, 22, 31, 32]).
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in backward time.

Taking these traits into consideration, the abstract formalism of Ginelli’s algorithm is as
follows:

Ginelli Algorithm

1.1. Randomly choose a basis (b) of the tangent space at a past state θ−t1ω0 and propagate
it forward until ω0. If the propagation time t1 is chosen large enough, we expect

Φ(t1, θ−t1ω0)U
(b)
i = U

(Φ(t1,θ−t1ω0)b)
i to be a good approximation to E1(ω0)⊕· · ·⊕Ei(ω0).

1.2. Continue forward propagation until a state θt2ω0 is reached. This state should be far
enough in the future, so that we have a sufficiently good approximation to E1⊕· · ·⊕Ei

on a long enough timeframe for the second phase.

2. For each i, randomly choose di vectors b
′
i1
, . . . , b′idi

in U
(Φ(t1+t2,θ−t1ω0)b)
i ≈ E1(θt2ω0)⊕

· · · ⊕ Ei(θt2ω0) and propagate them backward until ω0. The evolved subspace, i.e.

U
(Φ(−t2,θt2ω0)b′)
i , is our approximation to Ei(ω0).

Since we propagate vectors forward, we call steps 1.1 and 1.2 forward phase7, and by the same
reasoning step 2 is called backward phase8.

Φ(t1, θ−t1ω0) Φ(t2, ω0)

Φ(−t2, θt2ω0)

θ−t1ω0 ω0 θt2ω0

(b) (Φ(t1, θ−t1ω0)b) (Φ(t1 + t2, θ−t1ω0)b)

(b′)(Φ(−t2, θt2ω0)b
′)

forward phase

backward phase

Figure 2. schematic picture of the Ginelli algorithm

The asymptotic expansion rate (λ1 + · · · + λi) of E1 ⊕ · · · ⊕ Ei is usually computed as a
byproduct in the forward phase of the algorithm. Using this information, we can derive the
Lyapunov spectrum.9

7Numerically, it makes sense to apply the cocycle in small timesteps and orthonormalize the basis in-
between. Otherwise, computations become singular as all vectors will collapse onto the first Oseledets space.
However, analytically, Proposition 2.16 tells us that there is no difference in applying the Gram-Schmidt
procedure between every step or just once at the end.

8Here, assuming the Lyapunov spectrum is known, it appears numerically advantageous to orthonormalize
b′i1 , . . . , b

′

idi
between propagation steps.

9This concept was already used in 1980 by Benettin [4, 5] to compute the Lyapunov spectrum. Therefore,
subsequent applications of the cocycle and orthonormalizations are sometimes called Benettin steps.
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We provide a convergence proof of the whole algorithm as min(t1, t2) → ∞ in section 4.
The speed of convergence turns out to be exponential in relation to the minimum distance of
LEs. Furthermore, the kind of convergence differs between discrete and continuous time. The
discrete version with t1, t2 ∈ N converges for almost all initial tuples, whereas the continuous
version with t1, t2 ∈ R>0 only converges in measure.

Next, we present what might happen in the forward phase for some exemplary cocycles.
We start with a very simple example that demonstrates how almost all vectors should evolve
in a nondegenerate setting.

Example 3.6 (diagonal cocycle). Assume Ω = {ω0} with trivial flow θtω0 = ω0. For given
λ1 > · · · > λp, define D := diag

(

eλ1 , . . . , eλp
)

. Then, Φ(t, ω0) := Dt is a cocycle and the CLVs
(at ω0) coincide with the standard basis (e) of Rd.

Now, fix a vector b1 ∈ R
d with |〈b1, e1〉| > 0. We have

〈Dtb1, ei〉 = 〈b1, ei〉etλi .

Thus, we compute

∣

∣

∣

∣

〈

Dtb1

‖Dtb1‖
, ei

〉∣

∣

∣

∣

2

=
|〈b1, ei〉|2e2tλi

∑

j |〈b1, ej〉|2e2tλj
=

|〈b1, ei〉|2e−2t|λ1−λi|
∑

j |〈b1, ej〉|2e−2t|λ1−λj | .

The last nominator takes values between |〈b1, e1〉|2 and ‖b1‖2. In particular, it can be treated
as a positive constant for the Lyapunov index notation:

λ
(

d
(

U
(Dtb)
1 , U

(e)
1

))

=
1

2
λ

(

∥

∥

∥

(

I − P
(e)
1

)

P
(Dtb)
1

∥

∥

∥

2
)

=
1

2
λ





∑

i 6=1

∣

∣

∣

∣

〈

Dtb1

‖Dtb1‖
, ei

〉∣

∣

∣

∣

2




≤ max
i 6=1

1

2
λ

(

∣

∣

∣

∣

〈

Dtb1

‖Dtb1‖
, ei

〉∣

∣

∣

∣

2
)

≤ max
i 6=1

−|λ1 − λi|

= −|λ1 − λ2|

In general, it holds

λ
(

d
(

U
(Dtb)
i , U

(e)
i

))

≤ −|λi − λi+1|

for all tuples (b) that are admissible w.r.t. (e). A similar statement for arbitrary cocycles will
be provided in subsection 4.2, when analyzing convergence of the forward phase.

