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Abstract

We show that on any smooth compact connected manifold of dimension m ≥ 2 admit-

ting a smooth non-trivial circle action S = {St}t∈R
, St+1 = St, the set of weakly mixing

C∞-diffeomorphisms which preserve both a smooth volume ν and a measurable Rieman-

nian metric is dense in Aα (M) = {h ◦ Sα ◦ h−1 : h ∈ Diff∞ (M,ν)}
C

∞

for every Liouvillean

number α. The proof is based on a quantitative version of the Anosov-Katok-method with

explicitly constructed conjugation maps and partitions.
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1 Introduction

To begin, recall that a dynamical system (X,T, ν) is ergodic if and only if every measurable
complex-valued function h on (X, ν) which is invariant (i.e. such that h (Tx) = h (x) for every
x ∈ X) must necessarily be constant. We define (X,T, ν) to be weakly mixing if it satisfies
the stronger condition that there is no non-constant measurable complex valued function h on
(X, ν) such that h (Tx) = λ · h (x) for some λ ∈ C. Equivalently there is an increasing sequence
(mn)n∈N

of natural numbers such that limn→∞ |ν (B ∩ T−mn (A))− ν (A) · ν (B)| = 0 for every
pair of measurable sets A,B ⊆ X (see [Skl67] or [AK70, Theorem 5.1]). We call a circle action
{St}t∈R

on a manifold M non-trivial if there exists t ∈ R and x ∈ M with St(x) 6= x; in other
words, not all orbits are fixed points (even though some may be).
Until 1970 it was an open question if there exists an ergodic area-preserving smooth diffeomor-
phism on the disc D2. This problem was solved by the so-called “approximation by conjugation”-
method developed by D. Anosov and A. Katok in [AK70]. In fact, on every smooth compact
connected manifold M of dimension m ≥ 2 admitting a non-trivial circle action S = {St}t∈S1

preserving a smooth volume ν this method enables the construction of smooth diffeomorphisms
with specific ergodic properties (e. g. weakly mixing ones in [AK70, section 5]) or non-standard
smooth realizations of measure-preserving systems (e. g. [AK70, section 6] and [FSW07]). These
diffeomorphisms are constructed as limits of conjugates fn = Hn ◦ Sαn+1 ◦H−1

n , where αn+1 =

http://arxiv.org/abs/1512.00075v1
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αn+
1

kn·ln·q2n
∈ Q, where Hn = Hn−1 ◦hn and where hn are measure-preserving diffeomorphisms

satisfying S 1
qn

◦ hn = hn ◦ S 1
qn

. In each step the conjugation map hn and the parameter kn are
chosen such that the diffeomorphism fn imitates the desired property with a certain precision.
In a final step of the construction, the parameter ln is chosen large enough to guarantee closeness
of fn to fn−1 in the C∞-topology, and so the convergence of the sequence (fn)n∈N

to a limit
diffeomorphism is provided. It is even possible to keep this limit diffeomorphism within any given
C∞-neighbourhood of the initial element Sα1 or, by applying a fixed diffeomorphism g first, of
g◦Sα1◦g−1. So the construction can be carried out in a neighbourhood of any diffeomorphism con-

jugate to an element of the action. Thus, A (M) = {h ◦ St ◦ h−1 : t ∈ S1, h ∈ Diff∞ (M, ν)}C
∞

is a natural space for the produced diffeomorphisms. Moreover, we will consider the restricted

space Aα (M) = {h ◦ Sα ◦ h−1 : h ∈ Diff∞ (M, ν)}C
∞

for α ∈ S1.
In the following let M be a smooth compact connected manifold of dimension m ≥ 2 admitting
a non-trivial circle action S = {St}t∈R

, St+1 = St. Note that any such action possesses a smooth
invariant volume: Every smooth manifold carries a Riemannian metric and hence a smooth Rie-
mannian volume form ν̂. Any smooth volume form is given by f · ν̂, where f is a positive scalar
function. If f̄ is the fiberwise average of f , then f̄ · ν̂ is a smooth volume form which is invariant
under S. In case of a manifold with boundary by a smooth diffeomorphism we mean infinitely
differentiable in the interior and such that all the derivatives can be extended to the boundary
continuously.
In their influential paper [AK70] Anosov and Katok proved amongst others that in A (M) the set
of weakly mixing diffeomorphisms is generic (i. e. it is a dense Gδ-set) in the C∞ (M)-topology.
For this they used the “approximation by conjugation”-method. In [GK00] the conjugation maps
are constructed more explicitly such that they can be equipped with the additional structure of
being locally very close to an isometry, thus showing that there exists a weakly mixing smooth
diffeomorphism preserving a smooth measure and a measurable Riemannian metric on any mani-
fold with non-trivial circle action. Actually, it follows from the respective proofs that both results
are true in Aα (M) for a Gδ-set of α ∈ R. However, both proofs do not give a full description of
the set of α ∈ R for which the particular result holds in Aα (M). Such an investigation is started
in [FS05]: B. Fayad and M. Saprykina showed in case of dimension 2 that if α ∈ S1 is Liouville,
the set of weakly mixing diffeomorphisms is generic in the C∞ (M)-topology in Aα (M). Here
an irrational number α is called Liouville if and only if for every C ∈ R>0 and for every n ∈ N

there are infinitely many pairs of coprime integers p, q such that
∣

∣

∣α− p
q

∣

∣

∣ < C
qn .

In this article we prove the following theorem generalizing the results of [GK00] as well as [FS05]:

Theorem 1. Let M be a smooth compact and connected manifold of dimension m ≥ 2 with

a non-trivial circle action S = {St}t∈R
, St+1 = St. For any S-invariant smooth volume ν the

following is true: If α ∈ R is Liouville, then the set of volume-preserving diffeomorphisms, that

are weakly mixing and preserve a measurable Riemannian metric, is dense in the C∞-topology

in Aα (M).

See [GK00, section 3] for a comprehensive consideration of IM-diffeomorphisms (i. e. diffeo-
morphisms preserving an absolutely continuous probability measure and a measurable Rieman-
nian metric) and IM-group actions. In particular, the existence of a measurable invariant metric
for a diffeomorphism is equivalent to the existence of an invariant measure for the projectivized
derivative extension which is absolutely continuous in the fibers. It is a natural question to ask
about the ergodic properties of the derivative extension with respect to such a measure. While
in our construction the projectivized derivative extension is as non-ergodic as possible (in fact,
the derivative cocycle is cohomologous to the identity), it is work in progress to realize ergodic
behaviour. This would provide the only known examples of measure-preserving diffeomorphisms



Preliminaries 3

whose differential is ergodic with respect to a smooth measure in the projectivization of the
tangent bundle. Recently, it has been proven that for every ρ > 0 and m ≥ 2 there exists a
weakly mixing real-analytic diffeomorphism f ∈ Diffω

ρ (Tm, µ) preserving a measurable Rieman-
nian metric ([Ku]).
We want to point out that Theorem 1 is in some sense the best we can obtain:

• By [FS05, corollary 1.4], whose proof uses Herman’s last geometric result ([FKr09]), we
have the following dichotomy in case of M = S1× [0, 1]: A number α ∈ R\Q is Diophantine
if and only if there is no ergodic diffeomorphism of M whose rotation number (on at least
one of the boundaries) is equal to α. Since weakly mixing diffeomorphisms are ergodic,
there cannot be a weakly mixing f ∈ Aα

(

S1 × [0, 1]
)

for α ∈ R \Q Diophantine.

• By a result of A. Furman (appendix to [GK00]) a weakly mixing diffeomorphism cannot
preserve a Riemannian metric with L2-distortion (i.e. both the norm and its inverse are
L2-functions). Moreover, it is conjectured that a weakly mixing diffeomorphism cannot
preserve a Riemannian metric with L1-distortion (see [GK00, Conjecture 3.7.]).

Using the standard techniques to prove genericity of the weak mixing-property and Theorem
1 we conclude in subsection 2.2:

Corollary 1. Let M be a smooth compact and connected manifold of dimension m ≥ 2 with a

non-trivial circle action S = {St}t∈R
, St+1 = St, preserving a smooth volume ν. If α ∈ R is

Liouville, the set of volume-preserving weakly mixing diffeomorphisms is a dense Gδ-set in the

C∞-topology in Aα (M).

Hence, we obtain the result of [FS05] in arbitrary dimension at least 2.

2 Preliminaries

2.1 Definitions and notations

In this chapter we want to introduce advantageous definitions and notations. Initially we discuss
topologies on the space of smooth diffeomorphisms on the manifold M = S1 × [0, 1]m−1. Note
that for diffeomorphisms f = (f1, ..., fm) : S1× [0, 1]

m−1 → S1× [0, 1]
m−1 the coordinate function

f1 understood as a map R× [0, 1]
m−1 → R has to satisfy the condition f1 (θ + n, r1, ..., rm−1) =

f1 (θ, r1, ..., rm−1) + l for n ∈ Z, where either l = n or l = −n. Moreover, for i ∈ {2, ...,m} the
coordinate function fi has to be Z-periodic in the first component, i.e. fi (θ + n, r1, ..., rm−1) =
fi (θ, r1, ..., rm−1) for every n ∈ Z.

To define explicit metrics on Diffk
(

S1 × [0, 1]
m−1

)

and in the following, the subsequent notations

will be useful:

Definition 2.1. 1. For a sufficiently differentiable function f : Rm → R and a multi-index
~a = (a1, ..., am) ∈ Nm

0

D~af :=
∂|~a|

∂xa1
1 ...∂x

am
m
f,

where |~a| =
∑m

i=1 ai is the order of ~a.

2. For a continuous function F : (0, 1)
m → R

‖F‖0 := sup
z∈(0,1)m

|F (z)| .
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Diffeomorphisms on S1× [0, 1]
m−1 can be regarded as maps from [0, 1]

m to Rm. In this spirit
the expressions ‖fi‖0 as well as ‖D~afi‖0 for any multi-index ~a with |~a| ≤ k have to be understood

for f = (f1, ..., fm) ∈ Diffk
(

S1 × [0, 1]
m−1

)

. Since such a diffeomorphism is a continuous map on

the compact manifold and every partial derivative can be extended continuously to the boundary,
all these expressions are finite. Thus the subsequent definition makes sense:

Definition 2.2. 1. For f, g ∈ Diffk
(

S1 × [0, 1]m−1
)

with coordinate functions fi resp. gi we

define

d̃0 (f, g) = max
i=1,..,m

{

inf
p∈Z

‖(f − g)i + p‖0
}

as well as

d̃k (f, g) = max
{

d̃0 (f, g) , ‖D~a (f − g)i‖0 : i = 1, ...,m , 1 ≤ |~a| ≤ k
}

.

2. Using the definitions from 1. we define for f, g ∈ Diffk
(

S1 × [0, 1]
m−1

)

:

dk (f, g) = max
{

d̃k (f, g) , d̃k
(

f−1, g−1
)

}

.

Obviously dk describes a metric on Diffk
(

S1 × [0, 1]
m−1

)

measuring the distance between

the diffeomorphisms as well as their inverses. As in the case of a general compact manifold the
following definition connects to it:

Definition 2.3. 1. A sequence of Diff∞
(

S1 × [0, 1]
m−1

)

-diffeomorphisms is called conver-

gent in Diff∞
(

S1 × [0, 1]m−1
)

if it converges in Diffk
(

S1 × [0, 1]m−1
)

for every k ∈ N.

2. On Diff∞
(

S1 × [0, 1]m−1
)

we declare the following metric

d∞ (f, g) =
∞
∑

k=1

dk (f, g)

2k · (1 + dk (f, g))
.

It is a general fact that Diff∞
(

S1 × [0, 1]
m−1

)

is a complete metric space with respect to this

metric d∞.
Again considering diffeomorphisms on S1 × [0, 1]m−1 as maps from [0, 1]m to Rm we add the
adjacent notation:

Definition 2.4. Let f ∈ Diffk
(

S1 × [0, 1]
m−1

)

with coordinate functions fi be given. Then

‖Df‖0 := max
i,j∈{1,...,m}

‖Djfi‖0

and

|||f |||k := max
{

‖D~afi‖0 ,
∥

∥D~a

(

f−1
i

)∥

∥

0
: i = 1, ...,m, ~a multi-index with 0 ≤ |~a| ≤ k

}

.

Remark 2.5. By the above-mentioned observations for every multi-index ~a with |~a| ≥ 1 and
every i ∈ {1, ...,m} the derivative D~ahi is Z-periodic in the first variable. Since in case of a
diffeomorphism g = (g1, ..., gm) on S1× [0, 1]

m−1 regarded as a map [0, 1]
m → Rm the coordinate

functions gj for j ∈ {2, ...,m} satisfy gj ([0, 1]
m) ⊆ [0, 1], it holds:

sup
z∈(0,1)m

|(D~ahi) (g (z))| ≤ |||h||||~a|.
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Furthermore, we introduce the notion of a partial partition of a compact manifold M , which
is a pairwise disjoint countable collection of measurable subsets of M .

Definition 2.6. • A sequence of partial partitions νn converges to the decomposition into
points if and only if for a given measurable set A and for every n ∈ N there exists a
measurable set An, which is a union of elements of νn, such that limn→∞ µ (A∆An) = 0.
We often denote this by νn → ε.

• A partial partition ν is the image under a diffeomorphism F :M →M of a partial partition
η if and only if ν = {F (I) : I ∈ η}. We write this as ν = F (η).

2.2 First steps of the proof

First of all we show how constructions on S1 × [0, 1]
m−1 can be transfered to a general compact

connected smooth manifold M with a non-trivial circle action S = {St}t∈R
, St+1 = St. By [AK70,

Proposition 2.1.], we can assume that 1 is the smallest positive number satisfying St = id. Hence,
we can assume S to be effective. We denote the set of fixed points of S by F and for q ∈ N Fq

is the set of fixed points of the map S 1
q
.

On the other hand, we consider S1 × [0, 1]
m−1 with Lebesgue measure µ. Furthermore, let

R = {Rα}α∈S1
be the standard action of S1 on S1 × [0, 1]m−1, where the map Rα is given by

Rα (θ, r1, ..., rm−1) = (θ + α, r1, ..., rm−1). Hereby, we can formulate the following result (see
[FSW07, Proposition 1]):

Proposition 2.7. Let M be a m-dimensional smooth, compact and connected manifold admitting

an effective circle action S = {St}t∈R
, St+1 = St, preserving a smooth volume ν. Let B :=

∂M ∪F ∪
(

⋃

q≥1 Fq

)

. There exists a continuous surjective map G : S1 × [0, 1]m−1 →M with the

following properties:

1. The restriction of G to S1 × (0, 1)
m−1

is a C∞-diffeomorphic embedding.

2. ν
(

G
(

∂
(

S1 × [0, 1]
m−1

)))

= 0

3. G
(

∂
(

S1 × [0, 1]
m−1

))

⊇ B

4. G∗ (µ) = ν

5. S ◦G = G ◦ R

By the same reasoning as in [FSW07, section 2.2.], this proposition allows us to carry a

construction from
(

S1 × [0, 1]m−1 ,R, µ
)

to the general case (M,S, ν):
Suppose f : S1 × [0, 1]

m−1 → S1 × [0, 1]
m−1 is a weakly mixing diffeomorphism sufficiently

close to Rα in the C∞-topology with f -invariant measurable Riemannian metric ω obtained
by f = limn→∞ fn with fn = Hn ◦ Rαn+1 ◦H−1

n , where fn = Rαn+1 in a neighbourhood of the
boundary (in Proposition 2.8 we will see that these conditions can be satisfied in the constructions
of this article). Then we define a sequence of diffeomorphisms:

f̃n : M →M f̃n (x) =







G ◦ fn ◦G−1 (x) if x ∈ G
(

S1 × (0, 1)
m−1

)

Sαn+1 (x) if x ∈ G
(

∂
(

S1 × (0, 1)m−1
))
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Constituted in [FK04, section 5.1.], this sequence is convergent in the C∞-topology to the dif-
feomorphism

f̃ :M →M f̃ (x) =







G ◦ f ◦G−1 (x) if x ∈ G
(

S1 × (0, 1)m−1
)

Sα (x) if x ∈ G
(

∂
(

S1 × (0, 1)
m−1

))

provided the closeness from f to Rα in the C∞-topology.
We observe that f and f̃ are measure-theoretically isomorphic. Then f̃ is weakly mixing because
the weak mixing-property is invariant under isomorphisms.
Moreover, we want to show how we can construct a f̃ -invariant measurable Riemannian met-
ric ω̃ out of the f -invariant metric ω. Since ω̃ only needs to be a measurable metric and

ν
(

G
(

∂
(

S1 × [0, 1]m−1
)))

= 0, we only have to construct it on G
(

S1 × (0, 1)m−1
)

. Using

the diffeomorphic embedding G we consider ω̃|G(S1×(0,1)m−1) :=
(

G−1
)∗
ω|G(S1×(0,1)m−1) and

show that it is f̃ -invariant: On G
(

S1 × (0, 1)
m−1

)

we have f̃ = G ◦ f ◦ G−1 and thus we can
compute:

f̃∗ω̃ =
(

G ◦ f ◦G−1
)∗
(

(

G−1
)∗
ω
)

=
(

G−1
)∗◦f∗◦G∗◦

(

G−1
)∗
ω =

(

G−1
)∗◦f∗ω =

(

G−1
)∗
ω = ω̃

Altogether the construction done in the case of
(

S1 × [0, 1]
m−1

,R, µ
)

is transfered to (M,S, ν).
Hence, it suffices to consider constructions on M = S1 × [0, 1]m−1 with circle action R subse-
quently. In this case we will prove the following result:

Proposition 2.8. For every Liouvillean number α there is a sequence (αn)n∈N
of rational

numbers αn = pn

qn
satisfying limn→∞ |α− αn| = 0 monotonically, and there are sequences

(gn)n∈N
, (φn)n∈N

of measure-preserving diffeomorphisms satisfying gn ◦ R 1
qn

= R 1
qn

◦ gn as

well as φn ◦ R 1
qn

= R 1
qn

◦ φn such that the diffeomorphisms fn = Hn ◦ Rαn+1 ◦ H−1
n with

Hn := h1 ◦ h2 ◦ ... ◦ hn, where hn := gn ◦ φn, coincide with Rαn+1 in a neighbourhood of the

boundary, converge in the Diff∞ (M)-topology, and the diffeomorphism f = limn→∞ fn is weakly

mixing, has an invariant measurable Riemannian metric, and satisfies f ∈ Aα (M).
Furthermore, for every ε > 0 the parameters in the construction can be chosen in such a way

that d∞ (f,Rα) < ε.