Ginelli’s algorithm starts with a random choice of initial vectors to prevent nonadmissible
configurations. One such configuration would be the unlikely case where the first vector lies in
the second Oseledets space. As Oseledets spaces are covariant, the first vector will stay inside
the second Oseledets space when propagated. Consequently, it will not be representative of a
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direction in the first Oseledets space.

The next example shows that all vectors might be nonadmissible when initiated at a wrong
time in the continuous version of Ginelli’s algorithm.

Example 3.7 (rotating Oseledets spaces). Let Ω := S1 ∼= R
/

Z be a periodic orbit with

normalized flow θtω := ω + t. Furthermore, let R : R → SO(2) be the parametrization of
SO(2) by 2× 2 rotation matrices

R(ω) :=

(

cos(2πω) − sin(2πω)
sin(2πω) cos(2πω)

)

,

so that R(0) = R(1) = I and R(s + t) = R(s)R(t). Moreover, we set D := diag
(

eλ1 , eλ2
)

for
some λ1 > λ2, and define the cocycle to be

Φ(t, ω) := R(θtω)D
tR(−ω).

One readily checks that Φ(t, ω) indeed is a cocycle over θ.

We use the characterization of Oseledets spaces via asymptotic growth rates:

lim
t→±∞

1

t
log

∥

∥

∥

∥

Φ(t, ω)R(ω)

(

x1
x2

)∥

∥

∥

∥

=

{

λ1 x1 6= 0 and x2 = 0

λ2 x1 = 0 and x2 6= 0

⇒ E1(ω) = span

(

R(ω)

(

1
0

))

and E2(ω) = span

(

R(ω)

(

0
1

))

In particular, both Oseledets spaces are rotating uniformly with varying ω. Hence, for each
fixed vector b1 ∈ R

2 and T > 0, we find t1 ∈ R>0 bigger than T with b1 ∈ E2(θ−t1ω). This
implies that the continuous version of Ginelli’s algorithm does not converge for any fixed choice
of b1. Instead, it is shown later on that the continuous case converges in measure.
In the discrete case, however, the set

⋃

t1∈N E2(θ−t1ω) has Lebesgue-measure zero indicating
that convergence for almost all initial tuples is still possible.

Setting D = diag(eλ1 , eλ1) in the previous example yields a trivial Oseledets space E1(ω) = R
2

with inner rotation. In general, Oseledets spaces can have complicated internal dynamics that
prevent single propagated vectors from converging. Additionally, we already remarked that
CLVs are not uniquely defined in presence of degeneracies. Therefore, objects of interest
should not be the propagated vectors themselves, but rather the spaces spanned by them
subject to degeneracies.10

As a closing remark for this section, we would like to mention that there are several other
recently developed algorithms, see [12, 18, 30], some of which can be treated in a similar
fashion to Ginelli’s algorithm with tools developed here.

10Practically speaking, degeneracies can be derived from growth rates of propagated vectors during the
forward phase. Moreover, they might be forced by symmetries (e.g. equivariant systems), whereas, for some
classes of systems degenerate scenarios are the exception [2].
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4. Convergence of Ginelli’s Algorithm. Finally, we have gathered enough notation and
tools to formulate and prove convergence of Ginelli’s algorithm. During the proof, we will
not distinguish between discrete and continuous time until after we have shown convergence
in measure for both cases. All results will be formulated using the Lyapunov index notation,
providing us with a direct link to the exponential speed of convergence.

Since the domain for (b′) in the backward phase depends on evolved vectors from the
forward phase, it will be convenient to identify the backward domain with a time-independent
one. To this end, we set A(f) ∈ O(d) as the orthogonal transformation sending the standard
basis (e) to the Gram-Schmidt basis of evolved vectors from the forward phase, i.e. (f) =
GS(Φ(t1 + t2, θ−t1ω0)b). Note that forward initial vectors (b) need to be linearly independent
in order to get a well-defined mapping.
By identifying R

d1+···+di with R
d1+···+di × {0} ⊂ R

d we may regard the restriction of A(f) as
an identification between time-independent coefficients and time-dependent vectors:

R
d1+···+di → U

(Φ(t1+t2,θ−t1ω0)b)
i

αik 7→ b′ik

Thus, we use

(

R
d1
)d1 ×

(

R
d1+d2

)d2 × · · · ×
(

R
d1+···+dp−1

)dp−1 ×
(

R
d
)dp ⊂

(

R
d
)d

as the domain for coefficient of the backward phase.