By this Proposition weakly mixing diffeomorphisms preserving a measurable Riemannian
metric are dense in Aα (M):

Because of Aα (M) = {h ◦Rα ◦ h−1 : h ∈ Diff∞ (M,µ)}C
∞

it is enough to show that for every
diffeomorphism h ∈ Diff∞ (M,µ) and every ǫ > 0 there is a weakly mixing diffeomorphism

f̃ preserving a measurable Riemannian metric such that d∞
(

f̃ , h ◦Rα ◦ h−1
)

< ǫ. For this

purpose, let h ∈ Diff∞ (M,µ) and ǫ > 0 be arbitrary. By [Om74, p. 3] and [KM97, Theorem
43.1.], Diff∞ (M) is a Lie group. In particular, the conjugating map g 7→ h◦g ◦h−1 is continuous
with respect to the metric d∞. Continuity in the point Rα yields the existence of δ > 0, such
that d∞ (g,Rα) < δ implies d∞

(

h ◦ g ◦ h−1, h ◦Rα ◦ h−1
)

< ǫ. By Proposition 2.8 we can
find a weakly mixing diffeomorphism f with f -invariant measurable Riemannian metric ω and

d∞(f,Rα) < δ. Hence f̃ := h ◦ f ◦ h−1 satisfies d∞
(

f̃ , h ◦Rα ◦ h−1
)

< ǫ. Note that f̃ is weakly

mixing and preserves the measurable Riemannian metric ω̃ :=
(

h−1
)∗
ω.

Hence, Theorem 1 is deduced from Proposition 2.8.
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Remark 2.9. Moreover we can show that the set of weakly mixing diffeomorphisms is generic
in Aα (M) (i.e. it is a dense Gδ-set) using Proposition 2.8 and the same technique as in [Ha56],
section Category.
Using Proposition 2.8 we can show that the set of weakly mixing diffeomorphisms is generic
in Aα (M) (i.e. it is a dense Gδ-set). Thereby, we consider a countable dense set {ϕn}n∈N

in
L2 (M,µ), which is a separable space, and define the sets:

O (i, j, k, n) =

{

T ∈ Aα (M) : |(Un
Tϕi, ϕj)− (ϕi, 1) · (1, ϕj)| <

1

k

}

Since (UTϕ, ψ) depends continuously on T , each O (i, j, k, n) is open. Hence,

K :=
⋂

i∈N

⋂

j∈N

⋂

k∈N

⋃

n∈N

O (i, j, k, n)

is a Gδ-set.
By another equivalent characterisation a measure-preserving transformation T is weakly mixing
if and only if for every ϕ, ψ ∈ L2 (M,µ) there is a sequence (mn)n∈N

of density one such that
limn→∞ (Umn

T ϕ, ψ) = (ϕ, 1)·(1, ψ). Thus, every weakly mixing diffeomorphism is contained in K.
On the other hand, we show that a transformation, that is not weakly mixing, does not belong
to K: If T is not weakly mixing, UT has a non-trivial eigenfunction. W.l.o.g. we can assume the
existence of f ∈ L2 (M,µ) and c ∈ C of absolute value 1 satisfying UT f = c · f , ‖f‖L2 = 1 and
(1, f) = 0. Since {ϕn}n∈N

is dense in L2 (M,µ), there is an index i such that ‖f − ϕi‖L2 < 0.1.
Obviously ‖ϕi‖L2 ≤ ‖f‖L2 + ‖f − ϕi‖L2 < 1.1 and |(Un

T f, f)− (f, 1) · (1, f)| = |(cn · f, f)| =
|cn| · ‖f‖2L2 = 1. Consequently we can estimate:

1 = |(Un
T f, f)− (f, 1) · (1, f)|

≤ |(Un
T f, f)− (Un

T f, ϕi)|+ |(Un
T f, ϕi)− (Un

Tϕi, ϕi)|+ |(Un
Tϕi, ϕi)− (ϕi, 1) · (1, ϕi)|

+ |(ϕi, 1) · (1, ϕi)− (ϕi, 1) · (1, f)|+ |(ϕi, 1) · (1, f)− (f, 1) · (1, f)|
≤ |c|n · ‖f‖L2 · ‖f − ϕi‖L2 + ‖f − ϕi‖L2 · ‖ϕi‖L2 + |(Un

Tϕi, ϕi)− (ϕi, 1) · (1, ϕi)|
+ ‖ϕi‖L2 · ‖f − ϕi‖L2

≤ 0.1 + 0.11 + |(Un
Tϕi, ϕi)− (ϕi, 1) · (1, ϕi)|+ 0.11

< |(Un
Tϕi, ϕi)− (ϕi, 1) · (1, ϕi)|+ 0.5

Thus |(Un
Tϕi, ϕi)− (ϕi, 1) · (1, ϕi)| has to be larger than 1

2 . Hence T does not belong toO (i, i, 2, n)
for any value of n and accordingly does not belong to K. So K coincides with the set of weakly
mixing diffeomorphisms in Aα (M). By the observations above we know that this set is dense. In
conclusion the set of weakly mixing diffeomorphisms is a dense Gδ-set in Aα (M). Thus Corollary
1 is proven.

2.3 Outline of the proof

The constructions are based on the “approximation by conjugation”-method developed by D.V.
Anosov and A. Katok in [AK70]. As indicated in the introduction, one constructs successively a
sequence of measure preserving diffeomorphisms fn = Hn ◦Rαn+1 ◦H−1

n , where the conjugation
maps Hn = h1 ◦ ... ◦ hn and the rational numbers αn = pn

qn
are chosen in such a way that the

functions fn converge to a diffeomorphism f with the desired properties.
First of all we will define two sequences of partial partitions, which converge to the decomposition
into points in each case. The first type of partial partition, called ηn, will satisfy the requirements
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in the proof of the weak mixing-property. On the partition elements of the even more refined
second type, called ζn, the conjugation map hn will act as an isometry, and this will enable us
to construct an invariant measurable Riemannian metric. Afterwards we will construct these
conjugating diffeomorphisms hn = gn ◦ φn, which are composed of two step-by-step defined
smooth measure-preserving diffeomorphisms. In this construction the map gn should introduce
shear in the θ-direction as in [FS05]. So g̃[nqσn] (θ, r1, ..., rm−1) = (θ + [n · qσn] · r1, r1, ..., rm−1)
might seem an obvious candidate. Unfortunately, that map is not an isometry. Therefore, the
map gn will be constructed in such a way that gn is an isometry on the image under φn of any

partition element Ǐn ∈ ζn, and gn
(

În

)

= g̃[nqσn]

(

În

)

as well as gn
(

Φn

(

În

))

= g̃[nqσn]

(

Φn

(

În

))

for every În ∈ ηn, where Φn = φn ◦ Rmn
αn+1

◦ φ−1
n with a specific sequence (mn)n∈N

of natural
numbers (see section 4) is important in the proof of the weak mixing property. Likewise the
conjugation map φn will be built such that it acts on the elements of ζn as an isometry and on
the elements of ηn in such a way that it satisfies the requirements of the desired criterion for
weak mixing. This criterion is established in section 5. It is similar to the criterion in [FS05] but
modified in many places because of the new conjugation map gn and the new type of partitions.
The construction presented here combines the advantages of shearing maps and local isometries,
and it combines local maps in such a way that the derivatives of the resultant conjugation maps
can be suitably bounded. Unfortunately, this requires a fairly elaborate and slightly technical
construction.
In section 6 we will show convergence of the sequence (fn)n∈N

in Aα (M) for a given Liouville
number α by the same approach as in [FS05]. To do so, we have to estimate the norms |||Hn|||k
very carefully. Furthermore, we will see at the end of section 6 that the criterion for weak mixing
applies to the obtained diffeomorphism f = limn→∞ fn. Finally, we will construct the desired
f -invariant measurable Riemannian metric in section 7.

3 Explicit constructions

3.1 Sequences of partial partitions

In this subsection we define the two announced sequences of partial partitions (ηn)n∈N
and

(ζn)n∈N
of M = S1 × [0, 1]

m−1.

3.1.1 Partial partition ηn

Remark 3.1. For convenience we will use the notation
∏m

i=2 [ai, bi] for [a2, b2]× ...× [am, bm].

Initially, ηn will be constructed on the fundamental sector
[

0, 1
qn

]

×[0, 1]m−1. For this purpose

we divide the fundamental sector into n sections:

• In case of k ∈ N and 2 ≤ k ≤ n − 1 on
[

k−1
n·qn

, k
n·qn

]

× [0, 1]
m−1 the partial partition ηn

consists of all multidimensional intervals of the following form:
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[

k − 1

n · qn
+

j
(1)
1

n · q2n
+ ...+

j
((m−1)· (k+1)·k

2 )
1

n · q1+(m−1)· (k+1)·k
2

n

+
1

10 · n5 · q1+(m−1)· (k+1)·k
2

n

,

k − 1

n · qn
+

j
(1)
1

n · q2n
+ ...+

j
((m−1)· (k+1)·k

2 )
1 + 1

n · q1+(m−1)· (k+1)·k
2

n

− 1

10 · n5 · q1+(m−1)· (k+1)·k
2

n

]

×
m
∏

i=2

[

j
(1)
i

qn
+ ...+

j
(k+1)
i

qk+1
n

+
1

26 · n4 · qk+1
n

,
j
(1)
i

qn
+ ...+

j
(k+1)
i + 1

qk+1
n

− 1

26 · n4 · qk+1
n

]

,

where j(l)1 ∈ Z und
⌈

qn
10n4

⌉

≤ j
(l)
1 ≤ qn −

⌈

qn
10n4

⌉

− 1 for l = 1, ..., (m− 1) · (k+1)·k
2 as well as

j
(l)
i ∈ Z and

⌈

qn
10n4

⌉

≤ j
(l)
i ≤ qn −

⌈

qn
10n4

⌉

− 1 for i = 2, ...,m and l = 1, ..., k + 1.

• On
[

0, 1
n·qn

]

× [0, 1]
m−1 as well as

[

n−1
n·qn

, 1
qn

]

× [0, 1]
m−1 there are no elements of the partial

partition ηn.

By applying the map Rl/qn with l ∈ Z, this partial partition of
[

0, 1
qn

]

× [0, 1]
m−1 is extended

to a partial partition of S1 × [0, 1]m−1.

Remark 3.2. By construction this sequence of partial partitions converges to the decomposition
into points.

3.1.2 Partial partition ζn

As in the previous case we will construct the partial partition ζn on the fundamental sector
[

0, 1
qn

]

× [0, 1]
m−1 initially and therefore divide this sector into n sections: In case of k ∈ N and

1 ≤ k ≤ n on
[

k−1
n·qn

, k
n·qn

]

× [0, 1]m−1 the partial partition ζn consists of all multidimensional

intervals of the following form:

[

k − 1

n · qn
+

j
(1)
1

n · q2n
+ ...+

j
((m−1)·k·(k+1)

2 )
1

n · q1+(m−1)· k·(k+1)
2

n

+
1

n5 · q1+(m−1)·k·(k+1)
2

n

,

k − 1

n · qn
+

j
(1)
1

n · q2n
+ ...+

j
((m−1)· k·(k+1)

2 )
1 + 1

n · q1+(m−1)· k·(k+1)
2

n

− 1

n5 · q1+(m−1)·k·(k+1)
2

n

]

×
[

j
(1)
2

qn
+ ...+

j
((m−1)· k·(k+1)

2 +1)
2

q
1+(m−1)·k·(k+1)

2
n

+
j
((m−1)· k·(k+1)

2 +2)
2

8n5 · q1+(m−1)· k·(k+1)
2

n · [nqσn ]
+

1

8n9 · q1+(m−1)· k·(k+1)
2

n · [nqσn]
,

j
(1)
2

qn
+ ...+

j
((m−1)·k·(k+1)

2 +1)
2

q
1+(m−1)·k·(k+1)

2
n

+
j
((m−1)· k·(k+1)

2 +2)
2 + 1

8n5 · q1+(m−1)· k·(k+1)
2

n · [nqσn ]
− 1

8n9 · q1+(m−1)·k·(k+1)
2

n · [nqσn ]

]

×
m
∏

i=3

[

j
(1)
i

qn
+ ...+

j
(k)
i

qkn
+

1

n4 · qkn
,
j
(1)
i

qn
+ ...+

j
(k)
i + 1

qkn
− 1

n4 · qkn

]

,

where j
(l)
i ∈ Z and

⌈

qn
n4

⌉

≤ j
(l)
i ≤ qn −

⌈

qn
n4

⌉

− 1 for i = 3, ...,m and l = 1, .., k as well as

j
(l)
1 ∈ Z,

⌈

qn
n4

⌉

≤ j
(l)
1 ≤ qn −

⌈

qn
n4

⌉

− 1 for l = 1, ..., (m − 1) · k·(k+1)
2 as well as j(l)2 ∈ Z and
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⌈

qn
n4

⌉

≤ j
(l)
2 ≤ qn −

⌈

qn
n4

⌉

− 1 for l = 1, ..., (m − 1) · k·(k+1)
2 + 1 as well as j

((m−1)· k·(k+1)
2 +2)

2 ∈ Z

and 8 · n · [n · qσn] ≤ j
((m−1)· k·(k+1)

2 +2)
2 ≤ 8 · n5 · [n · qσn]− 8 · n · [n · qσn ]− 1.

Remark 3.3. For every n ≥ 3 the partial partition ζn consists of disjoint sets, covers a set of
measure at least 1− 4·m

n2 , and the sequence (ζn)n∈N
converges to the decomposition into points.

3.2 The conjugation map g
n

Let σ ∈ (0, 1). As mentioned in the sketch of the proof we aim for a smooth measure-preserving

diffeomorphism gn which satisfies gn
(

În

)

= g̃[nqσn]

(

În

)

as well as gn
(

Φn

(

În

))

= g̃[nqσn]

(

Φn

(

În

))

for every În ∈ ηn and is an isometry on the image under φn of any partition element Ǐn ∈ ζn.
Let a, b ∈ Z and ε ∈

(

0, 1
16

]

such that 1
ε ∈ Z. Moreover, we consider δ > 0 such that 1

δ ∈ Z and
a·b·δ
ε ∈ Z. We denote [0, 1]

2 by ∆ and [ε, 1− ε]
2 by ∆(ε).

Lemma 3.4. For every ε ∈
(

0, 1
16

]

there exists a smooth measure-preserving diffeomorphism

gε : [0, 1]
2 → {(x+ ε · y, y) : x, y ∈ [0, 1]} that is the identity on ∆(4ε) and coincides with the

map (x, y) 7→ (x+ ε · y, y) on ∆ \∆(ε).

Proof. First of all let ψε : R
2 → R2 be a smooth diffeomorphism satisfying

ψε (x, y) =

{

(x, y) on R2 \∆(2ε)
(

1
2 + 1

5 ·
(

x− 1
2

)

, 12 + 1
5 ·
(

y − 1
2

))

on ∆(4ε)

Furthermore, let τε be a smooth diffeomorphism with the following properties

τε (x, y) =







(x+ ε · y, y) on
{

(

x− 1
2

)2
+
(

y − 1
2

)2 ≥
(

5
16

)2
}

(x, y) on
{

(

x− 1
2

)2
+
(

y − 1
2

)2 ≤ 1
50

}

We define ḡε := ψ−1
ε ◦ τε ◦ ψε. Then the diffeomorphism ḡε coincides with the identity on ∆(4ε)

and with the map (x, y) 7→ (x+ ε · y, y) on R2 \∆(ε). From this we conclude that det (Dḡε) > 0.
Moreover, ḡε is measure-preserving on Uε :=

(

R2 \∆(ε)
)

∪∆(4ε).
With the aid of “Moser’s trick” we want to construct a diffeomorphism gε which is measure-
preserving on the whole R2 and agrees with ḡε on Uε. To do so, we consider the canonical volume
form Ω0 on R2: Ω0 = dx∧dy; in other words, Ω0 = dω0 using the 1-form ω0 = 1

2 ·(x · dy − y · dx).
Additionally we introduce the volume form Ω1 := ḡ∗εΩ0.
At first we note that ḡε preserves the 1-form ω0 on Uε: Clearly this holds on ∆(4ε), where ḡε is
the identity. On R2 \∆(ε) we have Dḡε (x, y) = (x+ εy, y), and thus we get

ḡ∗εω0 = ω0 (x+ ε · y, y) = 1

2
· ((x+ ε · y) dy − y · d (x+ ε · y)) = 1

2
· (x · dy − y · dx) = ω0 (x, y) .

Furthermore, we introduce Ω′ := Ω1 −Ω0. Since the exterior derivative commutes with the pull-
back, it holds that Ω′ = d (ḡ∗εω0 − ω0). In addition we consider the volume form Ωt := Ω0+ t ·Ω′

and note that Ωt is non-degenerate for t ∈ [0, 1]. Thus, we get a uniquely defined vector field
Xt such that Ωt (Xt, ·) = (ω0 − ḡ∗εω0) (·). Since ∆ is a compact manifold, the non-autonomous
differential equation d

dtu(t) = Xt (u(t)) with initial values in ∆ has a solution defined on R.
Hence, we get a one-parameter family of diffeomorphisms {νt}t∈[0,1] on ∆ satisfying ν̇t = Xt (νt),
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ν0 = id.
Referring to [Ber98, Lemma 2.2], it holds that

d

dt
ν∗t Ωt = d (ν∗t (i (Xt) Ωt)) + ν∗t

(

d

dt
Ωt + i (Xt) dΩt

)

.

Because of d (ν∗t (i (Xt)Ωt)) = ν∗t (d (i (Xt)Ωt)) and dΩt = d (dω0 + t · (d (ḡ∗εω0)− dω0)) = 0 we
compute:

d

dt
ν∗t Ωt = ν∗t (d (i (Xt)Ωt)) + ν∗t

(

d

dt
Ωt

)

= ν∗t d (Ωt (Xt, ·)) + ν∗t Ω
′

= ν∗t d (ω0 − ḡ∗εω0) + ν∗t Ω
′ = ν∗t (Ω0 − Ω1) + ν∗t (Ω1 − Ω0) = 0.

Consequently ν∗1Ω1 = ν∗0Ω0 = Ω0 (using ν0 = id in the last step). As we have seen, it holds that
ḡ∗εω0 = ω0 on Uε. Therefore, on Uε it holds that Ωt (Xt, ·) = 0. Since Ωt is non-degenerate, we
conclude that Xt = 0 on Uε and hence ν1 = ν0 = id on Uε ∩∆. Now we can extend ν1 smoothly
to R2 as the identity.
Denote gε := ḡε ◦ν1. Because of ν1 = id on Uε, the map gε coincides with ḡε on Uε as announced.
Furthermore we have

g∗εΩ0 = (ḡε ◦ ν1)∗ Ω0 = ν∗1 (ḡ
∗
εΩ0) = ν∗1Ω1 = Ω0.

Using the transformation formula we compute for an arbitrary measurable set A ⊆ R2:

µ (gε (A)) =

∫

gε(A)

Ω0 =

∫

A

|det (Dgε)| · Ω0.

We know det (Dν1) > 0 (because ν0 = id and all the maps νt are diffeomorphisms) as well as
det (Dḡε) > 0, and thus |det (Dgε)| = det (Dgε). Since g∗εΩ0 = (det (Dgε)) · Ω0 (compare with
[HK95, proposition 5.1.3.]) we finally conclude:

µ (gε (A)) =

∫

A

(det (Dgε)) · Ω0 =

∫

A

g∗εΩ0 =

∫

A

Ω0 = µ (A) .

Consequently gε is a measure-preserving diffeomorphism on R2 satisfying the desired properties.

Let g̃b : S1 × [0, 1]
m−1 → S1 × [0, 1]

m−1 be the smooth measure-preserving diffeomorphism
g̃b (θ, r1, ..., rm−1) = (θ + b · r1, r1, ..., rm−1) and denote

[

0, 1a
]

×
[

0, ε
b·a

]

×[δ, 1− δ]
m−2 by ∆a,b,ε,δ.

Using the map Da,b,ε : Rm → Rm, (θ, r1, ..., rm−1) 7→
(

a · θ, b·aε · r1, r2, ..., rm−1

)

and gε from
Lemma 3.4 we define the measure-preserving diffeomorphism ga,b,ε,δ : ∆a,b,ε,δ → g̃b (∆a,b,ε,δ)
by setting ga,b,ε,δ = D−1

a,b,ε ◦ (gε, idRm−2) ◦ Da,b,ε. Using the fact that a·b·δ
ε ∈ Z we extend it

to a smooth diffeomorphism ga,b,ε,δ :
[

0, 1a
]

× [δ, 1− δ]
m−1 → g̃b

(

[

0, 1a
]

× [δ, 1− δ]
m−1

)

by the

description:

ga,b,ε,δ

(

θ, r1 + l · ε

b · a , r2, ..., rm−1

)

=
(

l · ε
a
, l · ε

b · a ,
~0
)

+ ga,b,ε,δ (θ, r1, ..., rm−1)

for r1 ∈
[

0, ε
b·a

]

and some l ∈ Z satisfying b·a·δ
ε ≤ l ≤ b·a

ε − b·a·δ
ε − 1. Since this map coincides

with the map g̃b in a neighbourhood of the boundary we can extend it to a map ga,b,ε,δ :
[

0, 1a
]

×
[0, 1]m−1 → g̃b

(

[

0, 1a
]

× [0, 1]m−1
)

by setting it equal to g̃b on
[

0, 1a
]

×
(

[0, 1]m−1 \ [δ, 1− δ]m−1
)

.
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We initially construct the smooth measure-preserving diffeomorphism gn on the fundamental

sector. For this, we divide the sector into n sections: On
[

k−1
n·qn

, k
n·qn

]

× [0, 1]
m−1 in case of k ∈ Z

and 1 ≤ k ≤ n:
gn = g

n·q
1+(m−1)·

(k+1)·k
2

n ,[n·qσn],
1

8n4 , 1
32n4

.

Since gn coincides with the map g̃[n·qσn] in a neighbourhood of the boundary of the different
sections on the θ-axis, this yields a smooth map, and we can extend it to a smooth measure-
preserving diffeomorphism on S1 × [0, 1]

m−1 using the description gn ◦R l
qn

= R l
qn

◦ gn for l ∈ Z.

Furthermore, we note that the subsequent constructions are done in such a way that 260n4

divides qn (see Lemma 6.9) and so the assumption a·b·δ
ε = a·b

4 ∈ Z is satisfied. Indeed, this map
gn satisfies the following desired property:

Lemma 3.5. For every element În ∈ ηn we have gn

(

În

)

= g̃[nqσn]

(

În

)

.

Proof. We consider a partition element În,k ∈ ηn on
[

k−1
n·qn

, k
n·qn

]

× [0, 1]
m−1 in case of k ∈ Z

and 2 ≤ k ≤ n− 1 and want to examine the effect of gn = g
n·q

1+(m−1)·
(k+1)·k

2
n ,[n·qσn], 1

8n4 , 1
32n4

on it.

In the r1-coordinate we use the fact that there is u ∈ Z such that

1

26n4qk+1
n

= u · ε

b · a = u · 1

8n4 · [nqσn] · nq
1+(m−1)·

(k+1)·k
2

n

,

where we use the fact that 260n4 divides qn (Lemma 6.9). Also, with respect to the θ-coordinate
the boundary of this element lies in the domain where ga,b,ε,δ = g̃[nqσn] because 1

10·n4 < ε =
1

8·n4 .

3.3 The conjugation map φ
n

Lemma 3.6. For every ε ∈
(

0, 14
)

and every i, j ∈ {1, ...,m} there exists a smooth measure-

preserving diffeomorphism ϕε,i,j on Rm which is the rotation in the xi − xj-plane by π/2 about

the point
(

1
2 , ...,

1
2

)

∈ Rm on [2ε, 1− 2ε]
m

and coincides with the identity outside of [ε, 1− ε]
m

.

Proof. The proof is similar to the proof of Lemma 3.4. (See also [GK00, section 4.6] for a
geometrical argument of the proof.)

Furthermore, for λ ∈ N we define the maps Cλ (x1, x2, ..., xm) = (λ · x1, x2, ..., xm) and
Dλ (x1, ..., xm) = (λ · x1, λ · x2, ..., λ · xm). Let µ ∈ N, 1

δ ∈ N and assume 1
δ divides µ. We

construct a diffeomorphism ψµ,δ,i,j,ε2 in the following way:

• Consider [0, 1− 2 · δ]m: Since 1
δ divides µ, we can divide [0, 1− 2 · δ]m into cubes of side

length 1
µ .

• Under the map Dµ any of these cubes of the form
∏m

i=1

[

li
µ ,

li+1
µ

]

with li ∈ N is mapped

onto
∏m

i=1 [li, li + 1].

• On [0, 1]m we will use the diffeomorphism ϕ−1
ε2,i,j

constructed in Lemma 3.6 . Since this is

the identity outside of ∆(ε2), we can extend it to a diffeomorphism ϕ̄−1
ε2,i,j

on Rm using

the instruction ϕ̄−1
ε2,i,j

(x1 + k1, x2 + k2, ..., xm + km) = (k1, ..., km) +ϕ−1
ε2,i,j

(x1, x2, ..., xm),
where ki ∈ Z and xi ∈ [0, 1].
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• Now we define the smooth measure-preserving diffeomorphism

ψ̃µ,δ,i,j,ε2 = D−1
µ ◦ ϕ̄−1

ε2,i,j
◦Dµ : [0, 1− 2δ]

m → [0, 1− 2δ]
m

• With this we define

ψµ,δ,i,j,ε2 (x1, ..., xm) =
{

([

ψ̃µ,δ,i,j,ε2 (x1 − δ, ..., xm − δ)
]

1
+ δ, ...,

[

ψ̃µ,δ,i,j,ε2 (x1 − δ, ..., xm − δ)
]

m
+ δ
)

on [δ, 1− δ]
m

(x1, ..., xm) otherwise

This is a smooth map because ψ̃µ,δ,i,j,ε2 is the identity in a neighbourhood of the boundary
by the construction.

Remark 3.7. For every set W =
∏m

i=1

[

li
µ + ri,

li+1
µ − ri

]

where li ∈ Z and ri ∈ R satisfies

|ri · µ| ≤ ε2 we have ψµ,δ,i,j,ε2 (W ) =W .

Using these maps we build the following smooth measure-preserving diffeomorphism:

φ̃λ,ε,i,j,µ,δ,ε2 :

[

0,
1

λ

]

× [0, 1]m−1 →
[

0,
1

λ

]

× [0, 1]m−1 , φ̃λ,ε,i,j,µ,δ,ε2 = C−1
λ ◦ψµ,δ,i,j,ε2 ◦ϕε,i,j ◦Cλ

Afterwards, φ̃λ,ε,i,j,µ,δ,ε2 is extended to a diffeomorphism on S1 × [0, 1]
m−1 by the description

φ̃λ,ε,i,j,µ,δ,ε2
(

x1 +
1
λ , x2, ..., xm

)

=
(

1
λ , 0, ..., 0

)

+ φ̃λ,ε,i,j,µ,δ,ε2 (x1, x2, ..., xm).

For convenience we will use the notation φ
(j)
λ,µ = φ̃λ, 1

60n4 ,1,j,µ, 1
10n4 , 1

22n4
. With this we define

the diffeomorphism φn on the fundamental sector: On
[

k−1
n·qn

, k
n·qn

]

× [0, 1]
m−1 in case of k ∈ N

and 1 ≤ k ≤ n:

φn = φ̃
(m)

n·q
1+(m−1)·

k·(k−1)
2

+(m−2)·k

n ,qkn

◦ φ̃(m−1)

n·q
1+(m−1)·

k·(k−1)
2

+(m−3)·k

n ,qkn

◦ ... ◦ φ̃(2)
n·q

1+(m−1)·
k·(k−1)

2
n ,qkn

This is a smooth map because φn coincides with the identity in a neighbourhood of the different
sections.
Now we extend φn to a diffeomorphism on S1×[0, 1]m−1 using the description φn◦R 1

qn

= R 1
qn

◦φn.

4 (γ, δ, ǫ)-distribution

We introduce the central notion of the criterion for weak mixing deduced in the next section:

Definition 4.1. Let Φ :M →M be a diffeomorphism. We say Φ (γ, δ, ǫ)-distributes an element
Î of a partial partition, if the following properties are satisfied:

• π~r

(

Φ
(

Î
))

is a (m− 1)-dimensional interval J , i.e. J = I1 × ... × Im−1 with intervals

Ik ⊆ [0, 1], and 1 − δ ≤ λ (Ik) ≤ 1 for k = 1, ...,m − 1. Here π~r denotes the projection
on the (r1, ..., rm−1)-coordinates (i.e., the last m − 1 coordinates; the first one is the θ-
coordinate).

• Φ
(

Î
)

is contained in a set of the form [c, c+ γ]× J for some c ∈ S1.
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Figure 1: Qualitative shape of the action of φn on a partition element Î ∈ ηn and tangent vectors
in case of dimension m = 2.
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• For every (m− 1)-dimensional interval J̃ ⊆ J it holds:

∣

∣

∣

∣

∣

∣

µ
(

Î ∩ Φ−1
(

S1 × J̃
))

µ
(

Î
) −

µ(m−1)
(

J̃
)

µ(m−1) (J)

∣

∣

∣

∣

∣

∣

≤ ǫ ·
µ(m−1)

(

J̃
)

µ(m−1) (J)
,

where µ(m−1) is the Lebesgue measure on [0, 1]
m−1.

Remark 4.2. Analogous to [FS05] we will call the third property “almost uniform distribution”
of Î in the r1, .., rm−1-coordinates. In the following we will often write it in the form of

∣

∣

∣
µ
(

Î ∩ Φ−1
(

S1 × J̃
))

· µ(m−1) (J)− µ
(

Î
)

· µ(m−1)
(

J̃
)∣

∣

∣
≤ ǫ · µ

(

Î
)

· µ(m−1)
(

J̃
)

.

In the next step we define the sequence of natural numbers (mn)n∈N
:

mn = min

{

m ≤ qn+1 : m ∈ N, inf
k∈Z

∣

∣

∣

∣

m · pn+1

qn+1
− 1

n · qn
+

k

qn

∣

∣

∣

∣

≤ 260 · (n+ 1)4

qn+1

}

= min

{

m ≤ qn+1 : m ∈ N, inf
k∈Z

∣

∣

∣

∣

m · qn · pn+1

qn+1
− 1

n
+ k

∣

∣

∣

∣

≤ 260 · (n+ 1)4 · qn
qn+1

}

Lemma 4.3. The set
{

m ≤ qn+1 : m ∈ N, infk∈Z

∣

∣

∣m · qn·pn+1

qn+1
− 1

n + k
∣

∣

∣ ≤ 260(n+1)4·qn
qn+1

}

is

nonempty for every n ∈ N, i.e., mn exists.

Proof. In Lemma 6.9 we will construct the sequence αn = pn

qn
in such a way that qn = 260n4 · q̃n

and pn = 260n4·p̃n with p̃n, q̃n relatively prime. Therefore, the set
{

j · qn·pn+1

qn+1
: j = 1, ..., qn+1

}

contains qn+1

260(n+1)4·gcd(qn,q̃n+1)
different equally distributed points on S1. Hence there are at least

qn+1

260(n+1)4·qn
different such points and so for every x ∈ S1 there is a j ∈ {1, ..., qn+1} such that

infk∈Z

∣

∣

∣x− j · qn·pn+1

qn+1
+ k
∣

∣

∣ ≤ 260(n+1)4·qn
qn+1

. In particular, this is true for x = 1
n .

Remark 4.4. We define

an =

(

mn · pn+1

qn+1
− 1

n · qn

)

mod
1

qn

By the above construction of mn it holds that |an| ≤ 260·(n+1)4

qn+1
. In Lemma 6.9 we will see that

it is possible to choose qn+1 ≥ 64 · 260 · (n+ 1)
4 · n11 · q(m−1)·n2+3

n . Thus, we get:

|an| ≤
1

64 · n11 · q(m−1)·n2+3
n

.

Our constructions are done in such a way that the following property is satisfied:

Lemma 4.5. The map Φn := φn ◦Rmn
αn+1

◦ φ−1
n with the conjugating maps φn defined in section

3.3
(

1
n·qmn

, 1
n4 ,

1
n

)

-distributes the elements of the partition ηn.

Proof. We consider a partition element În,k on
[

k−1
n·qn

, k
n·qn

]

× [0, 1]m−1. When applying the map

φ−1
n we observe that this element is positioned in such a way that all the occuring maps ϕ−1

ε,1,j
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and ϕε2,1,j act as the respective rotations. Then we compute φ−1
n

(

În,k

)

:

[

k − 1

n · qn
+

j
(1)
1

n · q2n
+ ...+

j
((m−1)· (k−1)·k

2 )
1

n · q(m−1)· (k−1)·k
2 +1

n

+
j
(1)
2

n · q(m−1)· (k−1)·k
2 +2

n

+ ...+
j
(k)
2

n · q(m−1)· (k−1)·k
2 +k+1

n

+
j
(1)
3

n · q(m−1)· (k−1)·k
2 +k+2

n

+ ...+
j
(k)
m

n · q(m−1)· (k+1)·k
2 +1

n

+
1

10 · n5 · q(m−1)· (k+1)·k
2 +1

n

,

k − 1

n · qn
+

j
(1)
1

n · q2n
+ ...+

j
(k)
m + 1

n · q(m−1)· (k+1)·k
2 +1

n

− 1

10 · n5 · q(m−1)· (k+1)·k
2 +1

n

]

×
m
∏

i=2

[

1− j
((m−1)· (k−1)·k

2 +(i−2)·k+1)
1

qn
− ...− j

((m−1)· (k−1)·k
2 +(i−1)·k)

1 + 1

qkn
+
j
(k+1)
i

qk+1
n

+
1

26 · n4 · qk+1
n

,

1− j
((m−1)· (k−1)·k

2 +(i−2)·k+1)
1

qn
− ...− j

((m−1)· (k−1)·k
2 +(i−1)·k)

1 + 1

qkn
+
j
(k+1)
i + 1

qk+1
n

− 1

26 · n4 · qk+1
n

]

.