Theorem 4.1 (Convergence in measure of Ginelli’s algorithm). For each compact subset

K ⊂
(

R
d
)d

×
(

(

R
d1
)d1 ×

(

R
d1+d2

)d2 × · · · ×
(

R
d1+···+dp−1

)dp−1 ×
(

R
d
)dp
)

and ǫ > 0, it holds

lim
T→∞

inf
t1,t2≥T

µ

({

((b), (α)) ∈ K
∣

∣ (b) linearly independent and ∀i :

1

min(t1, t2)
log d

(

U
(Φ(−t2,θt2)ω0)b′)
i , Ei(ω0)

)

≤ −min(|λi − λi−1|, |λi − λi+1|) + ǫ

with (b′) =
(

AGS(Φ(t1+t2,θ−t1ω0)b)α
)

})

= µ(K).

Where the latter result requires more involved notation, the convergence theorem for discrete
time can be formulated quite compactly using the extended Lyapunov index notation.

Theorem 4.2 (Convergence a.e. of Ginelli’s algorithm for T = Z). For almost all pairs of
tuples ((b), (α)) in

(

R
d
)d

×
(

(

R
d1
)d1 ×

(

R
d1+d2

)d2 × · · · ×
(

R
d1+···+dp−1

)dp−1 ×
(

R
d
)dp
)

,
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(b) is linearly independent and the algorithm converges:

λ

(

d

(

U
(Φ(−n2,θn2ω0)b′)
i , Ei(ω0)

))

≤ −min(|λi − λi−1|, |λi − λi+1|)

with (b′) =
(

AGS(Φ(n1+n2,θ−n1ω)b)α
)

.

In applications one usually wants to compute CLVs at more than just one point along a
trajectory.11 In fact, it is feasible to use propagated vectors near ω0 as approximations to
CLVs in Ginelli’s algorithm. Thus, it is enough to run the algorithm once.
Similar statements on convergence are possible. We formulate a version for discrete time.

Corollary 4.3 (Convergence a.e. of Ginelli’s algorithm on interval for T = Z). Let I ⊂ T be
a bounded interval. For almost all pairs of tuples ((b), (α)) in

(

R
d
)d

×
(

(

R
d1
)d1 ×

(

R
d1+d2

)d2 × · · · ×
(

R
d1+···+dp−1

)dp−1 ×
(

R
d
)dp
)

,

(b) is linearly independent and the algorithm converges on I:

λ

(

sup
m∈I

d

(

U
(Φ(−n2+m,θn2ω0)b′)
i , Ei(θmω0)

))

≤ −min(|λi − λi−1|, |λi − λi+1|)

with (b′) =
(

AGS(Φ(n1+n2,θ−n1ω)b)α
)

.

Proof. Writing

d

(

U
(Φ(−n2+m,θn2ω0)b′)
i , Ei(θmω0)

)

= d

(

Φ(m,ω0)U
(Φ(−n2,θn2ω0)b′)
i ,Φ(m,ω0)Ei(ω0)

)

,

this is a direct consequence of Theorem 4.2 and Corollary 2.8.

In order to prove both theorems we derive asymptotic characterizations of Ginelli’s algorithm
step by step. However, first, we need to understand how singular vectors and Oseledets spaces
are connected by invoking the proof of Proposition 3.2 as found in [1].

4.1. The Link between Multiplicative Ergodic Theorem and Singular Value Decompo-

sition. Let

Φ(t, ω0) = U(t)Σ(t)(V (t))T

be a SVD of the cocycle Φ(t, ω0) for t ≥ 0, where singular values are ordered as in (2.1). Using
right singular vectors, Arnold shows that the filtration Vp(t) ⊂ · · · ⊂ V1(t) given by

Vi(t) :=
(

U
(v(t))
i−1

)⊥

11It is much harder to predict how the convergence rate changes, when switching to another orbit. For
example, in the scenario of random dynamical systems as in [1] Lyapunov spectrum and Oseledets spaces
depend only measurably on ω0.
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converges exponentially fast to the filtration Vp(ω0) ⊂ · · · ⊂ V1(ω0). Distances between
filtrations are measured in a special metric. Unraveling the notation, we end up with

∀ i 6= j : λ
(∥

∥

∥P
(v(t))
i Pj

∥

∥

∥

)

≤ −|λi − λj |,

where Pp + · · ·+ Pi is the orthogonal projection onto Vi(ω0) for each i.

Lemma 4.4. It holds

∀i : λ
(

d
(

U
(v(t))
i , (Vi+1(ω0))

⊥
))

≤ −|λi − λi+1|.