By our choice of the number mn the subsequent application of Rmn
αn+1

yields modulo 1
qn

:

[

k

n · qn
+

j
(1)
1

n · q2n
+ ...+

j
((m−1)· (k−1)·k

2 )
1

n · q(m−1)· (k−1)·k
2 +1

n

+
j
(1)
2

n · q(m−1)· (k−1)·k
2 +2

n

+ ...+
j
(k)
2

n · q(m−1)· (k−1)·k
2 +k+1

n

+
j
(1)
3

n · q(m−1)· (k−1)·k
2 +k+2

n

+ ...+
j
(k)
m

n · q(m−1)· (k+1)·k
2 +1

n

+
1

10 · n5 · q(m−1)· (k+1)·k
2 +1

n

+ an,

k

n · qn
+

j
(1)
1

n · q2n
+ ...+

j
(k)
m + 1

n · q(m−1)· (k+1)·k
2 +1

n

− 1

10 · n5 · q(m−1)· (k+1)·k
2 +1

n

+ an

]

×
m
∏

i=2

[

1− j
((m−1)·

(k−1)·k
2 +(i−2)·k+1)

1

qn
− ...− j

((m−1)·
(k−1)·k

2 +(i−1)·k)
1 + 1

qkn
+
j
(k+1)
i

qk+1
n

+
1

26 · n4 · qk+1
n

,

1− j
((m−1)· (k−1)·k

2 +(i−2)·k+1)
1

qn
− ...− j

((m−1)· (k−1)·k
2 +(i−1)·k)

1 + 1

qkn
+
j
(k+1)
i + 1

qk+1
n

− 1

26 · n4 · qk+1
n

]

,

at which an is the “error term” introduced in Remark 4.4. Under ϕ 1
60n4 ,1,2 ◦ C

n·q
(m−1)·

(k+1)·k
2

+1

n

this is mapped to
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(

k

n · qn
+

j
(1)
1

n · q2n
+ ...+

j
(k)
m

n · q(m−1)· (k+1)·k
2 +1

n

,~0

)

+

[

j
((m−1)· (k−1)·k

2 +1)
1

qn
+ ...+

j
((m−1)· (k−1)·k

2 +k)
1 + 1

qkn
− j

(k+1)
2 + 1

qk+1
n

+
1

26 · n4 · qk+1
n

,

j
((m−1)· (k−1)·k

2 +1)
1

qn
+ ...+

j
((m−1)· (k−1)·k

2 +k)
1 + 1

qkn
− j

(k+1)
2

qk+1
n

− 1

26 · n4 · qk+1
n

,

]

×
[

1

10 · n4
+ n · q(m−1)· (k+1)·k

2 +1
n · an, 1−

1

10 · n4
+ n · q(m−1)· (k+1)·k

2 +1
n · an

]

×
m
∏

i=3

[

1− j
((m−1)· (k−1)·k

2 +(i−2)·k+1)
1

qn
− ...− j

((m−1)· (k−1)·k
2 +(i−1)·k)

1 + 1

qkn
+
j
(k+1)
i

qk+1
n

+
1

26 · n4 · qk+1
n

,

1− j
((m−1)· (k−1)·k

2 +(i−2)·k+1)
1

qn
− ...− j

((m−1)· (k−1)·k
2 +(i−1)·k)

1 + 1

qkn
+
j
(k+1)
i + 1

qk+1
n

− 1

26 · n4 · qk+1
n

]

using the bound on an. With the aid of Remark 3.7, the bound on an from Remark 4.4
and the fact that 10n4 divides qk+1

n by Lemma 6.9 we can compute the image of În,k under

φ̃
(2)

n·q
(m−1)·

(k+1)·k
2

+1
n ,qk+1

n

◦Rmn
αn+1

◦ φ−1
n :

[

k

n · qn
+

j
(1)
1

n · q2n
+ ...+

j
(k)
m

n · q(m−1)· (k+1)·k
2 +1

n

+
j
((m−1)·

(k−1)·k
2 +1)

1

n · q(m−1)· (k+1)·k
2 +2

n

+ ...

+
j
((m−1)·

(k−1)·k
2 +k)

1 + 1

n · q(m−1)· (k+1)·k
2 +k+1

n

− j
(k+1)
2 + 1

n · q(m−1)· (k+1)·k
2 +k+2

n

+
1

26 · n5 · q(m−1)· (k+1)·k
2 +k+2

n

,

k

n · qn
+

j
(1)
1

n · q2n
+ ...− j

(k+1)
2

n · q(m−1)· (k+1)·k
2 +k+2

n

− 1

26 · n5 · q(m−1)· (k+1)·k
2 +k+2

n

]

×
[

1

10 · n4
+ n · q(m−1)·

(k+1)·k
2 +1

n · an, 1−
1

10 · n4
+ n · q(m−1)·

(k+1)·k
2 +1

n · an
]

×
m
∏

i=3

[

1− j
((m−1)·

(k−1)·k
2 +(i−2)·k+1)

1

qn
− ...− j

((m−1)·
(k−1)·k

2 +(i−1)·k)
1 + 1

qkn
+
j
(k+1)
i

qk+1
n

+
1

26 · n4 · qk+1
n

,

1− j
((m−1)· (k−1)·k

2 +(i−2)·k+1)
1

qn
− ...− j

((m−1)· (k−1)·k
2 +(i−1)·k)

1 + 1

qkn
+
j
(k+1)
i + 1

qk+1
n

− 1

26 · n4 · qk+1
n

]

.

Continuing in the same way we obtain that Φn

(

În,k

)

is equal to
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[

k

n · qn
+

j
(1)
1

n · q2n
+ ...+

j
((m−1)· (k−1)·k

2 )
1

n · q(m−1)· (k−1)·k
2 +1

n

+
j
(1)
2

n · q(m−1)· (k−1)·k
2 +2

n

+ ...+
j
(k)
2

n · q(m−1)· (k−1)·k
2 +k+1

n

+
j
(1)
3

n · q(m−1)· (k−1)·k
2 +k+2

n

+ ...+
j
(k)
m

n · q(m−1)· (k+1)·k
2 +1

n

+
j
((m−1)· (k−1)·k

2 +1)
1

n · q(m−1)· (k+1)·k
2 +2

n

+ ...+
j
((m−1)· (k−1)·k

2 +k)
1 + 1

n · q(m−1)· (k+1)·k
2 +k+1

n

− j
(k+1)
2 + 1

n · q(m−1)· (k+1)·k
2 +k+2

n

+
j
((m−1)·

(k−1)·k
2 +k+1)

1

n · q(m−1)· (k+1)·k
2 +k+3

n

+ ...+
j
((m−1)·

(k−1)·k
2 +2k)

1 + 1

n · q(m−1)· (k+1)·k
2 +2k+2

n

− j
(k+1)
3 + 1

n · q(m−1)· (k+1)·k
2 +2k+3

n

+ ...

+
j
((m−1)· (k+1)·k

2 )
1 + 1

n · q(m−1)·
(k+1)·(k+2)

2
n

− j
(k+1)
m + 1

n · q(m−1)·
(k+1)·(k+2)

2 +1
n

+
1

26 · n5 · q(m−1)·
(k+1)·(k+2)

2 +1
n

,

k

n · qn
+

j
(1)
1

n · q2n
+ ...− j

(k+1)
m

n · q(m−1)· (k+1)·(k+2)
2 +1

n

− 1

26 · n5 · q(m−1)· (k+1)·(k+2)
2 +1

n

]

×
[

1

10 · n4
+ n · q(m−1)· (k+1)·k

2 +1
n · an, 1−

1

10 · n4
+ n · q(m−1)· (k+1)·k

2 +1
n · an

]

×
m
∏

i=3

[

1

26n4
, 1− 1

26n4

]

.

Thus, such a set Φn

(

În

)

with În ∈ ηn has a θ-witdth of at most 1
n·q3m+1

n

.

Moreover, we see that we can choose ǫ = 0 in the definition of a (γ, δ, ǫ)-distribution: With the

notation Aθ := πθ

(

Φn

(

În

))

we have Φn

(

În

)

= Aθ × J and so for every (m − 1)-dimensional

interval J̃ ⊆ J :

µ
(

În ∩ Φ−1
n

(

S1 × J̃
))

µ
(

În

) =
µ
(

Φn

(

În

)

∩ S1 × J̃
)

µ
(

Φn

(

În

)) =
λ̃ (Aθ) · µ(m−1)

(

J̃
)

λ̃ (Aθ) · µ(m−1) (J)
=
µ(m−1)

(

J̃
)

µ(m−1) (J)

because Φn is measure-preserving.

Furthermore, we show the next property concerning the conjugating map gn constructed in
section 3.2:

Lemma 4.6. For every În ∈ ηn we have: gn

(

Φn

(

În

))

= g̃[nqσn]

(

Φn

(

În

))

.

Proof. In the proof of the precedent Lemma 4.5 we computed Φn

(

În,k

)

for a partition element

În,k. Now we have to examine the effect of gn = g
n·q

1+(m−1)·
(k+1)·(k+2)

2
n ,[n·qσn], 1

8n4 , 1
32n4

on it.

Since 260n4 divides qn by Lemma 6.9, there is u ∈ Z such that

1

10n4
= u · ε

b · a = u · 1

8n4 · [nqσn ] · nq
1+(m−1)· (k+1)·(k+2)

2
n

.

By 1
26n4 < ε = 1

8n4 and the bound on an the boundary of Φn

(

În,k

)

lies in the domain where

g
n·q

1+(m−1)·
(k+1)·(k+2)

2
n ,[n·qσn], 1

8n4 , 1
32n4

= g̃[nqσn].
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5 Criterion for weak mixing

In this section we will prove a criterion for weak mixing on M = S1 × [0, 1]
m−1 in the setting

of the beforehand constructions. For the derivation we need a couple of lemmas. The first one
expresses the weak mixing property on the elements of a partial partition ηn generally:

Lemma 5.1. Let f ∈ Diff∞ (M,µ), (mn)n∈N
be a sequence of natural numbers and (νn)n∈N

be

a sequence of partial partitions, where νn → ε and for every n ∈ N νn is the image of a partial

partition ηn under a measure-preserving diffeomorphism Fn, satisfying the following property:

For every m-dimensional cube A ⊆ S1 × (0, 1)
m−1

and for every ǫ > 0 there exists N ∈ N such

that for every n ≥ N and for every Γn ∈ νn we have

(1)
∣

∣µ
(

Γn ∩ f−mn (A)
)

− µ (Γn) · µ (A)
∣

∣ ≤ 3 · ǫ · µ (Γn) · µ (A) .
Then f is weakly mixing.

Proof. A diffeomorphism f is weakly mixing if for all measurable sets A,B ⊆M it holds:

lim
n→∞

∣

∣µ
(

B ∩ f−mn (A)
)

− µ (B) · µ (A)
∣

∣ = 0.

Since every measurable set in M = S1 × [0, 1]m−1 can be approximated by a countable disjoint
union of m-dimensional cubes in S1 × (0, 1)

m−1 in arbitrary precision, we only have to prove the
statement in case that A is a m-dimensional cube in S1 × (0, 1)

m−1.
Hence, we consider an arbitrary m-dimensional cube A ⊂ S1 × (0, 1)

m−1. Moreover, let B ⊆M
be a measurable set. Since νn → ε for every ǫ ∈ (0, 1] there are n ∈ N and a set B̂ =

⋃

i∈Λ Γi
n,

where Γi
n ∈ νn and Λ is a countable set of indices, such that µ

(

B△B̂
)

< ǫ · µ (B) · µ (A). We

obtain for sufficiently large n:
∣

∣µ
(

B ∩ f−mn (A)
)

− µ (B) · µ (A)
∣

∣

≤
∣

∣

∣µ
(

B ∩ f−mn (A)
)

− µ
(

B̂ ∩ f−mn (A)
)∣

∣

∣+
∣

∣

∣µ
(

B̂ ∩ f−mn (A)
)

− µ
(

B̂
)

· µ (A)
∣

∣

∣

+
∣

∣

∣µ
(

B̂
)

· µ (A)− µ (B) · µ (A)
∣

∣

∣

=
∣

∣

∣µ
(

B ∩ f−mn (A)
)

− µ
(

B̂ ∩ f−mn (A)
)∣

∣

∣

+

∣

∣

∣

∣

∣

µ

(

⋃

i∈Λ

(

Γi
n ∩ f−mn (A)

)

)

− µ

(

⋃

i∈Λ

Γi
n

)

· µ (A)
∣

∣

∣

∣

∣

+ µ (A) ·
∣

∣

∣µ
(

B̂
)

− µ (B)
∣

∣

∣

≤ µ
(

B̂△B
)

+

∣

∣

∣

∣

∣

∑

i∈Λ

µ
(

Γi
n ∩ f−mn (A)

)

− µ
(

Γi
n

)

· µ (A)
∣

∣

∣

∣

∣

+ µ (A) · µ
(

B̂△B
)

≤ ǫ · µ(B) · µ(A) +
∑

i∈Λ

(∣

∣µ
(

Γi
n ∩ f−mn(A)

)

− µ
(

Γi
n

)

· µ(A)
∣

∣

)

+ ǫ · µ(A)2 · µ(B)

≤
∑

i∈Λ

(

3 · ǫ · µ
(

Γi
n

)

· µ(A)
)

+ 2 · ǫ · µ(A) · µ(B) = 3 · ǫ · µ(A) · µ
(

⋃

i∈Λ

Îin

)

+ 2 · ǫ · µ(A) · µ(B)

= 3 · ǫ · µ(A) · µ
(

B̂
)

+ 2 · ǫ · µ(A) · µ(B) ≤ 3 · ǫ · µ(A) ·
(

µ(B) + µ
(

B̂△B
))

+ 2 · ǫ · µ(A) · µ(B)

≤ 5 · ǫ · µ(A) · µ(B) + 3 · ǫ2 · µ(A)2 · µ(B).

This estimate shows limn→∞ |µ (B ∩ f−mn (A))− µ (B) · µ (A)| = 0, because ǫ can be chosen
arbitrarily small.
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In property (1) we want to replace f by fn:

Lemma 5.2. Let f = limn→∞ fn be a diffeomorphism obtained by the constructions in the

preceding sections and (mn)n∈N
be a sequence of natural numbers fulfilling d0 (f

mn , fmn
n ) < 1

2n .

Furthermore, let (νn)n∈N
be a sequence of partial partitions, where νn → ε and for every n ∈ N νn

is the image of a partial partition ηn under a measure-preserving diffeomorphism Fn, satisfying

the following property: For every m-dimensional cube A ⊆ S1× (0, 1)
m−1

and for every ǫ ∈ (0, 1]
there exists N ∈ N such that for every n ≥ N and for every Γn ∈ νn we have

(2)
∣

∣µ
(

Γn ∩ f−mn

n (A)
)

− µ (Γn) · µ (A)
∣

∣ ≤ ǫ · µ (Γn) · µ (A) .

Then f is weakly mixing.

Proof. We want to show that the requirements of Lemma 5.1 are fulfilled. This implies that f
is weakly mixing.
For it let A ⊆ S1 × (0, 1)

m−1 be an arbitrary m-dimensional cube and ǫ ∈ (0, 1].
We consider two m-dimensional cubes A1, A2 ⊂ S1 × (0, 1)

m−1 with A1 ⊂ A ⊂ A2 as well as
µ (A△Ai) < ǫ · µ (A) and for sufficiently large n: dist(∂A, ∂Ai) >

1
2n for i = 1, 2.

If n is sufficiently large, we obtain for Γn ∈ νn and for i = 1, 2 by the assumptions of this
Lemma:

∣

∣µ
(

Γn ∩ f−mn

n (Ai)
)

− µ (Γn) · µ (Ai)
∣

∣ ≤ ǫ · µ (Γn) · µ (Ai) .

Herefrom we conclude (1− ǫ) · µ (Γn) · µ (A1) ≤ µ (Γn ∩ f−mn
n (A1)) on the one hand and

µ (Γn ∩ f−mn
n (A2)) ≤ (1 + ǫ) · µ (Γn) · µ (A2) on the other hand. Because of d0 (fmn , fmn

n ) < 1
2n

the following relations are true:

fmn

n (x) ∈ A1 =⇒ fmn(x) ∈ A,

fmn(x) ∈ A =⇒ fmn

n (x) ∈ A2.

Thus: µ (Γn ∩ f−mn
n (A1)) ≤ µ (Γn ∩ f−mn (A)) ≤ µ (Γn ∩ f−mn

n (A2)).
Altogether, it holds: (1− ǫ) · µ (Γn) · µ (A1) ≤ µ (Γn ∩ f−mn (A)) ≤ (1 + ǫ) · µ (Γn) · µ (A2).
Therewith, we obtain the following estimate from above:

µ
(

Γn ∩ f−mn (A)
)

− µ (Γn) · µ (A)
≤ (1 + ǫ) · µ (Γn) · µ (A2)− µ (Γn) · µ (A2) + µ (Γn) · (µ (A2)− µ (A))

≤ ǫ · µ (Γn) · µ (A2) + µ (Γn) · µ (A2△A) ≤ ǫ · µ (Γn) · (µ(A) + µ (A2△A)) + ǫ · µ (Γn) · µ (A)
≤ 2 · ǫ · µ (Γn) · µ (A) + ǫ2 · µ (Γn) · µ (A) ≤ 3 · ǫ · µ (Γn) · µ (A)

Furthermore, we deduce the following estimate from below in an analogous way:

µ
(

Γn ∩ f−mn (A)
)

− µ (Γn) · µ (A) ≥ −3 · ǫ · µ (Γn) · µ (A)

Hence, we get: |µ (Γn ∩ f−mn (A))− µ (Γn) · µ (A)| ≤ 3 ·ǫ ·µ (Γn) ·µ (A), i.e. the requirements
of Lemma 5.1 are met.