Proof. We compute

λ
(

d
(

U
(v(t))
i , (Vi+1(ω0))

⊥
))

= λ
(∥

∥

∥P
(v(t))
i PVi+1(ω0)

∥

∥

∥

)

≤ λ









∑

k,j
k≤i<j

∥

∥

∥P
(v(t))
k Pj

∥

∥

∥









≤ max
k,j

k≤i<j

−|λk − λj | = −|λi − λi+1|.

A similar result holds for the time-reversed cocycle Φ− with SVD

Φ(−t, ω0) = U−(t)Σ−(t)
(

V −(t)
)T

for t ≥ 0, where singular values are ordered as in (2.1). Note that, for the time-reversed
cocycle, we need to consider reversed degeneracies: d−1 , . . . , d

−
p . To distinguish between both

types of degeneracies we equip the notation introduced in subsection 2.4 with a minus sign
following the subindex, whenever we count with respect to reversed degeneracies.

Lemma 4.5. It holds

∀i : λ
(

d
(

U
(v−(t))
i− ,

(

V −
i+1(ω0)

)⊥)) ≤ −|λ−
i − λ−

i+1|.

The algorithm of Ginelli starts by propagating vectors from past to present, i.e. we apply
Φ(t, θ−tω0) = (Φ(−t, ω0))

−1, and ends with propagating vectors from future to present, i.e.
we apply Φ(−t, θtω0) = (Φ(t, ω0))

−1. Thus, it is important to keep track of singular vectors
for inversed cocycles as well.

Lemma 4.6. It holds

∀i : λ
(

d
(

U
(û(t))
i− , Vp+1−i(ω0)

))

≤ −|λp−i − λp+1−i|.

Proof. This is a consequence of Lemma 4.4, since

d
(

U
(û(t))
i− , Vp+1−i(ω0)

)

= d
(

U
(v(t))r

i− , Vp+1−i(ω0)
)

= d

(

(

U
(v(t))
p−i

)⊥
, Vp+1−i(ω0)

)

= d
(

U
(v(t))
p−i , (Vp+1−i(ω0))

⊥
)

.
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Here, we used the identity

U
(c)r

i− =
(

U
(c)
p−i

)⊥
,

which is true for all ONBs (c).

Again, we derive a similar result for reversed time.

Lemma 4.7. It holds

∀i : λ
(

d
(

U
(û−(t))
i , V −

p+1−i(ω0)
))

≤ −|λi − λi+1|.

4.2. Forward Phase. Step 1.1 of Ginelli’s algorithm propagates vectors from past to
present. It turns out that admissible tuples yield good approximations to V −

p+1−i(ω0) =
E1(ω0) ⊕ · · · ⊕ Ei(ω0). Moreover, changes of the admissibility parameter on subexponential
scales do not influence the exponential speed of convergence of the algorithm.

Lemma 4.8. Let 0 < δ(t) < 1 be a sequence with λ
(

1
δ

)

= 0. We have

λ

(

sup
(b)∈Ad(v̂

−(t))(δ(t))

d
(

U
(Φ(t,θ−tω0)b)
i , V −

p+1−i(ω0)
)

)

≤ −|λi − λi+1|.

Proof. Use the triangle inequality, apply Proposition 2.19 to the map A = (Φ(−t, ω0))
−1,

and use Lemma 4.7 to obtain

λ

(

sup
(b)∈Ad(v̂

−(t))(δ(t))

d
(

U
(Φ(t,θ−tω0)b)
i , V −

p+1−i(ω0)
)

)

≤ max

(

λ

(

sup
(b)∈Ad(v̂

−(t))(δ(t))

d
(

U
(Φ(t,θ−tω0)b)
i , U

(û−(t))
i

)

)

, λ
(

d
(

(U
(û−(t))
i , V −

p+1−i(ω0)
))

)

≤ max

(

λ

(

i(p− i)

δ(t)

(

σ̂−
i+1(t)

)max

(

σ̂−
i (t)

)min

)

,−|λi − λi+1|
)

≤ max






λ







(

σ−
p+1−i(t)

)max

(

σ−
p−i(t)

)min






,−|λi − λi+1|







= −|λi − λi+1|.

To further use our tools we need to retain admissibility for tuples propagated in step 1.1.

Lemma 4.9. Let 0 < δ(t) < 1 with λ
(

1
δ

)

= 0, and let 0 < ǫ < 1. There is T > 0 such that
admissible tuples in step 1.1 get mapped to admissible tuples for step 1.2, i.e.

(Φ(t1, θ−t1ω0))
d
(

Ad(v̂
−(t1))(δ(t1))

)

⊂ Ad(v(t2))(ǫ)

for all t1, t2 ≥ T .
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Proof. Choose 0 < ǫ < 1 with

d
(

V −
p+1−i(ω0), (Vi+1(ω0))

⊥
)

≤
√

1− ǫ2 − 2ǫ.

This is possible due to Proposition 2.7, since we assumed V −
p+1−i(ω0) ∩ Vi+1(ω0) = {0}.

Lemma 4.8 gives us the existence of T1 > 0 such that for all t1 ≥ T1 and all (b) ∈
Ad(v̂

−(t1))(δ(t1)) it holds

d

(

U
(Φ(t1,θ−t1ω0)b)
i , V −

p+1−i(ω0)

)

≤ ǫ.

Moreover, Lemma 4.4 yields T2 > 0 with

d
(

(Vi+1(ω0))
⊥, U

(v(t2))
i

)

≤ ǫ

for all t2 ≥ T2. Set T := max(T1, T2) and combine the previous three estimates for

d

(

U
(Φ(t1,θ−t1ω0)b)
i , U

(v(t2))
i

)

≤ d

(

U
(Φ(t1,θ−t1ω0)b)
i , V −

p+1−i(ω0)

)

+ d
(

V −
p+1−i(ω0), (Vi+1(ω0))

⊥
)

+ d
(

(Vi+1(ω0))
⊥, U

(v(t2))
i

)

≤
√

1− ǫ2.

This concludes the proof.

The following lemma combines step 1.1 and 1.2 into a characterization of the forward phase.

Lemma 4.10. Let 0 < δ(t) < 1 with λ
(

1
δ

)

= 0. There is T > 0 such that

λ

(

sup
t1>T

sup
(b)∈Ad(v̂

−(t1))(δ(t1))

d

(

U
(Φ(t1+t2,θ−t1ω0)b)
i , U

(u(t2))
i

)

)

≤ −|λi − λi+1|

holds, where the limit of the Lyapunov index is taken with respect to t2.

Proof. Write

Φ(t1 + t2, θ−t1ω0) = Φ(t2, ω0)Φ(t1, θ−t1ω0).

By Lemma 4.9 we find T > 0 such that for all t1, t2 ≥ T and (b) ∈ Ad(v̂
−(t1))(δ(t1)) the tuple

(Φ(t1, θ−t1ω0)b) is ǫ-admissible w.r.t. v(t2). Now, apply Proposition 2.19 with A = Φ(t2, ω0)
to see that

d

(

U
(Φ(t1+t2,θ−t1ω0)b)
i , U

(u(t2))
i

)

≤ i(p− i)

ǫ

σmax
i+1 (t2)

σmin
i (t2)

.

Since singular values converge to LEs, the claim is proved.
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4.3. Backward Phase. Initial tuples for the backward phase are obtained from spaces
spanned by vectors of the forward phase. Thus, it appears more practical to describe admis-
sibility in terms of propagated forward vectors instead of (v̂(t2)).

Lemma 4.11. Let 0 < δ(t) < 1√
2
with λ

(

1
δ

)

= 0 be given. There is T > 0 such that for all

t1, t2 ≥ T and all (b) ∈ Ad(v̂
−(t1))(δ(t1)) we have

Ad
(f)r

−
(√

2δ(t2)
)

⊂ Ad
(v̂(t2))
− (δ(t2)),

where (f) := GS(Φ(t1 + t2, θ−t1ω0)b) and admissibility holds with respect to reversed degen-
eracies.

Proof. Let (f) := GS(Φ(t1 + t2, θ−t1ω0)b) for (b) ∈ Ad(v̂
−(t1))(δ(t1)) be given, and let

(g) ∈ Ad
(f)r

−
(√

2δ(t2)
)

be an admissible tuple. We estimate

d
(

U
(g)
i− , U

(v̂(t2))
i−

)

≤ d
(

U
(g)
i− , U

(f)r

i−

)

+ d
(

U
(f)r

i− , U
(v̂(t2))
i−

)

≤
√

1− 2δ(t2)2 + d

(

(

U
(f)
p−i

)⊥
,
(

U
(u(t2))
p−i

)⊥)

=
√

1− 2δ(t2)2 + d

(

U
(Φ(t1+t2,θ−t1ω0)b)
p−i , U

(u(t2))
p−i

)

.