Now we concentrate on the setting of our explicit constructions:

Lemma 5.3. Consider the sequence of partial partitions (ηn)n∈N
constructed in section 3.1.1 and

the diffeomorphisms gn from chapter 3.2. Furthermore, let (Hn)n∈N
be a sequence of measure-

preserving smooth diffeomorphisms satisfying ‖DHn−1‖ ≤ ln(qn)
n for every n ∈ N and define the

partial partitions νn =
{

Γn = Hn−1 ◦ gn
(

În

)

: În ∈ ηn

}

.

Then we get νn → ε.
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Proof. By construction ηn =
{

Îin : i ∈ Λn

}

, where Λn is a countable set of indices. Because of

ηn → ε it holds limn→∞ µ
(

⋃

i∈Λn
Îin

)

= 1. Since Hn−1 ◦ gn is measure-preserving, we conclude:

lim
n→∞

µ

(

⋃

i∈Λn

Γi
n

)

= lim
n→∞

µ

(

⋃

i∈Λn

Hn−1 ◦ gn
(

Îin

)

)

= lim
n→∞

µ

(

Hn−1 ◦ gn
(

⋃

i∈Λn

Îin

))

= 1.

For any m-dimensional cube with side length ln it holds: diam(Wn) =
√
m · ln. Because every

element of the partition ηn is contained in a cube of side length 1
qn

it follows for every i ∈ Λn:

diam
(

Îin

)

≤ √
m · 1

qn
. Furthermore, we saw in Lemma 3.5: gn

(

Îin

)

= g̃[nqσn]

(

Îin

)

for every

i ∈ Λn. Hence, for every Γi
n = Hn−1 ◦ g̃[nqσn]

(

Iin
)

:

diam
(

Γi
n

)

≤ ‖DHn−1‖0 ·
∥

∥Dg̃[nqσn]

∥

∥

0
· diam

(

Îin

)

≤ ln (qn)

n
· [n · qσn ] ·

√
m

qn
≤

√
m · qσ−1

n · ln (qn) .

Because of σ < 1 we conclude limn→∞diam
(

Γi
n

)

= 0 and consequently νn → ε.

In the following the Lebesgue measures on S1, [0, 1]m−2, [0, 1]m−1 are denoted by λ̃, µ(m−2)

and µ̃ respectively. The next technical result is needed in the proof of Lemma 5.5.

Lemma 5.4. Given an interval on the r1-axis of the form K =
⋃

k∈Z,k1≤k≤k2

[

k·ε
b·a ,

(k+1)·ε
b·a

]

,

where k1, k2 ∈ Z with b·a
ε · δ ≤ k1 < k2 ≤ b·a

ε − b·a
ε · δ − 1, and a (m− 2)-dimensional interval Z

in (r2, ..., rm−1), let Kc,γ denote the cuboid [c, c+ γ]×K × Z for some γ > 0. We consider the

diffeomorphism ga,b,ε,δ constructed in subsection 3.2 and an interval L = [l1, l2] of S1 satisfying

λ̃ (L) ≥ 4 · 1−2ε
a − γ.

If b · λ(K) > 2, then for the set Q := π~r

(

Kc,γ ∩ g−1
a,b,ε,δ (L×K × Z)

)

we have:

∣

∣

∣µ̃ (Q)− λ (K) · λ̃ (L) · µ(m−2) (Z)
∣

∣

∣

≤
(

2

b
· λ̃ (L) + 2 · γ

b
+ γ · λ (K) + 4 · 1− 2ε

a
· λ(K) + 8 · 1− 2ε

b · a

)

· µ(m−2) (Z) .

Proof. We consider the diffeomorphism g̃b :M →M , (θ, r1, ..., rm−1) 7→ (θ + b · r1, r1, ..., rm−1)
and the set:

Qb := π~r
(

Kc,γ ∩ g̃−1
b (L×K × Z)

)

= {(r1, r2, ..., rm−1) ∈ K × Z : (θ + b · r1, ~r) ∈ L×K × Z, θ ∈ [c, c+ γ]}
= {(r1, r2, ..., rm−1) ∈ K × Z : b · r1 ∈ [l1 − c− γ, l2 − c] mod 1} .

The interval b ·K seen as an interval in R does not intersect more than b · λ(K) + 2 and not less
than b · λ (K)− 2 intervals of the form [i, i+ 1] with i ∈ Z. By construction of the map ga,b,ε,δ

it holds for ∆l :=
[

l·ε
b·a ,

(l+1)·ε
b·a

]

in consideration: π~r (ga,b,ε,δ ([c, c+ γ]×∆l × Z)) = ∆l × Z.

Claim: A resulting interval on the r1-axis of Kc,γ ∩ g̃−1
b (L×K × Z) and the corresponding

r1-projection of Kc,γ ∩ g−1
a,b,ε (L×K × Z) can differ by a length of at most 4 · 1−2ε

b·a .
Proof: If {c}×∆l×Z (resp. {c+ γ}×∆l×Z) are contained in the domain, where ga,b,ε = g̃b, the
left (resp. the right) boundaries of πθ (ga,b,ε,δ ([c, c+ γ]×∆l × Z)) and πθ (g̃b ([c, c+ γ]×∆l × Z))
coincide. Otherwise, i.e. c ∈

(

k
a + ε, k+1

a − ε
)

(resp. c + γ ∈
(

k
a + ε, k+1

a − ε
)

) the sets
πθ (ga,b,ε,δ ({c} ×∆l × Z)) and πθ (g̃b ({c} ×∆l × Z)) (resp. πθ (ga,b,ε,δ ({c+ γ} ×∆l × Z)) and
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πθ (g̃b ({c+ γ} ×∆l × Z))) differ by a length of at most 1−2ε
a . Since πθ (g̃b ({u} ×∆l × Z)) for

arbitrary u ∈ S1 has a length of ε
a on the θ-axis, this discrepancy will be equalised after at

most 1−2ε
a : ε

a = 1−2ε
ε blocks ∆l on the r1-axis. Thus, the resulting interval on the r1-axis of

Kc,γ ∩ g̃−1
b (L×K × Z) and the corresponding r1-projection of Kc,γ ∩ g−1

a,b,ε (L×K × Z) can
differ by a length of at most 4 · 1−2ε

ε · ε
b·a = 4 · (1− 2ε) 1

b·a .
Therefore, we compute on the one side:

µ̃ (Q) ≤ (b · λ (K) + 2) ·
(

l2 − (l1 − γ)

b
+ 4 · 1− 2ε

b · a

)

· µ(m−2) (Z)

=

(

λ (K) · λ̃ (L) + 2 · λ̃ (L)
b

+ λ (K) · γ +
2 · γ
b

+ 4 · λ(K) · 1− 2ε

a
+ 8 · 1− 2ε

b · a

)

· µ(m−2) (Z)

and on the other side

µ̃ (Q) ≥ (b · λ (K)− 2) ·
(

l2 − (l1 − γ)

b
− 4 · 1− 2ε

b · a

)

· µ(m−2) (Z)

=

(

λ (K) · λ̃ (L)− 2 · λ̃ (L)
b

+ λ (K) · γ − 2 · γ
b

− 4 · λ(K) · 1− 2ε

a
+ 8 · 1− 2ε

b · a

)

· µ(m−2) (Z) .

Both equations together yield:
∣

∣

∣

∣

µ̃ (Q)− λ (K) · λ̃ (L) · µ(m−2) (Z)− γ · λ (K) · µ(m−2) (Z)− 8 · 1− 2ε

b · a · µ(m−2) (Z)

∣

∣

∣

∣

≤
(

2

b
· λ̃ (L) + 2 · γ

b
+ 4 · λ(K) · 1− 2ε

a

)

· µ(m−2) (Z) .

The claim follows because
∣

∣

∣µ̃ (Q)− λ (K) · λ̃ (L) · µ(m−2) (Z)
∣

∣

∣− γ · λ (K) · µ(m−2) (Z)− 8 · 1− 2ε

b · a · µ(m−2) (Z)

≤
∣

∣

∣

∣

µ̃ (Q)− λ (K) · λ̃ (L) · µ(m−2) (Z)− γ · λ (K) · µ(m−2) (Z)− 8 · 1− 2ε

b · a · µ(m−2) (Z)

∣

∣

∣

∣

.

Lemma 5.5. Let n ≥ 5, gn as in section 3.2 and În ∈ ηn, where ηn is the partial partition

constructed in section 3.1.1. For the diffeomorphism φn constructed in section 3.3 and mn as in

chapter 4 we consider Φn = φn ◦Rmn
αn+1

◦ φ−1
n and denote π~r

(

Φn

(

În

))

by J.

Then for every m-dimensional cube S of side length q−σ
n lying in S1 × J we get

(3)
∣

∣

∣µ
(

Î ∩ Φ−1
n ◦ g−1

n (S)
)

· µ̃ (J)− µ
(

Î
)

· µ (S)
∣

∣

∣ ≤ 21

n
· µ
(

Î
)

· µ (S) .

In other words this Lemma tells us that a partition element is “almost uniformly distributed”
under gn ◦ Φn on the whole manifold M = S1 × [0, 1]

m−1.

Proof. Let S be a m-dimensional cube with side length q−σ
n lying in S1 × J . Furthermore, we

denote:

Sθ = πθ (S) Sr1 = πr1 (S) S~̃r = π(r2,...,rm−1) (S) Sr = Sr1 × S~̃r = π~r (S)



Criterion for weak mixing 23

Obviously: λ̃ (Sθ) = λ (Sr1) = q−σ
n and λ̃ (Sθ) · λ (Sr1) · µ(m−2)

(

S~̃r
)

= µ (S) = q−mσ
n .

According to Lemma 4.5 Φn

(

1
n·qmn

, 1
n4 ,

1
n

)

-distributes the partition element În ∈ ηn, in particular

Φn

(

În

)

⊆ [c, c+ γ]× J for some c ∈ S1 and some γ ≤ 1
n·qmn

. Furthermore, we saw in the proof

of Lemma 4.6 that [c, c+ γ] × J is contained in the interior of the step-by-step domains of the
map gn and that on its boundary gn = g̃[nqσn] holds. Particularly it follows γ ≥ 1−2ε

a in case of

gn = ga,b,ε,δ. For l ∈ Z, 0 ≤ l ≤ b·a
ε − 1 we introduce the set ∆l =

[

lε
ba ,

(l+1)ε
ba

]

and therewith we

consider

S̃r1 :=
⋃

∆l⊆Sr1

∆l; S̃r :=
⋃

∆l⊆Sr1

∆l × S~̃r as well as S̃ := Sθ × S̃r ⊆ S

Using the triangle inequality we obtain
∣

∣

∣µ
(

Î ∩ Φ−1
n

(

g−1
n (S)

)

)

· µ̃ (J)− µ
(

Î
)

· µ (S)
∣

∣

∣

≤
∣

∣

∣µ
(

Î ∩ Φ−1
n

(

g−1
n (S)

)

)

− µ
(

Î ∩ Φ−1
n

(

g−1
n

(

S̃
)))∣

∣

∣ · µ̃ (J)

+
∣

∣

∣
µ
(

Î ∩ Φ−1
n

(

g−1
n

(

S̃
)))

· µ̃ (J)− µ
(

Î
)

µ
(

S̃
)∣

∣

∣
+ µ

(

Î
)

·
∣

∣

∣
µ
(

S̃
)

− µ (S)
∣

∣

∣

Here
∣

∣

∣µ
(

S̃
)

− µ (S)
∣

∣

∣ = µ
(

S \ S̃
)

≤ 2 · ε
b·a · λ̃ (Sθ) · µ(m−2)

(

S~̃r
)

≤ 2 · ε
a · µ (S), where we used

b = [n · qσn ] ≥ qσn in case of n > 4. Since Φn and gn are measure-preserving, we additionally

obtain:
∣

∣

∣µ
(

Î ∩ Φ−1
n

(

g−1
n (S)

)

)

− µ
(

Î ∩ Φ−1
n

(

g−1
n

(

S̃
)))∣

∣

∣ ≤ µ
(

S \ S̃
)

≤ 2 · ε
a · µ (S).

In the proof of Lemma 4.6 we observed µ
(

Φn

(

Î
))

= 1
a ·
(

1− 2
26n4

)

· µ̃ (J). Hence:

∣

∣

∣µ
(

Î ∩ Φ−1
n

(

g−1
n (S)

)

)

− µ
(

Î ∩ Φ−1
n

(

g−1
n

(

S̃
)))∣

∣

∣ · µ̃ (J) ≤ 2 · ε
a
· µ (S) · µ̃ (J)

= 2 · ε

1− 2
26n4

· µ (S) · µ
(

Φn

(

Î
))

≤ 4 · ε · µ (S) · µ
(

Φn

(

Î
))

= 4 · ε · µ (S) · µ
(

Î
)

Thus, we obtain:
∣

∣

∣µ
(

Î ∩ Φ−1
n

(

g−1
n (S)

)

)

· µ̃ (J)− µ
(

Î
)

· µ (S)
∣

∣

∣

≤
∣

∣

∣µ
(

Î ∩ Φ−1
n

(

g−1
n

(

S̃
)))

· µ̃ (J)− µ
(

Î
)

µ
(

S̃
)∣

∣

∣ + 5 · ε · µ (S) · µ
(

Î
)(4)

Next, we want to estimate the first summand. By construction of the map gn = ga,b,ε,δ and the

definition of S̃ it holds: Φn

(

Î
)

∩ g−1
n

(

S̃
)

⊆ [c, c+ γ] × S̃r =: Kc,γ. Considering the proof of

Lemma 4.6 again, we obtain gn (Kc,γ) = g̃[nqσn] (Kc,γ) (since c and c+ γ are in the domain where
gn = g̃[nqσn] holds).

Because of Lemma 4.5 2γ ≤ 2
n·qmn

< q−σ
n for n > 2. So we can define a cuboid S1 ⊆ S̃, where

S1 := [s1 + γ, s2 − γ]× S̃r using the notation Sθ = [s1, s2]. We examine the two sets

Q := π~r

(

Kc,γ ∩ g−1
n

(

Sθ × S̃r

))

Q1 := π~r

(

Kc,γ ∩ g−1
n

(

[s1 + γ, s2 − γ]× S̃r

))

As seen above Φn

(

Î
)

∩ g−1
n

(

S̃
)

⊆ Kc,γ. Hence Φn

(

Î
)

∩ g−1
n

(

S̃
)

⊆ Φn

(

Î
)

∩ g−1
n

(

S̃
)

∩Kc,γ,

which implies Φn

(

Î
)

∩ g−1
n

(

S̃
)

⊆ Φn

(

Î
)

∩
(

S1 ×Q
)

.
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Claim: On the other hand: Φn

(

Î
)

∩
(

S1 ×Q1

)

⊆ Φn

(

Î
)

∩ g−1
n

(

S̃
)

.

Proof of the claim: For (θ, ~r) ∈ Φn

(

Î
)

∩
(

S1 ×Q1

)

arbitrary it holds (θ, ~r) ∈ Φn

(

Î
)

,

i.e. θ ∈ [c, c+ γ], and ~r ∈ π~r

(

Kc,γ ∩ g−1
n

(

[s1 + γ, s2 − γ]× S̃r

))

, i.e. in particular ~r ∈ S̃r.

This implies the existence of θ̄ ∈ [c, c+ γ] satisfying
(

θ̄, ~r
)

∈ Kc,γ ∩ g−1
n (S1). Hence, there

are β ∈ [s1 + γ, s2 − γ] and ~r1 ∈ S̃r, such that gn
(

θ̄, ~r
)

= (β,~r1). Because of θ̄ ∈ [c, c+ γ]

and ~r ∈ S̃r the point
(

θ̄, ~r
)

is contained in one cuboid of the form ∆a,b,ε. Since θ ∈ [c, c+ γ],
(θ, ~r) is contained in the same ∆a,b,ε. Thus, π~r (gn (θ, ~r)) ∈ S̃r. Furthermore, gn (θ, ~r) and
gn
(

θ̄, ~r
)

are in a distance of at most γ on the θ-axis, because θ, θ̄ ∈ [c, c+ γ], i.e.
∣

∣θ − θ̄
∣

∣ ≤ γ,
gn (Kc,γ) = g̃[nqσn] (Kc,γ) and the map g̃[nqσn] preserves the distances on the θ-axis. Thus, there

are β̄ ∈ [s1, s2] and ~r2 ∈ S̃r such that gn (θ, ~r) =
(

β̄, ~r2
)

. So (θ, ~r) ∈ Φn

(

Î
)

∩ g−1
n

(

S̃
)

.

Altogether, the following inclusions are true:

Φn

(

Î
)

∩
(

S1 ×Q1

)

⊆ Φn

(

Î
)

∩ g−1
n

(

S̃
)

⊆ Φn

(

Î
)

∩
(

S1 ×Q
)

.

Thus, we obtain:
∣

∣

∣
µ
(

Î ∩ Φ−1
n

(

g−1
n (S̃)

))

· µ̃ (J)− µ
(

Î
)

· µ
(

S̃
)∣

∣

∣

≤ max

(

∣

∣

∣µ
(

Î ∩ Φ−1
n

(

S1 ×Q
)

)

· µ̃ (J)− µ
(

Î
)

· µ
(

S̃
)∣

∣

∣ ,

∣

∣

∣µ
(

Î ∩ Φ−1
n

(

S1 ×Q1

)

)

· µ̃ (J)− µ
(

Î
)

· µ
(

S̃
)∣

∣

∣

)

(5)

We want to apply Lemma 5.4 for K = S̃r1 , L = Sθ, Z = S~̃r and b = [n · qσn] (note that
4 · 1−2ε

a − γ ≤ 3 · 1−2ε
a ≤ 3

n·qmn
< 1

qσn
= λ̃ (L) because of the mentioned relation γ ≥ 1−2ε

a and for

n > 4: b · λ(K) = [nqσn] · q−σ
n ≥ 1

2nq
σ
n · q−σ

n > 2):

∣

∣

∣µ̃ (Q)− µ
(

S̃
)∣

∣

∣

≤
(

2

[n · qσn ]
· λ̃ (Sθ) +

2γ

[n · qσn ]
+ γ · λ

(

S̃r1

)

+ 4 · 1− 2ε

a
λ
(

S̃r1

)

+ 8 · 1− 2ε

[nqσn] · a

)

· µ(m−2)
(

S~̃r
)

≤
(

4

n · qσn
λ̃ (Sθ) +

4

n · qσn · qσn
+

1

n · qσn
λ (Sr1) + 4 · 1− 2ε

n · qmn
λ (Sr1) +

16 · (1− 2ε)

n · qσn · n · qmn

)

· µ(m−2)
(

S~̃r
)

≤ 14

n
· µ (S) .

In particular, we receive from this estimate: 14
n · µ (S) ≥ µ̃ (Q)− µ

(

S̃
)

≥ µ̃ (Q) − µ (S), hence:

µ̃ (Q) ≤
(

1 + 14
n

)

· µ (S) ≤ 4 · µ (S).
Analogously, we obtain: µ̃ (Q1) ≤ 4 · µ (S) as well as

∣

∣

∣µ̃ (Q1)− µ
(

S̃1

)∣

∣

∣ ≤ 14
n · µ (S).

Since Q as well as Q1 are a finite union of disjoint (m− 1)-dimensional intervals contained in J

and Φn

(

1
n·qmn

, 1
n4 ,

1
n

)

-distributes the interval Î, we get:

∣

∣

∣µ
(

Î ∩ Φ−1
n

(

S1 ×Q
)

)

· µ̃ (J)− µ
(

Î
)

· µ̃ (Q)
∣

∣

∣ ≤ 1

n
· µ
(

Î
)

· µ̃ (Q) ≤ 4

n
· µ
(

Î
)

· µ (S)
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as well as
∣

∣

∣µ
(

Î ∩Φ−1
n

(

S1 ×Q1

)

)

· µ̃ (J)− µ
(

Î
)

· µ̃ (Q1)
∣

∣

∣ ≤ 1

n
· µ
(

Î
)

· µ̃ (Q1) ≤
4

n
· µ
(

Î
)

· µ (S) .

Now we can proceed
∣

∣

∣µ
(

Î ∩ Φ−1
n

(

S1 ×Q
)

)

· µ̃ (J)− µ
(

Î
)

· µ
(

S̃
)∣

∣

∣

≤
∣

∣

∣µ
(

Î ∩ Φ−1
n

(

S1 ×Q
)

)

· µ̃ (J)− µ
(

Î
)

· µ̃ (Q)
∣

∣

∣+ µ
(

Î
)

·
∣

∣

∣µ̃ (Q)− µ
(

S̃
)∣

∣

∣

≤ 4

n
· µ
(

Î
)

· µ (S) + µ
(

Î
)

· 14
n

· µ (S) = 18

n
· µ
(

Î
)

· µ (S) .

Noting that µ (S1) = µ
(

S̃
)

− 2γ · µ̃
(

S̃r

)

and so µ
(

S̃
)

− µ (S1) ≤ 2 · 1
n·qσn

· µ̃
(

S̃r

)

≤ 2
n · µ (S)

we obtain in the same way as above:

∣

∣

∣µ
(

Î ∩ Φ−1
n

(

S1 ×Q1

)

)

· µ̃ (J)− µ
(

Î
)

· µ
(

S̃
)∣

∣

∣ ≤ 20

n
· µ
(

Î
)

· µ (S) .

Using equation (5) this yields:

∣

∣

∣
µ
(

Î ∩ Φ−1
n

(

g−1
n

(

S̃
)))

· µ̃ (J)− µ
(

Î
)

· µ
(

S̃
)∣

∣

∣
≤ 20

n
· µ
(

Î
)

· µ (S) .

Finally, we conclude with the aid of equation (4) because of ε = 1
8n4 :

∣

∣

∣
µ
(

Î ∩ Φ−1
n

(

g−1
n (S)

)

)

· µ̃ (J)− µ
(

Î
)

· µ (S)
∣

∣

∣
≤ 21

n
· µ
(

Î
)

· µ (S) .

Now we are able to prove the desired criterion for weak mixing.

Proposition 5.6 (Criterion for weak mixing). Let fn = Hn ◦ Rαn+1 ◦ H−1
n and the sequence

(mn)n∈N
be constructed as in the previous sections. Suppose additionally that d0 (f

mn , fmn
n ) < 1

2n

for every n ∈ N, ‖DHn−1‖0 ≤ ln(qn)
n and that the limit f = limn→∞ fn exists.

Then f is weakly mixing.

Proof. To apply Lemma 5.2 we consider the partial partitions νn := Hn−1 ◦ gn (ηn). As proven
in Lemma 5.3 these partial partitions satisfy νn → ε. We have to establish equation (2). To do
so, let ε > 0 and a m-dimensional cube A ⊆ S1 × (0, 1)m−1 be given. There exists N ∈ N such

that A ⊆ S1 ×
[

1
n4 , 1− 1

n4

]m−1
for every n ≥ N . Because of Lemma 4.5 and the properties of

a
(

1
n·qmn

, 1
n4 ,

1
n

)

-distribution we obtain for every În ∈ ηn that π~r
(

Φn

(

În

))

⊇
[

1
n4 , 1− 1

n4

]m−1
.

Furthermore, we note that fmn
n = Hn ◦Rmn

αn+1
◦H−1

n = Hn−1 ◦ gn ◦Φn ◦ g−1
n ◦H−1

n−1.

Let Sn be a m-dimensional cube of side length q−σ
n contained in S1 ×

[

1
n4 , 1− 1

n4

]m−1
. We look

at Cn := Hn−1 (Sn), Γn ∈ νn, and compute (since gn and Hn−1 are measure-preserving):

∣

∣µ
(

Γn ∩ f−mn
n (Cn)

)

− µ (Γn) · µ (Cn)
∣

∣ =
∣

∣

∣µ
(

În ∩ Φ−1
n ◦ g−1

n (Sn)
)

− µ
(

În

)

· µ (Sn)
∣

∣

∣

≤ 1

µ̃ (J)
·
∣

∣

∣
µ
(

În ∩ Φ−1
n ◦ g−1

n (Sn)
)

· µ̃ (J)− µ
(

În

)

· µ (Sn)
∣

∣

∣
+

1− µ̃ (J)

µ̃ (J)
· µ
(

În

)

· µ (Sn) .
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Bernoulli’s inequality yields: µ̃(J) ≥
(

1− 1
n

)m−1 ≥ 1 + (m− 1) ·
(

− 1
n

)

= 1 − m−1
n . Hence we

obtain for n > 2 · (m− 1): µ̃ (J) ≥ 1
2 and so: 1−µ̃(J)

µ̃(J) ≤ 2 · (1− µ̃ (J)) ≤ 2·(m−1)
n . We continue by

applying Lemma 5.5:

∣

∣µ
(

Γn ∩ f−mn

n (Cn)
)

− µ (Γn) · µ (Cn)
∣

∣ ≤ 2 · 21
n

· µ
(

În

)

· µ (Sn) +
2 · (m− 1)

n
· µ
(

În

)

· µ (Sn)

=
40 + 2 ·m

n
· µ
(

În

)

· µ (Sn)

Moreover, it holds that diam(Cn) ≤ ‖DHn−1‖0 · diam (Sn) ≤ √
m · ln(qn)

qσn
, i.e. diam(Cn) → 0

as n → ∞. Thus, we can approximate A by a countable disjoint union of sets Cn = Hn−1 (Sn)

with Sn ⊆ S1 ×
[

1
n4 , 1− 1

n4

]m−1
a m-dimensional cube of side length q−σ

n with given precision,
assuming that n is chosen to be large enough. Consequently for sufficiently large n there are
sets A1 = ˙⋃

i∈Σ1
n
Ci

n and A2 = ˙⋃
i∈Σ2

n
Ci

n with countable sets Σ1
n and Σ2

n of indices satisfying
A1 ⊆ A ⊆ A2 as well as |µ(A)− µ(Ai)| ≤ ǫ

3 · µ(A) for i = 1, 2.
Additionally we choose n such that 40+2·m

n < ǫ
3 holds. It follows that

µ
(

Γn ∩ f−mn

n (A)
)

− µ (Γn) · µ (A)
≤ µ

(

Γn ∩ f−mn

n (A2)
)

− µ (Γn) · µ (A2) + µ (Γn) · (µ (A2)− µ (A))

≤
∑

i∈Σ2
n

(

µ
(

Γn ∩ f−mn

n

(

Ci
n

))

− µ (Γn) · µ
(

Ci
n

))

+
ǫ

3
· µ (Γn) · µ (A)

≤
∑

i∈Σ2
n

(

40 + 2 ·m
n

· µ
(

În

)

· µ
(

Si
n

)

)

+
ǫ

3
· µ (Γn) · µ (A)

=
40 + 2 ·m

n
· µ (Γn) · µ





⋃

i∈Σ2
n

Ci
n



+
ǫ

3
· µ (Γn) · µ (A) ≤

ǫ

3
· µ (Γn) · µ (A2) +

ǫ

3
· µ (Γn) · µ (A)

=
ǫ

3
· µ (Γn) · µ (A) +

ǫ

3
· µ (Γn) · (µ (A2)− µ (A)) +

ǫ

3
· µ (Γn) · µ (A) ≤ ǫ · µ (Γn) · µ (A) .

Analogously, we estimate that µ (Γn ∩ f−mn
n (A)) − µ (Γn) · µ (A) ≥ −ǫ · µ (Γn) · µ (A). Both

estimates enable us to conclude that |µ (Γn ∩ f−mn
n (A))− µ (Γn) · µ (A)| ≤ ǫ · µ (Γn) · µ (A).

6 Convergence of (fn)n∈N in Diff∞ (M)

In the following we show that the sequence of constructed measure-preserving smooth diffeo-
morphisms fn = Hn ◦ Rαn+1 ◦ H−1

n converges. For this purpose, we need a couple of results
concerning the conjugation maps.

6.1 Properties of the conjugation maps φ
n

and H
n

In order to find estimates on the norms |‖Hn‖|k we will need the next technical result which is
an application of the chain rule:

Lemma 6.1. Let φ := φ̃
(m)
λm,µm

◦ ...◦ φ̃(2)λ2,µ2
, j ∈ {1, ...,m} and k ∈ N. For any multi-index ~a with

|~a| = k the partial derivative D~a [φ]j consists of a sum of products of at most (m − 1) · k terms

of the form

D~b

([

φ̃
(i)
λi,µi

]

l

)

◦ φ̃(i−1)
λi−1,µi−1

◦ ... ◦ φ̃(2)λ2,µ2
,
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where l ∈ {1, ...,m}, i ∈ {2, ...,m} and ~b is a multi-index with
∣

∣

∣

~b
∣

∣

∣
≤ k.

In the same way we obtain a similar statement holding for the inverses:

Lemma 6.2. Let ψ :=
(

φ̃
(2)
λ2,µ2

)−1

◦ ... ◦
(

φ̃
(m)
λm,µm

)−1

, j ∈ {1, ...,m} and k ∈ N. For any

multi-index ~a with |~a| = k the partial derivative D~a [ψ]j consists of a sum of products of at most

(m− 1) · k terms of the following form

D~b

([

(

φ̃
(i)
λi,µi

)−1
]

l

)

◦
(

φ̃
(i+1)
λi+1,µi+1

)−1

◦ ... ◦
(

φ̃
(m)
λm,µm

)−1

,

where l ∈ {1, ...,m}, i ∈ {2, ...,m} and ~b is a multi-index with
∣

∣

∣

~b
∣

∣

∣ ≤ k.

Remark 6.3. In the proof of the following lemmas we will use the formula of Faà di Bruno
in several variables. It can be found in the paper “A multivariate Faà di Bruno formula with

applications” ([CS96]) for example.
For this we introduce an ordering on Nd

0: For multiindices ~µ = (µ1, ..., µd) and ~ν = (ν1, ..., νd) in
Nd

0 we will write ~µ ≺ ~ν, if one of the following properties is satisfied:

1. |~µ| < |~ν|, where |~µ| =∑d
i=1 µi.

2. |~µ| = |~ν| and µ1 < ν1.

3. |~µ| = |~ν|, µi = νi for 1 ≤ i ≤ k and µk+1 < νk+1 for some 1 ≤ k < d.

In other words, we compare by order and then lexicographically. Additionally we will use these
notations:

• For ~ν = (ν1, ..., νd) ∈ Nd
0:

~ν! =

d
∏

i=1

νi!

• For ~ν = (ν1, ..., νd) ∈ Nd
0 and ~z = (z1, ..., zd) ∈ Rd:

~z ~ν =

d
∏

i=1

zνii

Then we get for the composition h (x1, ..., xd) := f
(

g(1) (x1, ..., xd) , ..., g
(m) (x1, ..., xd)

)

with
sufficiently differentiable functions f : Rm → R, g(i) : Rd → R and a multi-index ~ν ∈ Nd

0 with
|~ν| = n:

D~νh =
∑

~λ∈Nm
0 with 1≤|~λ|≤n

D~λf ·
n
∑

s=1

∑

ps(~ν,~λ)

~ν! ·
s
∏

j=1

[

D~lj
~g
]~kj

~kj ! ·
(

~lj !
)|~kj|

Here
[

D~lj
~g
]

denotes
(

D~lj
g(1), ..., D~lj

g(m)
)

and

ps

(

~ν,~λ
)

:=
{

(

~k1, ..., ~ks,~l1, ...,~ls

)

: ~ki ∈ Nm
0 ,
∣

∣

∣

~ki

∣

∣

∣ > 0,~li ∈ Nd
0, 0 ≺ ~l1 ≺ ... ≺ ~ls,

s
∑

i=1

~ki = ~λ and
s
∑

i=1

∣

∣

∣

~ki

∣

∣

∣ ·~li = ~ν

}
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With the aid of these technical results we can prove an estimate on the norms of the map φn:

Lemma 6.4. For every k ∈ N it holds that

|||φn|||k ≤ C · q(m−1)2·k·n·(n+1)
n ,

where C is a constant depending on m, k and n, but is independent of qn.

Proof. First of all we consider the map φ̃λ,µ := φ̃λ,ε,i,j,µ,δ,ε2 = C−1
λ ◦ ψµ,δ,i,j,ε2 ◦ ϕε,i,j ◦ Cλ

introduced in subsection 3.3:

φ̃λ,µ (x1, ..., xm) =
(

1

λ
[ψµ ◦ ϕε]1 (λx1, x2, ..., xm) , [ψµ ◦ ϕε]2 (λx1, x2, ..., xm) , ..., [ψµ ◦ ϕε]m (λx1, x2, ..., xm)

)

.

Let k ∈ N. We compute for a multi-index ~a with 0 ≤ |~a| ≤ k:
∥

∥

∥D~a

[

φ̃λ,µ

]

1

∥

∥

∥

0
≤ λk−1 · |||ψµ ◦ϕε|||k

and for r ∈ {2, ...,m}:
∥

∥

∥D~a

[

φ̃λ,µ

]

r

∥

∥

∥

0
≤ λk · |||ψµ ◦ ϕε|||k.

Therefore, we examine the map ψµ. For any multi-index ~a with 0 ≤ |~a| ≤ k and r ∈ {1, ...,m} we

obtain:
∥

∥D~a [ψµ]r
∥

∥

0
≤ µk−1 ·|||ϕε2 |||k = Ck,ε2 ·µk−1 and analogously

∥

∥

∥D~a

[

ψ−1
µ

]

r

∥

∥

∥

0
≤ Ck,ε2 ·µk−1.