As in the proof of Lemma 4.10, the last summand can be estimated by

(p− i)i

ǫ

σmax
p+1−i(t2)

σmin
p−i(t2)

with 0 < ǫ < 1 for t1, t2 large enough. Now, for (g) to be δ(t2)-admissible w.r.t. (v̂(t2)), it
suffices to show that

√

1− 2δ(t2)2 +
(p− i)i

ǫ

σmax
p+1−i(t2)

σmin
p−i(t2)

≤
√

1− δ(t2)2

for t2 large enough, which in turn is equivalent to

1− 2δ(t2)
2 + 2

√

1− 2δ(t2)2

(

(p− i)i

ǫ

σmax
p+1−i(t2)

σmin
p−i(t2)

)

+

(

(p− i)i

ǫ

σmax
p+1−i(t2)

σmin
p−i(t2)

)2

≤ 1− δ(t2)
2

and to

2
√

1− 2δ(t2)2
(

(p−i)i
ǫ

σmax
p+1−i(t2)

σmin
p−i(t2)

)

+

(

(p−i)i
ǫ

σmax
p+1−i(t2)

σmin
p−i(t2)

)2

δ(t2)
≤ 1.
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The latter is true for t2 large enough, since we have

λ











2
√

1− 2δ(t2)2
(

(p−i)i
ǫ

σmax
p+1−i(t2)

σmin
p−i(t2)

)

+

(

(p−i)i
ǫ

σmax
p+1−i(t2)

σmin
p−i(t2)

)2

δ(t2)











≤ −|λp+1−i − λp−i| < 0.

Next, we add backward propagation to the characterization of the forward phase. During the
backward phase, it is enough to restrict ourselves to tuples that have admissible extensions.
A few argument from the forward phase can be repeated by reversing the cocycle.

Lemma 4.12. Let 0 < δ(t) < 1√
2
with λ

(

1
δ

)

be given. It holds

λ






sup

(b)∈Ad(v̂
−(t1))(δ(t1))

sup
(b′)∈

(

Ad
(f)r

ext−
(
√
2δ(t2))

)r
d

(

U
(Φ(−t2,θt2ω0)b′)
i , Ei(ω0)

)







≤ −min(|λi − λi−1|, |λi − λi+1|),

where (f) := GS(Φ(t1 + t2, θ−t1ω0)b).

Proof. Applying Lemma 4.8 to Φ and Φ−, we get

λ

(

sup
(b)∈Ad(v̂

−(t))(δ(t))

d
(

U
(Φ(t,θ−tω0)b)
i , V −

p+1−i(ω0)
)

)

≤ −|λi − λi+1|

and

λ



 sup
(g)∈Ad

(v̂(t))
−

(δ(t))

d
(

U
(Φ(−t,θtω0)g)
i− , Vp+1−i(ω0)

)



 ≤ −|λ−
i − λ−

i+1|.

By switching indices we can rewrite the latter as

λ



 sup
(g)∈Ad

(v̂(t))
−

(δ(t))

d
(

U
(Φ(−t,θtω0)g)
(p+1−i)− , Vi(ω0)

)



 ≤ −|λi − λi−1|.

In short, we have exponentially fast converging approximations to V −
p+1−i(ω0) and Vi(ω0),

which are transversal subspaces with intersection Ei(ω0) (see equation (3.1)). Thus, we can
apply Corollary 2.14 to

Mt :=
{

U
(Φ(t,θ−tω0)b)
i

∣

∣

∣ (b) ∈ Ad(v̂
−(t))(δ(t))

}

and

Nt :=
{

U
(Φ(−t,θtω0)g)
(p+1−i)−

∣

∣

∣
(g) ∈ Ad

(v̂(t))
− (δ(t))

}
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to get a convergence rate estimate for intersections12:

λ

(

sup
(b)∈Ad(v̂

−(t1))(δ(t1))

sup
(g)∈Ad

(v̂(t2))
−

(δ(t2))

d

(

U
(Φ(t1,θ−t1ω0)b)
i ∩ U

(Φ(−t2,θt2ω0)g)
(p+1−i)−

, Ei(ω0)

)

)

≤ −min(|λi − λi−1|, |λi − λi+1|).

By Lemma 4.11 we can take the supremum over

(g) ∈ Ad
(f)r

−
(√

2δ(t2)
)

instead, while maintaining the estimate. In particular, this is true for each admissible extension
(g) of

(b′)r ∈ Ad
(f)r

ext−

(√
2δ(t2)

)

.

Now, it suffices to show that each admissible extension (g) of

(

(b′)r
(p+1−i)−1

, . . . , (b′)r
(p+1−i)−

d
−

p+1−i

)

=
(

b′idi , . . . , b
′
i1

)

satisfies

U
(Φ(−t2,θt2ω0)b′)
i = U

(Φ(t1,θ−t1ω0)b)
i ∩ U

(Φ(−t2,θt2ω0)g)
(p+1−i)−

.