Hence: |||ψµ|||k ≤ C · µk−1.
In the next step we use the formula of Faà di Bruno mentioned in remark 6.3. With it we
compute for any multi-index ~ν with |~ν| = k:
∥

∥

∥D~ν

[

(ψµ ◦ ϕε)
−1
]

r

∥

∥

∥

0
=
∥

∥

∥D~ν

[

ϕ−1
ε ◦ ψ−1

µ

]

r

∥

∥

∥

0

=

∥

∥

∥

∥

∥

∥

∥

∥

∑

~λ∈Nm
0 ,1≤|~λ|≤k

D~λ

[

ϕ−1
ε

]

r

k
∑

s=1

∑

(~k1,...,~ks,~l1,...,~ls)∈ps(~ν,~λ)

~ν!

s
∏

j=1

[

D~lj
ψ−1
µ

]~kj

~kj ! ·
(

~lj !
)|~kj|

∥

∥

∥

∥

∥

∥

∥

∥

0

=

∥

∥

∥

∥

∥

∥

∥

∥

∑

~λ∈Nm
0 ,1≤|~λ|≤k

D~λ

[

ϕ−1
ε

]

r
·

k
∑

s=1

∑

ps(~ν,~λ)

~ν! ·
s
∏

j=1

∏m
t=1

(

D~lj

[

ψ−1
µ

]

t

)~kjt

~kj ! ·
(

~lj !
)|~kj |

∥

∥

∥

∥

∥

∥

∥

∥

0

≤
∑

~λ∈Nm
0 ,1≤|~λ|≤k

∥

∥D~λ

[

ϕ−1
ε

]

r

∥

∥

0
·

k
∑

s=1

∑

ps(~ν,~λ)

~ν! ·
s
∏

j=1

∏m
t=1

∥

∥

∥
D~lj

[

ψ−1
µ

]

t

∥

∥

∥

~kjt

0

~kj ! ·
(

~lj !
)|~kj |

≤
∑

~λ∈Nm
0 with 1≤|~λ|≤k

∥

∥D~λ

[

ϕ−1
ε

]

r

∥

∥

0
·

k
∑

s=1

∑

ps(~ν,~λ)

~ν! ·
s
∏

j=1

|||ψ−1
µ |||

∑m
t=1

~kjt

|~lj|
~kj ! ·

(

~lj !
)|~kj|

=
∑

~λ∈Nm
0 with 1≤|~λ|≤k

∥

∥D~λ

[

ϕ−1
ε

]

r

∥

∥

0
·

k
∑

s=1

∑

ps(~ν,~λ)

~ν! ·
s
∏

j=1

|||ψ−1
µ ||||

~kj |
|~lj|

~kj ! ·
(

~lj !
)|~kj|

As seen above: |||ψ−1
µ ||||

~kj|
|~lj| ≤ C · µ|~kj|·|~lj|. Hereby:

∏s
j=1 |||ψ−1

µ ||||
~kj|
|~lj| ≤ Ĉ · µ

∑
s
j=1|~lj|·|~kj|, where
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Ĉ is independent of µ. By definition of the set ps
(

~ν,~λ
)

we have
∑s

i=1

∣

∣

∣

~ki

∣

∣

∣
·~li = ~ν. Hence:

k = |~ν| =
∣

∣

∣

∣

∣

s
∑

i=1

∣

∣

∣

~ki

∣

∣

∣ ·~li

∣

∣

∣

∣

∣

=

m
∑

t=1

(

s
∑

i=1

∣

∣

∣

~ki

∣

∣

∣ ·~li
)

t

=

m
∑

t=1

s
∑

i=1

∣

∣

∣

~ki

∣

∣

∣ ·~lit =
s
∑

i=1

∣

∣

∣

~ki

∣

∣

∣ ·
(

m
∑

t=1

~lit

)

=

s
∑

i=1

∣

∣

∣

~ki

∣

∣

∣ ·
∣

∣

∣

~li

∣

∣

∣

This shows
∏s

j=1 |||ψ−1
µ ||||

~kj |
|~lj| ≤ Ĉ ·µk and finally

∥

∥

∥D~ν

[

(ψµ ◦ ϕε)
−1
]

r

∥

∥

∥

0
≤ C ·µk. Analogously we

compute
∥

∥D~ν [ψµ ◦ ϕε]r
∥

∥

0
≤ C · |||ψµ|||k ≤ C ·µk−1. Altogether, we obtain |||ψµ ◦ϕε|||k ≤ C ·µk.

Hereby, we estimate
∥

∥

∥
D~a

[

φ̃λ,µ

]

r

∥

∥

∥

0
≤ C ·λk ·µk and analogously

∥

∥

∥
D~a

[

φ̃−1
λ,µ

]

r

∥

∥

∥

0
≤ C ·λk ·µk. In

conclusion this yields |||φ̃λ,µ|||k ≤ C · µk · λk.
In the next step we consider φ := φ̃

(m)
λm,µm

◦ ... ◦ φ̃(2)λ2,µ2
. Let λmax := max {λ2, ..., λm} as well as

µmax := max {µ2, ..., µm}. Inductively we will show |||φ|||k ≤ C̃ · λ(m−1)·k
max · µ(m−1)·k

max for every
k ∈ N, where C̃ is a constant independent of λi and µi.
Start: k = 1
Let l ∈ {1, ...,m} be arbitrary. By Lemma 6.1 a partial derivative of [φ]l of first order consists of

a sum of products of at most m− 1 first order partial derivatives of functions φ̃(j)λj ,µj
. Therewith,

we obtain using |||φ̃(j)λj ,µj
|||1 ≤ C ·λmax ·µmax the estimate ‖Di [φ]l‖0 ≤ C1 ·λm−1

max ·µm−1
max for every

i ∈ {1, ...,m}, where C1 is a constant independent of λ and µ.

With the aid of Lemma 6.2 we obtain the same statement for φ−1 =
(

φ̃
(2)
λ2,µ2

)−1

◦...◦
(

φ̃
(m)
λm,µm

)−1

.

Hence, we conclude: |||φ|||1 ≤ C̃1 · λm−1
max · µm−1

max .
Assumption: The claim is true for k ∈ N.
Induction step k → k + 1:
In the proof of Lemma 6.1 one observes that at the transition k → k + 1 in the product of

at most (m − 1) · k terms of the form D~b

([

φ̃
(i)
λi,µi

]

l

)

◦ φ̃(i−1)
λi−1,µi−1

◦ ... ◦ φ̃(2)λ2,µ2
one is replaced

by a product of a term
(

DjD~b

[

φ̃
(i)
λi,µi

]

l

)

◦ φ̃(i−1)
λi−1,µi−1

◦ ... ◦ φ̃(2)λ2,µ2
with j ∈ {1, ...,m} and at

most m − 2 partial derivatives of first order. Because of |||φ̃(i)λi,µi
|||k+1 ≤ C · λk+1

max · µk+1
max and

|||φ̃(j)λj ,µj
|||1 ≤ C ·λmax ·µmax the λmax-exponent as well as the µmax-exponent increase by at most

1 + (m− 2) · 1 = m− 1.
In the same spirit one uses the proof of Lemma 6.2 to show that also in case of φ−1 the λmax-
exponent as well as the µmax-exponent increase by at most m− 1.
Using the assumption we conclude

|||φ|||k+1 ≤ Ĉ · λk·(m−1)+m−1
max · µk·(m−1)+m−1

max = Ĉ · λ(k+1)·(m−1)
max · µ(k+1)·(m−1)

max .

So the proof by induction is completed.
In the setting of our explicit construction of the map φn in section 3.3 we have ε1 = 1

60·n4 ,

ε2 = 1
22·n4 , λmax = n · q1+(m−1)·n·(n−1)

2 +(m−2)·n
n and µmax = qnn . Thus:

|||φn|||k ≤ C̃ (m, k, n) ·
(

n · q1+(m−1)·n·(n−1)
2 +(m−2)·n

n

)(m−1)·k

· (qnn)(m−1)·k

≤ C (m, k, n) · q(m−1)2·k·n·(n+1)
n ,

where C (m, k, n) is a constant independent of qn.

In the next step we consider the map hn = gn ◦ φn, where gn is constructed in section 3.2:
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Lemma 6.5. For every k ∈ N it holds:

|||hn|||k ≤ C̄ · q3·(m−1)2·k·n·(n+1)
n ,

where C̄ is a constant depending on m, k and n, but is independent of qn.

Proof. Outside of S1 × [δ, 1− δ]
m−1, i.e. gn = g̃[nqσn], we have:

hn (x1, ..., xm) = gn ◦ φn (x1, ..., xm)

= ([φn (x1, ..., xm)]1 + [n · qσn] · [φn (x1, ..., xm)]2 , [φn (x1, ..., xm)]2 , ..., [φn (x1, ..., xm)]m)

and

h−1
n (x1, ..., xm) = φ−1

n ◦ g−1
n (x1, ..., xm)

=
([

φ−1
n (x1 − [n · qσn] · x2, x2, ..., xm)

]

1
, ..., [φn (x1 − [n · qσn ] · x2, x2, ..., xm)]m

)

.

Since σ < 1 we can estimate:

|||hn|||k ≤ 2·[n · qσn ]k·|||φn|||k ≤ C̄ (m, k, n)·qσ·kn ·q(m−1)2·k·n·(n+1)
n ≤ C̄ (m, k, n)·q2·(m−1)2·k·n·(n+1)

n

with a constant C̄ (m, k, n) independent of qn.
In the other case we have

gn ◦ φn (x1, ..., xm) =
(

[ga,b,ε ([φn]1 , [φn]2)]1 , [ga,b,ε ([φn]1 , [φn]2)]2 , [φn]3 , ..., [φn]m
)

.

We will use the formula of Faà di Bruno as above for any multi-index ~ν with |~ν| = k and
r ∈ {1, ...,m}:

‖D~ν [hn]r‖0 =
∥

∥D~ν [ga,b,ε ◦ φn]r
∥

∥

0

≤
∑

~λ∈Nm
0 with 1≤|~λ|≤k

∥

∥D~λ [ga,b,ε]r
∥

∥

0
·

k
∑

s=1

∑

ps(~ν,~λ)

~ν! ·
s
∏

j=1

|||φn||||
~kj|
|~lj|

~kj ! ·
(

~lj!
)|~kj|

By Lemma 6.4 we have |||φn|||k ≤ C · q(m−1)2·k·n·(n+1)
n , where C is a constant independent of

qn. As above we show
∏s

j=1 |||φn|||
|~kj|
|~lj| ≤ Ĉ · q(

∑s
j=1|~lj|·|~kj|)·(m−1)2·n·(n+1)

n = Ĉ · q(m−1)2·k·n·(n+1)
n ,

where Ĉ is a constant independent of qn.
Furthermore, we examine the map ga,b,ε,δ = D−1

a,b,ε ◦ gε ◦Da,b,ε for a, b ∈ Z and obtain

|||ga,b,ε,δ|||k ≤
(

b · a
ε

)k

· |||gε|||k = Cε,k · bk · ak.

By our constructions in section 3.2 we have b = [n · qσn ] ≤ n · qσn , a ≤ n · q1+(m−1)·n·(n+1)
2

n and

ε = 1
8n4 . Hence: |||gn|||k ≤ Cn,k · qσ·kn · qk+k·(m−1)·

n·(n+1)
2

n ≤ Cn,k · q2·k·(m−1)·n·(n+1)
n . Finally, we

conclude: ‖D~ν [hn]r‖0 ≤ C · q2·k·(m−1)·n·(n+1)
n · qk·(m−1)2·n·(n+1)

n ≤ C · q3·k·(m−1)2·n·(n+1)
n .

In the next step we consider h−1
n = φ−1

n ◦ g−1
a,b,ε. For r ∈ {1, ...,m} and any multi-index ~ν with

|~ν| = k we obtain using the formula of Faà di Bruno again:
∥

∥D~ν

[

h−1
n

]

r

∥

∥

0
=
∥

∥D~ν

[

φ−1
n ◦ g−1

n

]

r

∥

∥

0

≤
∑

~λ∈Nm
0 with 1≤|~λ|≤k

∥

∥D~λ

[

φ−1
n

]

r

∥

∥

0
·

k
∑

s=1

∑

ps(~ν,~λ)

~ν! ·
s
∏

j=1

|||gn||||
~kj|
|~lj|

~kj ! ·
(

~lj!
)|~kj|
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As above we show
∏s

j=1 |||gn|||
|~kj |
|~lj| ≤ Ĉ · q2·k·(m−1)·n·(n+1)

n , where Ĉ is a constant independent of

qn. Since |||φn|||k ≤ C · qk·(m−1)2·n·(n+1)
n we get

∥

∥D~ν

[

h−1
n

]

r

∥

∥

0
≤ Č · q2·k·(m−1)·n·(n+1)

n · qk·(m−1)2·n·(n+1)
n ≤ Č · q3·k·(m−1)2·n·(n+1)

n ,

where Č is a constant independent of qn.

Thus, we finally obtain |||hn|||k ≤ C(n, k,m) · q3·(m−1)2·k·n·(n+1)
n .

Finally, we are able to prove an estimate on the norms of the map Hn:

Lemma 6.6. For every k ∈ N we get:

|||Hn|||k ≤ C̆ · q3·(m−1)2·k·n·(n+1)
n ,

where C̆ is a constant depending solely on m, k, n and Hn−1. Since Hn−1 is independent of qn
in particular, the same is true for C̆.

Proof. Let k ∈ N, r ∈ {1, ...,m} and ~ν ∈ Nm
0 be a multi-index with |~ν| = k. As above we

estimate:

‖D~ν [Hn]r‖0 = ‖D~ν [Hn−1 ◦ hn]r‖0

≤
∑

~λ∈Nm
0 with 1≤|~λ|≤k

∥

∥D~λ [Hn−1]r
∥

∥

0
·

k
∑

s=1

∑

ps(~ν,~λ)

~ν! ·
s
∏

j=1

|||hn||||
~kj |
|~lj|

~kj ! ·
(

~lj !
)|~kj |

and compute using Lemma 6.5:
∏s

j=1 |||hn|||
|~kj|
|~lj| ≤ Ĉ · q3·(m−1)2·k·n·(n+1)

n , where Ĉ is a constant

independent of qn. Since Hn−1 is independent of qn we conclude:

‖D~ν [Hn]r‖0 ≤ Č · q3·(m−1)2·k·n·(n+1)
n ,

where Č is a constant independent of qn.
In the same way we prove an analogous estimate of

∥

∥D~ν

[

H−1
n

]

r

∥

∥

0
and verify the claim.

In particular, we see that this norm can be estimated by a power of qn.

6.2 Proof of convergence

For the proof of the convergence of the sequence (fn)n∈N
in the Diff∞ (M)-topology the next

result, that can be found in [FSW07, Lemma 4], is very useful.

Lemma 6.7. Let k ∈ N0 and h be a C∞-diffeomorphism on M . Then we get for every α, β ∈ R:

dk
(

h ◦Rα ◦ h−1, h ◦Rβ ◦ h−1
)

≤ Ck · |||h|||k+1
k+1 · |α− β| ,

where the constant Ck depends solely on k and m. In particular C0 = 1.

In the following Lemma we show that under some assumptions on the sequence (αn)n∈N
the

sequence (fn)n∈N
converges to f ∈ Aα (M) in the Diff∞ (M)-topology. Afterwards, we will show

that we can fulfil these conditions (see Lemma 6.9).
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Lemma 6.8. Let ε > 0 be arbitrary and (kn)n∈N
be a strictly increasing sequence of natural

numbers satisfying
∑∞

n=1
1
kn

< ε. Furthermore, we assume that in our constructions the following

conditions are fulfilled:

|α− α1| < ε and |α− αn| ≤
1

2 · kn · Ckn
· |||Hn|||kn+1

kn+1

for every n ∈ N,

where Ckn
are the constants from Lemma 6.7.

1. Then the sequence of diffeomorphisms fn = Hn ◦Rαn+1 ◦H−1
n converges in the Diff∞(M)-

topology to a measure-preserving smooth diffeomorphism f , for which d∞ (f,Rα) < 3 · ε
holds.

2. Also the sequence of diffeomorphisms f̂n = Hn ◦Rα ◦H−1
n ∈ Aα (M) converges to f in the

Diff∞(M)-topology. Hence f ∈ Aα (M).

Proof. 1. According to our construction it holds hn ◦Rαn
= Rαn

◦ hn and hence

fn−1 = Hn−1 ◦Rαn
◦H−1

n−1 = Hn−1 ◦Rαn
◦ hn ◦ h−1

n ◦H−1
n−1

= Hn−1 ◦ hn ◦Rαn
◦ h−1

n ◦H−1
n−1 = Hn ◦Rαn

◦H−1
n .

Applying Lemma 6.7 we obtain for every k, n ∈ N:
(6)
dk (fn, fn−1) = dk

(

Hn ◦Rαn+1 ◦H−1
n , Hn ◦Rαn

◦H−1
n

)

≤ Ck · |||Hn|||k+1
k+1 · |αn+1 − αn|

In section 2.2 we assumed |α− αn| n→∞−→ 0 monotonically. Using the triangle inequality
we obtain |αn+1 − αn| ≤ |αn+1 − α| + |α− αn| ≤ 2 · |α− αn| and therefore equation (6)
becomes:

dk (fn, fn−1) ≤ Ck · |||Hn|||k+1
k+1 · 2 · |αn − α| .

By the assumptions of this Lemma it follows for every k ≤ kn:

(7) dk (fn, fn−1) ≤ dkn
(fn, fn−1) ≤ Ckn

· |||Hn|||kn+1
kn+1 · 2 ·

1

2 · kn · Ckn
· |||Hn|||kn+1

kn+1

≤ 1

kn

In the next step we show that for arbitrary k ∈ N (fn)n∈N
is a Cauchy sequence in Diffk (M),

i.e. limn,m→∞ dk (fn, fm) = 0. For this purpose, we calculate:

(8) lim
n→∞

dk (fn, fm) ≤ lim
n→∞

n
∑

i=m+1

dk (fi, fi−1) =

∞
∑

i=m+1

dk (fi, fi−1) .

We consider the limit process m → ∞, i.e. we can assume k ≤ km and obtain from
equations (7) and (8):

lim
n,m→∞

dk (fn, fm) ≤ lim
m→∞

∞
∑

i=m+1

1

ki
= 0.

Since Diffk (M) is complete, the sequence (fn)n∈N
converges consequently in Diffk (M) for

every k ∈ N. Thus, the sequence converges in Diff∞ (M) by definition.

Furthermore, we estimate:

(9) d∞ (Rα, f) = d∞

(

Rα, lim
n→∞

fn

)

≤ d∞ (Rα, Rα1) +

∞
∑

n=1

d∞ (fn, fn−1) ,
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where we used the notation f0 = Rα1 .
By explicit calculations we obtain dk (Rα, Rα1) = d0 (Rα, Rα1) = |α− α1| for every k ∈ N,
hence

d∞ (Rα, Rα1) =

∞
∑

k=1

|α− α1|
2k · (1 + dk (Rα, Rα1))

≤ |α− α1| ·
∞
∑

k=1

1

2k
= |α− α1| .