We clearly have

U
(b′)
i = U

(b′)r

(p+1−i)−
= U

(g)
(p+1−i)−

⊂ U
(g)
(p+1−i)−

and hence

U
(Φ(−t2,θt2ω0)b′)
i ⊂ U

(Φ(−t2,θt2ω0)g)
(p+1−i)−

for an admissible extension (g). Moreover, the definition of extendable admissibility requires
that

(b′)r
(p+1−i)−1

, . . . , (b′)r
(p+1−i)−

d
−

p+1−i

∈ U
(f)r

(p+1−i)−
⊕ · · · ⊕ U

(f)r

p−
= U

(f)
i ⊕ · · · ⊕ U

(f)
1

= U
(Φ(t1+t2,θ−t1ω0)b)
i = Φ(t2, ω0)U

(Φ(t1,θ−t1ω0)b)
i ,

or equivalently, it holds

U
(Φ(−t2,θt2ω0)b′)
i ⊂ U

(Φ(t1,θ−t1ω0)b)
i .

12Following this statement, one can prove convergence of algorithms that initiate randomly chosen vectors
in the past and future, propagate them to the present, and then take intersections of involved subspaces to get
an approximation of Ei(ω0). Similar convergence theorems for continuous and discrete time can be derived.
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Thus, we have

U
(Φ(−t2,θt2ω0)b′)
i ⊂ U

(Φ(t1,θ−t1ω0)b)
i ∩ U

(Φ(−t2,θt2ω0)g)
(p+1−i)−

.

Since admissible tuples are linearly independent, the left-hand side has dimension di. The
right-hand side must have the same dimension for t1, t2 large enough, because the intersection
converges to Ei(ω0). Hence, we have equality of subspaces, which concludes the proof.

4.4. Proof of Theorems. Lemma 4.12 describes how admissible tuples fare in Ginelli’s
algorithm. All that remains is to connect the lemma to measurement results from subsec-
tion 2.5.

Proof of Theorem 4.1. Fix ǫ > 0. It is enough to assume that K is a product of balls,

i.e. K = Bd(0,M)d × (B(M))r for some M > 0. Furthermore, we set δ(t) := min
(

1
t
, 1
2
√
2

)

, so

that λ
(

1
δ

)

= 0.

By Lemma 4.12 we have

1

min(t1, t2)
log d

(

U
(Φ(−t2,θt2ω0)b′)
i , Ei(ω0)

)

≤ −min(|λi − λi−1|, |λi − λi+1|) + ǫ

for all (b) ∈ Ad(v̂
−(t1))(δ(t1)) and (b′) ∈

(

Ad
(f)r

ext−

(√
2δ(t2)

)

)r

if t1 and t2 are large enough.

Using the identification via A(f), we could equivalently assume (b′) =
(

A(f)α
)

for

(α) ∈
(

(

A(f)
)−1

)d(

Ad
(f)r

ext−

(√
2δ(t2)

))r

=
(

Ad
(e)r

ext−

(√
2δ(t2)

))r

.

Hence, it is enough to show that nonadmissible tuples have measure zero in the limit:

µ
((

Bd(0,M)d × (B(M))r
)

\
(

Ad(v̂
−(t1))(δ(t1))×

(

Ad
(e)r

ext−

(√
2δ(t2)

))r))

≤ µ
(

Bd(0,M)d \ Ad(v̂
−(t1))(δ(t1))

)

µ((B(M))r)

+ µ
(

Bd(0,M)d
)

µ
(

(B(M))r \
(

Ad
(e)r

ext−

(√
2δ(t2)

))r)

= µ
(

Bd(0,M)d \ Ad(e)(δ(t1))
)

µ(B(M)) + µ
(

Bd(0,M)d
)

µ
(

B(M) \ Ad
(e)r

ext−

(√
2δ(t2)

))

Here, we used invariance under orthogonal transformations of Bd(0,M) to switch from (v̂−(t1))
to (e).
By Corollary 2.21 and Corollary 2.23 the estimate converges to zero as min(t1, t2) is increased.
Hence, we get the desired convergence result.

The discrete time version can be proved in a similar fashion.

Proof of Theorem 4.2. Assume discrete time T = Z and d > 1. We define δǫ(n) :=
(

ǫ√
2n2

)d−1
as our admissibility parameter satisfying λ

(

1
δǫ

)

= 0 for each 0 < ǫ < 1.



36 FLORIAN NOETHEN

Similar to before, we invoke Lemma 4.12 to find that

λ

(

d

(

U
(Φ(−n2,θn2ω0)b′)
i , Ei(ω0)

))

≤ −min(|λi − λi−1|, |λi − λi+1|)

for (b′) =
(

AGS(Φ(n1+n2,θ−n1ω)b)α
)

, whenever

((b), (α)) ∈
⋂

n1,n2∈N
Ad(v̂

−(n1))(δǫ(n1))×
(

Ad
(e)r

ext−

(√
2δǫ(n2)

))r

.