Additionally it holds:

∞
∑

n=1

d∞ (fn, fn−1) =
∞
∑

n=1

∞
∑

k=1

dk (fn, fn−1)

2k · (1 + dk (fn, fn−1))

=

∞
∑

n=1

(

kn
∑

k=1

dk (fn, fn−1)

2k · (1 + dk (fn, fn−1))
+

∞
∑

k=kn+1

dk (fn, fn−1)

2k · (1 + dk (fn, fn−1))

)

As seen above dk (fn, fn−1) ≤ 1
kn

for every k ≤ kn. Hereby, it follows further:

∞
∑

n=1

d∞ (fn, fn−1) ≤
∞
∑

n=1

(

1

kn
·

kn
∑

k=1

1

2k
+

∞
∑

k=kn+1

dk (fn, fn−1)

2k · (1 + dk (fn, fn−1))

)

≤
∞
∑

n=1

1

kn
+

∞
∑

n=1

∞
∑

k=kn+1

1

2k
.

Because of
∑∞

k=kn+1
1
2k

= 2−∑kn

k=0
1
2k

=
(

1
2

)kn ≤ 1
kn

we conclude:

∞
∑

n=1

d∞ (fn, fn−1) ≤
∞
∑

n=1

1

kn
+

∞
∑

n=1

1

kn
< 2 · ε.

Hence, using equation (9) we obtain the desired estimate d∞ (f,Rα) < 3 · ε.

2. We have to show: f̂n → f in Diff∞ (M).
For it we compute with the aid of Lemma 6.7 for every n ∈ N and k ≤ kn:

dk

(

fn, f̂n

)

≤ dkn

(

Hn ◦Rαn+1 ◦H−1
n , Hn ◦Rα ◦H−1

n

)

≤ Ckn
· |||Hn|||kn+1

kn+1 · |αn+1 − α| ≤ Ckn
· |||Hn|||kn+1

kn+1 · |αn − α|

≤ Ckn
· |||Hn|||kn+1

kn+1 ·
1

2 · kn · Ckn
· |||Hn|||kn+1

kn+1

=
1

2 · kn
≤ 1

kn
.

Fix some k ∈ N.
Claim: ∀δ > 0 ∃N ∀n ≥ N : dk

(

f, f̂n

)

< δ, i.e. f̂n → f in Diffk (M).

Proof: Let δ > 0 be given. Since fn → f in Diff∞ (M) we have fn → f in Diffk (M) in
particular. Hence, there is n1 ∈ N, such that dk (f, fn) < δ

2 for every n ≥ n1. Because of
kn → ∞ we conclude the existence of n2 ∈ N, such that 1

kn
< δ

2 for every n ≥ n2, as well
as the existence of n3 ∈ N, such that kn ≥ k for every n ≥ n3. Then we obtain for every
n ≥ max {n1, n2, n3}:

dk

(

f, f̂n

)

≤ dk (f, fn) + dk

(

fn, f̂n

)

<
δ

2
+ dkn

(

fn, f̂n

)

≤ δ

2
+

1

kn
<
δ

2
+
δ

2
= δ.
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Hence, the claim is proven.

In the next step we show: limn→∞ d∞

(

f̂n, f
)

= 0. For this purpose, we examine:

d∞

(

fn, f̂n

)

=

kn
∑

k=1

dk

(

fn, f̂n

)

2k ·
(

1 + dk

(

fn, f̂n

)) +
∞
∑

k=kn+1

dk

(

fn, f̂n

)

2k ·
(

1 + dk

(

fn, f̂n

))

≤ 1

kn
·

kn
∑

k=1

1

2k
+

∞
∑

k=kn+1

1

2k
≤ 1

kn
+

(

1

2

)kn

.

Consequently limn→∞ d∞

(

fn, f̂n

)

= 0. With it we compute:

lim
n→∞

d∞

(

f, f̂n

)

= lim
n→∞

d∞

(

lim
m→∞

fm, f̂n

)

= lim
n→∞

lim
m→∞

d∞

(

fm, f̂n

)

≤ lim
n→∞

lim
m→∞

(

m
∑

i=n+1

d∞ (fi, fi−1) + d∞

(

fn, f̂n

)

)

= lim
n→∞

∞
∑

i=n+1

d∞ (fi, fi−1) + lim
n→∞

d∞

(

fn, f̂n

)

= 0.

As asserted we obtain: limn→∞ d∞

(

f̂n, f
)

= 0.

As announced we show that we can satisfy the conditions from Lemma 6.8 in our construc-
tions:

Lemma 6.9. Let (kn)n∈N
be a strictly increasing sequence of natural numbers with

∑∞
n=1

1
kn

<∞
and Ckn

be the constants from Lemma 6.7. For any Liouvillean number α there exists a sequence

αn = pn

qn
of rational numbers with the property that 260n4 divides qn, such that our conjugation

maps Hn constructed in section 3.2 and 3.3 fulfil the following conditions:

1. For every n ∈ N:

|α− αn| <
1

2 · kn · Ckn
· |||Hn|||kn+1

kn+1

.

2. For every n ∈ N:

|α− αn| <
1

2n+1 · qn · |||Hn|||1
.

3. For every n ∈ N:

‖DHn−1‖0 <
ln (qn)

n
.

Proof. In Lemma 6.6 we saw |||Hn|||kn+1 ≤ C̆n · q3·(m−1)2·(kn+1)·n·(n+1)
n , where the constant

C̆n was independent of qn. Thus, we can choose qn ≥ C̆n for every n ∈ N. Hence, we obtain:

|||Hn|||kn+1 ≤ q
4·(m−1)2·(kn+1)·n·(n+1)
n .

Besides qn ≥ C̆n we keep the mentioned condition qn ≥ 64 · 260 ·n4 · (n− 1)11 · q(m−1)·(n−1)2+3
n−1 in

mind. Furthermore, we can demand ‖DHn−1‖0 <
ln(qn)

n from qn because Hn−1 is independent
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of qn. Since α is a Liouvillean number, we find a sequence of rational numbers α̃n = p̃n

q̃n
, p̃n, q̃n

relatively prime, under the above restrictions (formulated for q̃n) satisfying:

|α− α̃n| =
∣

∣

∣

∣

α− p̃n
q̃n

∣

∣

∣

∣

<
|α− αn−1|

2n+1 · kn · Ckn
· (260n4)

1+4·(m−1)2·(kn+1)2·n·(n+1) · q̃1+4·(m−1)2·(kn+1)2·n·(n+1)
n

Put qn := 260n4 · q̃n and pn := 260n4 · p̃n. Then we obtain:

|α− αn| <
|α− αn−1|

2n+1 · kn · Ckn
· q1+4·(m−1)2·(kn+1)2·n·(n+1)

n

.

So we have |α− αn| n→∞−→ 0 monotonically. Because of |||Hn|||kn+1
kn+1 ≤ q4·(m−1)2·(kn+1)2·n·(n+1) this

yields: |α− αn| < 1

2n+1·qn·kn·Ckn ·|||Hn|||
kn+1
kn+1

. Thus, the first property of this Lemma is fulfilled.

Furthermore, we note kn ≥ 1 and Ckn
≥ 1 by Lemma 6.7. Thus, qn · kn · Ckn

≥ qn. Moreover,
|||Hn|||1 ≥ ‖Hn‖0 = 1, because Hn : S1 × [0, 1]

m−1 → S1 × [0, 1]
m−1 is a diffeomorphism. Hence,

|||Hn|||kn+1
kn+1 ≥ |||Hn|||1. Altogether, we conclude 2n+1·qn ·kn·Ckn

·|||Hn|||kn+1
kn+1 ≥ 2n+1 ·qn·|||Hn|||1

and so:

(10) |α− αn| <
1

2n+1 · qn · kn · Ckn
· |||Hn|||kn+1

kn+1

≤ 1

2n+1 · qn · |||Hn|||1
,

i.e. we verified the second property.

Remark 6.10. Lemma 6.9 shows that the conditions of Lemma 6.8 are satisfied. Therefore, our
sequence of constructed diffeomorphisms fn converges in the Diff∞(M)-topology to a diffeomor-
phism f ∈ Aα(M).

To apply Proposition 5.6 we need another result:

Lemma 6.11. Let (αn)n∈N
be constructed as in Lemma 6.9. Then it holds for every n ∈ N and

for every m̃ ≤ qn+1:

d0
(

f m̃, f m̃
n

)

≤ 1

2n
.

Proof. In the proof of Lemma 6.8 we observed fi−1 = Hi ◦ Rαi
◦H−1

i for every i ∈ N. Hereby
and with the help of Lemma 6.7 we compute:

d0
(

f m̃
i , f

m̃
i−1

)

= d0
(

Hi ◦Rm̃·αi+1 ◦H−1
i , Hi ◦Rm̃·αi

◦H−1
i

)

≤ |||Hi|||1 · m̃ · 2 · |α− αi| .
Since m̃ ≤ qn+1 ≤ qi we conclude for every i > n using equation (10) :

d0
(

f m̃
i , f

m̃
i−1

)

≤ |||Hi|||1 · m̃ · 2 · |α− αi| ≤ |||Hi|||1 · m̃ · 2 · 1

2i+1 · qi · |||Hi|||1
≤ m̃

qi
· 1

2i
≤ 1

2i
.

Thus, for every m̃ ≤ qn+1 we get the claimed result:

d0
(

f m̃, f m̃
n

)

= lim
k→∞

d0
(

f m̃
k , f

m̃
n

)

≤ lim
k→∞

k
∑

i=n+1

d0
(

f m̃
i , f

m̃
i−1

)

≤
∞
∑

i=n+1

1

2i
=

(

1

2

)n

.

Remark 6.12. Note that the sequence (mn)n∈N
defined in section 4 meets the mentioned con-

dition mn ≤ qn+1 and hence Lemma 6.11 can be applied to it.

Concluding we have checked that all the assumptions of Proposition 5.6 are satisfied. Thus,
this criterion guarantees that the constructed diffeomorphism f ∈ Aα(M) is weakly mixing.
In addition, for every ε > 0 we can choose the parameters by Lemma 6.8 in such a way, that
d∞ (f,Rα) < ε holds.
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7 Construction of the measurable f -invariant Riemannian

metric

Let ω0 denote the standard Riemannian metric on M = S1 × [0, 1]m−1. The following Lemma
shows that the conjugation map hn = gn◦φn constructed in section 3 is an isometry with respect
to ω0 on the elements of the partial partition ζn.

Lemma 7.1. Let Ǐn ∈ ζn. Then hn|Ǐn is an isometry with respect to ω0.

Proof. Let Ǐn,k ∈ ζn be a partition element on
[

k−1
n·qn

, k
n·qn

]

× [0, 1]
m−1. This element Ǐn,k is

positioned in such a way that all the occurring maps ϕε,1,j and ϕ−1
ε2,1,j

act as rotations on it.

Thus, φn|Ǐn,k
is an isometry and φn

(

Ǐn,k
)

is equal to

[

k − 1

n · qn
+

j
(1)
1

n · q2n
+ ...+

j
((m−1)· k·(k−1)

2 )
1 + 1

n · q(m−1)· k·(k−1)
2 +1

n

− j
(1)
2

n · q(m−1)· k·(k−1)
2 +2

n

− ...− j
(k)
2

n · q(m−1)· k·(k−1)
2 +k+1

n

− j
(1)
3

n · q(m−1)·k·(k−1)
2 +k+2

n

− ...− j
(k)
m + 1

n · q(m−1)· k·(k+1)
2 +1

n

+
1

n5 · q(m−1)·k·(k+1)
2 +1

n

,

k − 1

n · qn
+

j
(1)
1

n · q2n
+ ...− j

(k)
m

n · q(m−1)·k·(k+1)
2 +1

n

− 1

n5 · q(m−1)·k·(k+1)
2 +1

n

]

×
[

j
((m−1)·

k·(k−1)
2 +1)

1

qn
+ ...

j
((m−1)·

k·(k−1)
2 +k)

1

qkn
+
j
(k+1)
2

qk+1
n

+ ...+
j
((m−1)·

k·(k+1)
2 +1)

2

q
1+(m−1)· k·(k+1)

2
n

+

j
((m−1)· k·(k+1)

2 +2)
2

8n5 · q1+(m−1)·
k·(k+1)

2
n · [nqσn]

+
1

8n9 · q1+(m−1)·
k·(k+1)

2
n · [nqσn ]

,

j
((m−1)·k·(k−1)

2 +1)
1

qn
+ ...+

j
((m−1)·k·(k+1)

2 +2)
2 + 1

8n5 · q1+(m−1)·k·(k+1)
2

n · [nqσn ]
− 1

8n9 · q1+(m−1)· k·(k+1)
2

n · [nqσn ]

]

×
m
∏

i=3

[

j
((m−1)· k·(k−1)

2 +(i−2)·k+1)
1

qn
+ ...+

j
((m−1)·k·(k−1)

2 +(i−1)·k)
1

qkn
+

1

n4 · qkn
,

j
((m−1)·k·(k−1)

2 +(i−2)·k+1)
1

qn
+ ...+

j
((m−1)·k·(k−1)

2 +(i−1)·k)
1 + 1

qkn
− 1

n4 · qkn

]

.

Then we have to examine the application of gn = g
n·q

1+(m−1)·
(k+1)·k

2
n ,[n·qσn],

1
8n4 , 1

32n4

. In particular,

we have ε
b·a = 1

8n4·[n·qσn]·n·q
1+(m−1)·

(k+1)·k
2

n

. Since 4 · ε = 1
2n4 < 1

n4 , gn acts as translation on

φn
(

Ǐn,k
)

.

This Lemma implies that h−1
n |hn(Ǐn) is an isometry as well.

In the following we construct the f -invariant measurable Riemannian metric. This construction
parallels the approach in [GK00, section 4.8]. For it we put ωn :=

(

H−1
n

)∗
ω0. Each ωn is a smooth

Riemannian metric because it is the pullback of a smooth metric via a C∞ (M)-diffeomorphism.
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Since R∗
αn+1

ω0 = ω0 the metric ωn is fn-invariant:

f∗
nωn =

(

Hn ◦Rαn+1 ◦H−1
n

)∗ (
H−1

n

)∗
ω0 =

(

H−1
n

)∗
R∗

αn+1
H∗

n

(

H−1
n

)∗
ω0 =

(

H−1
n

)∗
R∗

αn+1
ω0

=
(

H−1
n

)∗
ω0 = ωn.

With the succeeding Lemmas we show that the limit ω∞ := limn→∞ ωn exists µ-almost every-
where and is the desired f -invariant Riemannian metric.

Lemma 7.2. The sequence (ωn)n∈N
converges µ-a.e. to a limit ω∞

Proof. For every N ∈ N we have for every k > 0:

ωN+k =
(

H−1
N+k

)∗
ω0 =

(

h−1
N+k ◦ ... ◦ h−1

N+1 ◦H−1
N

)∗
ω0 =

(

H−1
N

)∗ (
h−1
N+k ◦ ... ◦ h−1

N+1

)∗
ω0.

Since the elements of the partition ζn cover M except a set of measure at most 4m
n2 by Remark

3.3, Lemma 7.1 shows that ωN+k coincides with ωN =
(

H−1
N

)∗
ω0 on a set of measure at least

1−∑∞
n=N+1

4m
n2 . As this measure approaches 1 for N → ∞, the sequence (ωn)n∈N

converges on
a set of full measure.

Lemma 7.3. The limit ω∞ is a measurable Riemannian metric.

Proof. The limit ω∞ is a measurable map because it is the pointwise limit of the smooth metrics
ωn, which in particular are measurable. By the same reasoning ω∞|p is symmetric for µ-almost
every p ∈M . Furthermore, ω∞ is positive definite because ωn is positive definite for every n ∈ N

and ω∞ coincides with ωN on T1M ⊗ T1M minus a set of measure at most
∑∞

n=N+1
4m
n2 . Since

this is true for every N ∈ N, ω∞ is positive definite on a set of full measure.

Remark 7.4. In the proof of the subsequent Lemma we will need Egoroff’s theorem (for example
[Ha65, §21, Theorem A]): Let (N, d) denote a separable metric space. Given a sequence (ϕn)n∈N

of N -valued measurable functions on a measure space (X,Σ, µ) and a measurable subset A ⊆ X ,
µ (A) < ∞, such that (ϕn)n∈N

converges µ-a.e. on A to a limit function ϕ. Then for every
ε > 0 there exists a measurable subset B ⊂ A such that µ (B) < ε and (ϕn)n∈N

converges to ϕ
uniformly on A \B.

Lemma 7.5. ω∞ is f -invariant, i.e. f∗ω∞ = ω∞ µ-a.e..

Proof. By Lemma 7.2 the sequence (ωn)n∈N
converges in the C∞-topology pointwise almost

everywhere. Hence, we obtain using Egoroff’s theorem: For every δ > 0 there is a set Cδ ⊆ M
such that µ (M \ Cδ) < δ and the convergence ωn → ω∞ is uniform on Cδ.
The function f was constructed as the limit of the sequence (fn)n∈N

in the C∞-topology. Thus,
f̃n := f−1

n ◦ f → id in the C∞-topology. Since M is compact, this convergence is uniform too.
Furthermore, the smoothness of f implies f∗ω∞ = f∗ limn→∞ ωn = limn→∞ f∗ωn. Therewith,

we compute on Cδ: f∗ω∞ = limn→∞

((

fnf̃n

)∗

ωn

)

= limn→∞

(

f̃∗
nf

∗
nωn

)

= limn→∞ f̃∗
nωn =

ω∞, where we used the uniform convergence on Cδ in the last step. As this holds on every set
Cδ with δ > 0, it also holds on the set

⋃

δ>0 Cδ. This is a set of full measure and therefore the
claim follows.

Hence, the desired f -invariant measurable Riemannian metric ω∞ is constructed and thus
Proposition 2.8 is proven.
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