This is true independent of our choice for ǫ. Hence, it suffices to show that the complement
of

(4.1)
⋃

0<ǫ<1

⋂

n1,n2∈N
Ad(v̂

−(n1))(δǫ(n1))×
(

Ad
(e)r

ext−

(√
2δǫ(n2)

))r

has measure zero13, which can be proved by exhausting the domain of ((b), (α)) with products
of balls: It holds

µ

(

(

Bd(0,M)d × (B(M))r
)

\

⋃

0<ǫ<1

⋂

n1,n2∈N
Ad(v̂

−(n1))(δǫ(n1))×
(

Ad
(e)r

ext−

(√
2δǫ(n2)

))r

)

≤ inf
0<ǫ<1

(

∑

n1∈N
µ
(

Bd(0,M)d \ Ad(e)(δǫ(n1))
)

µ(B(M))

+
∑

n2∈N
µ
(

Bd(0,M)d
)

µ
(

B(M) \ Ad
(e)r

ext−

(√
2δǫ(n2)

))

)

≤ inf
0<ǫ<1





∑

n1∈N
η1(δǫ(n1))

1
d−1µ(B(M)) +

∑

n2∈N
µ
(

Bd(0,M)d
)

η2(δǫ(n2))
1

d−1





= inf
0<ǫ<1

ǫ

(

∑

n∈N

η1µ(B(M)) + η2µ
(

Bd(0,M)d
)

√
2n2

)

= 0

for each M > 0. Here, it was crucial to use Proposition 2.24 and Proposition 2.27 to get a
more precise measure estimate on nonadmissible tuples.

13Note that the statement is not true in general for continuous time. In fact, in Example 3.7 no tuple (b) is
admissible w.r.t. (v̂−(t1)) for all t1 ∈ R>0 simultaneously. Hence, in this case the set in (4.1) is empty.
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5. Conclusions. We defined Ginelli’s algorithm as a mean to compute CLVs/Oseledets
spaces, which are the most natural choice for directions describing asymptotic expansion and
contraction in the tangent linear model along a given trajectory. The existence of those char-
acteristic directions was provided by the MET of Oseledets. Moreover, the theorem handed us
an interface able to link CLVs with a limit of finite time scenarios, in which Ginelli’s algorithm
is applied to initial vectors. It turned out that certain configurations of initial vectors perform
better than others given the same runtime, whereas in some cases the algorithm would not
even converge - a problem that did not receive enough attention in previous attempts to prove
convergence.
As a measure to tackle this problem, we introduced the concept of admissibility. It rates a
configuration based on how well it performs in the finite time scenario. A parameter close
to 1 would imply fast convergence and a value near 0 indicates slow convergence. On the
one hand we want to exclude nonadmissible tuples, but on the other hand we would like to
cover as many configurations as possible. Hence, it was necessary to choose a time-dependent
admissibility-parameter that converges to 0, while not influencing the speed of convergence on
an exponential timescale. This way we were able to prove convergence in measure of Ginelli’s
algorithm and, moreover, convergence for almost all initial tuples in the discrete case.
Due to our notation it was possible to establish a direct connection between the speed of
convergence and LEs. Namely, the algorithm converges exponentially fast with an exponent
given by the minimal distance between LEs. Interestingly, this was already predicted and
observed in applications [11, 12, 14, 28].

It is important to point out that the Lyapunov index notation neglects system-dependent
prefactors for the speed of convergence on subexponential timescales, which may very well be
of importance for limited time scenarios. As it stands, one needs to choose a runtime prior to
executing Ginelli’s algorithm. Hence, without clever adjustments, it is necessary to repeat the
whole algorithm after increasing the runtime. Especially, when probing the past or future, a
fitting runtime might not be known due to insufficient data.

Numerical applications often do not provide exact integrations of the underlying system.
Consequently, one is confronted with perturbed information of orbit and cocycle that might
lead to false results in sensitive regions of the system. In particular, the possibly noncontinu-
ous dependence of the Lyapunov spectrum on the choice of trajectory adds to the uncertainty.
In this sense it would be interesting to know how perturbations affect the outcome of Ginelli’s
algorithm in numerical simulations as well as in analytical computations.

Ultimately, a wide range of applications [3, 6, 7, 9, 12, 14, 15, 16, 19, 22, 23, 24, 25, 26, 27,
28, 31, 32] underline the importance of CLVs for dynamical systems. Our convergence proof
not only verifies the use of Ginelli’s algorithm in these applications, but encourages to apply
the concept of CLVs to further scenarios. Moreover, the tools obtained during the proof can
be used to investigate other algorithms, such as Wolfe-Samelson’s algorithm [30], as well. In
general, we expect our rigorous mathematical treatment to enable a more in-depth analysis
that will lead to new insights and improvements of CLV-algorithms, which are an important
instrument to finding structure in the chaos of dynamical systems.
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